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For each question you may use results from the preceding
questions even if you haven’t answered them.

Problem 1 (weight 20%)

Let (X, d) be a metric space.

a (weight 10%)

Suppose that (un)n∈N is a Cauchy sequence in X. Suppose furthermore that
for a certain a ∈ X, (un) has a subsequence that converges to a. Show that
(un) converges to a.

Let (uφ(n)) denote the subsequence.
Let ε > 0. Choose m1 ∈ N such that for n ≥ m1 we have:

d(uφ(n), a) < ε/2. (1)

Choose also m2 ∈ N such that for p, q ≥ m2 we have:

d(up, uq) < ε/2. (2)

Let m = max{m1,m2}. For n ≥ m we have:

d(un, a) ≤ d(un, uφ(m)) + d(uφ(m), a), (3)

< ε/2 + ε/2 = ε. (4)

We used that φ(m) ≥ m.

b (weight 10%)

In this question any subset of X is considered as a metric space, equipped
with the metric obtained by restricting d.
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Suppose we have two subsets A and B of X, which are both complete.
Show that A ∪B is complete.

Let (un) be a Cauchy sequence in A ∪ B. Either A or B contains
infinitely many terms. Suppose A has this property. Let (vn) be the
corresponding subsequence of (un). Then (vn) is a Cauchy sequence
[...]. Using that A is complete, let a ∈ A be its limit. Then we are in
the situation of the previous question. So (un) converges to a limit in
A ∪B.

Problem 2 (weight 20%)

Let X be a set, equipped with two metrics denoted d1 and d2. We define a
function ρ : X ×X → R+ by, for (x, y) ∈ X ×X:

ρ(x, y) = max{d1(x, y), d2(x, y)}. (5)

a (weight 10%)

Check that for any (a1, b1, a2, b2) ∈ R4:

max{a1 + b1, a2 + b2} ≤ max{a1, a2}+max{b1, b2}. (6)

Show that ρ is a metric on X.

(Continued on page 3.)
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[3] We have:

a1 ≤ max{a1, a2}, (7)
b1 ≤ max{b1, b2}. (8)

Hence:

a1 + b1 ≤ max{a1, a2}+max{b1, b2}. (9)

Similarly:

a2 + b2 ≤ max{a1, a2}+max{b1, b2}. (10)

Combining we get the sought inequality.
[2] We have:

ρ(x, y) = 0 ⇐⇒ d1(x, y) = 0 ∧ d2(x, y) = 0, (11)
⇐⇒ x = y. (12)

[2] We have:

ρ(x, y) = max{d1(x, y), d2(x, y)}, (13)
= max{d1(y, x), d2(y, x)}, (14)
= ρ(y, x). (15)

[3] We have (using the inaugural question to get the second line):

ρ(x, z) ≤ max{d1(x, y) + d1(y, z), d2(x, y) + d2(y, z)}, (16)
≤ max{d1(x, y), d2(x, y)}+max{d1(y, z), d2(y, z)}, (17)
≤ ρ(x, y) + ρ(y, z). (18)

b (weight 10%)

Let (un)n∈N be a sequence in X, and let a ∈ X. Show that (un) converges
to a with respect to ρ if and only if (un) converges to a with respect to both
d1 and d2.

[5] Suppose that (un) converges to a for ρ. Then d1(un, a) converges
to 0 by the squeezing lemma, so (un) converges to a for d1. The case
of d2 is similar.
[5] Suppose that (un) converges to a for d1 and d2. Let ε > 0. For
i ∈ {1, 2} choose mi such that for all all n ≥ mi we have di(un, a) < ε.
Then for n ≥ max{m1,m2} we have ρ(un, a) < ε.

Problem 3 (weight 20%)

Let X = Rn×n be the vector space of n × n real matrices, for some n ∈ N
(with n ≥ 2). We equip Rn with the Euclidean norm, denoted | · |. We equip

(Continued on page 4.)
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X with the corresponding operator norm, so that for any M ∈ X:

|||M ||| = sup
u∈Rn\{0}

|Mu|
|u|

. (19)

We choose a (non-zero) matrix J ∈ X. We define a map F : X → X by,
for M ∈ X:

F (M) =MJM. (20)

a (weight 10%)

Show that F is differentiable on X and that for any M ∈ X, the differential
of F at M , denoted by DF (M), is given by, for all N ∈ X:

DF (M)N =MJN +NJM. (21)

Fix M ∈ X. For all N ∈ X we have:

F (M +N) = (M +N)J(M +N), (22)
=MJM +MJN +NJM +NJN. (23)

We remark that F (M) =MJM . Also, N 7→MJN +NJM is linear
and continuous (finite dimensions).
Finally for N 6= 0:

|||NJN |||
|||N |||

≤ |||N ||||||J ||||||N |||
|||N |||

= |||N ||||||J ||| → 0, (24)

as N → 0.

b (weight 10%)

Show that for any bounded subset A of X, F restricted to A is Lipschitz.

Let A be a bounded subset of X. Find R > 0 such that A ⊆ B(0, R).
For M ∈ B(0, R) and N ∈ X, we have:

|||DF (M)N ||| = |||MJN +NJM |||, (25)
≤ 2R|||J ||||||N |||. (26)

Remark that B(0, R) is convex. We get, via the mean value theorem,
that F is Lipschitz with constant 2R|||J ||| on B(0, R), hence also on A.
Also possible: a direct computation.

Problem 4 (weight 40%)

We let X be the space of continuous realvalued functions on [0, 1]:

X = C([0, 1],R). (27)

(Continued on page 5.)
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We equip X with the supremum norm:

‖u‖ = sup{|u(x)| : x ∈ [0, 1]}. (28)

Let k : [0, 1]× [0, 1]→ R be a continuous function. We define an operator L
on X as follows. Given u ∈ X we let Lu = v be the function v : [0, 1] → R
defined by, for x ∈ [0, 1]:

v(x) =

∫ 1

0
k(x, y)u(y)dy. (29)

a (weight 10%)

Justify that k is uniformly continuous. Use this to prove that for any u ∈ X,
we have that Lu is continuous (that is Lu ∈ X).

Since [0, 1] × [0, 1] is compact and k is continuous, k is uniformly
continuous.
Let u ∈ X. Let ε > 0. Choose δ > 0 such that for |(x, y)−(x′, y′)| < δ
we have |k(x, y)− k(x′, y′)| < ε/‖u‖.
We write, for |x− x′| < δ:

|v(x)− v(x′)| = |
∫ 1

0
(k(x, y)− k(x′, y))u(y)dy|, (30)

≤
∫ 1

0
|k(x, y)− k(x′, y)||u(y)|dy, (31)

≤
∫ 1

0
(ε/‖u‖)‖u‖dy = ε. (32)

This shows that v is uniformly continuous, hence continuous.

b (weight 10%)

We define:

C = sup

{∫ 1

0
|k(x, y)|dy : x ∈ [0, 1]

}
. (33)

Show that C < +∞.

Since [0, 1]× [0, 1] is compact and k is continuous, we can find M ∈ R
such that for all x, y ∈ [0, 1] × [0, 1] we have |k(x, y)| ≤ M . Then we
get, for any x ∈ [0, 1]: ∫ 1

0
|k(x, y)|dy ≤M. (34)

Hence C ≤M < +∞.

(Continued on page 6.)
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c (weight 10%)

Recall that for any bounded linear operator T : X → X, its operator norm
is defined by:

|||T ||| = sup
u∈X\{0}

‖Tu‖
‖u‖

. (35)

In what follows we use without proof that L is a linear map from X to
X. Show that L is bounded, and that its operator norm is bounded by the
previously introduced constant C, that is |||L||| ≤ C.

We have:

‖Lu‖ ≤ sup
x∈[0,1]

|
∫ 1

0
k(x, y)u(y)dy|, (36)

≤ sup
x∈[0,1]

∫ 1

0
|k(x, y)||u(y)|dy, (37)

≤ sup
x∈[0,1]

∫ 1

0
|k(x, y)|dy ‖u‖, (38)

≤ C‖u‖. (39)

d (weight 10%)

We suppose that k is defined by k(x, y) = sin(πx) sin(πy). Let I : X → X
be the identity operator. Show that the operator I +L : X → X is bijective
and has a bounded inverse.

We compute: ∫ 1

0
|k(x, y)|dy = sin(πx)

∫ 1

0
sin(πy)dy, (40)

= sin(πx)2/π ≤ 2/π. (41)

This shows that |||L||| ≤ 2/π < 1. The theory of the Neumann series
then gives the required conclusion.

THE END


