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Solution.

Problem 1

Let a > 0 and consider the problem

Ut = Ugpg, xz € (0,1), ¢t >0,
u(0,t) = wu(l,t)=a, t>0, (1)
u(x70) = f(x)v TE (07 1)

la

Solve equation (1) when a = 0 and f(x) = sin(27z) — sin(57z). (You may
use a general formula for the solution, or make the computations.)

Solution: From Chapter 3 in the book, we know that the solution is

u(x,t) = e~ (M sin(2rz) — e~ (Mt sin(bmz).

1b

Find the formal solution of equation (1) when f(z) =1 and a > 0.

Solution:  Introduce the function v(z,t) = u(x,t) —a. Then u is a
solution of the desired problem if and only if v solves vy = vz, v(0,t) =
v(1,t) =0 and v(z,0) = 1 —a (for all z,t). From the book the solution v is
then

o0
v(z,t) = Z cpe” (Bm*t sin(kmz)
k=1

(Continued on page 2.)
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where ¢, = 2f01(1 — a)sin(kmx)dxr = (1 —a) - 2f01 sin(krz)dr which gives
cp = % for k=1,3,5,... and ¢ = 0 for k = 2,4,6,.... This specifies v
and the desired solution is then u(z,t) = a + v(z,t).

U
Problem 2
Consider the initial-boundary value problem of the form
ug +au, = 0, z€[0,1],t >0,
u(0,t) = t, t>0, (2)

u(xz,0) = f(z), z=€][0,1]

where ¢ > 0 is a constant, and f is a given continuously differentiable
function.

2a

Use the method of characteristics to show that any solution of (2) satisfies

s =4 0 ®)

and where we assume z € [0,1] and ¢ > 0.

Solution:  The equation of the characteristic is 2'(t) = a,z(0) = xg
with solution x(t) = o + at. So the solution u is constant on straight lines
Ly, = {(z,t) : © = 9 + at}. Let x € [0,1] and ¢ > 0. If x > at, then
(x,t) € Ly, with xg =z —at > 0, so u(x,t) = u(xo,0) = f(xo) = f(z — at).

) =

If © < at, then (z,t) € Ly, with xg =z —at <0, so u(z,t) = u(0,t —x/a) =
t—z/a. U

Let u(z,t) be as in (3), and define
u(z,t) =0 when x = at, z € [0,1]. (4)

2b

Give conditions on f at x = 0 such that u, given by (3) and (4), is continuous.
Moreover, prove that u satisfies

lu(z,t)] < max{t, M} xz€]0,1], t>0. (5)

where M = max{|f(z1)|: z1 € [0,1]}.

Solution: Let (x1,t1) satisfy 1 = at; (and z1 € [0,1] and ¢; > 0). For u
to be continuous at (z1,#1) we must have lim, )z, 4,) u(7, 1) = u(21,t1) =
0, so therefore limy 4) (4, +,) f(* — at) = 0, and since f is continuous, this
means that f(0) = 0. This condition also implies that u is continuous.

To show (5): Let = € [0,1] and ¢t > 0. If z = at, then u(x,t) = 0.

If £ > at, then |u(z,t)] = |f(z — at)] < M. Finally, if z < at, then
u(z,t) =t —x/a,so 0 < u(z,t) <tand |u(z,t)| <t This gives the bound
in (5). U

(Continued on page 3.)
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Problem 3

Let n > 1, h = 1/(n + 1) and define grid points (xj,yx) = (jh,kh) for
0<j,k<n+1. Letwv be agrid function, with v;, = v(x;, yx). Recall that
v is called a discrete harmonic function if

Lyv(zj,yp) =0 1<jk<n

where the finite difference operator Ly is defined by
(Luv) (), yk) = 7514050 = Vjr1k = Vj=1k = Vjg+1 — Vjk—1].

3a

Assume that v is a discrete harmonic function. Show that, for each
1<j,k<n,
mik < v < Mg (6)
where
Myl = MIN{Vj 41k, Vj—1 k> Vj ket 1 Vj—1 )

M, = max{vj41 k, Vj—1,k Vjkt1, Vjk—1}-

Solution:  From Lpv(zj,yr) = 0 we get vjp = (1/4)(vjt1h + vj_1k +
Vj k41 + Vjp—1). Therefore

Vj.k > (1/4)(4m]k) = Mmjg and Vj.k < (1/4)(4Mjk‘) = Mjk-

3b

Use (6) to establish a maximum principle for discrete harmonic functions,
i.e., that the maximum, and the minimum, of such a function v is attained
at a grid point on the boundary.

Solution: Let I = {(j,k) : vjx = Mjx}. Assume that (j,k) € I for an
interior (j,k), i.e., with 1 < j,k < n. Since vj;} is the mean (average) of
its four neighbor values, all these neighbors must have the value Mj , too.
Repeating this, for the neighbors, we eventually reach the boundary (when
jorkis0orn+1)and the value there is also M, ;. So, the maximum of v
is attained at the boundary. Similarly one shows that the minimum of v is
attained at the boundary. U

Problem 4

Consider the initial and boundary value problem

ur(z,t) = ugz(z,t) — q(z)u(z,t), x € (0,1),¢t>0,
uw(0,t) =u(l,t) =0, t >0, (7)
u(z,0) = f(x), z € (0,1).

Here ¢ is a given continuous function which satisfies ¢(x) > 0 for all z € [0, 1].
Let u = u(z,t) be a solution of (7), and define, for each t > 0, the energy

1
E(t):/o u?(z,t)dx.

(Continued on page 4.)
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4a

Use energy arguments to show that

E(t) < /01 f3(z)dx for t > 0. (8)

Hint: You may assume that it is possible to interchange the order of
differentiation and integration.

Solution: We use the hint, insert from PDE and use integration by parts
and obtain for ¢t > 0

E'(t) =4 01 u?(x,t)dz
= 01 %UQ(QZ, t)dx
= fol Quude
= fol 2u(Ugy — qu)dx
= 2([uug)§ — fol u2dr — fol qudr)

1 1

= (=2)( [, uidz + [, qudz)
<0

We here used that «(0) = u(1l) = 0, and that ¢ > 0. This proves that
E'(t) <0 for all t > 0. So E is nonincreasing, and the desired inequality
follows as E(0) = fol f?(x)dx. U

4b

Use the inequality in (8) to show that the PDE in (7) has at most one
solution.

Solution: ~ Assume that there are two solutions u! and w?, and let

w = u' —u?. Then, by linearity, w satisfies (7) with f replaced by the

zero function. But then we get from (8) that

1 1 1
/dex:/(ul—u2)2dx§/ 0 dx =0,
0 0 0
1

so ul = u? as desired. U

Let C2([0,1]) be the space of two times continuously differentiable
functions u : R — R that satisfy u(0) = u(1) = 0. (Note: w is not the
solution of the PDE above, but a function of one variable.) We use the usual
inner product (u,v) = fol u(z)v(x)dx. Let L be the differential operator,
defined on C3([0, 1]), given by

(Lu)(z) = —u"(z) + q(z)u(x).
Consider the eigenvalue problem

Lu = Au, u(0)=u(l)=0. 9)

(Continued on page 5.)
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4c

Show that L is symmetric, i.e., that

(Lu,v) = (u, Lv)  for all u,v € C3([0,1]).

Solution: Integration by parts and v(0) = v(1) = u(0) = u(1) = 0 gives

(Lu,v) = [ (—u"(z) + q(x)u(z))v(z)dz
= fol(—u”v) + fol quv
= [—u/v]} — fol(—u’v’) - fol quv
= fol u'v' + fol quv
= [uv'])} — fol wv” + fol quv
= Jy u(=v" + q)
= (u, Lv).

Problem 5

Let f(x) = |z| for z € [—1,1]. Let Sy(f) be the usual N’th partial sum of
the full Fourier series of f.

5a

Determine if Sy(f) converges to f for each of the three convergence types:
(i) pointwise convergence, (ii) mean square convergence, and (iii) uniform
convergence. (Here you only need to state some general results from the
book that give the right conclusions.)

Solution:  This is an example in the book (Example 9.7): The 2-
periodic extension of f is continuous, as f(—1) = f(1), and its derivative
is piecewise continuous, and a general result (Theorem 9.3) then shows that
Sn(f) converges uniformly to f on [—1,1]. Moreover, in general, uniform
convergence implies pointwise convergence and mean square convergence (see
Propostion 9.1). U



