UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF 3360 - Introduction to partial differential equations
Day of examination: June 13, 2016
Examination hours: 14.30-18.30
This problem set consists of 5 pages.

Appendices:
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Solution.

Problem 1

Let $a \geq 0$ and consider the problem

$$
\begin{align*}
u_{t} & =u_{x x}, & & x \in(0,1), t>0 \\
u(0, t) & =u(1, t)=a, & & t>0 \tag{1}\\
u(x, 0) & =f(x), & & x \in(0,1)
\end{align*}
$$

1a
Solve equation (1) when $a=0$ and $f(x)=\sin (2 \pi x)-\sin (5 \pi x)$. (You may use a general formula for the solution, or make the computations.)

Solution: From Chapter 3 in the book, we know that the solution is

$$
u(x, t)=e^{-(2 \pi)^{2} t} \sin (2 \pi x)-e^{-(5 \pi)^{2} t} \sin (5 \pi x)
$$

1b
Find the formal solution of equation (1) when $f(x)=1$ and $a \geq 0$.
Solution: Introduce the function $v(x, t)=u(x, t)-a$. Then u is a solution of the desired problem if and only if v solves $v_{t}=v_{x x}, v(0, t)=$ $v(1, t)=0$ and $v(x, 0)=1-a$ (for all $x, t)$. From the book the solution v is then

$$
v(x, t)=\sum_{k=1}^{\infty} c_{k} e^{-(k \pi)^{2} t} \sin (k \pi x)
$$

where $c_{k}=2 \int_{0}^{1}(1-a) \sin (k \pi x) d x=(1-a) \cdot 2 \int_{0}^{1} \sin (k \pi x) d x$ which gives $c_{k}=\frac{4(1-a)}{k \pi}$ for $k=1,3,5, \ldots$ and $c_{k}=0$ for $k=2,4,6, \ldots$. This specifies v and the desired solution is then $u(x, t)=a+v(x, t)$.

Problem 2

Consider the initial-boundary value problem of the form

$$
\left\{\begin{align*}
u_{t}+a u_{x} & =0, & & x \in[0,1], t>0, \tag{2}\\
u(0, t) & =t, & & t>0, \\
u(x, 0) & =f(x), & & x \in[0,1]
\end{align*}\right.
$$

where $a>0$ is a constant, and f is a given continuously differentiable function.

2a

Use the method of characteristics to show that any solution of (2) satisfies

$$
u(x, t)=\left\{\begin{array}{lll}
f(x-a t) & \text { for } & x>a t, \tag{3}\\
t-x / a & \text { for } & x<a t
\end{array}\right.
$$

and where we assume $x \in[0,1]$ and $t \geq 0$.
Solution: The equation of the characteristic is $x^{\prime}(t)=a, x(0)=x_{0}$ with solution $x(t)=x_{0}+a t$. So the solution u is constant on straight lines $L_{x_{0}}=\left\{(x, t): x=x_{0}+a t\right\}$. Let $x \in[0,1]$ and $t \geq 0$. If $x>a t$, then $(x, t) \in L_{x_{0}}$ with $x_{0}=x-a t>0$, so $u(x, t)=u\left(x_{0}, 0\right)=f\left(x_{0}\right)=f(x-a t)$. If $x<a t$, then $(x, t) \in L_{x_{0}}$ with $x_{0}=x-a t<0$, so $u(x, t)=u(0, t-x / a)=$ $t-x / a$.

Let $u(x, t)$ be as in (3), and define

$$
\begin{equation*}
u(x, t)=0 \quad \text { when } x=a t, x \in[0,1] . \tag{4}
\end{equation*}
$$

2b

Give conditions on f at $x=0$ such that u, given by (3) and (4), is continuous. Moreover, prove that u satisfies

$$
\begin{equation*}
|u(x, t)| \leq \max \{t, M\} \quad x \in[0,1], t>0 . \tag{5}
\end{equation*}
$$

where $M=\max \left\{\left|f\left(x_{1}\right)\right|: x_{1} \in[0,1]\right\}$.
Solution: Let $\left(x_{1}, t_{1}\right)$ satisfy $x_{1}=a t_{1}\left(\right.$ and $x_{1} \in[0,1]$ and $\left.t_{1} \geq 0\right)$. For u to be continuous at $\left(x_{1}, t_{1}\right)$ we must have $\lim _{(x, t) \rightarrow\left(x_{1}, t_{1}\right)} u(x, t)=u\left(x_{1}, t_{1}\right)=$ 0 , so therefore $\lim _{(x, t) \rightarrow\left(x_{1}, t_{1}\right)} f(x-a t)=0$, and since f is continuous, this means that $f(0)=0$. This condition also implies that u is continuous.

To show (5): Let $x \in[0,1]$ and $t \geq 0$. If $x=a t$, then $u(x, t)=0$. If $x>a t$, then $|u(x, t)|=|f(x-a t)| \leq M$. Finally, if $x<a t$, then $u(x, t)=t-x / a$, so $0<u(x, t)<t$ and $|u(x, t)|<t$. This gives the bound in (5).

Problem 3

Let $n \geq 1, h=1 /(n+1)$ and define grid points $\left(x_{j}, y_{k}\right)=(j h, k h)$ for $0 \leq j, k \leq n+1$. Let v be a grid function, with $v_{j, k}=v\left(x_{j}, y_{k}\right)$. Recall that v is called a discrete harmonic function if

$$
L_{h} v\left(x_{j}, y_{k}\right)=0 \quad 1 \leq j, k \leq n
$$

where the finite difference operator L_{h} is defined by

$$
\left(L_{h} v\right)\left(x_{j}, y_{k}\right)=\frac{1}{h^{2}}\left[4 v_{j, k}-v_{j+1, k}-v_{j-1, k}-v_{j, k+1}-v_{j, k-1}\right] .
$$

3a

Assume that v is a discrete harmonic function. Show that, for each $1 \leq j, k \leq n$,

$$
\begin{equation*}
m_{j k} \leq v_{j, k} \leq M_{j k} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
m_{j k} & =\min \left\{v_{j+1, k}, v_{j-1, k}, v_{j, k+1}, v_{j, k-1}\right\}, \\
M_{j k} & =\max \left\{v_{j+1, k}, v_{j-1, k}, v_{j, k+1}, v_{j, k-1}\right\} .
\end{aligned}
$$

Solution: From $L_{h} v\left(x_{j}, y_{k}\right)=0$ we get $v_{j, k}=(1 / 4)\left(v_{j+1, k}+v_{j-1, k}+\right.$ $\left.v_{j, k+1}+v_{j, k-1}\right)$. Therefore

$$
v_{j, k} \geq(1 / 4)\left(4 m_{j k}\right)=m_{j k} \quad \text { and } \quad v_{j, k} \leq(1 / 4)\left(4 M_{j k}\right)=M_{j k} .
$$

3b

Use (6) to establish a maximum principle for discrete harmonic functions, i.e., that the maximum, and the minimum, of such a function v is attained at a grid point on the boundary.

Solution: Let $I=\left\{(j, k): v_{j, k}=M_{j k}\right\}$. Assume that $(j, k) \in I$ for an interior (j, k), i.e., with $1 \leq j, k \leq n$. Since $v_{j, k}$ is the mean (average) of its four neighbor values, all these neighbors must have the value $M_{j, k}$, too. Repeating this, for the neighbors, we eventually reach the boundary (when j or k is 0 or $n+1$) and the value there is also $M_{j, k}$. So, the maximum of v is attained at the boundary. Similarly one shows that the minimum of v is attained at the boundary.

Problem 4

Consider the initial and boundary value problem

$$
\begin{align*}
u_{t}(x, t) & =u_{x x}(x, t)-q(x) u(x, t), & & x \in(0,1), t>0, \\
u(0, t) & =u(1, t)=0, & & t>0, \tag{7}\\
u(x, 0) & =f(x), & & x \in(0,1) .
\end{align*}
$$

Here q is a given continuous function which satisfies $q(x) \geq 0$ for all $x \in[0,1]$. Let $u=u(x, t)$ be a solution of (7), and define, for each $t \geq 0$, the energy

$$
E(t)=\int_{0}^{1} u^{2}(x, t) d x \text {. }
$$

4a

Use energy arguments to show that

$$
\begin{equation*}
E(t) \leq \int_{0}^{1} f^{2}(x) d x \quad \text { for } t>0 \tag{8}
\end{equation*}
$$

Hint: You may assume that it is possible to interchange the order of differentiation and integration.

Solution: We use the hint, insert from PDE and use integration by parts and obtain for $t>0$

$$
\begin{aligned}
E^{\prime}(t) & =\frac{d}{d t} \int_{0}^{1} u^{2}(x, t) d x \\
& =\int_{0}^{1} \frac{\partial}{\partial t} u^{2}(x, t) d x \\
& =\int_{0}^{1} 2 u u_{t} d x \\
& =\int_{0}^{1} 2 u\left(u_{x x}-q u\right) d x \\
& =2\left(\left[u u_{x}\right]_{0}^{1}-\int_{0}^{1} u_{x}^{2} d x-\int_{0}^{1} q u^{2} d x\right) \\
& =(-2)\left(\int_{0}^{1} u_{x}^{2} d x+\int_{0}^{1} q u^{2} d x\right) \\
& \leq 0
\end{aligned}
$$

We here used that $u(0)=u(1)=0$, and that $q \geq 0$. This proves that $E^{\prime}(t) \leq 0$ for all $t>0$. So E is nonincreasing, and the desired inequality follows as $E(0)=\int_{0}^{1} f^{2}(x) d x$.

4b

Use the inequality in (8) to show that the PDE in (7) has at most one solution.

Solution: Assume that there are two solutions u^{1} and u^{2}, and let $w=u^{1}-u^{2}$. Then, by linearity, w satisfies (7) with f replaced by the zero function. But then we get from (8) that

$$
\int_{0}^{1} w^{2} d x=\int_{0}^{1}\left(u^{1}-u^{2}\right)^{2} d x \leq \int_{0}^{1} 0 d x=0
$$

so $u^{1}=u^{2}$ as desired.
Let $C_{0}^{2}([0,1])$ be the space of two times continuously differentiable functions $u: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $u(0)=u(1)=0$. (Note: u is not the solution of the PDE above, but a function of one variable.) We use the usual inner product $\langle u, v\rangle=\int_{0}^{1} u(x) v(x) d x$. Let L be the differential operator, defined on $C_{0}^{2}([0,1])$, given by

$$
(L u)(x)=-u^{\prime \prime}(x)+q(x) u(x)
$$

Consider the eigenvalue problem

$$
\begin{equation*}
L u=\lambda u, \quad u(0)=u(1)=0 \tag{9}
\end{equation*}
$$

4c

Show that L is symmetric, i.e., that

$$
\langle L u, v\rangle=\langle u, L v\rangle \quad \text { for all } u, v \in C_{0}^{2}([0,1])
$$

Solution: Integration by parts and $v(0)=v(1)=u(0)=u(1)=0$ gives

$$
\begin{aligned}
\langle L u, v\rangle & =\int_{0}^{1}\left(-u^{\prime \prime}(x)+q(x) u(x)\right) v(x) d x \\
& =\int_{0}^{1}\left(-u^{\prime \prime} v\right)+\int_{0}^{1} q u v \\
& =\left[-u^{\prime} v\right]_{0}^{1}-\int_{0}^{1}\left(-u^{\prime} v^{\prime}\right)+\int_{0}^{1} q u v \\
& =\int_{0}^{1} u^{\prime} v^{\prime}+\int_{0}^{1} q u v \\
& =\left[u v^{\prime}\right]_{0}^{1}-\int_{0}^{1} u v^{\prime \prime}+\int_{0}^{1} q u v \\
& =\int_{0}^{1} u\left(-v^{\prime \prime}+q v\right) \\
& =\langle u, L v\rangle .
\end{aligned}
$$

Problem 5

Let $f(x)=|x|$ for $x \in[-1,1]$. Let $S_{N}(f)$ be the usual N 'th partial sum of the full Fourier series of f.

$5 \mathbf{a}$

Determine if $S_{N}(f)$ converges to f for each of the three convergence types: (i) pointwise convergence, (ii) mean square convergence, and (iii) uniform convergence. (Here you only need to state some general results from the book that give the right conclusions.)

Solution: This is an example in the book (Example 9.7): The 2periodic extension of f is continuous, as $f(-1)=f(1)$, and its derivative is piecewise continuous, and a general result (Theorem 9.3) then shows that $S_{N}(f)$ converges uniformly to f on $[-1,1]$. Moreover, in general, uniform convergence implies pointwise convergence and mean square convergence (see Propostion 9.1).

