COMPACTNESS TIL

Since compactness is difficult to check, we would like a simplex characterization of compact rets.

Recall:

· Compact => closed, bounded

· Compact == finite

Let (X,d) be a metric space. A set $K \subseteq X$ is fotally bounded if for every E > 0, there are finitely many points $X_1, \dots, X_n \in K$ such that $K \subseteq \bigcup_{i=1}^n B(x_i; E)$

Let (X,d) be a metric space. A set $K \subseteq X$ is fotally bounded if for every E > 0, there are finitely many points $X_1, \dots, X_n \in K$ such that $K \subseteq \bigcup_{i=1}^n B(x_i; E)$

Every totally bounded net is bounded

Every compact net is totally bounded

Proof: Arrune $K \subseteq X$ is compact but not totally bounded. Then $\exists \ E > 0$ such that $K \not\subseteq \bigcup B(x;j \ E)$ for any

choice of X1, ..., Xn & K.

Pick and X. & K. Then K & B(X1; E), no there is nome

Pich any $X_i \in K$. Then $K \not\subseteq B(X_i; E)$, no there is nome $X_2 \in K \setminus B(X_i; E)$. Heratively, given X_1, \dots, X_n , pich any

Xnn $\in K \setminus \bigcup_{i=1}^{n} B(x_i; \varepsilon)$. Note that $d(x_n, x_m) \ge \varepsilon$ for any $n \ne m$. Then $\{x_n, x_n, x_n\}$ is a requerce in K, no it has a convergent

Then $\{x_n\}_{n\in\mathbb{N}}$ is a required in K, no it has a convergent subsequence, $X_{n(k)} \xrightarrow[k\to\infty]{} x\in K$. But then

 $\mathcal{E} \leq d\left(X_{n(k)}, X_{n(\ell)}\right) \leq d\left(X_{n(k)}, X\right) + d\left(X, X_{n(\ell)}\right) \xrightarrow{k, \ell \to \infty} 0$

Let (X,d) be complete and $K \subseteq X$. Then K is compact \iff K is closed and totally bounded.

Proof: We will we the same idea as in the Bolzano-Weierstrass theorem. The Bolzano-Weierstrans theorem

If {xn}, is a bounded requerce in R^m then it has a convergent subsequence: Xn(k) k-100

Let (X,d) be complete and $K \subseteq X$. Then K is compact \iff K is closed and totally bounded.

"=": Let $\{x_n\}_n$ be a requerce in K. Lething E = 1/2, there are $y_1, \dots, y_m \in K$ such that K

are $y_1, ..., y_m \in K$ such that $K \subseteq \bigcup_{i=1}^m B(y_i; 1/2)$ At least one of the balls $B(y_i; 1/2), ..., B(y_m; 1/2)$ contains infinitely many of

 $B(y_1;1/2),...,B(y_m;1/2)$ contains infinitely many of the elements $x_1, x_2,...$. Let $n_1(1), n_1(2), n_1(3),... \in \mathbb{N}$ be the indices of those elements. Note: $d(x_{n_1(i)}, x_{n_1(i)}) < 1 \ \forall i,j$.

there are $z_1, \ldots, z_m \in K$ such that At least one of the balls Next, lething &= 1/4, K C U B(Zi; 14). contains infinitely many of the B(z, 1/4),..., B(zm; 1/4) elements $X_{n_1(i)}$, $X_{n_1(i)}$, $X_{n_1(i)}$, ... be the indices of those elements. Note: $d(X_{n_2(i)})$, $X_{n_2(j)}$) $< \frac{1}{2} \ \forall i,j$.

In this way, we pick out rub-rub-rub-rub-sub-guences nahisfying $d(X_{n_k(i)}, X_{n_k(j)}) < \frac{1}{2^k} \forall ij$ and hence also $d(\chi_{N_k(i)}, \chi_{N_p(i)}) < \frac{1}{2^{\min(k,e)}}$ $\forall k, \ell$ $n_1(1)$ $n_1(2)$ $n_1(3)$ --- $N_2(1)$ $N_2(2)$ $N_2(3)$ ---

 $n_2(1)$ $n_2(2)$ $n_2(3)$ --- $n_3(1)$ $n_3(2)$ $n_3(3)$ ---

Now let $n(k) = n_k(k)$.

Now let $n(k) = n_k(k)$. Then $d(X_{N(k)}, X_{N(k)}) < 2^N$ $\forall k, l \ge N$ No $\{X_{N(k)}, X_{k \in N}\}$ is Cauchy! Hence, $X_{n(k)} \xrightarrow{k \to \infty} x \in X$. Since $\{X_{n(k)}, X_{k \in N}\}$ lies in K, and K is closed, we have $x \in K$.

It follows that K is compact.

Separability

A reparable mace is "almost countable"

Compact rets are reparable.

Recall: A set D is countable if we can make a list of its contents $D = \{d_1, d_2, d_3, \dots \}$

Let (X,d) be a metric space and let $A \subseteq B \subseteq X$. The set A is dense in B if for all $x \in B$ and E > 0there is some $y \in A$ such that d(x,y) < E.

Examples: Any net is dense in itself

O is dense in R

I = R/Q is dense in R

O' is dense in R'

Let (X,d) be a metric space. A set $B \subseteq X$ is reparable if there exists a dense, countable set $D \subseteq B$

Examples: · R is reparable · Any subset of R is reparable
· If B, Bz, are reparable, then so is UB; • $l^{p}(R)$ is reparable for all $p < \infty$, but not for $p = \infty$. Every compact net is reparable.

Froof: Let $K \subseteq X$ be compact. Then it is totally bounded, no for any $n \in \mathbb{N}$ there are \mathbb{N}_n points $X_1^n, \dots, X_N^n \in K$ no that $K \subseteq \bigcup_{i=1}^{N_n} B(x_i^n; \frac{1}{n})$. Let $D = \{X'_1, \dots, X'_{N_1}, X^2_1, \dots, X^2_{N_2}, X^3_1, \dots \}$

Then D is countable, and if $x \in K$, E > 0 then lething $n > \frac{1}{E}$ there is some $x_i^n \in D$ with $d(x, x_i^n) < \frac{1}{n} < E$.

QUESTIONS? COMMENTS?