
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3360 –– Introduction to
Partial Differential Equations

Day of examination: Tuesday 4 June 2019

Examination hours: 9:00 – 13:00

This problem set consists of 7 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note: We recommend reading through the entire problem set before
starting. The number of points given for each problem is stated in
parentheses. The maximum number of points is 100.

Problem 1 (8 points)

Consider the following four problems:{
ut(x, t)− 2(ux(x, t))2 = sinx for x ∈ R, t > 0

u(x, 0) = φ(x) for x ∈ R
(A){

u′′(x) = 2exu′(x) for x ∈ (−10, 10)

u′(−10) = 0, u′(10) = 0
(B)

3uxx(x, t)− 2ut(x, t)− x2 = 0 for x ∈ (0, 1), t > 0

u(0, t) = cos(t), u(1, t) = sin(t) for t > 0

u(x, 0) = 0

(C)


ut(x, y)− (ux(x, t)k(x, t))x = 0 for x ∈ (0, 1), t > 0

ux(0, t) = 0, ux(1, t) = 0 for t > 0

u(x, t) = f(x).

(D)

For each of the above problems, specify

(i) whether it is an ODE or PDE

(ii) whether the equation is homogeneous or inhomogeneous

(iii) whether it is linear or nonlinear

(iv) the order of the equation (first, second, third, etc.)

(v) whether the boundary conditions (if any) are homogeneous or
inhomogeneous, and if they are of Dirichlet or Neumann type.
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Solution:

(A) PDE, inhomogeneous, nonlinear, first-order

(B) ODE, homogeneous, linear, second-order, homogeneous Neumann
boundary conditions

(C) PDE, inhomogeneous, linear, second-order, inhomogeneous Dirich-
let boundary conditions

(D) PDE, homogeneous, linear, second-order, homogeneous Neumann
boundary conditions.

Problem 2 (30 points)

Consider the problem
ut = uxx − αu x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0 t > 0

u(x, 0) = f(x) x ∈ [0, 1]

(1)

where α > 0 is a positive constant and f : [0, 1] → R is a given continuous
function satisfying f(0) = f(1) = 0.

2a

Use separation of variables and the superposition principle to find a formal
solution to the problem (1).

Solution: The ansatz u(x, t) = X(x)T (t) leads toXT ′ = X ′′T−αXT ,
or T ′+αT

T = X′′

X . Since the left-hand side is independent of x, and the
right-hand side of t, both sides must be equal to some constant, say,
−λ ∈ R. This leads to the two ODEs

T ′ + αT = −λT, X ′′ = −λX.

The equation for T has solutions T (t) = ae−(α+λ)t for any a ∈ R.
The equation for X is supplemented with the boundary conditions
X(0) = X(1) = 0, which always has the solutions X ≡ 0 and, when
λ = (kπ)2 for some k ∈ Z, X(x) = sin(kπx). Thus, the equation for X
has particular solutions

λk = (kπ)2, Xk(x) = sin(kπx), k ∈ N.

In conclusion, (1) has the particular solutions

uk(x, t) = ake
−(α+(kπ)2)t sin(kπx), k ∈ N.

Letting u(x, t) =
∑

k∈N uk(x, t) and asserting that u(x, 0) = f(x) shows

(Continued on page 3.)
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that the coefficients ak must be chosen as

ak =

∫ 1
0 f(x) sin(kπx) dx∫ 1

0 sin(kπx)2 dx
= 2

∫ 1

0
f(x) sin(kπx) dx.

(No justification for the convergence of these Fourier series is required.)

2b

Find the solution of (1) when f(x) = 3 sin(2πx)− 5 sin(8πx).

Solution: Here a2 = 3, a8 = −5 and ak = 0 for k 6= 2, 8, so

u(x, t) = 3e−(α+(2π)2)t sin(2πx)− 5e−(α+(8π)2)t sin(8πx).

2c

Explain how to find the solution of (1) when the boundary conditions have
been replaced by u(0, t) = u0, u(1, t) = u1 for given constants u0, u1 ∈ R.
(You do not have to compute the solution, only to explain the construction
of the solution.)

Solution: First, find any solution v of the PDE satisfying the
prescribed boundary conditions. For instance, the ansatz v(x, t) = φ(x)
yields

φ′′(x)− αφ(x) = 0, φ(0) = u0, φ(1) = u1,

which has a solution of the form φ(x) = A cos(
√
αx) + B sin(

√
αx).

Then, find the solution w of the homogeneous Dirichlet problem (1) but
with initial data w(x, 0) = f(x)− v(x, 0). The function u = v + w now
solves the problem in question.

2d

Prove that any solution of (1) which is (at least) twice continuously
differentiable satisfies the maximum principle

min
y∈[0,1]

f(y) 6 u(x, t) 6 max
y∈[0,1]

f(y) ∀ x ∈ [0, 1], t > 0. (2)

Solution: Let T > 0 and let (x0, t0) ∈ [0, 1]× [0, T ] be any point where

max
x∈[0,1]
t∈[0,T ]

u(x, t) = u(x0, t0).

Then either:

1. x0 = 0 or x0 = 1, in which case u(x0, t0) = 0 6 maxx∈[0,1] f(x),
the last inequality following from the fact that f(0) = f(1) = 0.

2. t0 = 0, from which (2) directly follows.

3. (x0, t0) ∈ (0, 1) × (0, T ]. Then ut(x0, t0) > 0 and uxx(x0, t0) 6 0,

(Continued on page 4.)
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so
0 6 ut(x0, t0)− uxx(x0, t0) = −αu(x0, t0).

Since α > 0, this implies that u(x0, t0) 6 0 6 maxx∈[0,1] f(x), the
last inequality again following from the fact that f(0) = f(1) = 0.

The lower bound in (2) follows from replacing u and f by −u and −f ,
respectively.

2e

Use (2) to prove that (1) has at most one solution.

Solution: Let u and v be two solutions with the same initial data.
Then by linearity w := u − v solves (1) with w(x, 0) = 0. From (2) it
follows that

0 6 w(x, t) 6 0 ∀ x ∈ [0, 1], t > 0,

whence u = v.

Problem 3 (5 points)

Consider the PDE
utt = c2uxx + kut x ∈ (0, 1), t > 0

u(0, t) = u0, ux(1, t) = 0 t > 0

u(x, 0) = f(x), ut(x, 0) = g(x) x ∈ (0, 1)

(3)

for given numbers u0, c, k ∈ R and continuous functions f, g : [0, 1]→ R. For
what values of k ∈ R does the energy

E(t) :=

∫ 1

0

u2
t

2
+
c2u2

x

2
dx

decrease (or stay constant) over time? Justify your answer.

Solution: We have

E′(t) =

∫ 1

0
ututt + c2uxuxt dx =

∫ 1

0
ut(utt − c2uxx) dx+ c2[uxut]

x=1
x=0.

Since u(0, t) is constant we have ut(0, t) = 0, and moreover ux(1, t) = 0.
Hence,

E′(t) =

∫ 1

0
ut(utt − c2uxx) dx = k

∫ 1

0
ut(x, t)

2 dx.

It follows that E′(t) 6 0 for all t if and only if either

1. u is constant in time, i.e. ut ≡ 0, or

2. k 6 0.

(Continued on page 5.)
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Problem 4 (15 points)

4a

Consider the PDE
utt = uxx − αu x ∈ (0, 1), t > 0

ux(0, t) = ux(1, t) = 0 t > 0

u(x, 0) = f(x), ut(x, 0) = g(x) x ∈ (0, 1)

(4)

for a given number α > 0 and continuous functions f, g : [0, 1] → R. Find
an “energy function” E = E(t) depending on u such that E(t) = E(0) for all
t > 0.

Solution: The function

E(t) =

∫ 1

0

ut(x, t)
2

2
+
ux(x, t)2

2
+ α

u(x, t)2

2
dx

(or γE(t) for any γ > 0) is an energy for (4).

4b

Use the energy function derived in the previous exercise to show that there
exists at most one solution of (4).

Solution: If u and v are solutions of (4), let w = u−v. Then w solves
the same problem but with zero initial data. Hence, the energy E(t) of
w is equal to its initial energy E(0) = 0. But E(t) = 0 is equivalent to
w(x, t) = 0 for all x. Hence, u = v.

Problem 5 (7 points)

Derive an explicit finite difference method for the problem
ut + (au)x = g(u) x ∈ (0, 1), t > 0

u(0, t) = u0(t), u(1, t) = u1(t) t > 0

u(x, 0) = f(x) x ∈ (0, 1)

(5)

for a continuously differentiable function a = a(x, t) and continuous functions
u0, u1, f and g. (You do not need to prove any properties of your numerical
method.)

Solution: Let n ∈ N, ∆x = 1
n+1 , xj = j∆x for j = 0, . . . , n + 1 and

tm = m∆t for some ∆t > 0. Letting vmj ≈ u(xj , tm) and approximating
the temporal and spatial derivatives in (5) by e.g. forward and central
differences, respectively, yields

vm+1
j −vmj

∆t +
amj+1v

m
j+1−amj−1v

m
j−1

2∆x = g(vmj ) j = 1, . . . , n, m = 0, 1, . . .

vm0 = u0(tm), vmj+1 = u1(tm) m = 1, 2, . . .

v0
j = f(xj) j = 1, . . . , n

(6)

(Continued on page 6.)
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where amj = a(xj , tm).

Problem 6 (15 points)

Consider the transport equation on a periodic domain,
ut + cux = 0 x ∈ (0, 1), t > 0

u(0, t) = u(1, t) t > 0

u(x, 0) = f(x) x ∈ [0, 1]

(7)

for some constant c > 0 and some continuous and bounded function
f : [0, 1]→ R. We consider the implicit finite difference method

vm+1
j −vmj

∆t + c
vm+1
j −vm+1

j−1

∆x = 0 j = 1, . . . , n+ 1, m = 0, 1, . . .

vm+1
0 = vm+1

n+1 m = 0, 1, . . .

v0
j = f(xj) j ∈ Z.

(8)

Show that for any choice of ∆t,∆x > 0, any solution of (8) satisfies

inf
x∈[0,1]

f(x) 6 vmj 6 sup
x∈[0,1]

f(x).

Solution: Let J be a point at which (vm+1
j )n+1

j=1 attains its maximum.
Then

vm+1
J = vmJ − c

∆t

∆x
(vm+1
J − vm+1

J−1 ).

By assumption, c > 0, and by the choice of J we have vm+1
J −vm+1

J−1 > 0.
It follows that

max
j=0,...,n+1

vm+1
j = vm+1

J 6 vmJ 6 max
j=0,...,n+1

vmj .

Iterating the inequality over all m yields

vmj 6 max
j=0,...,n+1

v0
j 6 max

x∈[0,1]
f(x).

The lower bound is shown in the same way.

Problem 7 (20 points)

Consider the heat equation
ut = uxx x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0 t > 0

u(x, 0) = f(x) x ∈ [0, 1]

(9)

and consider the leapfrog finite difference method
vm+1
j −vm−1

j

2∆t =
vmj−1−2vmj +vmj+1

∆x2
j = 1, 2, . . . , n

vm0 = vmn+1 = 0 m = 1, 2, . . .

v0
j = f(xj) j = 1, 2, . . . , n

v1
j = f(xj) + ∆tf ′′(xj) j = 1, 2, . . . , n.

(10)

(Continued on page 7.)
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We assume that f is at least twice continuously differentiable in [0, 1].

7a

Explain the derivation of (10).

Solution: The time derivative is approximated by a central difference
and the spatial derivative by a central, second-order difference. The
data for vm0 , vmn+1 and vmj are obvious, while

v1
j ≈ u(xj ,∆t) ≈ u(xj , 0) + ∆tut(xj , 0) = f(xj) + ∆tuxx(xj , 0)

= f(xj) + ∆tf ′′(xj).

7b

Show that the finite difference method (10) is unconditionally unstable in the
sense of von Neumann, that is, it is unstable for any choice of ∆t,∆x > 0.

Solution: We know that the heat equation has particular solutions
uk(x, t) = e−(kπ)2teikπx, and that these satisfy |uk(x, t)| 6 1. Hence,
it makes sense to make the ansatz vmj = ameikπxj for some a ∈ C
and k ∈ Z, and require that |vmj | 6 1, i.e. |a| 6 1. Inserting into the
difference equation (10) yields

eikπxj
am+1 − am−1

2∆t
= ameikπxj

e−ikπ∆x − 2 + eikπ∆x

∆x2 .

After simplifying,

a2 − 1

2∆t
= a

e−ikπ∆x − 2 + eikπ∆x

∆x2 = −aµk

where µk = 4 sin(kπ∆x/2)2

∆x2
is the kth eigenvalue of the discrete Laplacian.

This yields

a =
−2µk∆t±

√
4(µk∆t)2 + 4

2
= −µk∆t±

√
(µk∆t)2 + 1.

Both of these roots are real, and the smallest root is strictly smaller than
−1, regardless of the values of ∆t,∆x. Hence, no CFL condition can
ensure that the amplification factor a is smaller than 1 in magnitude.

THE END


