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Examination in MAT3440 — Dynamical systems

Day of examination: Tuesday, June 11, 2019

Examination hours: 09:00 – 13:00

This problem set consists of 6 pages.

Appendices: None.

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 (weight 30%)

Consider the differential equation(
x
y

)′
=

(
x− y2
x2 − y

)
. (1)

1a (weight 5%)

Find the two (there are only two) fixpoints for this system, and the
linearization of (1) about these two fixpoints. What do the linearizations
tell you about the stability of each fixpoint?

Possible solution: The fixpoints are (0, 0) and (1, 1). We have that

DF (X) =

(
1 −2y
2x −1

)
.

Then we get

DF (0, 0) =

(
1 0
0 −1

)
, DF (1, 1) =

(
1 −2
2 −1

)
.

The eigenvalues of 0 are λ = ±1, this is an unstable saddle for the
linearization. Since the fixpoint is hyperbolic, this is an unstable saddle also
for the nonlinear system. For the fixpoint at (1, 1) λ = ±i, with zero real
part. This tells you that for the nonlinear system, (1, 1) is either a stable or
unstable fixpoint, or neutrally stable.

(Continued on page 2.)
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1b (weight 5%)

Show that the function

H(x, y) =
1

3

(
x3 + y3

)
− xy

is an Hamiltonian for the system (1).

Possible solution: We compute

∂H

∂x
= x2 − y, and ∂H

∂y
= y2 − x.

Then

d

dt
H((x(t), y(t)) =

(
x2 − y

)
(x− y2) +

(
y2 − x

)
(x2 − y) = 0.

1c (weight 20%)

Draw a phase portrait of solutions to (1). The phase portrait must include
both fixpoints and you should indicate the direction of the flow.

Possible solution: H has a local minimum at (1, 1), hence the solutions
near (1, 1) are closed curves. From DF (1, 1) we see that this flow is
counterclockwise. (0, 0) is a saddle point (no surprises here!). The portrait
should look something like this:

(Continued on page 3.)
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Problem 2 (weight 40%)

Consider the prey-predator model(
x
y

)′
=

(
x(2− x)− xy
−y + xy

)
,

(
x(0)
y(0)

)
=

(
x0
y0

)
, (2)

where we assume that x ≥ 0 and y ≥ 0.

2a (weight 5%)

Find all fixpoints of (2) and determine their type.

Possible solution: The fixpoints are (0, 0), (2, 0) and (1, 1). The Jacobian
reads

DF =

(
2− y − 2x −x

y x− 1

)
,

so that

DF (0, 0) =

(
2 0
0 −1

)
, DF (2, 0) =

(
−2 −2
0 1

)
and DF (1, 1) =

(
−1 −1
1 0

)
.

The eigenvalues for (0, 0) are 2 and −1, hence this is an ustable saddle, the
eigenvalues for (2, 0) are −2 and 1, hence this is an unstable saddle. The
eigenvalues for (1, 1) are (−1 ± i

√
3)/2, so (1, 1) is a stable spiral, rotation

counterclockwise (seen from DF (1, 1)1,2).

2b (weight 5%)

Find the solutions to (2) in the two cases

i) x0 > 0, y0 = 0, and ii) x0 = 0, y0 > 0.

Possible solution: If y0 = 0 then y(t) = 0 for all t. Hence x solves the
logistic equation x′ = x(2− x), x(0) = x0. This is separable, and we find its
solution by integrating ∫ x

x0

dz

z(2− z)
=

∫ t

0
ds,

with solution

x(t) =
2x0e

t

2 + x0(et − 1)
.

If x0 = 0, then x(t) = 0 for all t, and y solves y′ = −y, so that y(t) = y0e
−t.

2c (weight 20%)

Let R denote the region

R = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 3− x} .

(Continued on page 4.)
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Prove that R is positively invariant for the flow defined by (2), i.e., that if
(x0, y0) ∈ R, then (x(t), y(t)) ∈ R for all t > 0.

Possible solution: The boundary of R consists on three parts, one along
the x-axis, one along the y-axis, and the line y = 3 − x for 0 ≤ x ≤ 3. By
the previous question, the parts along the axis are orbits, so that solutions
cannot leave R through this part of the boundary. Along the third part of
the boundary orbits will enter R, this can be seen as follows: The outward
pointing normal to this part of the boundary is n = (1, 1), solutions will
enter R through this boundary if n · F < 0. We have that

n · F = (1, 1) · (x(2− x)− xy,−y + xy)

= x(2− x)− y = x(2− x)− (3− x)
= −x2 + 3x− 3

< 0, for all x.

2d (weight 10%)

If y0 = 3− x0, and x0 ∈ (0, 3), what can you say about the ω-limit set

lim
t→∞

⋃
s>t

(x(s), y(s)) ?

Possible solution: By the Poincaré-Bendixson theorem, this is either a
limit cycle or the fixed point (1, 1).

Problem 3 (weight 30%)

Let fα be given by

fα(x) = α(1− 2 |x− 1/2|) =

{
2αx x ≤ 1/2,

2α(1− x) x ≥ 1/2,

where α is a constant in the interval (0, 1). We also assume that x ∈ [0, 1].
Consider the discrete dynamical system

xn+1 = fα(xn), n = 0, 1, 2, 3, . . . , (3)

with x0 given.

3a (weight 5%)

Show that for 0 < α < 1/2, x = 0 is a stable fixpoint for the system (3).

Possible solution: 0 is the only solution to x = fα(x), f ′α(0) = 2α < 1 so
this fixpoint is stable.

(Continued on page 5.)
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3b (weight 5%)

Let α = 1/2, find all fixpoints of (3) and determine whether they are stable
or not.

Possible solution: Now

f1/2(x) =

{
x x ≤ 1/2,

1− x x > 1/2,

so that the fixpoints are the interval [0, 1/2]. If we start near a fixpoint, we
will not move further away (but not any closer either) so that the fixpoints
are neutrally stable.

3c (weight 5%)

Let 1/2 < α < 1, find all fixpoints for (3), and determine their stability.

Possible solution: x = 0 is always a fixpoint, it is unstable since f ′α(0) =
2α > 1. Furthermore fα(1/2) = α > 1/2 and fα(1) = 0 < 1. We also have
that f ′α(x) < 0 in (1/2, 1) so that there is a unique solution xα of x = fα(x)
in (1/2, 1), xα = 2α/(1+2α). Since f ′α(xα) = −2α < −1, this is an unstable
fixpoint.

3d (weight 15%)

Let 1/2 < α < 1, show that there is a unique 2-periodic orbit for (3). Is
this orbit stable? (Hint: Draw the graph of the second iteration of f , i.e.
f2α = fα ◦ fα, and find its local maxima and minima.)

Possible solution: We have that fα(1/2) = α > 1/2, so that f2α will have
local maximi when fα = 1/2. solving the equation fα(x) = 1/2 we get

x =

{
1/(4α) = x1

1− 1/(4α) = x2.

f2α will have a local minimum when x = 1/2. So

f2α(1/2) = fα(α) = 2α(1− α) < 1/2.

Now

f2α(x1) = α >
1

4α
, since α > 1/2,

f2α(1/2) = 2α(1− α) < 1

2
,

f2α(1− 1/(4α)) = α > 1− 1

4α
, since α > 1/2.

(Continued on page 6.)
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Since f2α is continuous, the graph y = f2α(x) will intersect the graph y = x
once at z1 in the interval (x1, 1/2), once at xα (since xα is a fixpoint of fα it is
a fixpoint of f2α) and once at z2 in the interval (x2, 1). The 2-periodic orbit is
{z1, z2}. Now f2α is differentiable everywhere except for x = x1, x = 1/2 and
x = x2, so

∣∣∣f2,′α (zi)
∣∣∣ = (2α)2 > 1, i = 1, 2, therefore this orbit is unstable.

THE END


