
Solutions

1-a
u(x, t) = e−(x−4t)

2

.

This is a special case of Example 1.1 in the book.

1-b
u(x, t) = φ(xe−t) + t.

See section 1.4.2 in the book.

2-a
The Fourier coefficients ck are given by

ck = 2

∫ 1

0

f(x) sin(kπx)dx = 2
(∫ 1/2

0

sin(kπx)dx−
∫ 1

1/2

sin(kπx)dx
)

=
2

kπ

(
1− 2 cos(kπ/2) + cos(kπ)

)
=


0, k = 4m,

0, k = 4m− 1,
8
kπ , k = 4m− 2,

0, k = 4m− 3.

(1)

Hence, the Fourier sine series of f is equal to

f(x) =

∞∑
k=1

ck sin(kπx) =

∞∑
m=1

8

(4m− 2)π
sin((4m− 2)πx)

=

∞∑
m=1

4

(2m− 1)π
sin((4m− 2)πx).

(2)

2-b
The solution is

u(x, t) =

∞∑
k=1

cke
−(kπ)2t sin(kπx),

with ck given in (1). This follows from Chapter 3 in the book.

2-c
The solution is

u(x, t) =

∞∑
k=1

ck
kπ

sin(kπt) sin(kπx),

1



with ck given in (1). This follows from Chapter 5 in the book.

2-d
The solution is

u(x, y) =

∞∑
k=1

ck
sinh(kπ)

sin(kπx) sinh(kπy),

with ck given in (1). This follows from Chapter 7 in the book.

2-e
Observe that

g′(x) =


1, −1 < x < −1/2,

−1, 1/2 < x < 0,

1, 0 < x < 1/2,

−1 1/2 < x < 1,

which is the odd extension of f to the interval [−1, 1]. Thus we know from
Chapter 8 that their Fourier sine series are equal, i.e. that g′ is given by (2)
on [−1, 1]. Since g′ is piecewise continuous, and g(−1) = g(1), it follows from
Theorem 8.1 that

g(x) =
a0
2

+

∞∑
k=1

ak cos(kπx) =
a0
2
−
∞∑
k=1

ck
kπ

cos(kπx) =
a0
2
−
∞∑
m=1

8

((4m− 2)π)2
cos((4m− 2)πx)

=
a0
2
−
∞∑
m=1

2

((2m− 1)π)2
cos((4m− 2)πx).

Note that we still have to find a0 the usual way,

a0 = 2

∫ 1

0

g(x)dx = 4

∫ 1/2

0

xdx =
1

2
.

Since the periodic extension of g is continuous, and g′ is piecewise continuous,
it follows from Theorem 9.1 that the above Fourier series converges uniformly
to g.

3-a
Let E(t) be given by

E(t) =

∫ 1

0

u(x, t)2dx,

then, using integration by parts, the Poincaré inequality and 0 ≤ b(x) ≤ 1 we
get

E′(t) =

∫ 1

0

2uutdx = 2

∫ 1

0

u(εuxx + b(x)u)dx = 2[εuux]10 − 2ε

∫ 1

0

u2xdx+ 2

∫ 1

0

b(x)u2dx

≤ −2επ2

∫ 1

0

u2dx+ 2

∫ 1

0

u2dx = 2(1− επ2)E(t).
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It then follows from Grönwall’s inequality that

E(t) ≤ e2(1−επ
2)tE(0)→ 0, as t→∞,

so long as 1− επ2 < 0, which is equivalent to ε > π−2.

3-b
Let f(x) = sin(πx). Then u(x, t) = sin(πx) for all t.

3-c
This is true because the first Fourier coefficient of f is equal to zero. To see

this let f be any function of the form

f(x) =

∞∑
k=2

ck sin(kπx),

then from a standard separation of variables argument we have

u(x, t) =

∞∑
k=2

cke
(1−ε(kπ)2)t sin(kπx).

Using Parseval’s identity it then follows that∫ 1

0

u(x, t)2dx =
1

2

∞∑
k=2

c2k e
2(1−ε(kπ)2)t → 0, as t→∞

whenever 1− ε(kπ)2 < 0 for all k = 2, 3, .... This holds for ε > 1/(4π2).
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