UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT2700 - Introduction to mathematical finance and investment theory.
Day of examination: Monday, December 14, 2015.
Examination hours: 09:00-13:00.
This problem set consists of 5 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider the following model with three scenarios and two stocks and one bond with interest rate r.

1a

Show that the model is not viable if $r=0$, and find an arbitrage opportunity in this case.

Possible solution: An implicit arbitrage opportunity is found by solving $y \cdot \Delta S\left(\omega_{i}\right) \geq 0$ for $i=1,2,3$. These equations are

$$
\begin{aligned}
y_{1}-\frac{1}{2} y_{2} & \geq 0, \\
2 y_{1} & \geq 0, \\
-y_{1}+2 y_{2} & \geq 0 .
\end{aligned}
$$

One solution is $z=y_{1}=y_{2}>0$, which gives the arbitrage opportunity $\varphi=(-2 z, z, z)$ with

$$
V_{1}^{\varphi}\left(\omega_{1}\right)=z / 2, \quad V_{1}^{\varphi}\left(\omega_{2}\right)=2 z, \quad V_{1}^{\varphi}\left(\omega_{3}\right)=z
$$

Since we have arbitrage opportunities, the model is not viable.

1b

Show that the model is viable and complete for $r_{0}<r<r_{1}$, and find r_{0} and r_{1}.

Possible solution: The model is viable and complete if we have a unique risk free probability measure $\mathbb{Q}=\left(q_{1}, q_{2}, q_{3}\right)$, the equations for \mathbb{Q} are

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 0 \\
\frac{1}{2} & 1 & 3
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1+r \\
1+r
\end{array}\right)
$$

Solving this equation, we get

$$
q_{1}=\frac{8-10 r}{7}, \quad q_{2}=\frac{9 r-3}{7}, \quad q_{3}=\frac{r+2}{7}
$$

For this to be a probability measure, we must have $0<q_{i}<1$ for $i=1,2,3$. For $i=1$, this gives $1 / 10<r<4 / 5$, for $i=2,1 / 3<r<10 / 9$, and for $i=3,-2<r<5$. Therefore the model is viable and complete if

$$
r_{0}=\frac{1}{3}<r<\frac{4}{5}=r_{1}
$$

1c

In the rest of this exercise we assume that $r=5 / 8$, then the model is viable and complete (you do not have to show this). Find the fair price of the "indicator" derivatives D^{j}, with payoff at $t=1$

$$
D^{j}\left(\omega_{i}\right)=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad \text { for } j=1,2,3\right.
$$

Possible solution: If $r=5 / 8$, then the unique risk neutral probability measure is

$$
\mathbb{Q}=\left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right)
$$

The fair price of D^{j} is $\mathbb{E}_{\mathbb{Q}}\left(\bar{D}^{j}\right)=q_{j} /(1+r)$, i.e.,

$$
\mathbb{E}_{\mathbb{Q}}\left(\bar{D}^{1}\right)=\frac{1}{4} \frac{8}{13}=\frac{2}{13}, \quad \mathbb{E}_{\mathbb{Q}}\left(\bar{D}^{2}\right)=\frac{3}{8} \frac{8}{13}=\frac{3}{13}, \quad \mathbb{E}_{\mathbb{Q}}\left(\bar{D}^{3}\right)=\frac{3}{8} \frac{8}{13}=\frac{3}{13}
$$

1d

Suppose a third stock was valued at $t=1$ as follows

$$
S_{1}^{3}\left(\omega_{1}\right)=1, \quad S_{1}^{3}\left(\omega_{2}\right)=2, \quad S_{1}^{3}\left(\omega_{3}\right)=3
$$

What must its price be at $t=0$ for the model with three stocks to be viable?
Possible solution: We can view S^{3} as a derivative, and the unique fair price is the one which excludes arbitrage, hence

$$
S_{0}^{3}=\mathbb{E}_{\mathbb{Q}}\left(\bar{S}_{1}^{3}\right)=1 \frac{2}{13}+2 \frac{3}{13}+3 \frac{3}{13}=\frac{17}{13}
$$

Problem 2

Consider the following binary two period model with one stock and one bond.

Assume that the interest rate is 0 and that the initial bond price is $B_{0}=1$.

2a

Find the unique equivalent martingale measure \mathbb{Q}.
Possible solution: The risk neutral conditional probabilities are

$$
\begin{array}{ll}
q_{u}=1 / 3 & q_{u u}=1 / 2 \\
q_{d}=2 / 3 & q_{u d}=1 / 2 \\
& q_{d u}=1 / 2 \\
& q_{d d}=1 / 2
\end{array}
$$

From this we get the equivalent martingale measure

$$
\mathbb{Q}\left(\omega_{1}\right)=\frac{1}{6} \quad \mathbb{Q}\left(\omega_{2}\right)=\frac{1}{6} \quad \mathbb{Q}\left(\omega_{3}\right)=\frac{1}{3} \quad \mathbb{Q}\left(\omega_{4}\right)=\frac{1}{3} .
$$

The model is viable and complete since we have a unique equivalent martingale measure.

2b

Let X be the random variable defined by

$$
X\left(\omega_{1}\right)=0, \quad X\left(\omega_{2}\right)=1, \quad X\left(\omega_{3}\right)=-1, \quad X\left(\omega_{4}\right)=0
$$

and let \mathcal{F}_{t} be the filtration defined by the stock prices. List $\mathcal{F}_{0}, \mathcal{F}_{1}$ and \mathcal{F}_{2}. For which t is X measurable with respect to \mathcal{F}_{t} ?

Possible solution: Set $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}, \Omega_{u}=\left\{\omega_{1}, \omega_{2}\right\}, \Omega_{d}=\left\{\omega_{3}, \omega_{4}\right\}$, then

$$
\begin{gathered}
\mathcal{F}_{0}=\{\emptyset, \Omega\} \\
\mathcal{F}_{1}=\left\{\emptyset, \Omega, \Omega_{u}, \Omega_{d}\right\} \\
\mathcal{F}_{2}=\text { all subsets of } \Omega
\end{gathered}
$$

X is measurable with respect to \mathcal{F}_{t} iff it takes a single value on each t-node. This is the case only for $t=2$.

2c

Find the conditional expectation $Y_{t}=\mathbb{E}_{\mathbb{Q}}\left\{X \mid \mathcal{F}_{t}\right\}$ for $t=0,1$.

Possible solution: We have that

$$
Y_{0}=\mathbb{E}_{\mathbb{Q}}(X)=\mathbb{Q}\left(\omega_{2}\right)-\mathbb{Q}\left(\omega_{3}\right)=\frac{1}{6}-\frac{1}{3}=-\frac{1}{6}
$$

also

$$
\begin{aligned}
& Y_{1}(u)=\frac{1}{\frac{1}{3}} \mathbb{Q}\left(\omega_{2}\right)=\frac{1}{2} \\
& Y_{1}(d)=\frac{1}{\frac{2}{3}}\left(-\mathbb{Q}\left(\omega_{3}\right)\right)=-\frac{1}{2}
\end{aligned}
$$

2d

Find the fair price of the European call option with payoff max $\left\{S_{2}-100,0\right\}$.

Possible solution: We find the payoff of the derivative for each scenario,

$$
D\left(\omega_{1}\right)=40, \quad D\left(\omega_{2}\right)=0, \quad D\left(\omega_{3}\right)=10, \quad D\left(\omega_{4}\right)=0
$$

Hence the fair price is

$$
D_{0}=\mathbb{E}_{\mathbb{Q}}(D)=\left(40 \frac{1}{6}+10 \frac{1}{3}\right)=10
$$

$2 e$

Assume that the real world probability of ω_{i} is

$$
\mathbb{P}\left(\omega_{1}\right)=1 / 6, \quad \mathbb{P}\left(\omega_{2}\right)=1 / 3, \quad \mathbb{P}\left(\omega_{3}\right)=1 / 3, \quad \mathbb{P}\left(\omega_{4}\right)=1 / 6
$$

Given an initial wealth V_{0}, find a self financing trading strategy $\Phi=$ $\left\{\left(x_{t}, y_{t}\right)\right\}_{t=1}^{2}$ which maximizes

$$
\mathbb{E}_{\mathbb{P}}\left[u\left(V_{2}^{\Phi}\right)\right], \text { given that } V_{0}^{\Phi}=V_{0}
$$

for the utility function $u(v)=\ln (v)$.

Possible solution: We use the martingale method to find this trading strategy. Since the utility function is the logarithm, the "optimal derivative" is

$$
D\left(\omega_{i}\right)=\frac{\mathbb{P}\left(\omega_{i}\right)}{\mathbb{Q}\left(\omega_{i}\right)} V_{0}=V_{0} \begin{cases}1, & i=1 \\ 2, & i=2 \\ 1, & i=3 \\ 1 / 2, & i=4\end{cases}
$$

We must find a portfolio for each of the two submodels at u, d. At u we must solve the equations

$$
\begin{aligned}
& x+140 y=V_{0} \\
& x+100 y=2 V_{0}
\end{aligned}
$$

This gives

$$
x_{2}(u)=(9 / 2) V_{0}, \quad y_{2}(u)=-(1 / 40) V_{0}, \quad V_{2}^{\Phi}(u)=(3 / 2) V_{0}
$$

Similarly for the node d

$$
x_{2}(d)=-(3 / 8) V_{0}, \quad y_{2}(d)=(1 / 80) V_{0}, \quad V_{2}^{\Phi}(d)=(3 / 4) V_{0}
$$

The equations for the root node are

$$
\begin{aligned}
x+120 y & =(3 / 2) V_{0} \\
x+90 y & =(3 / 4) V_{0}
\end{aligned}
$$

giving

$$
x_{1}=-(3 / 2) V_{0}, \quad y_{1}=(1 / 40) V_{0}, \quad V_{1}^{\Phi}=V_{0}
$$

