SOLUTION

Problem 1

1-a

$$
u(x, t)=e^{-\pi^{2} t} \sin (\pi x)-4 e^{-9 \pi^{2} t} \sin (3 \pi x)
$$

This is an analog of Example 3.1 in the book.
1-b The sine Fourier series of is first computed as

$$
x=\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin (k \pi x)
$$

and hence the solution is given by

$$
x=\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} e^{-(k \pi)^{2} t} \sin (k \pi x) .
$$

This is also an example from the book (Example 3.4).
1-c Consider $v(x, t)=u(x, t)-2 x$. Then v has homogeneous boundary conditions and satisfies the heat equation. Furthermore, $v(x, 0)=\sin (\pi x)-4 \sin (3 \pi x)-2 x$ and from above we have

$$
v(x, t)=e^{-\pi^{2} t} \sin (\pi x)-4 e^{-9 \pi^{2} t} \sin (3 \pi x)-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} e^{-(k \pi)^{2} t} \sin (k \pi x) .
$$

Finally, $u(x, t)=v(x, t)+2 x$. Here we have used the technique from Exercise 3.11 in the book.

Problem 2

2-a The characteristics are of the form $x(t)=x_{0}+a t$ and the solution u is constant on the characteristics. Therefore,

$$
u(x, t)= \begin{cases}f(x-a t) & \text { if } t<x / a \\ 0 & t \geq x / a\end{cases}
$$

Since u only takes values f or zero the estimate is obvious and u is identical zero for $t>1 / a$. (see Section 1.4 in the book.)

2-b The explicit scheme can be rewritten as

$$
v_{j}^{m+1}=(1-s) v_{j}^{m}+s v_{j-1}^{m}
$$

where $s=a \frac{\Delta t}{\Delta x}$. The desired estimate will hold if $1-s \geq 0$, i.e. if $a \frac{\Delta t}{\Delta x} \leq 1$.

2-c The implicit scheme can be rewritten as

$$
v_{j}^{m+1}=(1+s)^{-1} v_{j}^{m}+s(1+s)^{-1} v_{j-1}^{m+1}
$$

Since the coefficients $(1+s)^{-1}$ and $s(1+s)^{-1}$ are always positive, and sum up to one the estimate follows by induction with respect to m and j. If we compute v_{j}^{m+1} in the order $v_{1}^{m+1}, v_{2}^{m+1}, v_{n}^{m+1}$ there is no need to solve a linear system.

Problem 3

3-a The identity follows by multiplying the differential equation by u and integration by parts. If $f=0$ then this identity implies that $u=0$, so we have uniqueness.

3-b Constants satisfies the boundary value problem with $f=0$ so we do not have uniqueness. Furthermore, if u is a solution then

$$
\int_{0}^{1} f(x) d x=-\int_{0}^{1} u_{x x}(x) d x=0
$$

by the boundary condition.
3-c Assume $f=0$ and $a=0$. Then we will have

$$
\int_{0}^{1}\left(u_{x}(x, t)\right)^{2} d x+\lambda \int_{0}^{1} u(x) d x=\int_{0}^{1}\left(u_{x}(x, t)\right)^{2} d x=0
$$

so u is a constant, and it has integral equal to zero. So $u=0$, and then $\lambda=0$ by (12).

3-d It follows from 3-b above that

$$
\lambda=\int_{0}^{1} f(x) d x=c_{0} / 2
$$

Furthermore, by writing u as a Fourier cosine series on the form

$$
u(x)=\frac{b_{0}}{2}+\sum_{k=1}^{\infty} b_{k} \cos (k \pi x)
$$

we have that

$$
b_{0}=2 \int_{0}^{1} u(x) d x=2 a
$$

Finally, by inserting the expansion of u and f into the equation (12) we obtain $b_{k}=c_{k} /(k \pi)^{2}$. So the solution is

$$
u(x)=a+\sum_{k=1}^{\infty} \frac{c_{k}}{(k \pi)^{2}} \cos (k \pi x), \quad \text { and } \quad \lambda=c_{0} / 2
$$

(see Section 3.6 in the book for the cosine series.)

