SOLUTION

Problem 1

1-a

$$
u(x, t)=\sum_{k=1}^{100} c_{k} e^{-(k \pi)^{2} t} \sin (k \pi x)
$$

This follows from Chapter 3 of the book.

1-b The sine Fourier series of $x(1-x)$ is first computed as $x(1-x)=\sum_{k=1}^{\infty} c_{k} \sin (k \pi x), \quad$ where $c_{k}=\frac{4}{(k \pi)^{3}}\left[1-(-1)^{k}\right]= \begin{cases}0 & \text { if } k \text { is even } \\ \frac{8}{(k \pi)^{3}} & \text { if } k \text { is odd }\end{cases}$

As a consequence, the solution is given by

$$
u(x, t)=\sum_{k=1}^{\infty} c_{k} e^{-(k \pi)^{2}} \sin (k \pi x)
$$

This follows from Chapter 3 of the book.

1-c We make the ansatz that $u(x, t)=X(x) T(t)$. Inserting this into the equation gives

$$
\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}\left(1-\frac{X^{\prime \prime}}{X}\right)=\lambda
$$

where λ is independent of x and t. Furthermore, $\mu=\lambda /(1+\lambda)$ is an eigenvalue of the standard eigenvalue problem

$$
-X^{\prime \prime}=\mu X, \quad X(0)=X(1)=0
$$

where the boundary conditions is a consequence of (2). So by standard theory we have $X(x)=X_{k}(x)=\sin (k \pi x)$ and $\mu=\mu_{k}=-(k \pi)^{2}$. This gives $\lambda=\lambda_{k}=$ $-(k \pi)^{2} /\left(1+(k \pi)^{2}\right)$, and particular solutions

$$
u_{k}(x, t)=e^{\lambda_{k} t} \sin (k \pi x)
$$

For initial data of the form (3) this gives

$$
u(x, t)=\sum_{k=1}^{100} c_{k} e^{\lambda_{k} t} \sin (k \pi x)
$$

Problem 2

2-a The ansatz $u(x, t)=T(t) \sin (k \pi x)$ gives

$$
u(x, t)=e^{(k \pi)^{2} t} \sin (k \pi x)
$$

2-b From the special solutions above we see that

$$
C \geq e^{2(k \pi)^{2} t} \rightarrow \infty \quad k \rightarrow \infty
$$

So no finite C exists, and the problem is unstable, since small perturbations of the form $\epsilon \sin (k \pi x)$ of the initial function can lead to arbitrary large changes of the solution.

2-c By using the differential equation, the boundary conditions and integration by parts we obtain

$$
\begin{aligned}
E^{\prime}(t) & =2 \int_{0}^{1}\left[u u_{t}+u_{x} u_{x t}\right] d x=2 \int_{0}^{1} u\left(u_{t}-u_{x x t}\right) d x \\
& =-2 \int_{0}^{1} u u_{x x} d x=2 \int_{0}^{1} u_{x}^{2} d x \\
& \leq(2 / \delta) E(t)
\end{aligned}
$$

The desired inequality follows from Gronwall.

Problem 3

3-a The boundary conditions are satisfied since $H(0)=0$. Furthermore, for $u=u_{\epsilon}$ we have

$$
u^{\prime}=(C / \epsilon) e^{-(x / \epsilon)^{2}}
$$

where $C=(b-a) / H(1 / \epsilon)$. The chain rule now gives

$$
u^{\prime \prime}=-\frac{2 x C}{\epsilon^{3}} e^{-(x / \epsilon)^{2}}=-\frac{2 x}{\epsilon^{2}} u^{\prime}
$$

As a consequence the differential equation holds. Finally, since H is increasing the maximum principle holds.

3-b We observe that for any positive x we have

$$
\lim _{\epsilon \rightarrow 0} H(x / \epsilon)=H(\infty)<\infty
$$

As a consequence

$$
\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x)=a+\frac{(b-a) H(\infty)}{H(\infty)}=b
$$

for $x>0$, while $u_{\epsilon}(0)=a$ for all ϵ. So the limit is discontinuous and therefore no uniform convergence, except for the special case when $a=b$.

3-c We obtain that

$$
\min \left(v_{j-1}, v_{j+1}\right) \leq v_{j} \leq \max \left(v_{j-1}, v_{j+1}\right)
$$

This leads to the maximum principle by assuming that it does not hold.

3-d Reformulate the scheme and use point c). In fact, we obtain a difference equation of the form above with $\alpha_{j}=\frac{1}{2}\left(1+x_{j} h / \epsilon^{2}\right)$ and $\beta_{j}=\frac{1}{2}\left(1-x_{j} h / \epsilon^{2}\right)$. If $h<\epsilon^{2}$ the conditions given above are easily checked.

3-e Take $n=1$. Then $h=1 / 2$ and

$$
v_{1}=\frac{1}{2}\left(1+1 /\left(4 \epsilon^{2}\right)\right) b+\frac{1}{2}\left(1-1 /\left(4 \epsilon^{2}\right)\right) a .
$$

If $a=0$ and $b=1$ then $v_{1}=\frac{1}{2}\left(1+1 /\left(4 \epsilon^{2}\right)\right.$. So for $\epsilon=1 / 3$ we have $v_{1}=13 / 8>1$. This shows that (14) does not hold.

