COMPLETION OF A HETRIC SPACE Let (X,d) be an incomplete metric space. Can we complete (X,d) - add elements to make it complete?

Example: Rina completion of Q

R

(X,d) "add elements" (X,d)

Wishlist:

(X,X) is complete

 \bullet \times \subseteq \times

. X is dense in X (we are not adding too many elements) Such a metric space (X, L) is a completion of (X, d)

(X can be embedded in X)

Completions are unique (if they exist) - up to isometries.

An isometry is a "relabeling" of elements which leaves the metric intact.
For instance, the following mean the name:

- . The square roof of 2. The positive robustion of $x^2 = 2$

Main idea: Identify each $x \in X$ with all requences $\{x_n\}_n$ in X such that $x_n \xrightarrow[n \to \infty]{} \times$

• Given $\{x_n\}_n$, we can find $x = \lim_{n \to \infty} x_n$ • Given x_n we can find all requerces $\{x_n\}_n \wedge t$. $x_n \xrightarrow[n \to \infty]{} x$.

Thus:
$$X = \{\{x_n\}_n \text{ in } X : x_n \xrightarrow{n-e\infty} x \}.$$

Note: If $\{x_n\}_n \in X$ then $\{y_n\}_n \in X$ iff $d(x_n, y_n) \xrightarrow[n \to \infty]{} 0$.

 $X \leftarrow X = \left\{ \left\{ x_{n} \right\}_{n} \text{ in } X : x_{n} \xrightarrow{n=\infty} X \right\}.$ Note: If $\{x_n\}_n \in \mathbb{X}$ then $\{y_n\}_n \in \mathbb{X}$ iff $d(x_n, y_n) \xrightarrow[n-\sigma, \infty]{} 0$ Define $[\{x_n\}_n] = \{\{y_n\}_n \text{ in } X : d(x_n, y_n) \xrightarrow[n \to \infty]{} 0 \}$ ("the equivalence class" of {xn}n)

But there are lots of requences in X that seem to converge (are Cauchy), but don't (as (X,d) is incomplete). We can still define their equivalence class [fxn3n]!

Let $X = \{ [\{x_n\}_n] : \{x_n\}_n \text{ is a Cauchy requence in } X \}$ $\overline{d}\left(\left[\left\{x_{n}\right\}_{n}\right],\left[\left\{y_{n}\right\}_{n}\right]\right)=\lim_{n\to\infty}d\left(x_{n},y_{n}\right).$ (X, d) is a complete metric space $\overline{d}(\overline{x}_1\overline{y}) = d(x_1y) \quad \forall \quad x,y \in X$ Proof: If $x_n \xrightarrow{n} x_1 y_n \xrightarrow{n} y$ then $\overline{d}(\overline{x}, \overline{y}) = \lim_{n} d(x_n, y_n) = d(x, y)$. (X,d) is deuse in $(\overline{X},\overline{d})$ Proof: (your $[\{x_n\}_n] \in X$, let $x = x_N$ ($N \in M$). Then

 $T([\{x_n\}_n], \overline{X}) = \lim_{n \to \infty} d(x_n, x_n) \xrightarrow{N \to \infty} 0$

Every metric mace has a completion. The completion is unique (up to isometry) But what does this mean? · If X=Q then X is a ret of rets of requences, not the ret of numbers PR! · In the end, it does not matter what a mathematical object "is", only what we can do with it. . In Q we can define exactly the name operations as in R.

QUESTIONS? COMMENTS?