UNIVERSITETET I OSLO
 Det matematisk-naturvitenskapelige fakultet

Examination in: INF-MAT3360 - Partial Differential Equations.

Day of examination: 26. March 2007.
Examination hours: 13.30-16.30.
This examination set consists of 3 pages.
Appendices:
Ingen
Permitted aids: Ingen.

Make sure that your copy of the examination set is complete before you start solving the problems.

Problem 1.

Consider the following ODE,

$$
\left\{\begin{array}{l}
u^{\prime}(t)=-t u(t), \quad t \geq 0 \tag{1}\\
u(0)=u_{0}
\end{array}\right.
$$

(i.) Find an explicit solution of the ODE (1).

Let $u_{\epsilon}(t)$ be the solution of the following ODE,

$$
\left\{\begin{array}{l}
u_{\epsilon}^{\prime}(t)=-\left(t+\epsilon^{2}\right) u_{\epsilon}(t), \quad t \geq 0 \tag{2}\\
u_{\epsilon}(0)=\left(u_{0}+\epsilon^{987}\right)
\end{array}\right.
$$

(ii.) Show that for any $t \in[0, \infty)$, we have

$$
\lim _{\epsilon \rightarrow 0} u_{\epsilon}(t)=u(t)
$$

where u is the solution of (1).
(iii.) Write down a finite difference scheme of the Forward Euler type to numerically solve the ODE (1).

Consider the following ODE,

$$
\left\{\begin{array}{l}
u^{\prime}(t)=-t u^{2}(t), \quad t \geq 0 \tag{3}\\
u(0)=u_{0}
\end{array}\right.
$$

(iv.) Write the down the explicit solution of ODE (3) when $u_{0}=1$.
(v.) If $u_{0}=-1$ in (3). Then find $u(\sqrt{2})$ and $u(2)$ where u is the corresponding solution of (3).

Problem 2.

Consider the following first order PDE,

$$
\begin{cases}u_{t}+a u_{x}=x, & x \in \mathbb{R}, t \in[0, \infty), \tag{4}\\ u(x, 0)=\phi(x), & x \in \mathbb{R}\end{cases}
$$

where $a \in \mathbb{R}$.
(i.) Find an explicit solution u of (4) by using the method of characteristics.
(ii.) If u and v are two solutions of the PDE (4), show that $u \equiv v$ i.e $u(x, t)=v(x, t)$ for all $x \in \mathbb{R}$ and $t \in[0, \infty)$.

Consider the following PDE,

$$
\begin{cases}u_{t}+2 u_{x}-x u_{x}=x^{2}+t^{2}, & x \in \mathbb{R}, t \in[0, \infty), \tag{5}\\ u(x, 0)=\phi(x), & x \in \mathbb{R}\end{cases}
$$

(iii.) Find an explicit solution u of (5).

Problem 3.

Consider the Poisson's equation in one dimension given by,

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x), \tag{6}\\
u(0)=u(1)=0 .
\end{array} \quad x \in(0,1)\right.
$$

The PDE (6) can be rewritten in the following operator form,

$$
\begin{equation*}
L u=f \tag{7}
\end{equation*}
$$

where the linear Differential operator L is defined as

$$
L: C_{0}^{2}((0,1)) \mapsto C^{0}((0,1)) \quad \text { with } \quad L u=-u^{\prime \prime}
$$

then,
(Continued on page 3.)
(i.) Show that L is a symmetric and positive definite operator.
(ii.) If u and v are two solutions of (7), then show that $u \equiv v$.

Consider the following two-point boundary value problem,

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+\lambda u(x)=f(x), \quad x \in(0,1) . \tag{8}\\
u(0)=u(1)=0 .
\end{array}\right.
$$

where $\lambda>0$. The PDE (8) can be re-written in the operator form as

$$
\begin{equation*}
\bar{L} u=f \tag{9}
\end{equation*}
$$

where the linear Differential operator L is defined as

$$
\bar{L}: C_{0}^{2}((0,1)) \mapsto C^{0}((0,1)) \quad \text { with } \quad \bar{L} u=-u^{\prime \prime}+\lambda u
$$

then,
(iii.) Show that \bar{L} defined above is symmetric and positive definite.
(iv.) Write down a finite difference scheme for numerically computing the solution of (8). Check that the discrete solution will be a solution for a linear system of the form,

$$
\begin{equation*}
A v\left(x_{j}\right)=f\left(x_{j}\right) \tag{10}
\end{equation*}
$$

where $x_{j}=j h, h=1 / n$ and $n>0$ is a uniform discretization of the interval $[0,1]$ with n points, v is the discrete solution vector and A is a matrix. Write down A explicitly.
(v.) Prove that Gaussian elimination is well defined for the linear system (10) obtained above. (HINT: Check the structure of Matrix A).
(vi.) If $f=0$ and $\lambda=5012 \pi$, then what is the solution of equation (8). Is it unique? .
(vii.) if $f=0$ and $\lambda=1000$, then find the solution u of (8).

END

