UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF 3360 —	Introduction to partial differential equations
Day of examination:	June 8, 2015	
Examination hours:	14.30-18.30	
This problem set consists of 3 pages.		
Appendices:	None	
Permitted aids:	None	

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1-a

Solve the following problem related to the heat equation

$$u_t = u_{xx}, \quad x \in (0, 1), \, t > 0,$$
 (1)

$$u(0,t) = u(1,t) = 0, \quad t > 0,$$
(2)

$$u(x,0) = \sum_{k=1}^{100} c_k \sin(k\pi x), \quad x \in (0,1),$$
(3)

where $c_1, c_2, \ldots, c_{100}$ are given real coefficients.

1-b

Solve the problem (1), with boundary condition (2), and with initial condition given by

$$u(x,0) = x(1-x), \quad x \in (0,1).$$
 (4)

1-c

Use separation of variables to solve the equation

$$u_t - u_{xxt} = u_{xx}, \quad x \in (0, 1), \ t > 0,$$

with boundary conditions (2), and with initial condition (3).

Problem 2

2-a

Consider the "backward heat equation" given by

$$u_t = -u_{xx}, \quad x \in (0,1), \, t > 0,$$
(5)

$$u(0,t) = u(1,t) = 0, \quad t > 0,$$
 (6)

$$u(x,0) = f(x), \quad x \in (0,1),$$
(7)

where you should notice the minus sign in (5). Determine a solution in the case when $f(x) = \sin(k\pi x)$, where k > 0 is an integer.

2-b

Let t > 0 be fixed. Explain why there is no constant C > 0, independent of initial function f, such that

$$\int_0^1 u^2(x,t) \, dx \le C \int_0^1 f^2(x) \, dx.$$

Is the problem (5) - (7) stable with respect to perturbations of the initial function? Justify your answer.

2-c

Assume that we replace (5) by the modified equation

$$u_t - \delta u_{xxt} = -u_{xx}, \quad x \in (0, 1), \, t > 0, \tag{8}$$

where $\delta > 0$ is a small parameter. Show that smooth solutions of the problem (6) - (8) will satisfy

$$E(t) \le e^{2t/\delta} E(0)$$
, where $E(t) = \int_0^1 [u^2(x,t) + \delta u_x^2(x,t)] dx$.

Problem 3

3-a

We consider the boundary value problem

$$\epsilon^2 u''(x) + 2xu'(x) = 0, \quad x \in (0,1),$$

$$u(0) = a, u(1) = b,$$
(10)

 $\alpha(0)$ α_{1} α_{2} σ_{3}

where a, b are real numbers and $\epsilon > 0$. Show that the function

$$u_{\epsilon}(x) = a + \frac{(b-a)H(x/\epsilon)}{H(1/\epsilon)},$$

where $H(z) = \int_0^z e^{-t^2} dt$, solves this problem and use this to show that

$$\min(a,b) \le u_{\epsilon}(x) \le \max(a,b), \quad x \in [0,1].$$
(11)

(Continued on page 3.)

3-b

For all $x \in [0, 1]$ determine the limit of $u_{\epsilon}(x)$ as $\epsilon \to 0$. Is the convergence uniform on [0, 1]? Sketch the function u_{ϵ} when ϵ is small, a = 1, and b = 2.

3-c

Assume that the real sequence $\{v_j\}_{j=0}^n$ satisfies the difference equation

$$v_j = \alpha_j v_{j+1} + \beta_j v_{j-1}, \quad j = 1, 2, \dots, n,$$

where the coefficients satisfy

$$\alpha_j, \beta_j > 0, \ \alpha_j + \beta_j = 1, \quad j = 1, 2, \dots, n.$$

Show that

$$\min(v_0, v_{n+1}) \le v_j \le \max(v_0, v_{n+1}), \quad j = 1, 2, \dots, n.$$

3-d

Assume that the problem (9), (10) is approximated by the difference scheme

$$\epsilon^2 \frac{v_{j+1} - 2v_j + v_{j-1}}{h^2} + 2x_j \frac{v_{j+1} - v_{j-1}}{2h} = 0, \quad 1 \le j \le n, \tag{12}$$

$$v_0 = a, \quad v_{n+1} = b,$$
 (13)

where $x_j = jh$. Show that if $h < \epsilon^2$ then every solution of the difference scheme will satisfy the following discrete analog of (11):

$$\min(a,b) \le v_j \le \max(a,b) \quad 0 \le j \le n+1.$$
(14)

3-e

Show by a counterexample that if ϵ is small compared to h then the discrete maximum principle (14) will not hold. (Hint: Consider the case n = 1.)