Calculus and Counterexamples

Helmer Aslaksen

Dept. of Teacher Education & Dept. of Mathematics
University of Oslo

helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/

Limits in high school mathematics

- To differentiate polynomials, you only need algebra to compute limits.
- \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1. \)
- Definition of \(e. \)
Definition of e

▶ Does $s_n = \left(1 + \frac{1}{n}\right)^n$ converge?
▶ We want to use the fact that a bounded and increasing sequence converges, but it is not clear that s_n is either bounded or increasing.
▶ The binomial formula shows that

\[
s_n = \left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^3} + \cdots + \frac{n(n-1)(n-2) \cdots 1}{n!} \frac{1}{n^n}
\]

\[
= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \cdots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right).
\]

Definition of e 2

▶ The product is hard to analyze, since the number of factors increase, while the factors themselves decrease. However, the binomial formula converts s_n to a sum of n terms.
▶ Since all the terms in the parenthesis are positive, we have now written s_n as a sum of n positive terms. When we go from s_n to s_{n+1}, terms of the form $\left(1 - 1/n\right)$ will change to $\left(1 - 1/(n+1)\right)$, which is larger. So the first n terms increase, and we also add another positive term. It is therefore clear that s_n is increasing.
Definition of e

Consider the series \(\sum_{k=0}^{\infty} \frac{1}{k!} \) with partial sums
\[
 t_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}.
\]

Since \(t_n \) is obtained from \(s_n \) by removing the parenthesis, and all the terms in the parenthesis are less than 1, we see that \(s_n \leq t_n \). Since going from \(t_n \) to \(t_{n+1} \) just adds a positive term, we see that \(t_n \) is also increasing.

Since
\[
 n! = 1 \cdot 2 \cdot 3 \cdots n > 1 \cdot 2 \cdot 2 \cdots 2 = 2^{n-1},
\]
we have
\[
 s_n < 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}} < 3.
\]

It follows that \(s_n \) is bounded and increasing, so \(e \) exists and \(e \leq 3 \).

Continuity

\(f : U \to \mathbb{R} \) is continuous at \(a \in U \) if \(\lim_{x \to a} f(x) = f(a) \) and continuous on \(U \) if it is continuous at all points in \(U \).

Some people say that \(f \) is continuous if and only if we can draw the graph of \(f \) without lifting the pen. However, \(f(x) = \frac{1}{x} \) is continuous on \(U = \mathbb{R} - \{0\} \).
Product rule

\[f(x + \Delta x)g(x + \Delta x) - f(x)g(x) = (f(x + \Delta x) - f(x))g(x) \]
\[+ (g(x + \Delta x) - g(x))f(x) \]
\[+ (f(x + \Delta x) - f(x))(g(x + \Delta x) - g(x)) \]

Source of counterexamples

\[f_n(x) = \begin{cases}
 x^n \sin(1/x) & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases} \]

\[f_0 \text{ is not continuous, since } \lim_{x \to 0} f_0(x) \text{ does not exist. However,} \]
\[\lim_{x \to 0} f_1(x) = 0, \text{ so } f_1 \text{ is continuous.} \]
\[f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases} \]

\[f'(x) = \begin{cases} 2x \sin(1/x) - \cos(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases} \]

Monotonicity

- Mean Value Theorem: Assume that \(f \) is differentiable on \((a, b)\) and continuous on \([a, b]\). Then there is \(c \in (a, b) \) such that
 \[
 \frac{f(b) - f(a)}{b - a} = f'(c).
 \]
- \(f' > 0 \) on \((a, b) \implies f \) is strictly increasing on \((a, b)\).
- \(f' \geq 0 \) on \((a, b) \implies f \) is increasing on \((a, b)\).
- \(f' \geq 0 \) on \((a, b) \iff f \) is increasing on \((a, b)\).
- \(f(x) = x^3 \) shows that \(f' \geq 0 \) on \((a, b) \iff f \) is strictly increasing on \((a, b)\).
Extreme point 1

- If c is an extreme point and $f'(c)$ exists, then $f''(c) = 0$.
- First Derivative Test: If f' exists around c, and f' changes sign at c, then c is an extreme point.
- Second Derivative Test: If $f'(c) = 0$ and $f''(c)$ is positive (negative), then c is a minimum (maximum).

Extreme point 2

- If f' changes sign at c, then c is an extreme point. The converse is not always true.
- $f(x) = x^2(2 + \sin(1/x))$, $f'(x) = 4x + 2x \sin(1/x) - \cos(1/x)$.
- $x^2 + x^2 \sin(1/x))$ has infinitely many zeros.
- If f' is positive on (a, b), then f is increasing on (a, b). But what if we only know that $f'(c) > 0$? Can we say that f is increasing on an interval around c?
- $f(x) = x + 2x^2 \sin(1/x)$, $f'(x) = 1 + 4x \sin(1/x) - 2\cos(1/x)$ is both positive and negative in every neighborhood of 0.
We say that \(c \) is a point of inflection if \(f \) has a tangent line at \(c \) and \(f'' \) changes sign at \(c \). (Some people only require that \(f \) should be continuous at \(c \).)

\(f(x) = x^3 \) has \(f'(0) = 0 \), but 0 is not an extremum, but a point of inflection.

\(f(x) = x^3 + x \) shows that \(f' \) does not have to be 0 at a point of inflection.

\(f(x) = x^{1/3} \) has a point of inflection at 0, has a tangent line at 0, but \(f'(0) \) and \(f''(0) \) do not exist. (Vertical tangent line. Just bend a bit, and you get a point of inflection.)

\[
f(x) = \begin{cases}
 x^2 & \text{if } x \geq 0, \\
 -x^2 & \text{if } x < 0,
\end{cases}
\]

has a point of inflection at 0, and \(f'(0) \) exists, but \(f''(0) \) does not exist. (First derivatives match, so we get a tangent line, but second derivatives do not match.)
1. If \(c \) is a point of inflection and \(f''(c) \) exists, then \(f''(c) = 0 \).
2. If \(c \) is a point of inflection, then \(c \) is an isolated extremum of \(f' \).
3. If \(c \) is a point of inflection, then the curve lies on different sides of the tangent line at \(c \).

Proof of 3: We use MVT go get \(x_1 \) between \(c \) and \(x \) with
\[
\frac{f(x) - f(c)}{x - c} = f'(x_1),
\]
or
\[
f(x) = f(c) + f'(x_1)(x - c).
\]
We now use MVT again to get \(x_2 \) between \(c \) and \(x_1 \) with
\[
\frac{f'(x_1) - f'(c)}{x_1 - c} = f''(x_2),
\]
or
\[
f'(x_1) = f'(c) + f''(x_2)(x_1 - c).
\]
Combining this, we get
\[
f(x) = f(c) + f'(x_1)(x - c) = f(c) + f'(c)(x - c) + f''(x_2)(x - c)(x_1 - c).
\]
Point of inflection 5

- The tangent line to $f(x)$ at c is $t(x) = f(c) + f'(c)(x - c)$, so the distance between f and the tangent is $f''(x_c)(x - c)(x_1 - c)$.
- Since $(x_1 - c)$ and $(x_1 - c)$ have the same sign, their product is positive. But $f''(x)$ changes sign at c, so $f(x)$ will lie on different sides of the tangent at c.

Point of inflection 6

- Converse to 1 is false: $f(x) = x^4$ has $f''(0) = 0$, but $f''(x) \geq 0$.
- Converse to 2 is false: $f(x) = x^3 + x^4 \sin(1/x)$ has

$$f'(x) = 3x^2 - x^2 \cos(1/x) + 4x^3 \sin(1/x)$$

$$= x^2(3 - \cos(1/x) + 4x \sin(1/x)) \geq 0$$

in a neighborhood of 0, so 0 is an isolated minimum of $f'(x)$. We have $f''(0) = 0$, but $f''(x) = 6x - \sin(1/x) - 6x \cos(1/x) + 12x^2 \sin(1/x)$ does not change sign.
We need to “integrate” the example $2x^2 + x^2 \sin(1/x)$. Since the derivative of $1/x$ is $-1/x^2$, we try

$$f(x) = x^3 + x^4 \sin(1/x),$$

$$f'(x) = 3x^2 - x^2 \cos(1/x) + 4x^3 \sin(1/x)$$

$$= x^2(3 - \cos(1/x) + 4x \sin(1/x)).$$

The first two terms give us the shape we want, and the last terms is so small that we can ignore it.

Converse to 3 is false:

$f(x) = 2x^3 + x^3 \sin(1/x) = x^3(2 + \sin(1/x))$ lies below the tangent ($y = 0$) on one side and above the tangent on another, but $f''(x) = 12x + 6x \sin(1/x) - 4 \cos(1/x) - (1/x) \sin(1/x)$ does not change sign, since when x is small, the last term will be oscillate wildly.

The cubic terms gives the desired shape of the curve, and since the derivative of $1/x$ is $-1/x^2$, we will get a term of the form $(1/x) \sin(1/x)$ in $f''(x)$, which will make it oscillate wildly.
L'Hôpital’s Rule

Let \(f \) and \(g \) be continuous on an interval containing \(a \), and assume \(f \) and \(g \) are differentiable on this interval with the possible exception of the point \(a \). If \(f(a) = g(a) = 0 \) and \(g'(x) \neq 0 \) for all \(x \neq a \), then

\[
\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \implies \lim_{x \to a} \frac{f(x)}{g(x)} = L,
\]

for \(L \in \mathbb{R} \cup \infty \).

Assume \(f \) and \(g \) are differentiable on \((a, b) \) and that \(g'(x) \neq 0 \) for all \(x \in (a, b) \). If \(\lim_{x \to a} g(x) = \infty \) (or \(-\infty \)), then

\[
\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \implies \lim_{x \to a} \frac{f(x)}{g(x)} = L,
\]

for \(L \in \mathbb{R} \cup \infty \).

L'Hôpital’s Rule 2

L'Hôpital does not say that

\[
\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \iff \lim_{x \to a} \frac{f(x)}{g(x)} = L.
\]

If \(f(x) = x + \sin x \) and \(g(x) = x \), then

\[
\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{1 + \cos x}{1}
\]

does not exist, while

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \left(1 + \frac{\sin x}{x} \right) = 1.
\]