Decimal Expansion of Rational Numbers

Helmer Aslaksen
Dept. of Teacher Education & Dept. of Mathematics
University of Oslo

helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/
Why is 0.999\ldots = 1?

- We will write $1/3 = 0.333\ldots$ as $0.\overline{3}$ and call 3 the repetend.
- We can multiply by 3 and get
 \[3 \cdot 1 = 3 \cdot 1/3 = 3 \cdot 0.\overline{3} = 0.\overline{9}.
 \]
- We can also write
 \[\begin{align*}
x &= 0.\overline{9} \\
10x &= 9.\overline{9} \\
9x &= 9 \\
x &= 1
\end{align*}\]
Why is $0.999\ldots = 1$? 2

Since $\sum_{k=0}^{\infty} x^k = 1/(1 - x)$ for $|x| < 1$, we have

$$0.9 = 9(0.1 + 0.01 + 0.001 + \cdots) = 9(0.1 + 0.1^2 + 0.1^3 + \cdots)$$

$$= 9 \sum_{k=1}^{\infty} 0.1^k = 9 \cdot 0.1 \sum_{k=0}^{\infty} 0.1^k = 0.9 \frac{1}{1 - 0.1} = \frac{0.9}{0.9} = 1.$$
Why is $0.999 \ldots = 1$? 3

Finally, we can argue that they have to be equal, since if they were not equal, we could find some number between them. However, there is no way to put any number between them.

In general, we claim that

$$a.a_1 a_2 \ldots a_n = a.a_1 a_2 \ldots (a_n - 1)\overline{9},$$

where $a_i \in \{0, \ldots, 9\}$, $a_n \neq 0$ and $a \in \mathbb{Z}$. For instance

$$3.14 = 3.13\overline{9} \quad \text{and} \quad -3.14 = -3.13\overline{9}.$$
Why is $0.999\ldots = 1$?

Let $a.a_1 a_2 \ldots (a_n-1)\bar{9}$ be a repeating decimal.

Then

$$a.a_1 a_2 \ldots (a_n-1)\bar{9} = a.a_1 a_2 \ldots (a_n-1) + 9 \sum_{k=n+1}^{\infty} 0.1^k$$

$$= a.a_1 a_2 \ldots (a_n-1) + 9 \cdot 0.1^{n+1} \sum_{k=0}^{\infty} 0.1^k$$

$$= a.a_1 a_2 \ldots (a_n-1) + 9 \cdot 0.1^{n+1} \frac{1}{1 - 0.1}$$

$$= a.a_1 a_2 \ldots (a_n-1) + 0.1^{n+1} \frac{9}{0.9}$$

$$= a.a_1 a_2 \ldots (a_n-1) + 0.1^{n+1} \cdot 10$$

$$= a.a_1 a_2 \ldots (a_n-1) + 0.1^n$$

$$= a.a_1 a_2 \ldots (a_n-1) + 0.0\ldots\ldots 0.1$$

$$= a.a_1 a_2 \ldots (a_n-1 + 1) = a.a_1 a_2 \ldots a_n.$$
Why is $0.999\ldots = 1$? 5

- We see that every finite decimal expansion can also be written as an infinite decimal expansion. There is only exception, namely 0.

- One way to understand why 0 is exceptional is because for positive numbers, the infinite expansion “looks” smaller, while for negative numbers, the infinite expansion “looks” bigger. So it is not surprising that 0 is a singular case.
Decimal Expansion

Theorem

A number is rational if and only if the decimal expansion is finite or repeating.

\[x = a.a_1 a_2 \ldots a_n = a + \frac{a_1 a_2 \ldots a_n}{10^n}, \]

which is a fraction of integers.
Decimal Expansion 2

Assume that x has a periodic decimal expansion. Then

$$x = a.a_1\ldots a_n = a + \sum_{k=0}^{\infty} a_1\ldots a_n 10^{-nk}$$

$$= a + \frac{a_1\ldots a_n}{10^n} \left(\frac{1}{1 - 10^{-n}} \right) = a + \frac{a_1\ldots a_n}{10^n - 1},$$

which is rational.

\implies : If $x = \frac{m}{n}$ the division will either terminate, or we will get repeating remainders after at most $n - 1$ steps.
As an example, consider $1/7$.

$1 \div 7 = 0,142857 \ldots$

\[
\begin{array}{c}
-0 \\
10 \quad \text{remainder 1} \\
-7 \\
30 \quad \text{remainder 3} \\
-28 \\
20 \quad \text{remainder 2} \\
-14 \\
60 \quad \text{remainder 6} \\
-56 \\
40 \quad \text{remainder 4} \\
-35 \\
50 \quad \text{remainder 5} \\
-49 \\
1 \quad \text{remainder 1}
\end{array}
\]
Decimal Expansion 4

From the decimal expansion of $1/7$, we see that

$$(10^6 - 1)/7 = 142857.142857\ldots - 0.142857 = 142857,$$

so that $999999 = 7 \cdot 142857$. This shows that 7 divides a “9-block”, $10^6 - 1$, of length equal to the period of $1/7$ and that $(10^6 - 1)/7$ is the repetend. (Since $\phi(7) = 6$, this agrees with Euler’s Theorem.)
Types of Rational Decimal Expansion

- Consider $\frac{m}{n}$ where $0 < m < n$ and $(m, n) = 1$.

Terminating $0.d_1 \ldots d_t$

$$\frac{m}{2^u 5^v}, \ t = \max(u, v) \quad \frac{M_t}{10^t} = \frac{d_1 \ldots d_t}{10^t}$$

Simple-periodic $0.d_1 \ldots d_r$

$$\frac{m}{n}, (n, 10) = 1 \quad \frac{M_s}{10^r - 1} = \frac{d_1 \ldots d_r}{10^r - 1}$$

Delayed-periodic $0.d_1 \ldots d_t d_{t+1} \ldots d_{t+r}$

$$\frac{m}{n_1 n_2}, n_1 = 2^u 5^v, \quad \frac{M_d}{10^t(10^r - 1)}$$

$(n_2, 10) = 1,$

$t = \max(u, v) > 1,$

$n_2 > 1.$

- Since $M_d < 10^t(10^r - 1)$, we can divide by $(10^r - 1)$ to get

$$M = (10^r - 1)d_1 \ldots d_t + d_{t+1} \ldots d_{t+r} = 10^r d_1 \ldots d_t + d_{t+1} \ldots d_{t+r} - d_1 \ldots d_t$$

$$= d_1 \ldots d_{t+r} - d_1 \ldots d_t,$$

and

$$\frac{M}{10^t(10^r - 1)} = \frac{d_1 \ldots d_t}{10^t} + \frac{d_{t+1} \ldots d_{t+r}}{10^t(10^r - 1)},$$

which shows how to convert between M and the d_i.

Types of Rational Decimal Expansion 2

Proof: m/n is terminating if and only if

$$m/n = \frac{m}{2^u 5^v} = \frac{M_t}{10^t}.$$

m/n is simple-periodic if and only if we can cancel the decimals by shifting one period, i.e.

$$(10^r - 1)m/n = M_s.$$

m/n is delayed-periodic if and only if we can cancel the decimals by shifting one period and moving the period t places, i.e.

$$10^t(10^r - 1)m/n = M_d.$$

Notice that there may be initial 0’s in the d_i’s.

$$0.062 = \frac{62}{999}, \quad 0.062 = \frac{62}{10 \cdot 99} = \frac{62}{990}.$$

Notice that the fractions in the last column need not be reduced.
Types of Rational Decimal Expansion 3

- In the simple-periodic case, the repetend is simply \(m(10^r - 1)/n \), but in the delayed-periodic case, we must divide \(m10^t(10^r - 1)/n \) by \(10^r - 1 \). However, it is easier to divide \(m10^t/n_1 \) by \(n_2 \) to keep the numbers smaller.

\[
\begin{align*}
\frac{1}{6} &= \frac{1}{2 \cdot 3} = \frac{5}{10 \cdot 3} = \frac{1 \cdot 3 + 2}{10 \cdot 3} = \frac{1}{10} + \frac{2}{10 \cdot 3} = 0.16, \\
\frac{1}{24} &= \frac{1}{2^3 \cdot 3} = \frac{125}{10^3 \cdot 3} = \frac{41 \cdot 3 + 2}{10^3 \cdot 3} = \frac{41}{10^3} + \frac{2}{10^3 \cdot 3} = 0.0416, \\
\frac{1}{26} &= \frac{1}{2 \cdot 13} = \frac{5}{10 \cdot 13} = \frac{0 \cdot 13 + 5}{10 \cdot 13} = \frac{0}{10} + \frac{5}{10 \cdot 13} = 0.0384615, \\
\frac{1}{28} &= \frac{1}{2^2 \cdot 7} = \frac{25}{10^2 \cdot 7} = \frac{3 \cdot 7 + 4}{10^2 \cdot 7} = \frac{3}{10^2} + \frac{4}{10^2 \cdot 7} = 0.03571428.
\end{align*}
\]
Notice how the type of the decimal expansion of m/n and the size of r and t only depends on n.
Cyclic Numbers

Consider the following decimal expansions

\[
\begin{align*}
1/7 &= 0.\overline{142857} \\
2/7 &= 0.285714 \\
3/7 &= 0.428571 \\
4/7 &= 0.571428 \\
5/7 &= 0.714285 \\
6/7 &= 0.857142 \\
\end{align*}
\]

Notice how the digits of the repetends are cyclic permutations of each other, and that they are obtained by multiplying 142857.
Sometimes the numbers m/n break into several cycles. For example, the multiples of $1/13$ can be divided into two sets:

\[
\begin{align*}
1/13 & = 0.076923 \\
10/13 & = 0.769230 \\
9/13 & = 0.692307 \\
12/13 & = 0.923076 \\
3/13 & = 0.230769 \\
4/13 & = 0.307692
\end{align*}
\]

where each repetend is a cyclic re-arrangement of 076923 and

\[
\begin{align*}
2/13 & = 0.153846 \\
7/13 & = 0.538461 \\
5/13 & = 0.384615 \\
11/13 & = 0.846153 \\
6/13 & = 0.461538 \\
8/13 & = 0.615384
\end{align*}
\]

where each repetend is a cyclic re-arrangement of 153846.

The first set corresponds to remainders of 1, 3, 4, 9, 10, 12, while the second set corresponds to remainders of 2, 5, 6, 7, 8, 11.
Period of Periodic Decimals

- We see from
 \[(10^r - 1)m = Mn\]
 that there is a repeating block of length \(r\) if and only if \(10^r \equiv 1 \pmod{n}\).

- This block could itself consist of repeating parts, but if define the period of a periodic decimal to be the length of the minimal repeating block, i.e. the repetend, then the period is equal to the order of 10 mod \(n\).

- We know from Euler’s Theorem that if \((n, 10)\), then \(n\) divides \(10^{\phi(n)} - 1\), so the period divides \(\phi(n)\).
Factoring $10^n - 1$

To find denominators with short periods, we use the following table. The period of $1/p$ is the r for which p first appears as a factor in $10^r - 1$. Notice how 3, 11 and 13 appear earlier than given by Euler’s Theorem, while 7 first appears in $10^6 - 1$.

$10^1 - 1 = 3^2$
$10^2 - 1 = 3^2 \cdot 11$
$10^3 - 1 = 3^3 \cdot 37$
$10^4 - 1 = 3^2 \cdot 11 \cdot 101$
$10^5 - 1 = 3^2 \cdot 41 \cdot 271$
$10^6 - 1 = 3^3 \cdot 7 \cdot 11 \cdot 13 \cdot 37$
$10^7 - 1 = 3^2 \cdot 239 \cdot 4649$
$10^8 - 1 = 3^2 \cdot 11 \cdot 73 \cdot 101 \cdot 137$
$10^9 - 1 = 3^4 \cdot 37 \cdot 333667$
$10^{10} - 1 = 3^2 \cdot 11 \cdot 41 \cdot 271 \cdot 9091$
$10^{11} - 1 = 3^2 \cdot 21649 \cdot 513239$
$10^{12} - 1 = 3^3 \cdot 7 \cdot 11 \cdot 13 \cdot 37 \cdot 101 \cdot 9901$
Summary of $1/n$

t is the length of the terminating part and r is the length of the repetend in the decimal expansion of $1/n$.

<table>
<thead>
<tr>
<th>$1/n$</th>
<th>t</th>
<th>r</th>
<th>$\phi(n)$</th>
<th>$1/n$</th>
<th>t</th>
<th>r</th>
<th>$\phi(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2 = 0.5$</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.045</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>$1/3 = 0.3$</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.0434782608695652173913</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>$1/4 = 0.25$</td>
<td>2</td>
<td></td>
<td></td>
<td>0.0416</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>$1/5 = 0.2$</td>
<td>1</td>
<td></td>
<td></td>
<td>0.04</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1/6 = 0.16$</td>
<td>1</td>
<td>2</td>
<td></td>
<td>0.038461</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>$1/7 = 0.142857$</td>
<td>6</td>
<td>6</td>
<td></td>
<td>0.037</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>$1/8 = 0.125$</td>
<td>3</td>
<td></td>
<td></td>
<td>0.03571428</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>$1/9 = 0.\bar{1}$</td>
<td>1</td>
<td>6</td>
<td></td>
<td>$0.0344827586206896551724137931$</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>$1/10 = 0.1$</td>
<td>1</td>
<td></td>
<td></td>
<td>0.03</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>$1/11 = 0.09$</td>
<td>2</td>
<td>10</td>
<td></td>
<td>0.032258064516129</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>$1/12 = 0.0\bar{8}$</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0.03125</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1/13 = 0.076923$</td>
<td>6</td>
<td>12</td>
<td></td>
<td>0.033</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>$1/14 = 0.0714285$</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>0.0294117647058235</td>
<td>1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>$1/15 = 0.06$</td>
<td>1</td>
<td>8</td>
<td></td>
<td>0.0285714</td>
<td>1</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>$1/16 = 0.0625$</td>
<td>4</td>
<td></td>
<td></td>
<td>0.036</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>$1/17 = 0.0588235294117647$</td>
<td>16</td>
<td>16</td>
<td></td>
<td>0.037</td>
<td>3</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>$1/18 = 0.05$</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0.0263157894736842105</td>
<td>1</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>$1/19 = 0.052631578947368421$</td>
<td>18</td>
<td>18</td>
<td></td>
<td>0.025641</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>$1/20 = 0.05$</td>
<td>2</td>
<td></td>
<td></td>
<td>0.025</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1/21 = 0.047619$</td>
<td>6</td>
<td>12</td>
<td></td>
<td>0.02439</td>
<td>5</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

What can you say about $1/27$ and $1/37$? Why?

$10^3 - 1 = 3^3 \cdot 37$.
Primes with Given Period

Primes p with repeating decimal expansions of period r in $1/p$.

<table>
<thead>
<tr>
<th>Period</th>
<th>Primes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
</tr>
<tr>
<td>5</td>
<td>41, 271</td>
</tr>
<tr>
<td>6</td>
<td>7, 13</td>
</tr>
<tr>
<td>7</td>
<td>239, 4649</td>
</tr>
<tr>
<td>8</td>
<td>73, 137</td>
</tr>
<tr>
<td>9</td>
<td>333667</td>
</tr>
<tr>
<td>10</td>
<td>9091</td>
</tr>
<tr>
<td>11</td>
<td>21649, 513239</td>
</tr>
<tr>
<td>12</td>
<td>9901</td>
</tr>
<tr>
<td>13</td>
<td>53, 79, 265371653</td>
</tr>
<tr>
<td>14</td>
<td>909091</td>
</tr>
<tr>
<td>15</td>
<td>31, 2906161</td>
</tr>
<tr>
<td>16</td>
<td>17, 5882353</td>
</tr>
<tr>
<td>17</td>
<td>2071723, 5363222357</td>
</tr>
<tr>
<td>18</td>
<td>19, 52579</td>
</tr>
<tr>
<td>19</td>
<td>11111111111111111111111</td>
</tr>
<tr>
<td>20</td>
<td>3541, 27961</td>
</tr>
</tbody>
</table>

Notice how 7, 17 and 19 have maximal periods, $p - 1$. Gauss conjectured in 1801 that there are infinitely many primes with maximal periods, but this has not been proved.
Periods of Inverse Primes

Here are the periods of $1/p$ for all primes less than 101 except for 2 and 5.

<table>
<thead>
<tr>
<th>p</th>
<th>r</th>
<th>p</th>
<th>r</th>
<th>p</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>31</td>
<td>15</td>
<td>67</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>37</td>
<td>3</td>
<td>71</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>41</td>
<td>5</td>
<td>73</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>43</td>
<td>21</td>
<td>79</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>47</td>
<td>46</td>
<td>83</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>53</td>
<td>13</td>
<td>89</td>
<td>44</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>59</td>
<td>58</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>61</td>
<td>60</td>
<td>101</td>
<td>4</td>
</tr>
</tbody>
</table>
Periods of $1/n$

- If $n = p^k$, the period is a divisor of $\phi(p^k) = (p - 1)p^{k-1}$, but there is no simple formula.

- If $n = n_1 n_2$ where $(n_1, n_2) = 1$, then it can be shown that the period of $1/n$ is the least common multiple of the periods of $1/n_1$ and $1/n_2$.