UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3360 — Introduction to Partial Differential Equations
Day of examination:	Tuesday 4 June 2019
Examination hours:	9:00-13:00
This problem set consists of 7 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: We recommend reading through the entire problem set before starting. The number of points given for each problem is stated in parentheses. The maximum number of points is 100.

Problem 1 (8 points)

Consider the following four problems:

$$\begin{cases} u_t(x,t) - 2(u_x(x,t))^2 = \sin x & \text{for } x \in \mathbb{R}, \ t > 0\\ u(x,0) = \phi(x) & \text{for } x \in \mathbb{R} \end{cases}$$
(A)

$$\begin{cases} u''(x) = 2e^x u'(x) & \text{for } x \in (-10, 10) \\ u'(-10) = 0, \ u'(10) = 0 \end{cases}$$
(B)

$$\begin{cases} 3u_{xx}(x,t) - 2u_t(x,t) - x^2 = 0 & \text{for } x \in (0,1), \ t > 0\\ u(0,t) = \cos(t), \ u(1,t) = \sin(t) & \text{for } t > 0 \end{cases}$$
(C)

$$\begin{cases} u_t(x,y) - (u_x(x,t)k(x,t))_x = 0 & \text{for } x \in (0,1), \ t > 0 \\ u_x(0,t) = 0, \ u_x(1,t) = 0 & \text{for } t > 0 \\ u(x,t) = f(x). \end{cases}$$
(D)

For each of the above problems, specify

- (i) whether it is an ODE or PDE
- (ii) whether the equation is homogeneous or inhomogeneous
- (iii) whether it is linear or nonlinear
- (iv) the order of the equation (first, second, third, etc.)
- (v) whether the boundary conditions (if any) are homogeneous or inhomogeneous, and if they are of Dirichlet or Neumann type.

Solution:

- (A) PDE, inhomogeneous, nonlinear, first-order
- (B) ODE, homogeneous, linear, second-order, homogeneous Neumann boundary conditions
- (C) PDE, inhomogeneous, linear, second-order, inhomogeneous Dirichlet boundary conditions
- (D) PDE, homogeneous, linear, second-order, homogeneous Neumann boundary conditions.

Problem 2 (30 points)

Consider the problem

$$\begin{cases} u_t = u_{xx} - \alpha u & x \in (0, 1), \ t > 0 \\ u(0, t) = u(1, t) = 0 & t > 0 \\ u(x, 0) = f(x) & x \in [0, 1] \end{cases}$$
(1)

where $\alpha > 0$ is a positive constant and $f : [0,1] \to \mathbb{R}$ is a given continuous function satisfying f(0) = f(1) = 0.

2a

Use separation of variables and the superposition principle to find a formal solution to the problem (1).

Solution: The ansatz u(x,t) = X(x)T(t) leads to $XT' = X''T - \alpha XT$, or $\frac{T' + \alpha T}{T} = \frac{X''}{X}$. Since the left-hand side is independent of x, and the right-hand side of t, both sides must be equal to some constant, say, $-\lambda \in \mathbb{R}$. This leads to the two ODEs

$$T' + \alpha T = -\lambda T, \qquad X'' = -\lambda X.$$

The equation for T has solutions $T(t) = ae^{-(\alpha+\lambda)t}$ for any $a \in \mathbb{R}$. The equation for X is supplemented with the boundary conditions X(0) = X(1) = 0, which always has the solutions $X \equiv 0$ and, when $\lambda = (k\pi)^2$ for some $k \in \mathbb{Z}$, $X(x) = \sin(k\pi x)$. Thus, the equation for X has particular solutions

$$\lambda_k = (k\pi)^2, \qquad X_k(x) = \sin(k\pi x), \qquad k \in \mathbb{N}.$$

In conclusion, (1) has the particular solutions

$$u_k(x,t) = a_k e^{-(\alpha + (k\pi)^2)t} \sin(k\pi x), \qquad k \in \mathbb{N}.$$

Letting $u(x,t) = \sum_{k \in \mathbb{N}} u_k(x,t)$ and asserting that u(x,0) = f(x) shows

(Continued on page 3.)

that the coefficients a_k must be chosen as

$$a_k = \frac{\int_0^1 f(x)\sin(k\pi x)\,dx}{\int_0^1 \sin(k\pi x)^2\,dx} = 2\int_0^1 f(x)\sin(k\pi x)\,dx.$$

(No justification for the convergence of these Fourier series is required.)

2b

Find the solution of (1) when $f(x) = 3\sin(2\pi x) - 5\sin(8\pi x)$.

Solution: Here
$$a_2 = 3$$
, $a_8 = -5$ and $a_k = 0$ for $k \neq 2, 8$, so
 $u(x,t) = 3e^{-(\alpha + (2\pi)^2)t} \sin(2\pi x) - 5e^{-(\alpha + (8\pi)^2)t} \sin(8\pi x).$

2c

Explain how to find the solution of (1) when the boundary conditions have been replaced by $u(0,t) = u_0$, $u(1,t) = u_1$ for given constants $u_0, u_1 \in \mathbb{R}$. (You do not have to compute the solution, only to explain the construction of the solution.)

Solution: First, find any solution v of the PDE satisfying the prescribed boundary conditions. For instance, the *ansatz* $v(x,t) = \phi(x)$ yields

$$\phi''(x) - \alpha \phi(x) = 0, \qquad \phi(0) = u_0, \ \phi(1) = u_1,$$

which has a solution of the form $\phi(x) = A\cos(\sqrt{\alpha}x) + B\sin(\sqrt{\alpha}x)$. Then, find the solution w of the homogeneous Dirichlet problem (1) but with initial data w(x,0) = f(x) - v(x,0). The function u = v + w now solves the problem in question.

2d

Prove that any solution of (1) which is (at least) twice continuously differentiable satisfies the maximum principle

$$\min_{y\in[0,1]} f(y) \leqslant u(x,t) \leqslant \max_{y\in[0,1]} f(y) \qquad \forall \ x\in[0,1], \ t \ge 0. \tag{2}$$

Solution: Let T > 0 and let $(x_0, t_0) \in [0, 1] \times [0, T]$ be any point where

$$\max_{\substack{x \in [0,1]\\t \in [0,T]}} u(x,t) = u(x_0,t_0)$$

Then either:

- 1. $x_0 = 0$ or $x_0 = 1$, in which case $u(x_0, t_0) = 0 \leq \max_{x \in [0,1]} f(x)$, the last inequality following from the fact that f(0) = f(1) = 0.
- 2. $t_0 = 0$, from which (2) directly follows.
- 3. $(x_0, t_0) \in (0, 1) \times (0, T]$. Then $u_t(x_0, t_0) \ge 0$ and $u_{xx}(x_0, t_0) \le 0$,

 \mathbf{SO}

$$0 \leqslant u_t(x_0, t_0) - u_{xx}(x_0, t_0) = -\alpha u(x_0, t_0).$$

Since $\alpha > 0$, this implies that $u(x_0, t_0) \leq 0 \leq \max_{x \in [0,1]} f(x)$, the last inequality again following from the fact that f(0) = f(1) = 0.

The lower bound in (2) follows from replacing u and f by -u and -f, respectively.

2e

Use (2) to prove that (1) has at most one solution.

Solution: Let u and v be two solutions with the same initial data. Then by linearity w := u - v solves (1) with w(x, 0) = 0. From (2) it follows that

$$0 \leqslant w(x,t) \leqslant 0 \qquad \forall \ x \in [0,1], \ t \ge 0,$$

whence u = v.

Problem 3 (5 points)

Consider the PDE

$$\begin{cases} u_{tt} = c^2 u_{xx} + k u_t & x \in (0,1), \ t > 0 \\ u(0,t) = u_0, \ u_x(1,t) = 0 & t > 0 \\ u(x,0) = f(x), \ u_t(x,0) = g(x) & x \in (0,1) \end{cases}$$
(3)

for given numbers $u_0, c, k \in \mathbb{R}$ and continuous functions $f, g: [0, 1] \to \mathbb{R}$. For what values of $k \in \mathbb{R}$ does the energy

$$E(t) := \int_0^1 \frac{u_t^2}{2} + \frac{c^2 u_x^2}{2} \, dx$$

decrease (or stay constant) over time? Justify your answer.

Solution: We have

$$E'(t) = \int_0^1 u_t u_{tt} + c^2 u_x u_{xt} \, dx = \int_0^1 u_t (u_{tt} - c^2 u_{xx}) \, dx + c^2 [u_x u_t]_{x=0}^{x=1}.$$

Since u(0,t) is constant we have $u_t(0,t) = 0$, and moreover $u_x(1,t) = 0$. Hence,

$$E'(t) = \int_0^1 u_t (u_{tt} - c^2 u_{xx}) \, dx = k \int_0^1 u_t (x, t)^2 \, dx.$$

It follows that $E'(t) \leq 0$ for all t if and only if either

1. u is constant in time, i.e. $u_t \equiv 0$, or

2. $k \leq 0$.

Problem 4 (15 points)

4a

Consider the PDE

$$\begin{cases} u_{tt} = u_{xx} - \alpha u & x \in (0, 1), \ t > 0 \\ u_x(0, t) = u_x(1, t) = 0 & t > 0 \\ u(x, 0) = f(x), \ u_t(x, 0) = g(x) & x \in (0, 1) \end{cases}$$
(4)

for a given number $\alpha > 0$ and continuous functions $f, g : [0, 1] \to \mathbb{R}$. Find an "energy function" E = E(t) depending on u such that E(t) = E(0) for all t > 0.

Solution: The function $E(t) = \int_0^1 \frac{u_t(x,t)^2}{2} + \frac{u_x(x,t)^2}{2} + \alpha \frac{u(x,t)^2}{2} dx$

(or $\gamma E(t)$ for any $\gamma > 0$) is an energy for (4).

4b

Use the energy function derived in the previous exercise to show that there exists at most one solution of (4).

Solution: If u and v are solutions of (4), let w = u - v. Then w solves the same problem but with zero initial data. Hence, the energy E(t) of w is equal to its initial energy E(0) = 0. But E(t) = 0 is equivalent to w(x,t) = 0 for all x. Hence, u = v.

Problem 5 (7 points)

Derive an explicit finite difference method for the problem

$$\begin{cases} u_t + (au)_x = g(u) & x \in (0,1), \ t > 0 \\ u(0,t) = u_0(t), \ u(1,t) = u_1(t) & t > 0 \\ u(x,0) = f(x) & x \in (0,1) \end{cases}$$
(5)

for a continuously differentiable function a = a(x, t) and continuous functions u_0, u_1, f and g. (You do not need to prove any properties of your numerical method.)

Solution: Let $n \in \mathbb{N}$, $\Delta x = \frac{1}{n+1}$, $x_j = j\Delta x$ for $j = 0, \ldots, n+1$ and $t_m = m\Delta t$ for some $\Delta t > 0$. Letting $v_j^m \approx u(x_j, t_m)$ and approximating the temporal and spatial derivatives in (5) by e.g. forward and central differences, respectively, yields

$$\begin{cases} \frac{v_j^{m+1}-v_j^m}{\Delta t} + \frac{a_{j+1}^m v_{j+1}^m - a_{j-1}^m v_{j-1}^m}{2\Delta x} = g(v_j^m) & j = 1, \dots, n, \ m = 0, 1, \dots \\ v_0^m = u_0(t_m), \ v_{j+1}^m = u_1(t_m) & m = 1, 2, \dots \\ v_j^0 = f(x_j) & j = 1, \dots, n \end{cases}$$
(6)

(Continued on page 6.)

where $a_j^m = a(x_j, t_m)$.

Problem 6 (15 points)

Consider the transport equation on a periodic domain,

$$\begin{cases} u_t + cu_x = 0 & x \in (0, 1), \ t > 0 \\ u(0, t) = u(1, t) & t > 0 \\ u(x, 0) = f(x) & x \in [0, 1] \end{cases}$$
(7)

for some constant c > 0 and some continuous and bounded function $f:[0,1] \to \mathbb{R}$. We consider the implicit finite difference method

$$\begin{cases} \frac{v_j^{m+1} - v_j^m}{\Delta t} + c \frac{v_j^{m+1} - v_{j-1}^{m+1}}{\Delta x} = 0 & j = 1, \dots, n+1, \ m = 0, 1, \dots \\ v_0^{m+1} = v_{n+1}^{m+1} & m = 0, 1, \dots \\ v_j^0 = f(x_j) & j \in \mathbb{Z}. \end{cases}$$
(8)

Show that for any choice of $\Delta t, \Delta x > 0$, any solution of (8) satisfies

$$\inf_{x \in [0,1]} f(x) \leqslant v_j^m \leqslant \sup_{x \in [0,1]} f(x)$$

Solution: Let J be a point at which $(v_j^{m+1})_{j=1}^{n+1}$ attains its maximum. Then

$$v_J^{m+1} = v_J^m - c \frac{\Delta t}{\Delta x} (v_J^{m+1} - v_{J-1}^{m+1}).$$

By assumption, c > 0, and by the choice of J we have $v_J^{m+1} - v_{J-1}^{m+1} \ge 0$. It follows that

$$\max_{j=0,\dots,n+1} v_j^{m+1} = v_J^{m+1} \leqslant v_J^m \leqslant \max_{j=0,\dots,n+1} v_j^m.$$

Iterating the inequality over all m yields

$$v_j^m \leqslant \max_{j=0,\dots,n+1} v_j^0 \leqslant \max_{x \in [0,1]} f(x)$$

The lower bound is shown in the same way.

Problem 7 (20 points)

Consider the heat equation

$$\begin{cases} u_t = u_{xx} & x \in (0, 1), \ t > 0 \\ u(0, t) = u(1, t) = 0 & t > 0 \\ u(x, 0) = f(x) & x \in [0, 1] \end{cases}$$
(9)

and consider the *leapfrog* finite difference method

$$\begin{cases} \frac{v_j^{m+1} - v_j^{m-1}}{2\Delta t} = \frac{v_{j-1}^m - 2v_j^m + v_{j+1}^m}{\Delta x^2} & j = 1, 2, \dots, n \\ v_0^m = v_{n+1}^m = 0 & m = 1, 2, \dots \\ v_j^0 = f(x_j) & j = 1, 2, \dots, n \\ v_j^1 = f(x_j) + \Delta t f''(x_j) & j = 1, 2, \dots, n. \end{cases}$$
(10)

(Continued on page 7.)

We assume that f is at least twice continuously differentiable in [0, 1].

7a

Explain the derivation of (10).

Solution: The time derivative is approximated by a central difference and the spatial derivative by a central, second-order difference. The data for v_0^m , v_{n+1}^m and v_j^m are obvious, while

$$v_j^1 \approx u(x_j, \Delta t) \approx u(x_j, 0) + \Delta t u_t(x_j, 0) = f(x_j) + \Delta t u_{xx}(x_j, 0)$$
$$= f(x_j) + \Delta t f''(x_j).$$

7b

Show that the finite difference method (10) is unconditionally unstable in the sense of von Neumann, that is, it is unstable for any choice of Δt , $\Delta x > 0$.

Solution: We know that the heat equation has particular solutions $u_k(x,t) = e^{-(k\pi)^2 t} e^{ik\pi x}$, and that these satisfy $|u_k(x,t)| \leq 1$. Hence, it makes sense to make the ansatz $v_j^m = a^m e^{ik\pi x_j}$ for some $a \in \mathbb{C}$ and $k \in \mathbb{Z}$, and require that $|v_j^m| \leq 1$, i.e. $|a| \leq 1$. Inserting into the difference equation (10) yields

$$e^{ik\pi x_j}\frac{a^{m+1}-a^{m-1}}{2\Delta t} = a^m e^{ik\pi x_j}\frac{e^{-ik\pi\Delta x}-2+e^{ik\pi\Delta x}}{\Delta x^2}.$$

After simplifying,

$$\frac{a^2 - 1}{2\Delta t} = a \frac{e^{-ik\pi\Delta x} - 2 + e^{ik\pi\Delta x}}{\Delta x^2} = -a\mu_k$$

where $\mu_k=4\frac{\sin(k\pi\Delta x/2)^2}{\Delta x^2}$ is the $k{\rm th}$ eigenvalue of the discrete Laplacian. This yields

$$a = \frac{-2\mu_k\Delta t \pm \sqrt{4(\mu_k\Delta t)^2 + 4}}{2} = -\mu_k\Delta t \pm \sqrt{(\mu_k\Delta t)^2 + 1}.$$

Both of these roots are real, and the smallest root is strictly smaller than -1, regardless of the values of $\Delta t, \Delta x$. Hence, no CFL condition can ensure that the amplification factor a is smaller than 1 in magnitude.

THE END