Solutions

1-a

$$
u(x, t)=e^{-(x-4 t)^{2}}
$$

This is a special case of Example 1.1 in the book.

1-b

$$
u(x, t)=\phi\left(x e^{-t}\right)+t .
$$

See section 1.4.2 in the book.

2-a
The Fourier coefficients c_{k} are given by

$$
\begin{align*}
c_{k} & =2 \int_{0}^{1} f(x) \sin (k \pi x) \mathrm{d} x=2\left(\int_{0}^{1 / 2} \sin (k \pi x) \mathrm{d} x-\int_{1 / 2}^{1} \sin (k \pi x) \mathrm{d} x\right) \\
& =\frac{2}{k \pi}(1-2 \cos (k \pi / 2)+\cos (k \pi))= \begin{cases}0, & k=4 m, \\
0, & k=4 m-1, \\
\frac{8}{k \pi}, & k=4 m-2, \\
0, & k=4 m-3 .\end{cases} \tag{1}
\end{align*}
$$

Hence, the Fourier sine series of f is equal to

$$
\begin{align*}
f(x) & =\sum_{k=1}^{\infty} c_{k} \sin (k \pi x)=\sum_{m=1}^{\infty} \frac{8}{(4 m-2) \pi} \sin ((4 m-2) \pi x) \\
& =\sum_{m=1}^{\infty} \frac{4}{(2 m-1) \pi} \sin ((4 m-2) \pi x) . \tag{2}
\end{align*}
$$

2-b

The solution is

$$
u(x, t)=\sum_{k=1}^{\infty} c_{k} e^{-(k \pi)^{2} t} \sin (k \pi x),
$$

with c_{k} given in (1). This follows from Chapter 3 in the book.

2-c
The solution is

$$
u(x, t)=\sum_{k=1}^{\infty} \frac{c_{k}}{k \pi} \sin (k \pi t) \sin (k \pi x),
$$

with c_{k} given in (1). This follows from Chapter 5 in the book.

2-d

The solution is

$$
u(x, y)=\sum_{k=1}^{\infty} \frac{c_{k}}{\sinh (k \pi)} \sin (k \pi x) \sinh (k \pi y),
$$

with c_{k} given in (1). This follows from Chapter 7 in the book.

2-e
Observe that

$$
g^{\prime}(x)= \begin{cases}1, & -1<x<-1 / 2 \\ -1, & 1 / 2<x<0 \\ 1, & 0<x<1 / 2 \\ -1 & 1 / 2<x<1\end{cases}
$$

which is the odd extension of f to the interval $[-1,1]$. Thus we know from Chapter 8 that their Fourier sine series are equal, i.e. that g^{\prime} is given by (2) on $[-1,1]$. Since g^{\prime} is piecewise continuous, and $g(-1)=g(1)$, it follows from Theorem 8.1 that

$$
\begin{aligned}
g(x) & =\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k \pi x)=\frac{a_{0}}{2}-\sum_{k=1}^{\infty} \frac{c_{k}}{k \pi} \cos (k \pi x)=\frac{a_{0}}{2}-\sum_{m=1}^{\infty} \frac{8}{((4 m-2) \pi)^{2}} \cos ((4 m-2) \pi x) \\
& =\frac{a_{0}}{2}-\sum_{m=1}^{\infty} \frac{2}{((2 m-1) \pi)^{2}} \cos ((4 m-2) \pi x) .
\end{aligned}
$$

Note that we still have to find a_{0} the usual way,

$$
a_{0}=2 \int_{0}^{1} g(x) \mathrm{d} x=4 \int_{0}^{1 / 2} x \mathrm{~d} x=\frac{1}{2}
$$

Since the periodic extension of g is continuous, and g^{\prime} is piecewise continuous, it follows from Theorem 9.1 that the above Fourier series converges uniformly to g.

3-a

Let $E(t)$ be given by

$$
E(t)=\int_{0}^{1} u(x, t)^{2} \mathrm{~d} x
$$

then, using integration by parts, the Poincaré inequality and $0 \leq b(x) \leq 1$ we get

$$
\begin{aligned}
E^{\prime}(t) & =\int_{0}^{1} 2 u u_{t} \mathrm{~d} x=2 \int_{0}^{1} u\left(\epsilon u_{x x}+b(x) u\right) \mathrm{d} x=2\left[\epsilon u u_{x}\right]_{0}^{1}-2 \epsilon \int_{0}^{1} u_{x}^{2} \mathrm{~d} x+2 \int_{0}^{1} b(x) u^{2} \mathrm{~d} x \\
& \leq-2 \epsilon \pi^{2} \int_{0}^{1} u^{2} \mathrm{~d} x+2 \int_{0}^{1} u^{2} \mathrm{~d} x=2\left(1-\epsilon \pi^{2}\right) E(t)
\end{aligned}
$$

It then follows from Grönwall's inequality that

$$
E(t) \leq e^{2\left(1-\epsilon \pi^{2}\right) t} E(0) \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

so long as $1-\epsilon \pi^{2}<0$, which is equivalent to $\epsilon>\pi^{-2}$.

3-b

Let $f(x)=\sin (\pi x)$. Then $u(x, t)=\sin (\pi x)$ for all t.

3-c

This is true because the first Fourier coefficient of f is equal to zero. To see this let f be any function of the form

$$
f(x)=\sum_{k=2}^{\infty} c_{k} \sin (k \pi x)
$$

then from a standard separation of variables argument we have

$$
u(x, t)=\sum_{k=2}^{\infty} c_{k} e^{\left(1-\epsilon(k \pi)^{2}\right) t} \sin (k \pi x)
$$

Using Parseval's identity it then follows that

$$
\int_{0}^{1} u(x, t)^{2} \mathrm{~d} x=\frac{1}{2} \sum_{k=2}^{\infty} c_{k}^{2} e^{2\left(1-\epsilon(k \pi)^{2}\right) t} \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

whenever $1-\epsilon(k \pi)^{2}<0$ for all $k=2,3, \ldots$. This holds for $\epsilon>1 /\left(4 \pi^{2}\right)$.

