UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF 3360 - Introduction to partial differential equations

Day of examination: June 8, 2015
Examination hours: $14.30-18.30$
This problem set consists of 3 pages.
Appendices:
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1-a

Solve the following problem related to the heat equation

$$
\begin{align*}
u_{t} & =u_{x x}, \quad x \in(0,1), t>0 \tag{1}\\
u(0, t) & =u(1, t)=0, \quad t>0 \tag{2}\\
u(x, 0) & =\sum_{k=1}^{100} c_{k} \sin (k \pi x), \quad x \in(0,1) \tag{3}
\end{align*}
$$

where $c_{1}, c_{2}, \ldots, c_{100}$ are given real coefficients.

1-b

Solve the problem (1), with boundary condition (2), and with initial condition given by

$$
\begin{equation*}
u(x, 0)=x(1-x), \quad x \in(0,1) \tag{4}
\end{equation*}
$$

1-c

Use separation of variables to solve the equation

$$
u_{t}-u_{x x t}=u_{x x}, \quad x \in(0,1), t>0
$$

with boundary conditions (2), and with initial condition (3).

Problem 2

2-a

Consider the "backward heat equation" given by

$$
\begin{align*}
u_{t} & =-u_{x x}, \quad x \in(0,1), t>0 \tag{5}\\
u(0, t) & =u(1, t)=0, \quad t>0 \tag{6}\\
u(x, 0) & =f(x), \quad x \in(0,1) \tag{7}
\end{align*}
$$

where you should notice the minus sign in (5). Determine a solution in the case when $f(x)=\sin (k \pi x)$, where $k>0$ is an integer.

2-b

Let $t>0$ be fixed. Explain why there is no constant $C>0$, independent of initial function f, such that

$$
\int_{0}^{1} u^{2}(x, t) d x \leq C \int_{0}^{1} f^{2}(x) d x .
$$

Is the problem (5) - (7) stable with respect to perturbations of the initial function? Justify your answer.

2-c

Assume that we replace (5) by the modified equation

$$
\begin{equation*}
u_{t}-\delta u_{x x t}=-u_{x x}, \quad x \in(0,1), t>0, \tag{8}
\end{equation*}
$$

where $\delta>0$ is a small parameter. Show that smooth solutions of the problem (6) - (8) will satisfy

$$
E(t) \leq e^{2 t / \delta} E(0), \quad \text { where } E(t)=\int_{0}^{1}\left[u^{2}(x, t)+\delta u_{x}^{2}(x, t)\right] d x .
$$

Problem 3

3-a

We consider the boundary value problem

$$
\begin{align*}
\epsilon^{2} u^{\prime \prime}(x)+2 x u^{\prime}(x) & =0, \quad x \in(0,1), \tag{9}\\
u(0)=a, u(1) & =b \tag{10}
\end{align*}
$$

where a, b are real numbers and $\epsilon>0$. Show that the function

$$
u_{\epsilon}(x)=a+\frac{(b-a) H(x / \epsilon)}{H(1 / \epsilon)},
$$

where $H(z)=\int_{0}^{z} e^{-t^{2}} d t$, solves this problem and use this to show that

$$
\begin{equation*}
\min (a, b) \leq u_{\epsilon}(x) \leq \max (a, b), \quad x \in[0,1] . \tag{11}
\end{equation*}
$$

(Continued on page 3.)

3-b

For all $x \in[0,1]$ determine the limit of $u_{\epsilon}(x)$ as $\epsilon \rightarrow 0$. Is the convergence uniform on $[0,1]$? Sketch the function u_{ϵ} when ϵ is small, $a=1$, and $b=2$.

3-c

Assume that the real sequence $\left\{v_{j}\right\}_{j=0}^{n}$ satisfies the difference equation

$$
v_{j}=\alpha_{j} v_{j+1}+\beta_{j} v_{j-1}, \quad j=1,2, \ldots, n,
$$

where the coefficients satisfy

$$
\alpha_{j}, \beta_{j}>0, \alpha_{j}+\beta_{j}=1, \quad j=1,2, \ldots, n .
$$

Show that

$$
\min \left(v_{0}, v_{n+1}\right) \leq v_{j} \leq \max \left(v_{0}, v_{n+1}\right), \quad j=1,2, \ldots, n .
$$

3-d

Assume that the problem (9), (10) is approximated by the difference scheme

$$
\begin{align*}
& \epsilon^{2} \frac{v_{j+1}-2 v_{j}+v_{j-1}}{h^{2}}+2 x_{j} \frac{v_{j+1}-v_{j-1}}{2 h}=0, \quad 1 \leq j \leq n, \tag{12}\\
& v_{0}=a, \quad v_{n+1}=b, \tag{13}
\end{align*}
$$

where $x_{j}=j h$. Show that if $h<\epsilon^{2}$ then every solution of the difference scheme will satisfy the following discrete analog of (11):

$$
\begin{equation*}
\min (a, b) \leq v_{j} \leq \max (a, b) \quad 0 \leq j \leq n+1 . \tag{14}
\end{equation*}
$$

$3-e$

Show by a counterexample that if ϵ is small compared to h then the discrete maximum principle (14) will not hold. (Hint: Consider the case $n=1$.)

