COMPACTNESS II

A metric pace (X, d) is compact if every sequence $\left\{X_{n}\right\}_{n}$ has a convergent mbsequence $\left\{x_{n(k)}\right\}_{k}$.

Recall. Finite rets are compact.
But the opposite is not true!
We would like fo characterize the compact rets.

If $K \subseteq X$ is compact then it is colored and bounded
Proof: K is closed: Let $\left\{x_{n}\right\}_{n}$ be a requence in K converging fo $x \in X$.
K is compact, or there is a subsequence $\left\{x_{n}(k)\right\}_{k}$ converging to nome $y \in K$.
But then $\left\{x_{n}(k)\right\}_{k}$ converges fo x and y, or $x=y \in K$.

If $K \subseteq X$ is compact then it is closed and bounded
Proof: K is bounded: Assume not. Fix $\bar{x} \in X$. Then for every $n \in \mathbb{N}$, there is rome $x_{n} \in K$ with $d\left(x_{n}, \bar{x}\right) \geqslant n$.
Let $\left\{x_{n}(k)\right\}_{k}$ be a convergent nubreguence of $\left\{x_{n}\right\}_{n}$. Then

$$
n(k) \leqslant d\left(x_{n(k)}, \bar{x}\right) \underset{k \rightarrow \infty}{\longrightarrow} d(x, \bar{x})
$$

- Thus, compact \Rightarrow closed, bounded.
- The opposite might not be true!

Let $X=\mathbb{R}^{n}, d(x, y)=\|x-y\|$. Let $k \subseteq \mathbb{R}^{n}$. Then: K is compact $\Leftrightarrow K$ is closed and bounded

Proof: We have already shown " \Rightarrow ". Let K be closed, bounded. Let $\left\{x_{n}\right\}_{n}$ be a requence in K. Then $\left\{x_{n}\right\}_{n}$ is bounded, no by Bolzano-Weiertrass, there is a mbrequence $\left\{x_{n(k)}\right\}_{k}$ and rome $x \in \mathbb{R}^{n}$ nit. $x_{n(k)} \underset{k \rightarrow \infty}{ }$. But $\left\{x_{n(k)}\right\}_{k}$ is a sequence in K, which is closed, vo $x \in K$.
Hence, K is compact.

Let $\left(X, d_{x}\right)$ and $\left(Y, d_{y}\right)$ be metric paces and $f: X \rightarrow Y$ continuous. If $K \subseteq X$ is compact then $f(K)$ is compact.

Proof: Let $\left\{y_{n}\right\}_{n}$ be a requence in $f(K)$.
Let $x_{n} \in K$ be sit. $f\left(x_{n}\right)=y_{n}, \quad \forall n \in \mathbb{N}$.
Let $\left\{x_{n(k)}\right\}_{k}$ be a subsequence $n . t . \quad x_{n(k)} \underset{k \rightarrow \infty}{ } x \in K$.
f is continuous, no $y_{n(k)}=f\left(x_{n(k)}\right) \underset{k \rightarrow \infty}{\longrightarrow} f(x) \in f((K)$

Note: Continuity is essential! If $f(x)= \begin{cases}1 / x & x \neq 0 \\ 0 & x=0\end{cases}$ $(x \in \mathbb{R})$ then $f([-1,1])$ is unbounded, hence noncompact.

- Not true for inverse images! If $f(x)=\sin x$ $(x \in \mathbb{R})$ then $f^{-1}([-1,1])=\mathbb{R}$, which is noncompact.

Extremal value theorem
Let (X, d) be compact and $f: X \rightarrow \mathbb{R}$ continuous. Then t attains a maximum and a minimum.

Proof: $f(x) \subseteq \mathbb{R}$ is compact, so it is closed and bounded. Hence, lith inf $(f(x))$ and my p $(f(x))$ lie in $f(x)$. Thus, there are $a, b \in X$ no that

$$
f(a)=\inf (f(x)) \text { and } f(r)=\operatorname{mpg}(f(x)) \text {. }
$$

Hence,

$$
f(a) \leqslant f(x) \leq f(v) \quad \forall x \in X .
$$

Questions? COMMENTS?

