## UNIVERSITY OF OSLO

## Faculty of Mathematics and Natural Sciences

Examination in: MAT2700 - $\begin{aligned} & \text { Introduction to Mathematical } \\ & \text { Finance and Investment Theory }\end{aligned}$
Day of examination: Friday, December 2nd, 2016
Examination hours: 09.00-13.00
This problem set consists of 9 pages.

Appendices:
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

## Problem 1

Consider a single-period market consisting of a bank account $B$ and one risky asset $S_{1}$. The bank is given by $B(0)=1$ and $B(1)=1+r$, where $r>0$ is the interest rate. The sample space is $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$, where the probability of $\omega_{1}$ occurring is $p \in(0,1)$. The risky asset is given by $S_{1}(0)=1, S_{1}\left(1, \omega_{1}\right)=u$, and $S_{1}\left(1, \omega_{2}\right)=d$, where $u>d$ are two given numbers.

1a
What is the definition of a risk-neutral probability measure $Q$ ? Use this definition to show that a probability $Q$ is risk-neutral if and only if

$$
\begin{equation*}
E_{Q}\left[R_{1}\right]=r, \tag{1}
\end{equation*}
$$

where $R_{1}$ is the return of the risky asset $S_{1}$.
Answer: A vector $Q=\left(Q_{1}, Q_{2}\right)$, with $Q_{1}, Q_{2}>0$ and $Q_{1}+Q_{2}=1$, is risk-neutral provided

$$
E_{Q}\left[\Delta S_{1}^{*}\right]=0, \quad \Delta S_{1}^{*}=S_{1}^{*}(1)-S_{1}^{*}(0)=\frac{S_{1}(1)}{1+r}-1
$$

or, equivalently,

$$
E_{Q}\left[S_{1}(1)\right]=1+r .
$$

From this it follows that

$$
E_{Q}\left[\frac{S_{1}(1)-S_{1}(0)}{S_{1}(0)}\right]=r
$$

that is, $E_{Q}\left[R_{1}\right]=r$.

## 1b

Use (1) to determine the risk-neutral probability $Q$.
Answer: Assuming $Q=(q, 1-q)$, with $0<q<1$, and noting that

$$
R_{1}=\frac{S_{1}(1)-S_{1}(0)}{S_{1}(0)}=(u-1, d-1)
$$

it follows from (1) that

$$
r=E_{Q}\left[R_{1}\right]=Q \cdot R_{1}=q(u-1)+(1-q)(d-1)=q(u-d)+d-1
$$

and therefore

$$
q=\frac{(1+r)-d}{u-d}, \quad 1-q=\frac{u-(1+r)}{u-d} .
$$

To ensure $0<q<1$ we must have

$$
r-d+1>0 \Longleftrightarrow d<1+r, \quad r-d+1<u-d \Longleftrightarrow u>1+r .
$$

## 1c

Specify $d=\frac{1}{2}(1+r)$ and $u=2(1+r)$. Denote by $X$ the payoff of a call option with exercise price $e=1+r$. Why is $X$ is attainable? Use 1 b ) to compute the price of the call option.

Answer: In view 1b), since $d<1+r$ and $u>1+r$, the market is complete and thus all claims are attainable. We have

$$
S_{1}(1)-e= \begin{cases}2(1+r)-(1+r)=1+r, & \text { if } \omega=\omega_{1} \\ \frac{1}{2}(1+r)-(1+r)=-\frac{1}{2}(1+r), & \text { if } \omega=\omega_{2}\end{cases}
$$

and so the payoff of the call option is

$$
\left.X=\max \left(S_{1}(1)-e\right), 0\right)=\left\{\begin{array}{ll}
1+r, & \text { if } \omega=\omega_{1} \\
0, & \text { if } \omega=\omega_{2}
\end{array} .\right.
$$

The price is

$$
E_{Q}\left[\frac{X}{B(1)}\right]=q=\frac{(1+r)-d}{u-d}=\frac{\frac{1}{2}(1+r)}{\frac{3}{2}(1+r)}=\frac{1}{3} .
$$

1d
Prove the relation

$$
\begin{equation*}
\overline{R_{1}}-r=-\operatorname{cov}\left(R_{1}, L\right) \tag{2}
\end{equation*}
$$

where $\overline{R_{1}}$ is the mean return, $L$ is the state price density, and $\operatorname{cov}(X, Y)$ is the covariation between two random variables $X$ and $Y$.

Answer: The state price density is given by

$$
L=\frac{Q}{P}, \quad E[L]=1,
$$

and so

$$
\begin{aligned}
\operatorname{cov}\left(R_{1}, L\right) & =E\left[R_{1} L\right]-E\left[R_{1}\right] E[L] \\
& =E_{Q}\left[R_{1}\right]-E\left[R_{1}\right] \\
& =E_{Q}\left[R_{1}\right]-\overline{R_{1}} \\
& =r-\overline{R_{1}} \quad \text { by }(1) ;
\end{aligned}
$$

thus, (2) follows.

## Problem 2

We continue to examine the one-period model from Problem 1, this time assuming that $r=1, d=1$, and $u=4$.

## 2a

Explain why $U(w)=2 \sqrt{w}$, for $w>0$, is a utility function. Compute the Arrow-Pratt coefficient $\alpha_{R}(w)=-w \frac{U^{\prime \prime}(w)}{U^{\prime}(w)}$ of relative risk aversion.

Answer: The function $U$ is a utility function since it is continuously differentiable, concave, and strictly increasing. Indeed, we compute easily $U^{\prime}(w)=\frac{1}{w^{1 / 2}}>0$ and $U^{\prime \prime}(w)=-\frac{1}{2 w^{3 / 2}}<0$. The Arrow-Pratt coefficient is

$$
\alpha_{R}(w)=-w \frac{U^{\prime \prime}(w)}{U^{\prime}(w)}=w \frac{\frac{1}{2 w^{3 / 2}}}{\frac{1}{w^{1 / 2}}}=\frac{1}{2}
$$

hence $U(w)=2 \sqrt{w}$ displays constant relative risk aversion.

## 2b

Consider the portfolio problem

$$
\begin{equation*}
\max _{H \in \mathbf{R}^{2}} E[2 \sqrt{V(1)}], \quad V(0)=\nu \tag{3}
\end{equation*}
$$

where $V(t)$ is the portfolio value at time $t=0,1$ corresponding to a trading strategy $H=\left(H_{0}, H_{1}\right)$, and $\nu>0$ is the given initial wealth. Suppose there is a solution $H_{\mathrm{opt}}$ to (3). Then use the optimality of $H_{\mathrm{opt}}$ to show that an arbitrage opportunity $\hat{H}$ cannot exist.

Answer: To reach a contradiction, suppose there is an arbitrage opportunity $\hat{H}$; i.e., $\hat{V}(0)=0, \hat{V}(1) \geq 0, \hat{V}(1, \omega)>0$ for at least one $\omega \in \Omega$, say $\omega_{1}$. Set

$$
H:=H_{\mathrm{opt}}+\hat{H}
$$

Then, clearly,

$$
V(1)=V_{\mathrm{opt}}(1)+\hat{V}(1) \geq V_{\mathrm{opt}}(1) \quad \text { on } \Omega
$$

and

$$
V\left(1, \omega_{1}\right)>V_{\mathrm{opt}}\left(1, \omega_{1}\right)
$$

Since $U(w)=2 \sqrt{w}$ is strictly increasing,

$$
\begin{aligned}
E[U(V(1))] & =p U\left(V\left(1, \omega_{1}\right)\right)+(1-p) U\left(V\left(1, \omega_{2}\right)\right) \\
& >p U\left(V_{\mathrm{opt}}\left(1, \omega_{1}\right)\right)+(1-p) U\left(V_{\mathrm{opt}}\left(1, \omega_{2}\right)\right) \\
& =E\left[U\left(V_{\mathrm{opt}}(1)\right)\right]
\end{aligned}
$$

which contradicts the optimality of $H_{\mathrm{opt}}$.

## 2c

Make use of the risk-neutral probability approach to solve the $Q=\left(\frac{1}{3}, \frac{2}{3}\right)$ is the unique risk-neutral probability measure in the market. Divide your answer into two parts: 1) Determine the optimal wealth. 2) Determine the optimal trading strategy.

Answer: The first step is to maximize expected utility of wealth:

$$
\max _{W \in \mathbb{R}^{2}} E[U(W)], \quad \text { subject to } E_{Q}\left[\frac{W}{B(1)}\right]=\nu
$$

where $U(w)=2 \sqrt{w}$ and $B(1)=2$. We employ the Lagrange multiplier method:

$$
\max _{W}\left\{E[U[W]]-\lambda E_{Q}\left[\frac{W}{2}\right]\right\}
$$

where the Lagrange multiplier $\lambda>0$ is found by demanding $E_{Q}\left[\frac{W}{2}\right]=\nu$. Using the state price density $L=Q / P$ we can write

$$
E[U(W)]-\lambda E_{Q}\left[\frac{W}{2}\right]=E\left[U(W)-\lambda \frac{L W}{2}\right]
$$

The first order condition at a maximum reads:

$$
U^{\prime}(W)=\lambda \frac{L}{2}
$$

Denote the inverse of $U^{\prime}(w)=\frac{1}{\sqrt{w}}$ by $I$, so

$$
I(y)=\frac{1}{y^{2}}
$$

It then follows that the optimal wealth $\hat{W}$ is

$$
W_{\mathrm{opt}}=I\left(\lambda \frac{L}{2}\right)=\frac{4}{\lambda^{2} L^{2}}
$$

We identify $\lambda>0$ using $E_{Q}\left[\frac{W_{\text {opt }}}{2}\right]=\nu$ :

$$
\begin{aligned}
& E_{Q}\left[\frac{2}{\lambda^{2} L^{2}}\right]=\nu \Longleftrightarrow \frac{1}{\lambda^{2}} E_{Q}\left[\frac{1}{L^{2}}\right]=\frac{\nu}{2} \\
& \Longleftrightarrow \lambda=\left(\frac{2 E_{Q}\left[\left(\frac{P}{Q}\right)^{2}\right]}{\nu}\right)^{\frac{1}{2}}
\end{aligned}
$$

Since

$$
E_{Q}\left[\left(\frac{P}{Q}\right)^{2}\right]=\frac{1}{3}\left(\frac{p}{\frac{1}{3}}\right)^{2}+\frac{2}{3}\left(\frac{1-p}{\frac{2}{3}}\right)^{2}=3 p^{2}+\frac{3}{2}(1-p)^{2}
$$

we obtain $\lambda=\sqrt{\frac{\kappa}{\nu}}$, with $\kappa=6 p^{2}+3(1-p)^{2}=3\left(3 p^{2}-2 p+1\right)$. This gives the optimal wealth $W_{\text {opt }}$ :

$$
W_{\mathrm{opt}}=\frac{4 \nu}{\kappa}\left(\frac{P}{Q}\right)^{2}= \begin{cases}\frac{36 \nu p^{2}}{\kappa}, & \omega=\omega_{1} \\ \frac{9 \nu(1-p)^{2}}{\kappa}, & \omega=\omega_{2}\end{cases}
$$

The second step is to find the optimal trading strategy $H_{\mathrm{opt}}$. We seek a vector $H=\left(H_{0}, H_{1}\right)$ such that $V(1)=H_{0} B(1)+H_{1} S_{1}(1)=W_{\mathrm{opt}}$, that is,

$$
\begin{aligned}
& 2 H_{0}+4 H_{1}=\frac{36 \nu p^{2}}{\kappa} \\
& 2 H_{0}+H_{1}=\frac{9 \nu(1-p)^{2}}{\kappa}
\end{aligned}
$$

The solution to this system is $H_{0}=\frac{6(1-2 p) \nu}{\kappa}$ and $H_{1}=\frac{3\left(3 p^{2}+2 p-1\right) \nu}{\kappa}$, and so

$$
H_{\mathrm{opt}}=\left(\frac{6(1-2 p) \nu}{\kappa}, \frac{3\left(3 p^{2}+2 p-1\right) \nu}{\kappa}\right)
$$

## Problem 3

Consider a multi-period market $(T=2)$ with one risky asset evolving as follows:

$$
S_{1}(0)=1, \quad S_{1}(1, \omega)=\left\{\begin{array}{ll}
\frac{3}{2}, & \omega=\omega_{1}, \omega_{2} \\
\frac{1}{2}, & \omega=\omega_{3}, \omega_{4}
\end{array}, \quad S_{1}(2, \omega)= \begin{cases}\frac{9}{4}, & \omega=\omega_{1} \\
\frac{3}{4}, & \omega=\omega_{2} \\
\frac{3}{4}, & \omega=\omega_{3} \\
\frac{1}{8}, & \omega=\omega_{4}\end{cases}\right.
$$

The bank pays zero interest, i.e., $B(0)=1, B(1)=1$, and $B(2)=1$. Moreover, $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and the probability measure is

$$
P(\omega)= \begin{cases}1 / 4, & \omega=\omega_{1} \\ 1 / 4, & \omega=\omega_{2} \\ 1 / 4, & \omega=\omega_{3} \\ 1 / 4, & \omega=\omega_{4}\end{cases}
$$

## 3a

Identify the filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0,1,2}$ generated by the risky asset. Compute the conditional expectation

$$
\left.E\left[S_{1}(2) \mid \mathcal{F}_{1}\right]\right]
$$

Verify that

$$
\begin{equation*}
\left.E\left[E\left[S_{1}(2) \mid \mathcal{F}_{1}\right]\right]\right]=E\left[S_{1}(2)\right] \tag{4}
\end{equation*}
$$

(Continued on page 6.)

Answer: We read off the filtration from the tree in Figure 1:

$$
\begin{gathered}
\mathcal{P}_{0}=\{\Omega\}, \quad \mathcal{F}_{0}=\{\Omega, \emptyset\}, \\
\mathcal{P}_{1}=\left\{\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}, \quad \mathcal{F}_{1}=\left\{\Omega, \emptyset,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}, \\
\mathcal{P}_{2}=\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\}\right\}, \quad \mathcal{F}_{2}=\text { the collection of all subsets of } \Omega .
\end{gathered}
$$



Figure 1: Filtration generated by the price process (Problem 3).
By definition,

$$
\begin{aligned}
\left.E\left[S_{1}(2) \mid \mathcal{F}_{1}\right]\right] & \left.=\sum_{A \in \mathcal{P}_{1}} E\left[S_{1}(2) \mid A\right]\right] \mathbf{1}_{A}(\omega) \\
& = \begin{cases}E\left[S_{1}(2) \mid A_{1}\right], & \omega \in A_{1}:=\left\{\omega_{1}, \omega_{2}\right\} \\
E\left[S_{1}(2) \mid A_{2}\right], & \omega \in A_{2}:=\left\{\omega_{3}, \omega_{4}\right\}\end{cases} \\
& = \begin{cases}S_{1}\left(2, \omega_{1}\right) \frac{P\left(\omega_{1}\right)}{P\left(A_{1}\right)}+S_{1}\left(2, \omega_{2}\right) \frac{P\left(\omega_{2}\right)}{P\left(A_{1}\right)}, & \omega \in A_{1} \\
S_{1}\left(2, \omega_{3}\right) \frac{P\left(3_{3}\right)}{P\left(A_{2}\right)}+S_{1}\left(2, \omega_{4}\right) \frac{P\left(\omega_{4}\right)}{P\left(A_{2}\right)}, & \omega \in A_{2}\end{cases} \\
& = \begin{cases}\frac{9}{4} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}, & \omega \in A_{1} \\
\frac{3}{4} \cdot \frac{\frac{1}{4}}{\frac{1}{2}}+\frac{1}{8} \cdot \frac{1}{4}, \frac{1}{2}, & \omega \in A_{2}\end{cases} \\
& = \begin{cases}\frac{3}{2}, & \omega \in A_{1} \\
\frac{7}{16}, & \omega \in A_{2} .\end{cases}
\end{aligned}
$$

Since

$$
\left.E\left[E\left[S_{1}(2) \mid \mathcal{F}_{1}\right]\right]\right]=\left(\frac{3}{2} \cdot \frac{1}{4}+\frac{3}{2} \cdot \frac{1}{4}\right)+\left(\frac{7}{16} \cdot \frac{1}{4}+\frac{7}{16} \cdot \frac{1}{4}\right)=\frac{31}{32}
$$

and

$$
E\left[S_{1}(2)\right]=\frac{9}{4} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{8} \cdot \frac{1}{4}=\frac{31}{32},
$$

the claim (4) follows.
(Continued on page 7.)

## 3b

Determine the risk-neutral probability (martingale) measure $Q$.
Answer: We determine $Q=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)$ using

$$
\left.E_{Q}\left[S_{1}^{*}(t+s) \mid \mathcal{F}_{t}\right]\right]=S_{1}^{*}(t), \quad t=0,1, s=1,2,
$$

that is,

$$
\left.E_{Q}\left[S_{1}(t+s) \mid \mathcal{F}_{t}\right]\right]=S_{1}(t), \quad t=0,1, s=1,2 .
$$

Moreover,

$$
\begin{equation*}
Q_{1}+Q_{2}+Q_{3}+Q_{4}=1 \tag{5}
\end{equation*}
$$

$t=0$ : With $s=1$, the condition is

$$
\left.E_{Q}\left[S_{1}(1) \mid \mathcal{F}_{0}\right]\right]=S_{1}(0),
$$

which reads

$$
\begin{equation*}
\frac{3}{2}\left(Q_{1}+Q_{2}\right)+\frac{1}{2}\left(Q_{3}+Q_{4}\right)=1 \tag{6}
\end{equation*}
$$

With $s=2$, the condition is

$$
\left.E_{Q}\left[S_{1}(2) \mid \mathcal{F}_{0}\right]\right]=S_{1}(0),
$$

which reads

$$
\begin{equation*}
\frac{9}{4} Q_{1}+\frac{3}{4}\left(Q_{2}+Q_{3}\right)+\frac{1}{8} Q_{4}=1 . \tag{7}
\end{equation*}
$$

$t=1$ : With $s=1$, the condition is

$$
\left.E_{Q}\left[S_{1}(2) \mid \mathcal{F}_{1}\right]\right]=S_{1}(1) .
$$

By definition,

$$
\begin{aligned}
\left.E_{Q}\left[S_{1}(2) \mid \mathcal{F}_{1}\right]\right] & \left.=\sum_{A \in \mathcal{P}_{1}} E_{Q}\left[S_{1}(2) \mid A\right]\right] \mathbf{1}_{A}(\omega) \\
& =\left\{\begin{array}{ll}
E_{Q}\left[S_{1}(2) \mid A_{1}\right], & \omega \in A_{1}:=\left\{\omega_{1}, \omega_{2}\right\} \\
E_{Q}\left[S_{1}(2) \mid A_{2}\right], & \omega \in A_{2}:=\left\{\omega_{3}, \omega_{4}\right\}
\end{array} .\right.
\end{aligned}
$$

We continue by computing

$$
\begin{aligned}
E_{Q}\left[S_{1}(2) \mid A_{1}\right] & =\sum_{\omega \in A_{1}} S_{1}(2, \omega) \frac{Q(\omega)}{Q\left(A_{1}\right)} \\
& =S_{1}\left(2, \omega_{1}\right) \frac{Q\left(\omega_{1}\right)}{Q\left(A_{1}\right)}+S_{1}\left(2, \omega_{2}\right) \frac{Q\left(\omega_{2}\right)}{Q\left(A_{1}\right)} \\
& =\left(\frac{9}{4} Q_{1}+\frac{3}{4} Q_{2}\right) /\left(Q_{1}+Q_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
E_{Q}\left[S_{1}(2) \mid A_{2}\right] & =\sum_{\omega \in A_{2}} S_{1}(2, \omega) \frac{Q(\omega)}{Q\left(A_{2}\right)} \\
& =S_{1}\left(2, \omega_{3}\right) \frac{Q\left(\omega_{3}\right)}{Q\left(A_{2}\right)}+S_{1}\left(2, \omega_{4}\right) \frac{Q\left(\omega_{4}\right)}{Q\left(A_{2}\right)} \\
& =\left(\frac{3}{4} Q_{3}+\frac{1}{8} Q_{4}\right) /\left(Q_{3}+Q_{4}\right),
\end{aligned}
$$

and obtain therefore the equations

$$
\left(\frac{9}{4} Q_{1}+\frac{3}{4} Q_{2}\right) /\left(Q_{1}+Q_{2}\right)=S_{1}(\omega)=\frac{3}{2}
$$

for $\omega=\omega_{1}, \omega_{2}$, and

$$
\left(\frac{3}{4} Q_{3}+\frac{1}{8} Q_{4}\right) /\left(Q_{3}+Q_{4}\right)=S_{1}(\omega)=\frac{1}{2}
$$

for $\omega=\omega_{3}, \omega_{4}$. Slightly rewriting, we arrive finally at

$$
\begin{equation*}
9 Q_{1}+3 Q_{2}=6\left(Q_{1}+Q_{2}\right) \Longleftrightarrow Q_{1}-Q_{2}=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
6 Q_{3}+Q_{4}=4\left(Q_{3}+Q_{4}\right) \Longleftrightarrow 2 Q_{3}-3 Q_{4}=0 \tag{9}
\end{equation*}
$$

Solving (5)-(9) gives

$$
Q_{1}=\frac{1}{4}, \quad Q_{2}=\frac{1}{4}, \quad Q_{3}=\frac{3}{10}, \quad Q_{4}=\frac{1}{5}
$$

3c
Denote by $X$ the payoff of a put option with exercise price $e=1$. The option expires at $T=2$. What does it mean for $X$ to be attainable (marketable)? Why is $X$ attainable? Use the risk-neutral pricing formula to compute the $t=1$ value of $X$.

Answer: The claim $X$ is attainable if there exists a self-financing trading strategy such that $V_{2}=X$. Since there is a unique martingale measure $Q=\left(\frac{1}{4}, \frac{1}{4}, \frac{3}{10}, \frac{1}{5}\right)$, the market is complete and thus all claims are attainable.

Since

$$
e-S_{1}(2)= \begin{cases}1-\frac{9}{4}=-\frac{5}{4}, & \omega=\omega_{1} \\ 1-\frac{3}{4}=\frac{1}{4}, & \omega=\omega_{2} \\ 1-\frac{3}{4}=\frac{1}{4}, & \omega=\omega_{3} \\ 1-\frac{1}{8}=\frac{7}{8}, & \omega=\omega_{4}\end{cases}
$$

the payoff is

$$
X=\max \left(e-S_{1}(2), 0\right)= \begin{cases}0, & \omega=\omega_{1} \\ \frac{1}{4}, & \omega=\omega_{2} \\ \frac{1}{4}, & \omega=\omega_{3} \\ \frac{7}{8}, & \omega=\omega_{4}\end{cases}
$$

The $t=1$ value of $X$ is

$$
E_{Q}\left[\left.\frac{X}{B(2)} \right\rvert\, \mathcal{F}_{1}\right]=E_{Q}\left[X \mid \mathcal{F}_{1}\right] \quad(\text { since }(B(2)=1)
$$

We compute the conditional expectation $E_{Q}\left[X \mid \mathcal{F}_{1}\right]$ as before:

$$
\begin{aligned}
\left.E_{Q}\left[X \mid \mathcal{F}_{1}\right]\right] & \left.=\sum_{A \in \mathcal{P}_{1}} E_{Q}[X \mid A]\right] \mathbf{1}_{A}(\omega) \\
& = \begin{cases}E_{Q}\left[X \mid A_{1}\right], & \omega \in A_{1}:=\left\{\omega_{1}, \omega_{2}\right\} \\
E_{Q}\left[X \mid A_{2}\right], & \omega \in A_{2}:=\left\{\omega_{3}, \omega_{4}\right\}\end{cases} \\
& = \begin{cases}X\left(\omega_{1}\right) \frac{Q\left(\omega_{1}\right)}{Q\left(A_{1}\right)}+X\left(\omega_{2}\right) \frac{Q\left(\omega_{2}\right)}{Q\left(A_{1}\right)}, & \omega \in A_{1} \\
X\left(\omega_{3}\right) \frac{Q\left(\omega_{3}\right)}{Q\left(A_{2}\right)}+X\left(\omega_{4}\right) \frac{Q\left(\omega_{4}\right)}{Q\left(A_{2}\right)}, & \omega \in A_{2}\end{cases} \\
& = \begin{cases}0 \cdot \frac{\frac{1}{4}}{\frac{1}{2}}+\frac{1}{4} \cdot \frac{1}{\frac{1}{4}}, & \omega \in A_{1} \\
\frac{1}{4} \cdot \frac{3}{\frac{10}{2}}+\frac{7}{8} \cdot \frac{\frac{1}{2}}{\frac{1}{2}}, & \omega \in A_{2}\end{cases} \\
& = \begin{cases}\frac{1}{8}, & \omega \in A_{1} \\
\frac{1}{2}, & \omega \in A_{2} .\end{cases}
\end{aligned}
$$

Hence, the $t=1$ value of $X$ is $\left\{\begin{array}{ll}\frac{1}{8}, & \omega \in\left\{\omega_{1}, \omega_{2}\right\} \\ \frac{1}{2}, & \omega \in\left\{\omega_{3}, \omega_{4}\right\}\end{array}\right.$.

