UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT3360 - Introduction to partial differential equations
Day of examination: Friday, June 11, 2021
Examination hours: 09:00-13:00
This problem set consists of 7 pages.
Appendices: None.
Permitted aids: Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weigth 15\%)

Consider the PDE

$$
\left\{\begin{array}{l}
u_{t}+\left(1+x^{2}\right) u_{x}=0, \quad t>0, \quad x \in \mathbb{R} \\
u(x, 0)=\frac{1}{1+x^{2}}
\end{array}\right.
$$

Find a solution to this initial value problem.

Løsningsforslag: The characteristic equation is

$$
x^{\prime}=\left(1+x^{2}\right), \quad x(0)=x_{0}
$$

with solution

$$
x_{0}=\tan (\arctan (x)-t)
$$

Hence a solution of the PDE is

$$
u(x, t)=\frac{1}{1+(\tan (\arctan (x)-t))^{2}}
$$

Problem 2 (weigth 25\%)

Consider the function $f:[-1,1] \mapsto \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{\sin (\pi x)}{x} & x \neq 0 \\ \pi & x=0\end{cases}
$$

We have that the full Fourier series of f is given by

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k \pi x)+b_{k} \sin (k \pi x)
$$

2 a

Explain why the Fourier series converges uniformly to f for $x \in[-1,1]$, and converges uniformly to a function g for $x \in \mathbb{R}$. Draw the graph of g for $x \in[-3,3]$.

Løsningsforslag: We have that f is continuous on $[-1,1]$, since

$$
\lim _{x \rightarrow 0} f(x)=\pi
$$

f^{\prime} is continuous on $[-1,1]$ since

$$
f^{\prime}(0)=\lim _{h=0} \frac{f(h)-\pi}{h}=\lim _{h \rightarrow 0} \frac{\sin (\pi h)-\pi h}{h^{2}}=-\frac{\pi^{2}}{2}=\lim _{x \rightarrow 0} f^{\prime}(x)
$$

Hence the Fourier series for f^{\prime} converges pointwise (to its periodic extension). Then the Fourier series for f will converge uniformly to the periodic extension of f.

2b
Show that $b_{k}=0$ and that

$$
a_{k}=\int_{k-1}^{k+1} \frac{\sin (\pi x)}{x} d x, \quad k=0,1,2,3, \ldots
$$

Løsningsforslag: $b_{k}=0$ since f is even. Then

$$
\begin{aligned}
a_{k} & =2 \int_{0}^{1} \frac{\sin (\pi x) \cos (k \pi x)}{x} d x \\
& =\int_{0}^{1} \frac{\sin ((k+1) \pi x)-\sin ((k-1) \pi x)}{x} d x \\
& =\int_{0}^{k+1} \frac{\sin (\pi y)}{y} d y-\int_{0}^{k-1} \frac{\sin (\pi y)}{y} d y \\
& =\int_{k-1}^{k+1} \frac{\sin (\pi y)}{y} d y
\end{aligned}
$$

2c
Use the Fourier series of f to calculate the improper integral

$$
\int_{0}^{\infty} \frac{\sin (\pi x)}{x} d x
$$

Løsningsforslag: We know that

$$
\begin{aligned}
\pi & =f(0)=\lim _{N \rightarrow \infty} \frac{a_{0}}{2}+\sum_{k=1}^{N} a_{k} \\
& =\lim _{N \rightarrow \infty}\left(\int_{0}^{1} \frac{\sin (\pi x)}{x} d x+\sum_{k=1}^{N} \int_{k-1}^{k+1} \frac{\sin (\pi x)}{x} d x\right) \\
& =\int_{0}^{1} \frac{\sin (\pi x)}{x} d x+\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1} \int_{k}^{k+1} \frac{\sin (\pi x)}{x} d x+\sum_{k=1}^{N} \int_{k}^{k+1} \frac{\sin (\pi x)}{x} d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin (\pi x)}{x} d x+\lim _{N \rightarrow \infty} \int_{0}^{N+1} \frac{\sin (\pi x)}{x} d x \\
& =2 \int_{0}^{\infty} \frac{\sin (\pi x)}{x} d x
\end{aligned}
$$

Therefore $\int_{0}^{\infty} \frac{\sin (\pi x)}{x} d x=\pi / 2$.

Problem 3 (weigth 30%)

Let $Q(x)$ be a function in $C_{0}^{2}((0,1))$.
For $k=1,2,3, \ldots$ define $X_{k}(x)=\sin (k \pi x)$.
$3 a$
Define

$$
u_{N}(x, t)=2 \int_{0}^{t} \int_{0}^{1} \sum_{k=1}^{N} Q(y) X_{k}(x) X_{k}(y) e^{-(k \pi)^{2}(t-s)} d y d s
$$

Show that u_{N} is a solution of the boundary value problem

$$
\begin{cases}\frac{\partial}{\partial t} u_{N}-\frac{\partial^{2}}{\partial x^{2}} u_{N}=Q_{N} & t \in(0, T], x \in(0,1) \\ u_{N}(0, t)=u_{N}(1, t)=0 & t>0 \\ u_{N}(x, 0)=0 & \end{cases}
$$

where

$$
Q_{N}(x)=2 \sum_{k=1}^{N} X_{k}(x) \int_{0}^{1} X_{k}(y) Q(y) d y
$$

Løsningsforslag: We calculate
$\frac{\partial}{\partial t} u_{N}=2 \int_{0}^{1} \sum_{k=1}^{N} Q(y) X_{k}(x) X_{k}(y) d y d s-2 \int_{0}^{t} \int_{0}^{1} \sum_{k=1}^{N} Q(y) X_{k}(x) X_{k}(y)(k \pi)^{2} e^{-(k \pi)^{2}(t-s)} d y d s$
and

$$
\frac{\partial^{2}}{\partial x^{2}} u_{N}=-2 \int_{0}^{t} \int_{0}^{1} \sum_{k=1}^{N} Q(y)(k \pi)^{2} X_{k}(x) X_{k}(y) e^{-(k \pi)^{2}(t-s)} d y d s
$$

Hence u_{N} satisfies the differential equation. It is easy to see that the initial and boundary conditions are satisfied.

3b

Show that $Q_{N} \rightarrow Q$ uniformly in $[0,1]$.

Løsningsforslag: We recognise Q_{N} as the partial sum of the Fourier expansion of $Q(t)$

$$
Q_{N}=\sum_{k=1}^{N} \frac{\left\langle Q, X_{k}\right\rangle}{\left\|X_{k}\right\|^{2}} X_{k}
$$

Since $Q \in C_{0}^{2}((0,1))$ we know that its Fourier series converges uniformly to $Q(x, t)$.

3c
Assume that there exists a smooth solution u to the problem

$$
\begin{cases}\frac{\partial}{\partial t} u-\frac{\partial^{2}}{\partial x^{2}} u=Q & t \in(0, T], x \in(0,1) \\ u(0, t)=u(1, t)=0 & t>0 \\ u(x, 0)=0 & \end{cases}
$$

Set $E(t)=\|u(\cdot, t)\|$, where $\|\cdot\|$ denotes the mean square norm.
Show that

$$
E(t) \leq t\|Q\|
$$

Løsningsforslag: We multiply with u and integrate over x to find

$$
\frac{1}{2} \frac{d}{d t}\|u(\cdot, t)\|^{2}+\left\|u_{x}(\cdot, t)\right\|^{2}=\langle u(\cdot, t), Q\rangle \leq\|u(\cdot, t)\|\|Q\|
$$

Hence

$$
\frac{d}{d t}\|u(\cdot, t)\| \leq\|Q\|
$$

3d

Show that u_{N} converges in the mean square norm to u as $N \rightarrow \infty$.

Løsningsforslag: We get that

$$
\frac{\partial}{\partial t}\left(u-u_{N}\right)-\frac{\partial^{2}}{\partial x^{2}}\left(u-u_{N}\right)=\left(Q-Q_{N}\right)
$$

Multiply this with $\left(u-u_{N}\right)$ and integrate to get

$$
\frac{d}{d t}\left\|u(\cdot, t)-u_{N}(\cdot, T)\right\| \leq\left\|Q-Q_{N}\right\|_{\infty} t
$$

Hence

$$
\left\|u(\cdot, t)-u_{N}(\cdot, t)\right\| \leq \frac{t^{2}}{2}\left\|Q-Q_{N}\right\|_{\infty} \rightarrow 0
$$

as $N \rightarrow \infty$.

Problem 4 (weigth 30\%)

Consider the transport equation in the periodic setting

$$
\left\{\begin{array}{l}
u_{t}+u_{x}=0, \quad t>0, x \in[0,1] \tag{1}\\
u(0, t)=u(1, t) \\
u(x, 0)=f(x)
\end{array}\right.
$$

where f is a given smooth periodic function with period 1.
Consider also the difference scheme
$L_{\Delta x} v_{j}^{m}:=\frac{v_{j}^{m+1}-\frac{1}{2}\left(v_{j+1}^{m}+v_{j-1}^{m}\right)}{\Delta t}+\frac{v_{j+1}^{m}-v_{j-1}^{m}}{2 \Delta x}=0, m \geq 0, j=0,1, \ldots, N$,
and $v_{-1}^{m}=v_{N}^{m}, v_{N+1}^{m}=v_{0}^{m}$. The initial values are given by

$$
v_{j}^{0}=f\left(x_{j}\right)
$$

Here Δt is a small positive number, $\Delta x=1 /(N+1)$ and $x_{j}=j \Delta x$. We also define $t^{m}=m \Delta t$. The scheme is explicit since we can solve for v_{j}^{m+1},

$$
v_{j}^{m+1}=\frac{1}{2}(1-r) v_{j+1}^{m}+\frac{1}{2}(1+r) v_{j-1}^{m}
$$

with $r=\Delta t / \Delta x$.

$4 \mathbf{a}$

Find a condition on r which guarantees that

$$
\min _{j} v_{j}^{m} \leq v_{j}^{m+1} \leq \max _{j} v_{j}^{m}
$$

for $m \geq 0$.

Løsningsforslag: If $0<r \leq 1$ then v_{j}^{m+1} is a convex combination of $v_{j \pm 1}^{m}$ and therefore

$$
\min _{j} v_{j}^{m} \leq \min \left\{v_{j-1}^{m}, v_{j+1}^{m}\right\} \leq v_{j}^{m+1} \leq \max \left\{v_{j-1}^{m}, v_{j+1}^{m}\right\} \leq \max _{j} v_{j}^{m}
$$

Assume from now on that r satisfies this condition.

4b

Assume that w_{j}^{m} solves

$$
L_{\Delta x} w_{j}^{m}=g_{j}^{m}
$$

for $m \geq 0$ and $j=0, \ldots, N$ with periodic boundary conditions $w_{-1}^{m}=w_{N}^{m}$, $w_{N+1}^{m}=w_{0}^{m}$. Here g_{j}^{m} is a given grid function. We assume that $w_{j}^{0}=0$ for all j. Show that

$$
\max _{j=0, \ldots, N}\left|w_{j}^{m}\right| \leq m \Delta t \max _{\substack{j=0, \ldots, N \\ k=0, \ldots, m-1}}\left|g_{j}^{k}\right| .
$$

Løsningsforslag: For $m=0$ the estimate holds. Assume that it holds for m, then

$$
\begin{aligned}
\left|w_{j}^{m+1}\right| & \leq\left|\frac{1}{2}(1-r) w_{j+1}^{m}+\frac{1}{2}(1+r) w_{j-1}^{m}\right|+\Delta t\left|g_{j}^{m}\right| \\
& \leq \max _{j=0, \ldots, N}\left|w_{j}^{m}\right|+\Delta t\left|g_{j}^{m}\right| \\
& \leq m \Delta t \max _{\substack{j=0, \ldots, N \\
k=0, \ldots m-1}}\left|g_{j}^{k}\right|+\max _{j=0, \ldots, N}\left|g_{j}^{m}\right| \\
& \leq(m+1) \Delta t \max _{\substack{j=0, \ldots, N \\
k=0, \ldots, m}}\left|g_{j}^{k}\right|
\end{aligned}
$$

4c

Let u be a smooth solution of (1), show that

$$
L_{\Delta x} u\left(x_{j}, t^{m}\right)=\mathcal{O}(\Delta x)
$$

and use this to obtain a bound of the error

$$
\max _{j=0, \ldots, N}\left|v_{j}^{m}-u\left(x_{j}, t^{m}\right)\right| .
$$

Løsningsforslag: We have that (with $u_{j}^{m}=u\left(x_{j}, t^{m}\right)$)

$$
\begin{aligned}
u_{j}^{m} & =\frac{1}{2}\left(u_{j+1}^{m}+u_{j-1}^{m}\right)+\mathcal{O}\left(\Delta x^{2}\right) \\
u_{t}\left(x_{j}, t^{m}\right) & =\frac{1}{\Delta t}\left(u_{j}^{m+1}-u_{j}^{m}\right)+\mathcal{O}(\Delta t) \\
& =\frac{1}{\Delta t}\left(u_{j}^{m+1}-\frac{1}{2}\left(u_{j+1}^{m}+u_{j-1}^{m}\right)+\mathcal{O}\left(\Delta x^{2}\right)\right)+\mathcal{O}(\Delta t), \\
u_{x}\left(x_{j}, t^{m}\right) & =\frac{1}{2 \Delta x}\left(u_{j+1}^{m}-u_{j-1}^{m}\right)+\mathcal{O}\left(\Delta x^{2}\right)
\end{aligned}
$$

Since $\Delta t=r \Delta x, \mathcal{O}(\Delta x)=\mathcal{O}(\Delta t)$, using the above we find that

$$
L_{\Delta x} u_{j}^{m}=u_{t}+u_{x}+\mathcal{O}(\Delta x)
$$

Define $e_{j}^{m}=u_{j}^{m}-v_{j}^{m}$, we find that

$$
\left\{\begin{array}{l}
L_{\Delta x} e_{j}^{m}=\mathcal{O}(\Delta x) \\
e_{j}^{0}=0
\end{array}\right.
$$

By b), we get

$$
\max _{j}\left|e_{j}^{m}\right| \leq t^{m} \mathcal{O}(\Delta x)
$$

