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Solution.

Problem 1

Let a ≥ 0 and consider the problem

ut = uxx, x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = a, t > 0,

u(x, 0) = f(x), x ∈ (0, 1).

(1)

1a

Solve equation (1) when a = 0 and f(x) = sin(2πx) − sin(5πx). (You may
use a general formula for the solution, or make the computations.)

Solution: From Chapter 3 in the book, we know that the solution is

u(x, t) = e−(2π)
2t sin(2πx)− e−(5π)2t sin(5πx).

1b

Find the formal solution of equation (1) when f(x) = 1 and a ≥ 0.

Solution: Introduce the function v(x, t) = u(x, t) − a. Then u is a
solution of the desired problem if and only if v solves vt = vxx, v(0, t) =
v(1, t) = 0 and v(x, 0) = 1− a (for all x, t). From the book the solution v is
then

v(x, t) =
∞∑
k=1

cke
−(kπ)2t sin(kπx)

(Continued on page 2.)
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where ck = 2
∫ 1
0 (1 − a) sin(kπx)dx = (1 − a) · 2

∫ 1
0 sin(kπx)dx which gives

ck = 4(1−a)
kπ for k = 1, 3, 5, . . . and ck = 0 for k = 2, 4, 6, . . .. This specifies v

and the desired solution is then u(x, t) = a+ v(x, t).

Problem 2

Consider the initial-boundary value problem of the form
ut + aux = 0, x ∈ [0, 1], t > 0,
u(0, t) = t, t > 0,
u(x, 0) = f(x), x ∈ [0, 1]

(2)

where a > 0 is a constant, and f is a given continuously differentiable
function.

2a

Use the method of characteristics to show that any solution of (2) satisfies

u(x, t) =

{
f(x− at) for x > at,
t− x/a for x < at

(3)

and where we assume x ∈ [0, 1] and t ≥ 0.

Solution: The equation of the characteristic is x′(t) = a, x(0) = x0
with solution x(t) = x0 + at. So the solution u is constant on straight lines
Lx0 = {(x, t) : x = x0 + at}. Let x ∈ [0, 1] and t ≥ 0. If x > at, then
(x, t) ∈ Lx0 with x0 = x− at > 0, so u(x, t) = u(x0, 0) = f(x0) = f(x− at).
If x < at, then (x, t) ∈ Lx0 with x0 = x−at < 0, so u(x, t) = u(0, t−x/a) =
t− x/a.

Let u(x, t) be as in (3), and define

u(x, t) = 0 when x = at, x ∈ [0, 1]. (4)

2b

Give conditions on f at x = 0 such that u, given by (3) and (4), is continuous.
Moreover, prove that u satisfies

|u(x, t)| ≤ max{t,M} x ∈ [0, 1], t > 0. (5)

where M = max{|f(x1)| : x1 ∈ [0, 1]}.

Solution: Let (x1, t1) satisfy x1 = at1 (and x1 ∈ [0, 1] and t1 ≥ 0). For u
to be continuous at (x1, t1) we must have lim(x,t)→(x1,t1) u(x, t) = u(x1, t1) =
0, so therefore lim(x,t)→(x1,t1) f(x − at) = 0, and since f is continuous, this
means that f(0) = 0. This condition also implies that u is continuous.

To show (5): Let x ∈ [0, 1] and t ≥ 0. If x = at, then u(x, t) = 0.
If x > at, then |u(x, t)| = |f(x − at)| ≤ M . Finally, if x < at, then
u(x, t) = t − x/a, so 0 < u(x, t) < t and |u(x, t)| < t. This gives the bound
in (5).

(Continued on page 3.)
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Problem 3

Let n ≥ 1, h = 1/(n + 1) and define grid points (xj , yk) = (jh, kh) for
0 ≤ j, k ≤ n+ 1. Let v be a grid function, with vj,k = v(xj , yk). Recall that
v is called a discrete harmonic function if

Lhv(xj , yk) = 0 1 ≤ j, k ≤ n

where the finite difference operator Lh is defined by

(Lhv)(xj , yk) =
1

h2
[4vj,k − vj+1,k − vj−1,k − vj,k+1 − vj,k−1].

3a

Assume that v is a discrete harmonic function. Show that, for each
1 ≤ j, k ≤ n,

mjk ≤ vj,k ≤Mjk (6)

where
mjk = min{vj+1,k, vj−1,k, vj,k+1, vj,k−1},
Mjk = max{vj+1,k, vj−1,k, vj,k+1, vj,k−1}.

Solution: From Lhv(xj , yk) = 0 we get vj,k = (1/4)(vj+1,k + vj−1,k +
vj,k+1 + vj,k−1). Therefore

vj,k ≥ (1/4)(4mjk) = mjk and vj,k ≤ (1/4)(4Mjk) =Mjk.

3b

Use (6) to establish a maximum principle for discrete harmonic functions,
i.e., that the maximum, and the minimum, of such a function v is attained
at a grid point on the boundary.

Solution: Let I = {(j, k) : vj,k = Mjk}. Assume that (j, k) ∈ I for an
interior (j, k), i.e., with 1 ≤ j, k ≤ n. Since vj,k is the mean (average) of
its four neighbor values, all these neighbors must have the value Mj,k, too.
Repeating this, for the neighbors, we eventually reach the boundary (when
j or k is 0 or n+ 1) and the value there is also Mj,k. So, the maximum of v
is attained at the boundary. Similarly one shows that the minimum of v is
attained at the boundary.

Problem 4

Consider the initial and boundary value problem

ut(x, t) = uxx(x, t)− q(x)u(x, t), x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = f(x), x ∈ (0, 1).

(7)

Here q is a given continuous function which satisfies q(x) ≥ 0 for all x ∈ [0, 1].
Let u = u(x, t) be a solution of (7), and define, for each t ≥ 0, the energy

E(t) =

∫ 1

0
u2(x, t)dx.

(Continued on page 4.)
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4a

Use energy arguments to show that

E(t) ≤
∫ 1

0
f2(x)dx for t > 0. (8)

Hint: You may assume that it is possible to interchange the order of
differentiation and integration.

Solution: We use the hint, insert from PDE and use integration by parts
and obtain for t > 0

E′(t) = d
dt

∫ 1
0 u

2(x, t)dx

=
∫ 1
0

∂
∂tu

2(x, t)dx

=
∫ 1
0 2uutdx

=
∫ 1
0 2u(uxx − qu)dx

= 2([uux]
1
0 −

∫ 1
0 u

2
xdx−

∫ 1
0 qu

2dx)

= (−2)(
∫ 1
0 u

2
xdx+

∫ 1
0 qu

2dx)

≤ 0

We here used that u(0) = u(1) = 0, and that q ≥ 0. This proves that
E′(t) ≤ 0 for all t > 0. So E is nonincreasing, and the desired inequality
follows as E(0) =

∫ 1
0 f

2(x)dx.

4b

Use the inequality in (8) to show that the PDE in (7) has at most one
solution.

Solution: Assume that there are two solutions u1 and u2, and let
w = u1 − u2. Then, by linearity, w satisfies (7) with f replaced by the
zero function. But then we get from (8) that∫ 1

0
w2dx =

∫ 1

0
(u1 − u2)2dx ≤

∫ 1

0
0 dx = 0,

so u1 = u2 as desired.

Let C2
0 ([0, 1]) be the space of two times continuously differentiable

functions u : R → R that satisfy u(0) = u(1) = 0. (Note: u is not the
solution of the PDE above, but a function of one variable.) We use the usual
inner product 〈u, v〉 =

∫ 1
0 u(x)v(x)dx. Let L be the differential operator,

defined on C2
0 ([0, 1]), given by

(Lu)(x) = −u′′(x) + q(x)u(x).

Consider the eigenvalue problem

Lu = λu, u(0) = u(1) = 0. (9)

(Continued on page 5.)
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4c

Show that L is symmetric, i.e., that

〈Lu, v〉 = 〈u, Lv〉 for all u, v ∈ C2
0 ([0, 1]).

Solution: Integration by parts and v(0) = v(1) = u(0) = u(1) = 0 gives

〈Lu, v〉 =
∫ 1
0 (−u

′′(x) + q(x)u(x))v(x)dx

=
∫ 1
0 (−u

′′v) +
∫ 1
0 quv

= [−u′v]10 −
∫ 1
0 (−u

′v′) +
∫ 1
0 quv

=
∫ 1
0 u
′v′ +

∫ 1
0 quv

= [uv′]10 −
∫ 1
0 uv

′′ +
∫ 1
0 quv

=
∫ 1
0 u(−v

′′ + qv)

= 〈u, Lv〉.

Problem 5

Let f(x) = |x| for x ∈ [−1, 1]. Let SN (f) be the usual N ’th partial sum of
the full Fourier series of f .

5a

Determine if SN (f) converges to f for each of the three convergence types:
(i) pointwise convergence, (ii) mean square convergence, and (iii) uniform
convergence. (Here you only need to state some general results from the
book that give the right conclusions.)

Solution: This is an example in the book (Example 9.7): The 2-
periodic extension of f is continuous, as f(−1) = f(1), and its derivative
is piecewise continuous, and a general result (Theorem 9.3) then shows that
SN (f) converges uniformly to f on [−1, 1]. Moreover, in general, uniform
convergence implies pointwise convergence and mean square convergence (see
Propostion 9.1).


