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complete before you attempt to answer anything.

For each question you may use results from the preceding
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Problem 1 (weight 40%)

For any function f : [−π, π]→ C, with strong enough continuity properties,
recall that the Fourier coefficients of f are given by, for k ∈ Z:

ak =
1

2π

∫ π

−π
f(t)e−iktdt. (1)

The Fourier series of f is the sequence of functions fn : [−π, π] → C given
by for n ∈ N and t ∈ [−π, π]:

fn(t) =
n∑

k=−n
ake

ikt. (2)

In this problem we let f be defined by, for t ∈ [−π, π]:

f(t) = |t|. (3)

a (weight 10%)

Compute the Fourier coefficients of f .

b (weight 10%)

Show that the Fourier series of f converges uniformly to some function.

c (weight 10%)

Show that the Fourier series of f converges uniformly to f .

(Continued on page 2.)
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d (weight 10%)

Deduce that:
∞∑
l=0

1

(2l + 1)2
=
π2

8
. (4)

Problem 2 (weight 30%)

Let X be a set equipped with a metric d. Let α ∈ R be such that 0 < α < 1.
Define a function ρ : X ×X → R+ by, for all x, y ∈ X:

ρ(x, y) = (d(x, y))α. (5)

a (weight 10%)

Check that for any a, b ∈ R such that a ≥ 0, b ≥ 0 and a+ b > 0, we have:

1 ≤
(

a

a+ b

)α
+

(
b

a+ b

)α
. (6)

Show that ρ is a metric on X.

b (weight 10%)

Let idX : X → X be the identity map. Show that idX is continuous from
(X, d) to (X, ρ) and from (X, ρ) to (X, d).

c (weight 10 %)

In this question we suppose that X = [0, 1]. We suppose furthermore that d
is defined by, for (x, y) ∈ X ×X, we have d(x, y) = |x− y|.

Show that idX is Lipschitz from (X, ρ) to (X, d) but not from (X, d) to
(X, ρ).

Problem 3 (weight 30%)

Let (a, b) ∈ R2 with (a, b) 6= (0, 0). We denote by | · | the Euclidean norm on
R2:

|(x, y)| = (x2 + y2)1/2. (7)

We define U to be the open unit ball:

U = B(0, 1) = {(x, y) ∈ R2 : |(x, y)| < 1}. (8)

Define f : U → R by f(0, 0) = 0 and for (x, y) 6= (0, 0):

f(x, y) = (ax+ by)
xy

x2 + y2
. (9)

a (weight 10%)

Justify that f is differentiable on U \ {(0, 0)}.
Check that the partial derivatives ∂f(x, y)/∂x and ∂f(x, y)/∂y are

bounded on U \ {(0, 0)} and deduce that the differential Df is bounded
on U \ {(0, 0)}.

(Continued on page 3.)
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b (weight 10%)

Show that f is not differentiable at (0, 0).

c (weight 10%)

Show that f is Lipschitz continuous on U .

THE END


