COMPLETION of A Metric space

Let $(X, d)$ be an incomplete metric space.
Can we complete $(X, d)$ - add elements to make it complete?
Example: $\mathbb{R}$ is a completion of $Q$

$$
(X, d) \stackrel{\text { "add elements" }}{ } \text { ( } \bar{X}, \bar{d})
$$

Wishlist

- $(\bar{X}, \bar{d})$ is complete
- $X \subseteq \bar{X}$
( $X$ can be embedded in $\bar{X}$ )
- $d(x, y)=\bar{d}(x, y) \quad \forall x, y \in X \quad$ (d and $\bar{d}$ are compatible)
- $X$ is dense in $\bar{X}$ (we are not adding ho many elements)

Such a metric mace $(\bar{X}, \bar{d})$ is a completion of $(X, d)$

Completions are unique (if they exist) - up to isomctives.

An isometry is a "relabeling" of elements which leaves the metric intact.
For instance, the following mean the same:

- $\sqrt{2}$
- the quare root of 2
- the positive volution of $x^{2}=2$

Main idea: Identify each $x \in X$ with all requences $\left\{x_{n}\right\}_{n}$ in $X$ mech that $x_{n} \xrightarrow[n \rightarrow \infty]{ } x$

- Given $\left\{x_{n}\right\}_{n}$, we can find $x=\lim _{n \rightarrow \infty} x_{n}$
- Given $x_{1}$ we can find all sequences $\left\{x_{n}\right\}_{n}$,.t. $x_{n} \xrightarrow[n \rightarrow \infty]{ } x$.

Thus:

$$
x \longleftrightarrow \bar{x}=\left\{\left\{x_{n}\right\}_{n} \text { in } X: x_{n} \xrightarrow[n \rightarrow \infty]{ } x\right\} .
$$

Note: If $\left\{x_{n}\right\}_{n} \in \bar{x}$ then $\left\{y_{n}\right\}_{n} \in \bar{x}$ ff $d\left(x_{n}, y_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0$.

$$
x \longleftrightarrow \bar{x}=\left\{\left\{x_{n}\right\}_{n} \text { in } X: x_{n} \xrightarrow[n \rightarrow \infty]{ } x\right\}
$$

Notes: If $\left\{x_{n}\right\}_{n} \in \bar{x}$ then $\left\{y_{n}\right\}_{n} \in \bar{x}$ ff $d\left(x_{n}, y_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0$
Define $\left[\left\{x_{n}\right\}_{n}\right]=\left\{\left\{y_{n}\right\}_{n}\right.$ in $\left.X: d\left(x_{n}, y_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0\right\}$ ("the equivalence class" of $\left\{x_{n}\right\}_{n}$ )
But there are lots of sequences in $X$ that seem to converge (are Cauchy), but don't (as $(X, d)$ is incomplete). We can still define their equivalence class $\left[\left\{x_{n}\right\}_{n}\right]$ !

Let $\bar{X}=\left\{\left[\left\{x_{n}\right\}_{n}\right]:\left\{x_{n}\right\}_{n}\right.$ is a Cauchy requence in $\left.X\right\}$

$$
d\left(\left[\left\{x_{n}\right\}_{n}\right],\left[\left\{y_{n}\right\}_{n}\right]\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

$(\bar{X}, \bar{d})$ is a complete metric pace

$$
I(\bar{x}, \bar{y})=d(x, y) \quad \forall x, y \in X
$$

Proof: If $x_{n} \xrightarrow[n]{ } x, y_{n}{ }_{n} y$ then $J(\bar{x}, \bar{y})=\lim _{n} d\left(x_{n}, y_{n}\right)=d(x, y)$.
$(X, d)$ is dense in $(\bar{X}, \bar{d})$
Proof: Given $\left[\left\{x_{n}\right\}_{n}\right] \in \bar{X}_{1}$, let $x=x_{N}(N \in \mathbb{N})$. Then

$$
I\left(\left[\left\{x_{n}\right\}_{n}\right], \bar{x}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, x_{N}\right) \underset{N \rightarrow \infty}{ } 0
$$

Every metric mace has a completion The completion is unique (up to isometry)

But what does this mean?

- If $X=Q$ then $\bar{X}$ is a ret of rets of sequences, not the ret of numbers $\mathbb{R}$ !
- In the end, it does not matter what a mathematical object "is", only what we can do with it.
- In $\overline{\mathbb{Q}}$ we can define exactly the rome operations as in $\mathbb{R}$.

QUESTIONS? COMHENTS?

