COMPACTNESS

A netric space (X,d) is compact if every requence {xn}_n has a convergent subsequence {xn(k)}_k.

Recall: Finite nets are compact.

But the opposite is not true! We would like to characterize the compact rets. If KEX is compact then it is closed and bounded

Proof: K is closed: Let Exn In be a requence in K converging to $x \in X$.

converging to x \(\).

K is compact, no there is a subsequence \(\frac{1}{2} \text{K} \) converging to some y \(\in \in \).

Converging to nowe yeth.

But then $\{x_{n(k)}\}_{k}$ converges to x and y, no $x=y\in K$.

If KEX is compact then it is closed and bounded

Proof: K is bounded: Assume not. Fix $x \in X$. Then for every $n \notin N$, there is nome $x_n \in K$ with $d(x_n, x) \ge n$. Let $\{x_{n(k)}\}_k$ be a convergent subsequence

of $\{x_n\}_n$. Then $n(k) \leq d(x_{n(k)}, \overline{x}) \xrightarrow{k \to \infty} d(x, \overline{x})$

4

· Thus, compact >> closed, bounded.

The opposite might not be true!

Let $X = \mathbb{R}^n$, d[x,y] = ||x-y||. Let $K \subseteq \mathbb{R}^n$. Then:

K is compact \iff K is closed and bounded

Proof: We have already shown " \implies ". Let K be closed, bounded.

Let $\{x_n\}_n$ be a requerce in K. Then $\{x_n\}_n$ is

bounded, no by Bolzano-Weierstrass, there is a subsequence {\text{Xn(k)}}_k and some x \(\epsilon \text{R}^n \\ \ \ \text{5.t.} \text{Xn(k)} \) \(\epsilon \sigma \text{X}. But {xn(k) }k is a requerce in K, which is closed, no XEK. Hence, K is compact.

Let (X, dx) and (Y, dy) be metric graces and $f: X \rightarrow Y$ continuous. If $K \subseteq X$ is compact then f(K) is compact.

Note: Continuity is essential! If $f(x) = \begin{cases} 1/x & x \neq 0 \\ 0 & x = 0 \end{cases}$ $(x \in \mathbb{R})$ then $f(F_1, I)$ is unbounded, hence noncompact.

Not true for inverse images! If $f(x) = \min x$ (xER) then $f^{-1}([-1,1]) = R$, which is noncompact.

Extremal value theorem

Let (X,d) be compact and f: X -> /R continuous.

Then f attains a maximum and a minimum.

Proof: $f(X) \subseteq \mathbb{R}$ is compact, no it is closed and bounded. Hence, both inf (f(X)) and rup (f(X)) lie in f(X).

Thus, there are $a, b \in X$ no that

thus, there are $a, v \in X$ and $f(b) = \sup_{x \in X} (f(x))$.

Hence, $f(a) \le f(x) \le f(b)$ $\forall x \in X$.

QUESTIONS? COMMENTS?