
Spline Methods
Draft

Tom Lyche and Knut Mørken
Department of Mathematics

University of Oslo

January 15, 2018

Contents

1 Why splines and B-splines? 1
1.1 Convex combinations and convex hulls . 2

1.1.1 Stable computations . 2
1.1.2 The convex hull of a set of points . 2

1.2 Parametric curves . 4
1.3 Interpolating polynomial curves . 7

1.3.1 Quadratic interpolation of three points 7
1.3.2 Interpolation by convex combinations? 7

1.4 Bézier curves . 9
1.4.1 Quadratic Bézier curves . 9
1.4.2 Composite Bézier curves . 11

1.5 A geometric construction of spline curves . 12
1.5.1 Linear spline curves . 12
1.5.2 Quadratic spline curves . 14
1.5.3 Smoothness of spline curves . 16
1.5.4 Representing spline curves in terms of basis functions 16

1.6 Conclusion . 18
1.7 Exercises . 18

2 Basic properties of splines and B-splines 25
2.1 The recurrence relation for B-splines . 25
2.2 Some simple consequences of the recurrence relation 26

2.2.1 Basic properties . 26
2.2.2 More examples of B-splines . 28

2.3 Linear combinations of B-splines . 31
2.3.1 Spline functions . 31
2.3.2 Spline curves . 33

2.4 A matrix representation of B-splines . 34
2.5 Algorithms for evaluating a spline . 37

2.5.1 High level description . 37

i

ii CONTENTS

2.6 Exercises . 40

3 Further properties of splines 47
3.1 Linear independence of B-splines and representation of polynomials 47

3.1.1 Some properties of the B-spline matrices 47
3.1.2 Marsden’s identity and representation of polynomials 49
3.1.3 Linear independence of B-splines . 51

3.2 Differentiation and smoothness of B-splines 53
3.2.1 Piecewise smooth functions . 53
3.2.2 Derivatives of B-splines . 54
3.2.3 Computing derivatives of splines and B-splines 57
3.2.4 Smoothness of B-splines . 59
3.2.5 The integral of a B-spline . 61

3.3 B-splines as a basis for piecewise polynomials 62
3.4 Exercises . 64

4 Knot insertion 67
4.1 The control polygon relative to different knot vectors 68
4.2 Knot insertion . 70

4.2.1 Basic idea . 70
4.2.2 Conversion between B-spline polynomials 72
4.2.3 Formulas and algorithms for knot insertion 74

4.3 B-spline coefficients as functions of the knots 80
4.3.1 The blossom . 81
4.3.2 B-spline coefficients as blossoms . 84

4.4 Inserting one knot at a time . 86
4.5 Bounding the number of sign changes in a spline 88
4.6 Exercises . 91

5 Spline Approximation 95
5.1 Local Approximation Methods . 96

5.1.1 Piecewise linear interpolation . 96
5.1.2 Cubic Hermite interpolation . 98
5.1.3 Estimating the derivatives . 101

5.2 Cubic Spline Interpolation . 102
5.2.1 Interpretations of cubic spline interpolation 106
5.2.2 Numerical solution and examples . 107

5.3 General Spline Approximation . 108
5.3.1 Spline interpolation . 109
5.3.2 Least squares approximation . 110

5.4 The Variation Diminishing Spline Approximation 114
5.4.1 Preservation of bounds on a function 117
5.4.2 Preservation of monotonicity . 118
5.4.3 Preservation of convexity . 120

CONTENTS iii

6 Parametric Spline Curves 125
6.1 Definition of Parametric Curves . 125

6.1.1 Regular parametric representations . 125
6.1.2 Changes of parameter and parametric curves 127
6.1.3 Arc length parametrisation . 128

6.2 Approximation by Parametric Spline Curves 129
6.2.1 Definition of parametric spline curves 129
6.2.2 The parametric variation diminishing spline approximation 131
6.2.3 Parametric spline interpolation . 132
6.2.4 Assigning parameter values to discrete data 134
6.2.5 General parametric spline approximation 135

7 Tensor Product Spline Surfaces 137
7.1 Explicit tensor product spline surfaces . 137

7.1.1 Definition of the tensor product spline 137
7.1.2 Evaluation of tensor product spline surfaces 141

7.2 Approximation methods for tensor product splines 141
7.2.1 The variation diminishing spline approximation 141
7.2.2 Tensor Product Spline Interpolation . 143
7.2.3 Least Squares for Gridded Data . 146

7.3 General tensor product methods . 150
7.4 Trivariate Tensor Product Methods . 152
7.5 Parametric Surfaces . 156

7.5.1 Parametric Tensor Product Spline Surfaces 157

8 Quasi-interpolation methods 159
8.1 A general recipe . 159

8.1.1 The basic idea . 160
8.1.2 A more detailed description . 160

8.2 Some quasi-interpolants . 162
8.2.1 Piecewise linear interpolation . 162
8.2.2 A 3-point quadratic quasi-interpolant 163
8.2.3 A 5-point cubic quasi-interpolant . 164
8.2.4 Some remarks on the constructions . 165

8.3 Quasi-interpolants are linear operators . 166
8.4 Different kinds of linear functionals and their uses 167

8.4.1 Point functionals . 167
8.4.2 Derivative functionals . 168
8.4.3 Integral functionals . 168
8.4.4 Preservation of moments and interpolation of linear functionals . . . 169
8.4.5 Least squares approximation . 170
8.4.6 Computation of integral functionals . 171

8.5 Alternative ways to construct coefficient functionals 171
8.5.1 Computation via evaluation of linear functionals 171

iv CONTENTS

8.5.2 Computation via explicit representation of the local approximation . 173
8.6 Two quasi-interpolants based on point functionals 173

8.6.1 A quasi-interpolant based on the Taylor polynomial 174
8.6.2 Quasi-interpolants based on evaluation 175

8.7 Exercises . 176

9 Approximation theory and stability 179
9.1 The distance to polynomials . 179
9.2 The distance to splines . 181

9.2.1 The constant and linear cases . 182
9.2.2 The quadratic case . 183
9.2.3 The general case . 184

9.3 Stability of the B-spline basis . 188
9.3.1 A general definition of stability . 188
9.3.2 Stability of the B-spline basis, p =∞ . 189
9.3.3 Stability of the B-spline basis, p <∞ . 190

9.4 Convergence of the control polygon for spline functions 192
9.5 Exercises . 194

10 Shape Preserving Properties of B-splines 199
10.1 Bounding the number of zeros of a spline . 199
10.2 Uniqueness of spline interpolation . 202

10.2.1 Lagrange Interpolation . 203
10.2.2 Hermite Interpolation . 204

10.3 Total positivity . 206

11 Computing Zeros of Splines 215
11.1 Counting zeros of the control polygon . 215
11.2 Root finding algorithm . 217
11.3 Convergence . 220
11.4 Rate of convergence . 222
11.5 Stability . 222
11.6 Implementation and numerical examples . 223

A Some Linear Algebra 227
A.1 Matrices . 227

A.1.1 Nonsingular matrices, and inverses. 227
A.1.2 Determinants. 228
A.1.3 Criteria for nonsingularity and singularity. 228

A.2 Vector Norms . 229
A.3 Vector spaces of functions . 231

A.3.1 Linear independence and bases . 232
A.4 Normed Vector Spaces . 234

Chapter 1
Why splines and B-splines?

Why should we study splines and B-splines? Perhaps the answer seems obvious to you, and
then you may just jump to Chapter 2. If not, it is worthwhile to ask some basic questions. As
we attempt to answer those questions we are going to touch upon topics like construction
of smooth curves from finite point sets, polynomial interpolation, and Bézier curves. And
we are also going to see that our study in this book is just one particular way to answer the
questions.

Basic question 1.1. What is a good mathematical framework for constructing and manip-
ulating smooth curves?

This is an open question that leaves us with many options. Do we want to represent
the curve with a simple formula or a computational method? What tools may we use for
calculations? What do we mean by smooth curves?

In order to address this quesiton, we are going to gradually become more specific by in-
troducing and exploring constraints that appear natural, or lead to simplifications, or in other
ways make it possible to specify the mathematical framework.

The first two constraints are quite simple.

1. The mathematical framework should lead to methods that are suitable for computer
implementation.

2. It should be easy to both approximate a given set of points and design new curves from
scratch.

The first constraint can be made more precise by requiring that the methods should be
efficient in their use of time and memory and they should not be overly sensitive to round-off
errors in the computations. One way to control the sensitivity of the methods to round-off
errors is by insisting that all the operations involved should amount to forming weighted
averages, or convex combinations, of the given points. This has the added advantage that the
constructions are geometrical in nature and easy to visualise.

1

2 CHAPTER 1. WHY SPLINES AND B-SPLINES?

In this chapter we explore some first consequences of the two constraints above. In Sec-
tion 1.1, we discuss affine and convex combinations and the convex hull of a set of points,
and relate these concepts to numerical stability (sensitivity to rounding errors), while in Sec-
tion 1.2 we give a brief and very informal introduction to parametric curves. The first method
for curve construction, namely polynomial interpolation, is introduced in Section 1.3. In Sec-
tion 1.4 we show how to construct Bézier curves, and in Section 1.5 we generalise this con-
struction to spline curves. At the outset, our construction of spline curves is geometrical in
nature, but in Section 1.5.4 we show that spline curves can be written conveniently in terms
of certain basis functions, namely B-splines. In the final section, we relate the material in this
chapter to the rest of the book.

1.1 Convex combinations and convex hulls

An important constraint on our study is that it should result in numerical methods that will
ultimately be implemented in floating point arithmetic on a computer. We should therefore
make sure that these methods are reasonably insensitive to the primary source of problems,
namely round-off errors and other numerical uncertainties that occur in numerical compu-
tations. This requirement is often referred to by saying that the methods should be numeri-
cally stable .

1.1.1 Stable computations

One characteristic of numerical instabilities is that a chain of computations contain numbers
of large magnitude even though the numbers that form the input to the computations, and
the final result, are not particularly large numbers. A simple way to avoid this is to base the
computations on computing weighted averages as in

c = (1−λ)c1 +λc2. (1.1)

Here c1 and c2 are two given numbers and λ a given weight, a real number in the range [0,1].
The result of the computation is the number c which must lie between c1 and c2 as averages
always do. A special example is of course computation of the mean between two numbers,
c = (c1 + c2)/2. A computation on the form (1.1) is often referred to as a convex combina-
tion, and c is often said to be a convex combination of c1 and c2. If all our computations are
convex combinations, all intermediate results as well as the final result must be within the
numerical range of the input data, thereby indicating that the computations are reasonably
stable. It is overly optimistic to hope that we can do all our computations by forming convex
combinations, but convex combinations will certainly be a guiding principle.

1.1.2 The convex hull of a set of points

Convex combinations make sense for vectors as well as for real numbers. If c 1 = (x1, y1) and
c 2 = (x2, y2) are two vectors, or equivalently points (we always denote points and vectors by
bold type), then a convex combination of c 1 and c 2 is an expression on the form

c = (1−λ)c 1 +λc 2, (1.2)

1.1. CONVEX COMBINATIONS AND CONVEX HULLS 3

c1

c2

-0.4

0

0.3

0.5

0.8

1

1.3

Figure 1.1. Some points on the line (1−λ)c1 +λc2 and the corresponding values of λ.

where the weight λ is some number in the range 0 ≤ λ ≤ 1. This expression is usually im-
plemented on a computer by expressing it in terms of convex combinations of real numbers,

(x, y) = (
(1−λ)x1 +λx2, (1−λ)y1 +λy2

)
,

where (x, y) = c .

A combination as in (1.2) with no restriction on λ other than λ ∈ R is called an affine
combination of c 1 and c 2. As λ takes on all real numbers, the point c in (1.2) will trace out the
whole straight line that passes through c 1 and c 2. If we restrict λ to lie in the interval [0,1],
we only get the part of the line that lies between c 1 and c 2. This is the convex hull , or the set
of all weighted averages, of the two points. Figure 1.1 shows two points c 1 and c 2 and the line
they define, together with some points on the line and their corresponding values of λ.

Just as we can take the average of more than two numbers, it is possible to form con-
vex combinations of more than two points. A convex combination of n points (c i)n

i=1 is an
expression on the form

c =λ1c 1 +λ2c 2 +·· ·+λnc n

where the n numbers λi sum to one and also satisfy 0 ≤ λi ≤ 1 for i = 1, 2, . . . , n. As for two
points, the convex hull of the points (c i)n

i=1 is the set of all possible convex combinations of
the points.

It can be shown that the convex hull of a set of points is the smallest convex set that con-
tains all the points (recall that a set is convex if the straight line connecting any two points
in the set is always completely contained in the set). This provides a simple geometric inter-
pretation of the convex hull. As we have already seen, the convex hull of two points can be
identified with the straight line segment that connects the points, whereas the convex hull of
three points coincides with the triangle spanned by the points, see Figure 1.2. In general, the
convex hull of n points is the n-sided polygon with the points as corners. However, if some of

4 CHAPTER 1. WHY SPLINES AND B-SPLINES?

c1

c2

c3

c

c�

1-Λ

Λ

1-Μ

Μ

Figure 1.2. Determining the convex hull of three points.

the points are contained in the convex hull of the others, then the number of edges is reduced
correspondingly, see the examples in Figure 1.3.

We can form convex and affine combinations in any space dimension, we just let c 1 and
c 2 be points in the appropriate space. If we are working in Rn for instance, then c 1 and c 2

have n components. In our examples we will mostly use n = 2, as this makes the visualisation
simpler.

1.2 Parametric curves

Before we consider some concrete methods for constructing smooth curves, we need to dis-
cuss a few basic concepts. For this we revisit the case of the straight line segment between
two points c 0 = (x0, y0) and c 1 = (x1, y1). We have already seen that the line segment coin-
cides with the convex hull of the two points, see (1.2). More generally, we can express the line
segment as

q(t | c 0,c 1; t0, t1) = t1 − t

t1 − t0
c 0 + t − t0

t1 − t0
c 1 for t ∈ [t0, t1], (1.3)

where t0 and t1 are two arbitrary real numbers with t0 < t1. Note that this is a convex combi-
nation since the two coefficients add to one,

t1 − t

t1 − t0
+ t − t0

t1 − t0
= 1,

and each of them is nonnegative as long as t is in the interval [t0, t1]. In fact, if we set λ =
(t − t0)/(t1 − t0), then (1.3) becomes (1.2).

A representation as in (1.3) that maps each real number to a point in R2, is an example of
a parametric representation. The line can also be expressed as the linear function

y = f (x) = x1 −x

x1 −x0
y0 + x −x0

x1 −x0
y1,

1.2. PARAMETRIC CURVES 5

(a) Two points. (b) Three points.

(c) Four points. (d) Five points.

(e) Five points. (f) Five points.

Figure 1.3. Examples of convex hulls (shaded area) of points (black dots).

6 CHAPTER 1. WHY SPLINES AND B-SPLINES?

-2 -1 1 2 3 4

-4

-2

2

4

(a) (b)

Figure 1.4. A function (a) and a parametric curve (b).

but then we run into problems if x0 = x1, i.e., if the line is vertical. In general, a parametric
representation has the flexibility that it can cross itself, be vertical, or return to its starting
point. Functions lack this flexibility; they always map a real number to a real number, see the
two examples in Figure 1.4.

In this chapter we only work with parametric representations in the plane, and we will
refer to these simply as (parametric) curves. All our constructions start with a set of points,
from which we generate new points, preferably by forming convex combinations as in (1.2).
In later chapters we will work mainly with functions (the points are simply real numbers)
since the core of spline theory is independent of the space dimension. The reason for work-
ing with planar curves in this chapter is that the constructions are geometric in nature and
particularly easy to visualise in the plane.

In (1.3) the two parameters t0 and t1 were arbitrary except that we assumed t0 < t1. If we
consider the variable t to denote time, the parametric representation q(t | c 0,c 1; t0, t1) gives
a way to travel from c 0 to c 1: The parameter t0 gives the time at which we start at c 0, and
t1 the time at which we arrive at c 1. With this interpretation, different choices of t0 and t1

correspond to different ways of travelling along the line.

In the case of (1.3), the geometric result is always the same line segment. However, when
we introduce more points, the effect of changing the time parameters can dramatically change
the geometry of the curve. In practise, a curve is usually given by a particular parametric rep-
resentation, but the same curve can be represented by many different parametric represen-
tations.

The distinction between a curve and a particular parametric representation is not just
of theoretical significance. When only the geometric shape is significant we are discussing
curves and their properties. Some examples are the outlines of the characters in a font and
the level curves on a map. When it is also significant how we travel along the curve (how it is
represented) then we are talking about a particular parametric representation of the under-
lying geometric curve, which in mathematical terms is simply a vector valued function. An
example is the path of a camera in a computer based system for animation.

1.3. INTERPOLATING POLYNOMIAL CURVES 7

1.3 Interpolating polynomial curves

A natural way to construct a curve from a set of given points is to force the curve to pass
through the points, or interpolate the points, a generalisation of the line segment defined by
two points. Interpolating, polynomial curves can be defined for any finite number of points,
but we only consider quadratic interpolation of three points here.

1.3.1 Quadratic interpolation of three points

How can we construct a curve that interpolates three points? In addition to the three given
interpolation points c 0, c 1 and c 2 we also need three parameters (ti)2

i=0. We first construct
the two straight lines q 0,1(t) = q(t | c 0,c 1; t0, t1) and q 1,1(t) = q(t | c 1,c 2; t1, t2). If we now form
the weighted average

q 0,2(t) = q(t | c 0,c 1,c 2; t0, t1, t2) = t2 − t

t2 − t0
q 0,1(t)+ t − t0

t2 − t0
q 1,1(t),

we obtain a curve that is quadratic in t , and it is easy to check that it passes through the given
points as required,

q 0,2(t0) = q 0,1(t0) = c 0,

q 0,2(t1) = t2 − t1

t2 − t0
q 0,1(t1)+ t1 − t0

t2 − t0
q 1,1(t1) = t2 − t1

t2 − t0
c 1 + t1 − t0

t2 − t0
c 1 = c 1,

q 0,2(t2) = q 1,1(t2) = c 2.

Four examples are shown in Figure 1.5, with the interpolation points (c i)2
i=0 given as black

dots and the values of the three parameters t = (ti)2
i=0 shown below each plot. The tangent

vector at the end of the curve (at t = t2) is also displayed in each case. Note that the inter-
polation points are the same in plots (a) and (b), and also in plots (c) and (d). When we only
had two points, the linear interpolant between the points was independent of the values of
the parameters t0 and t1; in the case of three points and quadratic interpolation the result is
clearly highly dependent on the choice of parameters.

It is possible to give qualitative explanations of the results if we view q 0,2(t) as the po-
sition at time t of someone travelling along the curve. For example, in the first two plots
the given points are quite uniformly spaced and the uniform distribution of parameters in
plot (a) seems to connect the points with a ’nice’ curve. In plot (b) the value of t1 has been
lowered, leaving more ‘time’ for travelling from c 1 to c 2 than from c 0 to c 1 with the effect that
the curve bulges out between c 1 and c 2. This makes the journey between these points longer,
and someone travelling along the curve can therefore spend the extra time allocated to this
part of the ‘journey’.

1.3.2 Interpolation by convex combinations?

A basic premise for our curve construction techniques is that we want to make use of convex
combinations. It is clear that this is true in the linear case where we only have two points and
the interpolant is the straight line that connects the points. By merely looking at the curves
in Figure 1.5, it is clear that this is not the case in the quadratic case. Let us consider this in

8 CHAPTER 1. WHY SPLINES AND B-SPLINES?

(a) t = (0,1,2). (b) t = (0,0.5,2).

(c) t = (0,1,2). (d) t = (0,0.5,2).

Figure 1.5. Some examples of quadratic interpolation.

more detail. Given the points (c i)2
i=0 and the parameters (ti)2

i=0, we first form the two straight
lines

q 0,1(t) = t1 − t

t1 − t0
c 0 + t − t0

t1 − t0
c 1, (1.4)

q 1,1(t) = t2 − t

t2 − t1
c 1 + t − t1

t2 − t1
c 2, (1.5)

and from these the quadratic segment

q 0,2(t) = t2 − t

t2 − t0
q 0,1(t)+ t − t0

t2 − t0
q 1,1(t). (1.6)

The combination in (1.4) is convex as long as t is in [t0, t1], the combination in (1.5) is convex
when t lies within [t1, t2], and the combination in (1.6) is convex when t is restricted to [t0, t2].
But in computing q 0,2(t) we also have to compute q 0,1(t) and q 1,1(t), and one of these latter
combinations will not be convex when t is in [t0, t2] (except when t = t1). The problem lies
in the fact that the two line segments are defined over different intervals, namely [t0, t1] and
[t1, t2], that only has t1 in common, so t cannot be in both intervals simultaneously. The
situation is illustrated in Figure 1.6.

In the next section we shall see how we can construct polynomial curves from points in
the plane by only forming convex combinations. The resulting curve will then lie within the
convex hull of the given points, but will not interpolate the points.

1.4. BÉZIER CURVES 9

(a) Two points on the curve. (b) Thirty points on the curve.

Figure 1.6. The geometry of quadratic interpolation.

1.4 Bézier curves

The curve construction method that we consider in this section is an alternative to polyno-
mial interpolation and produces what we call Bézier curves, named after the French engineer
Pierre Bézier (1910–1999) who worked for the car manufacturer Renault. Bézier curves are
also polynomial curves, but they avoid the problem of wiggles and bulges because all com-
putations are true convex combinations. It also turns out that segments of Bézier curves can
easily be joined smoothly together to form more complex shapes. This avoids the problem of
using curves of high polynomial degree when many points are approximated. Bézier curves
are a special case of the spline curves that we will construct in Section 1.5.

1.4.1 Quadratic Bézier curves

We have three points in the plane c 0, c 1 and c 2, and based on these points we want to con-
struct a smooth curve, by forming convex combinations of the given points. With polynomial
interpolation this did not work because the two line segments (1.4) and (1.5) are defined over
different intervals. The natural solution is to start by defining the two line segments over the
same interval, say [0,1] for simplicity,

p1,1(t) = p(t | c 0,c 1) = (1− t)c 0 + tc 1, (1.7)

p2,1(t) = p(t | c 1,c 2) = (1− t)c 1 + tc 2. (1.8)

(The curves we construct in this section and the next are related and will be denoted by p
to distinguish them from the interpolating curves of Section 1.3.) Now we have no problem
forming a true convex combination,

p2,2(t) = p(t | c 0,c 1,c 2) = (1− t)p1,1(t)+ t p2,1(t). (1.9)

The construction is illustrated in Figure 1.7 (a). In Figure 1.7 (b) we have repeated the con-
struction for 15 uniformly spaced values of t .

If we insert the explicit expressions for the two lines in (1.7) and (1.8) in (1.9) we obtain

p2,2(t) = (1− t)2c 0 +2t (1− t)c 1 + t 2c 2 = b0,2(t)c 0 +b1,2(t)c 1 +b2,2(t)c 2. (1.10)

10 CHAPTER 1. WHY SPLINES AND B-SPLINES?

(a) (b)

Figure 1.7. A Bézier curve based on three points.

(a) (b)

Figure 1.8. Two examples of quadratic Bézier curves.

This is called a quadratic Bézier curve; the points (c i)2
i=0 are called the control points of the

curve and the piecewise linear curve connecting the control points is called the control poly-
gon of the curve. The polynomials multiplying the control points are the quadratic Bernstein
polynomials. Two examples of quadratic Bézier curves with their control points and control
polygons are shown in Figure 1.8 (the two sets of interpolation points in Figure 1.5 have been
used as control points).

Some striking geometric features are clearly visible in Figures 1.7 and 1.8. We note that the
curve interpolates c 0 at t = 0 and c 2 at t = 1. This can be verified algebraically by observing
that b0,2(0) = 1 and b1,2(0) = b2,2(0) = 0, and similarly b2,2(1) = 1 while b0,2(1) = b1,2(1) = 0.
The line from c 0 to c 1 coincides with the direction of the tangent to the curve at t = 0 while
the line from c 1 to c 2 coincides with the direction of the tangent at t = 1. This observation
can be confirmed by differentiating equation (1.10),

p ′
2,2(0) = 2(c 1 −c 0), p ′

2,2(1) = 2(c 2 −c 1).

Note that the three polynomials in (1.10) add up to 1,

(1− t)2 +2t (1− t)+ t 2 = (1− t + t)2 = 1,

1.4. BÉZIER CURVES 11

(a) (b)

Figure 1.9. Different forms of continuity between two segments of a cubic Bézier curve.

and since t varies in the interval [0,1], we also have 0 ≤ bi ,2(t) ≤ 1 for i = 0, 1, 2. This confirms
that p2,2(t) is a convex combination of the three points (c i)2

i=0. As we saw in Section 1.1, the
geometric interpretation of this is that the curve lies entirely within the triangle formed by
the three given points.

The construction can easily be extended to an arbitrary number of points d +1; then the
curve will be of degree d , see exercise 3. The general construction inherits the interpolation
and tangent properties at the beginning and end of the curve segment.

1.4.2 Composite Bézier curves

By using Bézier curves of sufficiently high degree we can represent a variety of shapes. How-
ever, Bézier curves of high degree suffer from the same shortcomings as interpolating poly-
nomial curves:

1. As the degree increases, the complexity and therefore the processing time increases.

2. Because of the increased complexity, curves of high degree are more sensitive to round-
off errors.

3. The relation between the given data points and the curve itself becomes less intuitive
as the degree increases.

Because of the shortcomings of high degree polynomials it is advantageous to form complex
shapes by joining together several Bézier curves, most commonly of degree two or three. Such
composite Bézier curves are also referred to as Bézier curves.

A Bézier curve of degree d consisting of n segments is given by n sets of control points
(c i

0, . . . ,c i
d)n

i=1. It is then convenient to let the complete curve be defined over the interval
[0,n], with segment i defined on the interval [i −1, i]. By adjusting the control points appro-
priately it is possible to ‘glue’ together the segments with varying degrees of continuity. The
minimal form of continuity is to let c i−1

d = c i
0 which ensures that segments i − 1 and i join

together continuously as in Figure 1.9 (a). We obtain a smoother join by also letting the tan-
gents be continuous at the join. The tangent property described above (in the quadratic case)
means that the join between segments i −1 and i will be continuous if

c i−1
d −c i−1

d−1 = c i
1 −c i

0.

12 CHAPTER 1. WHY SPLINES AND B-SPLINES?

An example for degree three is shown in Figure 1.9 (b).
Figure 1.10 shows one example of a complex Bézier curve. It is the letter S in the Postscript

font Times Roman, shown with its control polygon and control points. This is essentially a
cubic Bézier curve, interspersed with a few straight line segments. Each cubic curve segment
can be identified by the two control points on the curve giving the ends of the segment and
the two intermediate control points that lie off the curve.

Quadratic Bézier curves form the basis for the TrueType font technology, while cubic
Bézier curves lie at the heart of PostScript and the Portable Document Format (PDF). Bézier
curves also form a common primitive in many illustration programs.

1.5 A geometric construction of spline curves

The disadvantage of Bézier curves is that the smoothness between neighbouring polynomial
pieces can only be controlled by choosing the control points appropriately. It turns out that
by adjusting the construction of Bézier curves slightly, we can produce pieces of polyno-
mial curves that automatically tie together smoothly. These piecewise polynomial curves
are called spline curves.

1.5.1 Linear spline curves

The construction of spline curves is also based on repeated averaging, but we need a slight
generalization of the Bézier curves, reminiscent of the construction of the interpolating poly-
nomials in Section 1.3. In Section 1.3 we introduced the general representation (1.3) for a
straight line connecting two points. In this section we use the same general representation,
but with a different labelling of the points and parameters. If we have two points c 1 and c 2

we now represent the straight line between them by

p(t | c 1,c 2; t2, t3) = t3 − t

t3 − t2
c 1 + t − t2

t3 − t2
c 2, t ∈ [t2, t3], (1.11)

provided t2 < t3. By setting t2 = 0 and t3 = 1 we get back to the linear Bézier curve.
The construction of a piecewise linear curve based on some given points (c i)n

i=1 is quite
obvious; we just connect each pair of neighbouring points by a straight line. More specifically,
we choose n numbers (ti)n+1

i=2 with ti < ti+1 for i = 2, 3, . . . , n, and define the curve f by

f (t) =

p(t | c 1,c 2; t2, t3), t ∈ [t2, t3),

p(t | c 2,c 3; t3, t4), t ∈ [t3, t4),
...

...

p(t | c n−1,c n ; tn , tn+1), t ∈ [tn , tn+1].

(1.12)

The points (c i)n
i=1 are called the control points of the curve, while the parameters t = (ti)n+1

i=2 ,
which give the value of t at the control points, are referred to as the knots, or the knot vector,
of the curve. If we introduce the piecewise constant functions Bi ,0(t) defined by

Bi ,0(t) =
{

1, ti ≤ t < ti+1,

0, otherwise,
(1.13)

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 13

Figure 1.10. The letter S in the Postscript font Times Roman.

14 CHAPTER 1. WHY SPLINES AND B-SPLINES?

Figure 1.11. Construction of a segment of a quadratic spline curve.

and set p i ,1(t) = p(t | c i−1,c i ; ti , ti+1), we can write f (t) more succinctly as

f (t) =
n∑

i=2
p i ,1(t)Bi ,0(t). (1.14)

This construction can be generalized to produce smooth, piecewise polynomial curves of
higher degrees.

1.5.2 Quadratic spline curves

In the definition of the quadratic Bézier curve, a point on p2,2(t) is determined by taking three
averages, all with weights 1− t and t since both the two line segments (1.7) and (1.8), and the
quadratic curve itself (1.9), are defined with respect to the interval [0,1]. The construction
of spline functions is a hybrid between the interpolating polynomials of Section 1.3 and the
Bézier curves of Section 1.4 in that we retain the convex combinations, but use more general
weighted averages of the type in (1.11).

We construct a spline curve based on the three control points c 1, c 2, and c 3 by intro-
ducing four knots (ti)5

i=2, with the assumption that t2 ≤ t3 < t4 ≤ t5. We represent the line
connecting c 1 and c 2 by p(t | c 1,c 2; t2, t4) for t ∈ [t2, t4], and the line connecting c 2 and c 3 by
p(t | c 2,c 3; t3, t5) for t ∈ [t3, t5]. The reason for picking every other knot in the representation
of the line segments is that then the interval [t3, t4] is within the domain of both segments.
This ensures that the two line segments can be combined in a convex combination to form a
quadratic curve,

p(t | c 1,c 2,c 3; t2, t3, t4, t5) = t4 − t

t4 − t3
p(t | c 1,c 2; t2, t4)+ t − t3

t4 − t3
p(t | c 2,c 3; t3, t5) (1.15)

with t varying in [t3, t4]. Of course we are free to vary t throughout the real line R since p is
a polynomial in t , but then the three combinations involved are no longer all convex. The
construction is illustrated in Figure 1.11. Note that if t2 = t3 = 0 and t4 = t5 = 1 we are back in
the Bézier setting.

Just like for Bézier curves we refer to the given points as control points while the piecewise
linear curve obtained by connecting neighbouring control points is the control polygon.

The added flexibility provided by the knots t2, t3, t4 and t5 turns out to be exactly what
we need to produce smooth, piecewise quadratic curves, and by including sufficiently many
control points and knots we can construct curves of almost any shape.

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 15

(a) (b)

(c)

Figure 1.12. A quadratic spline curve (c) and its two polynomial segments (a) and (b).

Suppose we have n control points (c i)n
i=1 and a sequence of knots (ti)n+2

i=2 that are assumed
to be increasing except that we allow t2 = t3 and tn+1 = tn+2. We define the quadratic spline
curve f (t) by

f (t) =

p(t | c 1,c 2,c 3; t2, t3, t4, t5), t3 ≤ t ≤ t4,

p(t | c 2,c 3,c 4; t3, t4, t5, t6), t4 ≤ t ≤ t5,
...

...

p(t | c n−2,c n−1,c n ; tn−1, tn , tn+1, tn+2), tn ≤ t ≤ tn+1.

(1.16)

An example with n = 4 is shown in Figure 1.12. Part (a) of the figure shows a quadratic curve
defined on [t3, t4] and part (b) a curve defined on the adjacent interval [t4, t5]. In part (c) the
two curves in (a) and (b) have been superimposed in the same plot, and, quite strikingly, it
appears that the curves meet smoothly at t4. The precise smoothness properties of splines
will be proved in Section 3.2.4 of Chapter 3; see also exercise 7.

By making use of the piecewise constant functions {Bi ,0}n
i=3 defined in (1.13) and the ab-

breviation p i ,2(t) = p(t | c i−2,c i−1,c i ; ti−1, ti , ti+1, ti+2), we can write f (t) as

f (t) =
n∑

i=3
p i ,2(t)Bi ,0(t). (1.17)

Two examples of quadratic spline curves are shown in Figure 1.13. We observe that the
curves behave like Bézier curves at the two ends.

16 CHAPTER 1. WHY SPLINES AND B-SPLINES?

(a) (b)

Figure 1.13. Two quadratic spline curves, both with knots t = (0,0,0,1,2,2,2).

1.5.3 Smoothness of spline curves

The geometric construction of one segment of a spline curve, however elegant and numeri-
cally stable it may be, would hardly be of much practical interest was it not for the fact that
it is possible to smoothly join together neighbouring segments. We will study this in detail in
Chapter 3, but the following theorem summarises the quadratic case.

Theorem 1.2. If ti+1 occurs once among the knots (t j)i+3
j=i−2, the spline function

f (t) = p i ,2,1(t)Bi ,0(t)+p i+1,2,1(t)Bi+1,0(t)

has continuous first derivative at the join ti+1. If ti+1 occurs twice among the knots
(t j)i+4

j=i−2, then
f (t) = p i ,2,1(t)Bi ,0(t)+p i+2,2,1(t)Bi+2,0(t)

is in general just continuous at ti+1.

This ability to control the smoothness of a spline by varying the multiplicity of the knots
is important in practical applications. For example it is often necessary to represent curves
with a sharp corner (discontinuous derivative).

Two examples of spline curves with reduced smoothness are shown in Figure 1.14. Fig-
ure (a) shows a quadratic spline with a double knot and a discontinuous derivative at the
encircled point, while Figure (b) shows a cubic spline with a double knot and a discontinu-
ous second derivative at the encircled point.

1.5.4 Representing spline curves in terms of basis functions

In Section 1.4 we saw that a Bézier curve can be written as a linear combination of Bernstein
polynomials with the control points as coefficients, see equation(1.10). In this section we
want to sketch a similar representation for spline curves.

Let us consider the case of linear splines. Suppose we have n control points (c i)n
i=1 and

the n knots t = (ti)n+1
i=2 which we assume are distinct for simplicity. We have seen that a typical

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 17

(a) (b)

Figure 1.14. A quadratic spline with a double knot at the circled point (a) and a cubic spline with a double knot at the circled
point (b).

linear spline can be written

f (t) =
n∑

i=2
p i ,1(t)Bi ,0(t), t ∈ [t2, tn+1], (1.18)

where {Bi ,0}n
i=2 are given by (1.13). By making use of (1.11), adapted to segment i , we obtain

f (t) =
n∑

i=2

(t − ti

ti+1 − ti
p i Bi ,0(t)+ ti+1 − t

ti+1 − ti
p i−1Bi ,0(t)

)
=

n−1∑
i=2

(t − ti

ti+1 − ti
Bi ,0(t)+ ti+2 − t

ti+2 − ti+1
Bi+1,0(t)

)
p i+ (1.19)

t3 − t

t3 − t2
B2,0(t)p1 +

t − tn

tn+1 − tn
Bn,0(t)pn .

By introducing the functions

Bi ,1(t) = t − ti

ti+1 − ti
Bi ,0(t)+ ti+2 − t

ti+2 − ti+1
Bi+1,0(t) (1.20)

for i = 2, . . . , n, we can then write f as

f (t) =
n∑

i=1
p i Bi ,1(t).

These functions are called basic splines, or more briefly, B-splines.
The same argument can be repeated in the quadratic case and leads to quadratic B-

splines, defined by the recurrence

Bi ,2(t) = t − ti

ti+2 − ti
Bi ,1(t)+ ti+3 − t

ti+3 − ti+1
Bi+1,1(t), (1.21)

starting with Bi ,0 as defined in (1.13). The next chapter starts with this recurrence relation,
generalised to degree d , and from this explores the most basic properties B-splines.

18 CHAPTER 1. WHY SPLINES AND B-SPLINES?

1.6 Conclusion

Our starting point in this chapter was the need for efficient and numerically stable methods
for determining smooth curves from a set of points. We considered three possibilities, namely
polynomial interpolation, Bézier curves and spline curves. In their simplest forms, all three
methods produce polynomial curves that can be expressed as

g (t) =
d∑

i=0
ai Fi (t),

where d is the polynomial degree, (ai)d
i=0 are the coefficients and {Fi }d

i=0 are the basis poly-
nomials.

The differences between the three methods lie in the choice of basis polynomials, or
equivalently, how the given points relate to the final curve. In the case of interpolation the
coefficients are points on the curve with the Lagrange polynomials as basis polynomials. For
Bézier and spline curves the coefficients are control points with the property that the curve it-
self lies inside the convex hull of the control points, while the basis polynomials are the Bern-
stein polynomials and (one segment of) B-splines respectively. For our purposes Bézier and
spline curves are preferable since they can be constructed by forming repeated convex com-
binations which should ensure that the resulting curves are relatively insensitive to round-off
errors.

The use of convex combinations also means that the constructions have simple geomet-
ric interpretations. This has the advantage that a Bézier curve or spline curve can conve-
niently be manipulated interactively by manipulating the curve’s control points. As we saw in
Section 1.4.2 this also makes it quite simple to link several Bézier curves smoothly together.
The advantage of spline curves over Bézier curves is that smoothness between neighbouring
polynomial pieces is built into the basis functions (B-splines) instead of being controlled by
constraining control points according to specific rules.

In the coming chapters we are going to study various aspects of splines, primarily by un-
covering properties of B-splines. This means that our point of view will shift somewhat, from
spline curves to spline functions (each control point is a real number), since B-splines are
functions. However, virtually all the properties we obtain for spline functions also make sense
for spline curves, and even tensor product spline surfaces, see Chapters 6 and 7.

1.7 Exercises

1.1 Convex set
Recall that a subset A of Rn is said to be convex if whenever we pick two points in A,
the line connecting the two points is also in A. In this exercise we are going to prove
that the convex hull of a finite set of points is the smallest convex set that contains the
points. This is obviously true if we only have one or two points. To gain some insight
we will first show that it is also true in the case of three points before we proceed to the
general case. We will use the notation CH(c 1, . . . ,c n) to denote the convex hull of the
points c 1, . . . , c n .

1.7. EXERCISES 19

a) Suppose we have three points c 1, c 2 and c 3. We know that the convex hull of c 1

and c 2 is the straight line segment that connects the points. Let c̃ be a point on
this line, i.e.,

c̃ = (1−λ)c 1 +λc 2 (1.22)

for some λ with 0 ≤ λ ≤ 1. Show that any convex combination of c̃ and c 3 is a
convex combination of c 1, c 2 and c 3. Explain why this proves that CH(c 1,c 2,c 3)
contains the triangle with the three points at its vertexes. The situation is depicted
graphically in Figure 1.2.

b) It could be that CH(c 1,c 2,c 3) is larger than the triangle formed by the three points
since the convex combination that we considered above was rather special. We
will now show that this is not the case.

Show that any convex combination of c 1, c 2 and c 3 gives rise to a convex com-
bination on the form (1.22). Hint: Show that if c is a convex combination of the
three points, then we can write

c =λ1c 1 +λ2c 2 +λ3c 3

= (1−λ3)c̃ +λ3c 3,

where c̃ is some convex combination of c 1 and c 2. Why does this prove that the
convex hull of three points coincides with the triangle formed by the points? Ex-
plain why this shows that if B is a convex set that contains c 1, c 2 and c 3 then B
must also contain the convex hull of the three points which allows us to conclude
that the convex hull of three points is the smallest convex set that contains the
points.

c) The general proof that the convex hull of n points is the smallest convex set that
contains the points is by induction on n. We know that this is true for n = 2 and
n = 3 so we assume that n ≥ 4. Let B be a convex set that contains c 1, . . . , c n . Use
the induction hypothesis and show that B contains any point on a straight line
that connects c n and an arbitrary point in CH(c 1, . . . ,c n−1).

d) From what we have found in (c) it is not absolutely clear that any convex setB that
contains c 1, . . . , c n also contains all convex combinations of the points. To settle
this show that any point c in CH(c 1, . . . ,c n) can be written c = λc̃ + (1−λ)c n for
some λ in [0,1] and some point c̃ in CH(c 1, . . . ,c n−1). Hint: Use a trick similar to
that in (b).

Explain why this lets us conclude thatCH(c 1, . . . ,c n) is the smallest convex set that
contains c 1, . . . , c n .

1.2 Interpolating curves of general degree
In this exercise we are going to extend the construction of interpolating curves to higher
degrees.

a) Suppose we are given four points (c i)3
i=0 and four strictly increasing parameters

20 CHAPTER 1. WHY SPLINES AND B-SPLINES?

q0,3

t3-
t

t-t0

t3-t0

q0,2

t2-
t

t-t0

t2-t0

q0,1

t1-
t

t-t0

t1-t0

q1,2

t3-
t

t-t1

t3-t1

q1,1

t2-
t

t-t1

t2-t1

q2,1

t3-
t

t-t2

t3-t2

c0

c1

c2

c3

Figure 1.15. Computing a point on a cubic interpolating curve.

t = (ti)3
i=0. Form the two quadratic interpolants

q 0,2(t) = q(t | c 0,c 1,c 2; t0, t1, t2),

q 1,2(t) = q(t | c 1,c 2,c 3; t1, t2, t3),

and combine these to obtain the cubic curve q 0,3(t),

q 0,3(t) = t3 − t

t3 − t0
q 0,2(t)+ t − t0

t3 − t0
q 1,2(t).

Verify that q 0,3 satisfies the interpolation conditions q 0,3(ti) = c i for i = 0, 1, 2, 3.

b) Suppose more generally that we are given d + 1 points (c i)d
i=0 and parameters

(ti)d
i=0. Construct the the curve q 0,d of degree d by the affine combination

q 0,d (t) = td − t

td − t0
q 0,d−1(t)+ t − t0

td − t0
q 1,d−1(t) (1.23)

where q 0,d−1 is the curve of degree d − 1 that interpolates (c i)d−1
i=0 at (ti)d−1

i=0 and
similarly for q 1,d−1.

Verify by induction that q 0,d satisfies the interpolation conditions q 0,d (ti) = c i for
i = 0, . . . , d .

c) Write a program that implements interpolation by repeated use of (1.23) (Fig-
ure 1.15 may be helpful). Test your program on some examples like the ones in
Figure 1.16, and try to explain the somewhat strange behaviour in examples (b)
and (d).

1.7. EXERCISES 21

(a) t = (0,1,2,3). (b) t = (0,0.3,2.7,3).

(c) t = (0,0.75,2.25,3). (d) t = (0,0.3,2.8,3).

Figure 1.16. Some examples of cubic interpolation.

d) Show that q 0,d can be written as

q 0,d (t) = c 0`0,d (t)+c 1`1,d (t)+·· ·+c d`d ,d (t), (1.24)

where the functions {`i ,d }d
i=0 are the Lagrange polynomials of degree d given by

`i ,d (t) = ∏
0≤ j≤d

j,i

(t − t j)

ti − t j
. (1.25)

Verify that

`i ,d (tk) =
{

1, if k = i ,

0, otherwise.

1.3 Bézier curves of general degree
Bézier curves can be extended to higher degrees, just like the interpolating curves in
exercise 2.

a) Start with four points (c i)3
i=0 and form the curve p3,3(t) = p(t | c 0,c 1,c 2,c 3) by

taking a convex combination of two quadratic curves,

p3,3(t) = (1− t)p2,2(t)+ t p3,2(t).

22 CHAPTER 1. WHY SPLINES AND B-SPLINES?

(a) (b)

Figure 1.17. Constructing a Bézier curve from four points.

(a) (b)

Figure 1.18. Two Bézier curves of degree five.

The two curves on the right are defined as in (1.9).

Show that p3,3(t) can be expressed as

p3,3(t) = (1− t)3c 0 +3t (1− t)2c 1 +3t 2(1− t)c 2 + t 3c 3,

and conclude that p3,3(t) is a convex combination of the points (c i)3
i=0.

This is a cubic Bézier curve, and the four polynomials on the right are the cubic
Bernstein polynomials. The construction is illustrated in Figure 1.17. Figure (a)
shows the construction for a given value of t , and in Figure (b) the cubic and the
two quadratic curves are shown together with the lines connecting corresponding
points on the two quadratics (every point on the cubic lies on such a line).

b) Generalise the construction and the result in (a) by starting with d + 1 points
(ci)d

i=0.

Two examples of Bézier curves of degree five are shown in Figure 1.18.

1.4 Visualise the computation of a point on a cubic Bézier curve by arranging the compu-
tations in a table similar to the one in Figure 1.15.

1.5 It is sometimes useful to represent Bézier curves on an interval [a,b] rather than [0,1].

1.7. EXERCISES 23

Show that if pd ,d (t) is a Bézier curve defined on [0,1] then

p̃d ,d (t) = pd ,d

(
(t −a)/(b −a)

)
is a Bézier curve defined on the interval [a,b], and derive formulas for the correspond-
ing basis polynomials, the Bernstein polynomials for the interval [a,b].

1.6 Repeat the derivations in equations (1.19) for the quadratic spline curve (1.17) and
show that it can be expressed in terms of basis functions that satisfy the recurrence
relation (1.21).

1.7 Show that a quadratic spline is continuous and has a continuous derivative at a single
knot.

24 CHAPTER 1. WHY SPLINES AND B-SPLINES?

Chapter 2
Basic properties of splines and B-splines

In Chapter 1 we introduced splines through a geometric construction of curves based on
repeated averaging, and it turned out that a natural representation of spline curves was as
linear combinations of B-splines. In this chapter we study the most basic properties of B-
splines in detail. The starting point is the definition of B-splines via the recurrence relation
that generalises (1.21). In Section 2.1 we explore some of the most obvious properties of B-
splines, and then in Section 2.3 we transfer some of these properties to linear combinations of
B-splines. In Section 2.4 we give a matrix representation of splines and B-splines from which
it is easy to deduce computational algorithms in Section 2.5. The matrix representation is
also the basis for our development of much of the theory in later chapters.

2.1 The recurrence relation for B-splines

We saw in Section 1.5 that a quadratic spline curve can be represented in terms of certain
basis functions which we called B-splines. In this section we will define B-splines of any
degree and deduce some of their most basic properties. Since we will mainly be working with
functions in the remainder of the book, we use x as the independent variable.

Definition 2.1. Let d be a nonnegative integer and let t = (t j)n+d+1
j=1 , the knot vector or knot

sequence, be a nondecreasing sequence of real numbers of length at least d+2. If 1 ≤ j ≤ n,
the j th B-spline of degree d with knots t is defined by

B j ,d ,t (x) = x − t j

t j+d − t j
B j ,d−1,t (x)+ t j+1+d −x

t j+1+d − t j+1
B j+1,d−1,t (x), (2.1)

for all real numbers x, starting with

B j ,0,t (x) =
{

1, if t j ≤ x < t j+1;

0, otherwise.
(2.2)

Here, the convention is assumed that ‘0/0 = 0′.

25

26 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

(a)

1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

(b)

Figure 2.1. A linear B-spline with simple knots (a) and double knots (b).

When there is no chance of ambiguity, some of the subscripts will be dropped and the
B-spline written as either B j ,d , B j ,t , or simply B j . We say that a knot has multiplicity m if
it appears m times in the knot sequence. Knots of multiplicity one, two and three are also
called simple, double and triple knots.

Example 2.2 (B-splines of degree 1). One application of the recurrence relation gives

B j ,1(x) =
x − t j

t j+1 − t j
B j ,0(x)+

t j+2 −x

t j+2 − t j+1
B j+1,0(x) =

(x − t j)/(t j+1 − t j), if t j ≤ x < t j+1;

(t j+2 −x)/(t j+2 − t j+1), if t j+1 ≤ x < t j+2;

0, otherwise.

A plot of this hat function is shown in Figure 2.1 (a) in a typical case where t j < t j+1 < t j+2. The figure shows
clearly that B j ,1 consists of linear polynomial pieces, with breaks at the knots. In Figure 2.1 (b), the two knots
t j+1 and t j+2 are identical; then the second linear piece is identically zero since B j+1,0 = 0, and B j ,1 is discon-
tinuous. This provides an illustration of the smoothness properties of B-splines: a linear B-spline is discontin-
uous at a double knot, but continuous at simple knots.

2.2 Some simple consequences of the recurrence relation

When are B-splines zero and when are they positive? What are the knots that influence a
B-spline? How smooth are B-splines? How can they be computed efficiently? These are
some basic questions concerning B-splines that we will attempt to answer in this chapter,
and Lemma 2.3 below sums up a number of the answers.

2.2.1 Basic properties

Many properties of B-splines can be deduced directly from the definition. One of the most
basic properties is that

B j ,d (x) = 0 for all x when t j = t j+d+1.

This is true by definition for d = 0. If it is true for B-splines of degree d−1, the zero convention
means that if t j = t j+d+1 then both B j ,d−1(x)/(t j+d −t j) and B j+1,d−1(x)/(t j+1+d −t j+1) on the

2.2. SOME SIMPLE CONSEQUENCES OF THE RECURRENCE RELATION 27

right in (2.1) are zero, and hence B j ,d (x) is zero. The recurrence relation can therefore be
expressed more explicitly as

B j ,d (x) =

0, if t j = t j+1+d ;

s1(x), if t j < t j+d and t j+1 = t j+1+d ;

s2(x), if t j = t j+d and t j+1 < t j+1+d ;

s1(x)+ s2(x), otherwise;

(2.3)

where

s1(x) = x − t j

t j+d − t j
B j ,d−1(x) and s2(x) = t j+1+d −x

t j+1+d − t j+1
B j+1,d−1(x)

for all x.
The B-spline B j ,d depends only on the knots (tk) j+d+1

k= j . For B-splines of degree 0 this is
clear from equation (2.2), and Example 2.2 shows that it is also true for B-splines of degree 1.
To show that it is true in general, we use induction and assume that B j ,d−1 only depends on

(tk) j+d
k= j and B j+1,d−1 only depends on (tk) j+d+1

k= j+1 . By examining the recurrence relation (2.1)

we see that then B j ,d can only depend on the knots (tk) j+d+1
k= j , as we claimed.

The notation B j ,d (x) = B [t j , . . . , t j+d+1](x) will sometimes be used to emphasise the de-
pendence of a B-spline on the individual knots. For example, if d ≥ 2 and if we set (a,b, . . . ,c,d)
= (t j , t j+1, . . . , t j+d , t j+d+1) , then (2.1) can be written

B [a,b, . . . ,c,d](x) = x −a

c −a
B [a,b, . . . ,c](x)+ d −x

d −b
B [b, . . . ,c,d](x). (2.4)

A more complex property of B-splines is that they are translation invariant. Mathemati-
cally this is expressed by the formula

B [t j + y, . . . , t j+d+1 + y](x + y) = B [t j , . . . , t j+d+1](x) x, y ∈R. (2.5)

We argue by induction, and start by checking the case d = 0. We have

B [t j + y, t j+1 + y](x + y) =
{

1, if t j + y ≤ x + y < t j+1 + y ;

0, otherwise
=

{
1, if t j ≤ x < t j+1;

0, otherwise,

so equation (2.5) holds for d = 0. Suppose that the translation invariance holds for B-splines
of degree d −1. In the recurrence (2.1) for the left-hand-side of (2.5) the first coefficient (x −
t j)/(t j+d − t j) can be written

(x + y)− (t j + y)

(t j+d + y)− (t j + y)
= x − t j

t j+d − t j
,

i.e., the same as before translation. This also holds for the other coefficient (t j+d+1−x)/(t j+d+1−
t j+1) in (2.1). Since the two B-splines of degree d−1 are translation invariant by the induction
hypothesis, we conclude that (2.5) holds for all polynomial degrees.

We have now seen a number of examples of B-splines and some characteristic features
are evident. The following lemma sums up the most basic properties.

28 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

Lemma 2.3. Let d be a nonnegative polynomial degree and let t = (t j) be a knot sequence.
The B-splines on t have the following properties:

1. Local knots. The j th B-spline B j ,d depends only on the knots t j , t j+1, . . . , t j+d+1.

2. Local support.

(a) If x is outside the interval [t j , t j+d+1) then B j ,d (x) = 0. In particular, if t j =
t j+d+1 then B j ,d is identically zero.

(b) If x lies in the interval [tµ, tµ+1) then B j ,d (x) = 0 if j <µ−d or j >µ.

3. Positivity. If x ∈ (t j , t j+d+1) then B j ,d (x) > 0. The closed interval [t j , t j+d+1] is called
the support of B j ,d .

4. Piecewise polynomial. The B-spline B j ,d can be written

B j ,d (x) =
j+d∑
k= j

B k
j ,d (x)Bk,0(x) (2.6)

where each B k
j ,d (x) is a polynomial of degree d .

5. Special values. If z = t j+1 = ·· · = t j+d < t j+d+1 then B j ,d (z) = 1 and Bi ,d (z) = 0 for
i , j .

6. Smoothness. If the number z occurs m times among t j , . . . , t j+d+1 then the deriva-
tives of B j ,d of order 0, 1, . . . , d −m are all continuous at z.

7. Translation invariance. The value of a B-spline is not changed when the argument of
the B-spline and all its knots are shifted by the same number,

B [t j + y, . . . , t j+d+1 + y](x + y) = B [t j , . . . , t j+d+1](x) for all x and y in R. (2.7)

Proof. Properties 1–3 follow directly, by induction, from the recurrence relation, see exer-
cise 5. In Section 1.5 in Chapter 1 we saw that the construction of splines produced piecewise
polynomials, so this explains property 4. Property 5 is proved in exercise 8 and property 6 will
be proved in Chapter 3. Property 7 was proved above.

2.2.2 More examples of B-splines

A number of different quadratic B-splines are shown in Figure 2.2. Note that the B-spline
B [0,1,2,3](x) consists of three nonzero polynomial pieces. In general the number of nonzero
pieces depends on the multiplicity of the knots. As an example, the functions B [0,0,0,1](x)
and B [0,1,1,1](x) consist of only one nonzero piece. Figure 2.2 also illustrates the smooth-
ness properties of B-splines: At a single knot a quadratic B-spline is continuous and has a

2.2. SOME SIMPLE CONSEQUENCES OF THE RECURRENCE RELATION 29

2.5 5 7.5 10 12.5 15 17.5

0.2

0.4

0.6

0.8

1

Figure 2.2. From left to right we see the quadratic B-splines B [0,0,0,1](x), B [2,2,3,4](x), B [5,6,7,8](x), B [9,10,10,11](x),
B [12,12,13,13](x), B [14,15,16,16](x), and B [17,18,18,18](x).

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

Figure 2.3. The different polynomial pieces of a quadratic B-spline.

continuous derivative, at a double knot it is continuous, while at a triple knot it is discontin-
uous. These claims will be proved in the next chapter.

Figure 2.3 shows the quadratic B-spline B [0,1,2,3](x) together with its constituent poly-
nomial pieces. Note how the three parabolas join together smoothly to make the B-spline
have a continuous first derivative at every point.

Figure 2.4 shows some cubic B-splines. The middle B-spline, B [9,10,11,12,13], has sim-
ple knots and its second derivative is therefore continuous for all real numbers x, including
the knots. We will show that in general a cubic B-spline has 3−m continuous derivatives
at a knot of multiplicity m for m = 1, 2, 3. A cubic B-spline with a knot of multiplicity 4 is
discontinuous at the knot.

Example 2.4 (Uniform B-splines). The B-splines on a uniform knot vector are of special interest. Let
the knots be the set Z of all integers. We index this knot sequence by letting t j = j for all integers j . We denote
the uniform B-spline of degree d ≥ 0 by

Md (x) = B0,p (x) = B [0,1, · · · ,d +1](x), x ∈R. (2.8)

The functions Md are also called cardinal B-splines.

30 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

5 10 15 20

0.2

0.4

0.6

0.8

1

Figure 2.4. From left to right we see the cubic B-splines B [0,0,0,0,1](x), B [2,2,2,3,4](x), B [5,5,6,7,8](x), B [9,10,11,12,13](x)),
B [14,16,16,16,17](x), B [18,19,20,20,20](x), and B [21,22,22,22,22](x).

On the knots Z all B-splines can be written as translates of the function Md . Using (2.5)
we have

B j ,d (x) = B [j , j +1, . . . , j +d +1](x) = B [0,1, . . . ,d +1](x − j) = Md (x − j) for all j .

In particular, B1,d−1(x) = B [1, . . . ,d +1](x) = Md−1(x −1) and the recurrence relation implies
that for d ≥ 1

Md (x) = x

d
Md−1(x)+ d +1−x

d
Md−1(x −1). (2.9)

The first few uniform B-splines are computed in Exercise 3. As we shall see in Chapter 3, the
B-spline Md has d −1 continuous derivatives at the knots. The quadratic cardinal B-spline
M2 is shown in Figure 2.2, translated to the interval [5,8], while M3 is shown in Figure 2.4,
translated to [9,13].

The Bernstein polynomials that appeared in the representation of Bézier curves in Sec-
tion 1.4 are special cases of B-splines.

Theorem 2.5 (Bernstein polynomials). On the interval [0,1] the j th Bernstein polynomial
is given by

b j ,d (x) =
(

d

j

)
x j (1−x)d− j = B [

d+1− j︷ ︸︸ ︷
0, . . . ,0,

j+1︷ ︸︸ ︷
1, . . . ,1](x), for j = 0, . . . , d , x ∈ [0,1]. (2.10)

Proof. We use induction on the degree. Clearly (2.10) holds for d = 0. Suppose it holds for
d −1. By the recurrence relation (2.4) and Exercise 7 we find

B [

d+1− j︷ ︸︸ ︷
0, . . . ,0,

j+1︷ ︸︸ ︷
1, . . . ,1](x) = xB [

d+1− j︷ ︸︸ ︷
0, . . . ,0,

j︷ ︸︸ ︷
1, . . . ,1](x)+ (1−x)B [

d− j︷ ︸︸ ︷
0, . . . ,0,

j+1︷ ︸︸ ︷
1, . . . ,1](x)

= xb j−1,d−1(x)+ (1−x)b j ,d−1(x) = b j ,d (x).

(2.11)

This is also valid for j = 0 and j = d if we define b j ,d−1(x) = 0 for j < 0 and j ≥ d .

2.3. LINEAR COMBINATIONS OF B-SPLINES 31

2.3 Linear combinations of B-splines

In Theorem ?? we saw that B-splines play a central role in the representation of spline curves.
The purpose of this section is to define precisely what we mean by spline functions and spline
curves and related concepts like the control polygon.

2.3.1 Spline functions

The B-spline B j ,d depends on the knots t j , . . . , t j+1+d . This means that if the knot vector is
given by t = (t j)n+d+1

j=1 for some positive integer n, we can form n B-splines {B j ,d }n
j=1 of degree

d associated with this knot vector. A linear combination of B-splines, or a spline function, is
a combination of B-splines on the form

f =
n∑

j=1
c j B j ,d , (2.12)

where c = (c j)n
j=1 are n real numbers. We formalise this in a definition.

Definition 2.6 (Spline functions). Let t = (t j)n+d+1
j=1 be a nondecreasing sequence of real

numbers, i.e., a knot vector for a total of n B-splines. The linear space of all linear combi-
nations of these B-splines is the spline space Sd ,t defined by

Sd ,t = span{B1,p , . . . ,Bn,p } =
{ n∑

j=1
c j B j ,d | c j ∈R for 1 ≤ j ≤ n

}
.

An element f = ∑n
j=1 c j B j ,d of Sd ,t is called a spline function, or just a spline, of degree d

with knots t , and (c j)n
j=1 are called the B-spline coefficients of f .

If f , g ∈Sd ,t and α ∈R then f +g ∈Sd ,t and α f ∈Sd ,t . It follows thatSd ,t is a linear space
of functions.

It will often be the case that the exact length of the knot vector is of little interest. Then
we may write a spline as

∑
j c j B j ,d without specifying the upper and lower bounds on j .

Example 2.7 (A linear and quadratic spline). In Figure 2.5 (a) we show two splines. In (a) on the knot
vector {0,0,1,2,4,7,8,9,9} we see the linear spline

f = B1,1 +2B3,1 −B4,1 +B5,1 +B6,1 +2B7,1.

In (b) we ploted the function sin(πx/2) together with the spline approximation

s(x) = B2,2(x)+B3,2(x)−B4,2(x)− p
2B5,2(x)

on the knot vector t = (t j)8
j=1 = (0,0,0,1,2,3,3,3). See Exercises 12 and 13 for further discussion of these exam-

ples

Martin Reimers

Martin Reimers

Martin Reimers

32 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

2 4 6 8

-1

-0.5

0.5

1

1.5

2

(a)

0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0.5

1

(b)

Figure 2.5. A linear spline interpolating data (a), and a quadratic spline (solid) that approximates sin(πx/2) (dashed).

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

(a)

0.2 0.4 0.6 0.8 1

-4

-2

2

4

(b)

Figure 2.6. The quadratic spline from Example ?? with its control polygon (a) and the cubic Chebyshev polynomial with its
control polygon (b) developed in Exercise ??.

Note that the knot vectors in the above example both have knots of multiplicity d +1 at
both ends. If in addition no knot occurs with multiplicity higher than d +1 (as in the exam-
ples), the knot vector is said to be d +1-regular.

When we introduced spline curves in Chapter 1, we saw that a curve mimicked the shape
of its control polygon in an intuitive way. The control polygon of a spline function is not quite
as simple as for curves since the B-spline coefficients of a spline function is a number. What
is needed is an abscissa to associate with each coefficient.

Definition 2.8 (Control polygon for spline functions). Let f = ∑n
j=1 c j B j ,d be a spline in

Sd ,t . The control points of f are the points with coordinates (t∗j ,c j) for j = 1, . . . , n, where

t∗j =
t j+1 +·· ·+ t j+d

d

are the knot averages of t . The control polygon of f is the piecewise linear function ob-
tained by connecting neighbouring control points by straight lines.

Some spline functions are shown with their control polygons in Figures 2.6–2.7. It is quite

Martin Reimers

Martin Reimers

2.3. LINEAR COMBINATIONS OF B-SPLINES 33

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

(a)

1 2 3 4 5

1

2

3

4

5

6

(b)

Figure 2.7. Two splines with corresponding control polygons. The spline in (a) is quadratic with knots t = (0,0,0,1,1,2,3,3,3)
and B-spline coefficients c = (1,0,2,1/2,0,1), while the spline in (b) is cubic with knots t = (0,0,0,0,1,1,2,2,2,4,5,5,5,5) and
B-spline coefficients 0,3,1,4,6,1,5,3,0,4).

striking how the spline is a smoothed out version of the control polygon. In particular we
notice that at a knot with multiplicity at least d , the spline and its control polygon agree. This
happens at the beginning and end of all the splines since we have used d + 1-regular knot
vectors, and also at some points in the interior for the splines in Figure 2.7. We also note that
the control polygon is tangent to the spline function at a knot of multiplicity d or d +1. This
close relationship between a spline and its control polygon is a geometric instance of one of
the many nice properties possessed by splines represented in terms of B-splines.

From our knowledge of B-splines we immediately obtain some basic properties of splines.

Lemma 2.9. Let t = (t j)n+d+1
j=1 be a knot vector for splines of degree d with n ≥ d +1, and

let f =∑n
j=1 c j B j ,d be a spline in Sd ,t . Then f has the following properties:

1. If x is in the interval [tµ, tµ+1) for some µ in the range d +1 ≤µ≤ n then

f (x) =
µ∑

j=µ−d
c j B j ,d (x).

2. If z = t j+1 = ·· · = t j+d < t j+d+1 for some j in the range 1 ≤ j ≤ n then f (z) = c j .

3. If z occurs m times in t then f has continuous derivatives of order 0, . . . , d −m at z.

Proof. This follows directly from Lemma 2.3.

2.3.2 Spline curves

For later reference we give a precise definition of spline curves, although we have already
made extensive use of them in Chapter 1.

In many situations spline functions will be the right tool to represent a set of data or some
desired shape. But as we saw in Section 1.2 functions have some inherent restrictions in that

34 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

for a given x, a function can only take one scalar value. We saw that one way to overcome this
restriction was by representing the x- and y-components by two different functions,

f (u) = (
f1(u), f2(u)

)
.

Vector functions in higher dimensions are obtained by adding more components. We will be
particularly interested in the special case where all the components are spline functions on a
common knot vector.

Definition 2.10 (Spline curves). Let t = (t j)n+d+1
j=1 be a nondecreasing sequence of real

numbers, and let s ≥ 2 be an integer. The space of all spline curves in Rs of degree d and
with knots t is defined as

Ss
d ,t =

{ n∑
j=1

c j B j ,d | c j ∈Rs for 1 ≤ j ≤ n
}

.

More precisely, an element f = ∑n
j=1 c j B j ,d of Ss

d ,t is called a spline vector function or a
parametric spline curve of degree d with knots t , and (c j)n

j=1 are called the B-spline coeffi-
cients or control points of f .

We have already defined what we mean by the control polygon of a spline curve, but for
easy reference we repeat the definition here.

Definition 2.11 (Control polygon for spline curves). Let t = (t j)n+d+1
j=1 be a knot vector for

splines of degree d , and let f =∑n
j=1 c j B j ,d be a spline curve in Ss

d ,t for s ≥ 2. The control
polygon of f is the piecewise linear function obtained by connecting neighbouring control
points (c j)n

j=1 by straight lines.

Some examples of spline curves with their control polygons can be found in Section 1.5.
Spline curves may be thought of as spline functions with B-spline coefficients that are

vectors. This means that virtually all the algorithms that we develop for spline functions can
be generalised to spline curves by simply applying the functional version of the algorithm to
each component of the curve in turn.

2.4 A matrix representation of B-splines

Mathematical objects defined by recurrence relations can become very complex even if the
recurrence relation is simple. This is certainly the case for B-splines. The structure of the
recurrence relation (2.1) is relatively simple, but if we try to determine the symbolic expres-
sions of the individual pieces of a B-spline in terms of the knots and the variable x, for degree
five or six, the algebraic complexity of the expressions is perhaps the most striking feature.
It turns out that these rather complex formulas can be represented in terms of products of

2.4. A MATRIX REPRESENTATION OF B-SPLINES 35

simple matrices, and this is the theme of this section. This representation will be used in Sec-
tion 3.1 to show how polynomials can be represented in terms of B-splines and to prove that
B-splines are linearly independent. In Section 2.5 we will make use of the matrix notation
to develop algorithms for computing function values and derivatives of splines. The matrix
representation will also be useful in the theory of knot insertion in Chapter 4.

We start by introducing the matrix representation for linear and quadratic splines in two
examples.

Example 2.12 (Vector representation of linear B-splines). Consider the case of linear B-splines
with knots t , and focus on one nonempty knot interval [tµ, tµ+1). We have already seen in previous sections
that in this case the B-splines are quite simple. From the support properties of B-splines we know that the only
linear B-splines that are nonzero on this interval are Bµ−1,1 and Bµ,1 and their restriction to the interval can
be given in vector form as (

Bµ−1,1 Bµ,1
)= (tµ+1−x

tµ+1−tµ

x−tµ

tµ+1−tµ

)
. (2.13)

Example 2.13 (Matrix representation of quadratic B-splines). The matrices appear when we
come to quadratic splines. We consider the same nonempty knot interval [tµ, tµ+1); the only nonzero

quadratic B-splines on this interval are {B j ,2}
µ
j=µ−2. By checking with Definition 2.1 we see that for x in

[tµ, tµ+1), the row vector of these B-splines may be written as the product of two simple matrices,

(
Bµ−2,2 Bµ−1,2 Bµ,2

)= (
Bµ−1,1 Bµ,1

)

tµ+1−x

tµ+1−tµ−1

x−tµ−1

tµ+1−tµ−1
0

0
tµ+2−x

tµ+2−tµ

x−tµ

tµ+2−tµ

=
(tµ+1−x

tµ+1−tµ

x−tµ

tµ+1−tµ

)
tµ+1−x

tµ+1−tµ−1

x−tµ−1

tµ+1−tµ−1
0

0
tµ+2−x

tµ+2−tµ

x−tµ

tµ+2−tµ

 .

(2.14)

If the matrices in (2.14) are multiplied together the result would of course agree with that
in Exercise ??. However, the power of the matrix representation lies in the factorisation itself,
as we will see in the next section. To obtain the value of the B-splines we can multiply the
matrices together, but this should be done numerically, after values have been assigned to
the variables. In practise this is only done implicitly, see the algorithms in Section 2.5.

The matrix notation generalises to B-splines of arbitrary degree in the obvious way.

Theorem 2.14. Let t = (t j)n+d+1
j=1 be a knot vector for B-splines of degree d , and let µ be an

integer such that tµ < tµ+1 and d +1 ≤ µ≤ n. For each positive integer k with k ≤ d define

Martin Reimers

36 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

the matrix Rµ

k (x) = Rk (x) by

Rk (x) =

tµ+1−x

tµ+1−tµ+1−k

x−tµ+1−k

tµ+1−tµ+1−k
0 · · · 0

0
tµ+2−x

tµ+2−tµ+2−k

x−tµ+2−k

tµ+2−tµ+2−k
. . . 0

...
...

. . .
. . .

...

0 0 . . .
tµ+k−x

tµ+k−tµ

x−tµ
tµ+k−tµ

. (2.15)

Then, for x in the interval [tµ, tµ+1), the d + 1 B-splines {B j ,d }µj=µ−d of degree d that are
nonzero on this interval can be written

B T
d = (

Bµ−d ,d Bµ−d+1,d . . . Bµ,d
)= R1(x)R2(x) · · ·Rd (x). (2.16)

If f = ∑
j c j B j ,d is a spline in Sd ,t , and x is restricted to the interval [tµ, tµ+1), then f (x) is

given by
f (x) = R1(x)R2(x) · · ·Rd (x)c 0, (2.17)

where the vector c 0 is given by c 0 = (cµ−d ,cµ−d+1, . . . ,cµ)T . The matrix Rk is called a B-
spline matrix.

For d = 0 the usual convention of interpreting an empty product as 1 is assumed in equa-
tions (2.16) and (2.17).

Theorem 2.14 shows how one polynomial piece of splines and B-splines are built up, by
multiplying and adding together (via matrix multiplications) certain linear polynomials. This
representation is only an alternative way to write the recurrence relation (2.1), but the advan-
tage is that all the recursive steps are captured in one equation. This will be convenient for
developing the theory of splines in Section 3.1.2. The factorisation (2.17) will also be helpful
for designing algorithms for computing f (x). This is the theme of Section 2.5.

It should be emphasised that equation (2.16) is a representation of d + 1 polynomials,
namely the d +1 polynomials that make up the d +1 B-splines on the interval [tµ, tµ+1). This
equation can therefore be written(

Bµ

µ−d ,d (x) Bµ

µ−d+1,d (x) . . . Bµ

µ,d (x)
)
= Rµ

1 (x)Rµ
2 (x) · · ·Rµ

, d(x),

see Lemma 2.3.
Likewise, equation (2.17) gives a representation of the polynomial f µ that agrees with the

spline f on the interval [tµ, tµ+1),

f µ(x) = R1(x)R2(x) · · ·Rd (x)c 0.

Once µ has been fixed we may let x take values outside the interval [tµ, tµ+1) in both these
equations. In this way the B-spline pieces and the polynomial f µ can be evaluated at any real
number x. Figure 2.3 was produced in this way.

Martin Reimers

2.5. ALGORITHMS FOR EVALUATING A SPLINE 37

Example 2.15 (Matrix representation of a quadratic spline). In Example ?? we considered the
spline

s(x) = B2,2(x)+B3,2(x)−B4,2(x)− p
2B5,2(x)

on the knot vector
t = (t j)8

j=1 = (0,0,0,1,2,3,3,3).

Let us use the matrix representation to determine this spline explicitly on each of the subintervals [0,1], [1,2],
and [2,3]. If x ∈ [0,1) then t3 ≤ x < t4 so s(x) is determined by (2.17) with µ = 3 and d = 2. To determine the
matrices R1 and R2 we use the knots

(tµ−1, tµ, tµ+1, tµ+2) = (0,0,1,2)

and the coefficients
(cµ−2,cµ−1,cµ) = (0,1,1).

Then equation (2.17) becomes

s(x) = (
1−x, x

)(1−x x 0
0 (2−x)/2 x/2

)0
1
1

= x(2−x)

If x ∈ [1,2) then t4 ≤ x < t5 so s(x) is determined by (2.17) with µ= 4 and d = 2. To determine the matrices R1

and R2 in this case we use the knots

(tµ−1, tµ, tµ+1, tµ+2) = (0,1,2,3)

and the coefficients
(cµ−2,cµ−1,cµ) = (1,1,−1).

From this we find

s(x) = 1

2

(
2−x, x −1

)(2−x x 0
0 3−x x −1

) 1
1
−1

= 2x −x2.

For x ∈ [2,3) we use µ= 5, and on this interval s(x) is given by

s(x) = (
3−x, x −2

)((3−x)/2 (x −1)/2 0
0 3−x x −2

) 1
−1
−p

2

= (
2−x

)(
6−2

p
2− (2− p

2)x
)
.

2.5 Algorithms for evaluating a spline

We originally introduced spline curves as the result of the geometric construction given in
Algorithm ?? in Chapter 1. In this section we will relate this algorithm to the matrix represen-
tation of B-splines and develop an alternative algorithm for computing splines.

2.5.1 High level description

Recall from Theorem 2.14 that a spline f of degree d with knots t and B-spline coefficients c
can be expressed as

f (x) = R1(x) · · ·Rd (x)c 0 (2.18)

Martin Reimers

Martin Reimers

38 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

for any x in the interval [tµ, tµ+1). Here c 0 = (cµ−d , . . . ,cµ) denotes the B-spline coefficients
that are active on this interval. To compute f (x) from this representation we have two op-
tions: We can accumulate the matrix products from left to right or from right to left.

If we start from the right, the computations are

c d−k+1 = Rk c d−k , for k = d , d −1, . . . , 1. (2.19)

Upon completion of this we have f (x) = c d (note that c d is a vector of dimension 1, i.e., a
scalar). We see that this algorithm amounts to post-multiplying each matrix Rk by a vector
which in component form becomes

(Rk (x)c d−k) j =
t j+k−x

t j+k−t j
c j−1,d−k +

x−t j

t j+k−t j
c j ,d−k (2.20)

for j =µ−k +1, . . . , µ. This we immediately recognise as Algorithm ??.
The alternative algorithm accumulates the matrix products in (2.18) from left to right.

This is equivalent to building up the nonzero B-splines at x degree by degree until we have all
the nonzero B-splines of degree d , then multiplying with the corresponding B-spline coeffi-
cients and summing. Computing the B-splines is accomplished by starting with B 0(x)T = 1
and then performing the multiplications

B k (x)T = B k−1(x)T Rk (x), k = 1, . . . , d .

The vector B p (x) will contain the value of the nonzero B-splines of degree d at x,

B p (x) = (
Bµ−d ,d (x), . . . ,Bµ,d (x)

)T .

We can then multiply with the B-spline coefficients and add up.

Algorithm 2.16 (L). Let the polynomial degree d , the 2d knots tµ−d+1 ≤ tµ < tµ+1 ≤ tµ+d ,
the B-spline coefficients c 0 = (c j)µj=µ−d of a spline f , and a number x in [tµ, tµ+1) be given.
After evaluation of the products

c d−k+1 = Rk (x)c d−k , k = d , d −1,. . . , 1,

the function value f (x) is given by
f (x) = c d .

Algorithm 2.17 (R). Let the polynomial degree d , the knots tµ−d+1 ≤ tµ < tµ+1 ≤ tµ+d and a
number x in [tµ, tµ+1) be given and set B 0 = 1. After evaluation of the products

B k (x)T = B k−1(x)T Rk (x), k = 1, . . . , d ,

the vector B d (x) will contain the value of the d +1 B-splines at x,

B d (x) = (
Bµ−d ,d (x), . . . ,Bµ,d (x)

)T .

Martin Reimers

Martin Reimers

Martin Reimers

2.5. ALGORITHMS FOR EVALUATING A SPLINE 39

BΜ,0

Τ Μ+1-x

x-Τ
Μ

ΤΜ+1-ΤΜ

BΜ-1,1

Τ Μ+1-x

x-Τ
Μ-1

ΤΜ+1-ΤΜ-1

BΜ-2,2

Τ Μ+1-x

x-Τ
Μ-1

ΤΜ+1 -ΤΜ-2

BΜ,1

Τ Μ+2-x

x-Τ
Μ

ΤΜ+2-ΤΜ

BΜ-1,2

Τ Μ+2-x

x-Τ
Μ-1

ΤΜ+2-ΤΜ-1

BΜ,2

Τ Μ+3-x

x-Τ
Μ

ΤΜ+3-ΤΜ

BΜ-3,3

BΜ-2,3

BΜ-1,3

BΜ,3

Figure 2.8. A triangular algorithm for computation of all the nonzero cubic B-splines at x.

cΜ,3

Τ Μ+1-x

x-Τ
Μ

ΤΜ+1-ΤΜ

cΜ-1,2

Τ Μ+1-x

x-Τ
Μ-1

ΤΜ+1-ΤΜ-1

cΜ-2,1

Τ Μ+1-x

x-Τ
Μ-1

ΤΜ+1-ΤΜ-2

cΜ,2

Τ Μ+2-x

x-Τ
Μ

ΤΜ+2-ΤΜ

cΜ-1,1

Τ Μ+2-x

x-Τ
Μ-1

ΤΜ+2-ΤΜ-1

cΜ,1

Τ Μ+3-x

x-Τ
Μ

ΤΜ+3-ΤΜ

cΜ-3,0

cΜ-2,0

cΜ-1,0

cΜ,0

Figure 2.9. A triangular algorithm for computing the value of a cubic spline with B-spline coefficients c at x ∈ [tµ, tµ+1).

40 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

These algorithms have a simple triangular structure, just like Algorithm ??, see figures 2.8–
2.9. Figure 2.8 shows the computation of all the nonzero B-splines at a point x, while Fig-
ure 2.9 shows how the value of a cubic spline can be computed.

In Algorithms 2.16 and 2.17 it is assumed that there are 2d knots to the left and right of
x. This may not always be the case, especially near the ends of the knot vector, unless it is
d +1-regular. Exercise 26 discusses evaluation in such a case.

2.6 Exercises

2.1 Show that

a) B [0,0,0,1](x) = (1−x)B [0,0,1](x) = (1−x)2B [0,1](x).

b) B [0,0,1,2](x) = x(2− 3
2 x)B [0,1](x)+ 1

2 (2−x)2B [1,2](x).

c) B [0,1,2,3](x) = x2

2 B [0,1](x)+
(

3
4 − (x − 3

2)2
)
B [1,2](x)+ (3−x)2

2 B [2,3](x).

d) B [0,1,1,2](x) = x2B [0,1](x)+ (2−x)2B [1,2](x).

e) B [0,0,1,1](x) = 2x(1−x)B [0,1](x).

f) B [0,1,2,2](x) = 1
2 x2B [0,1](x)+ (2−x)(3

2 x −1)B [1,2](x).

g) B [0,1,1,1](x) = x2B [0,1](x).

h) B [0,3,4,6](x) = 1
12 x2B [0,3](x)+ 1

12 (−7x2 +48x −72)B [3,4](x)+ 1
6 (6−x)2B [4,6](x).

2.2 Find the individual polynomial pieces of the following cubic B-splines and discuss
smoothness properties at knots

a) B [0,0,0,0,1](x) and B [0,1,1,1,1](x)

b) B [0,1,1,1,2](x)

2.3 Show the following explicit expressions for the first few uniform B-splines

M1(x) = xM0(x)+ (2−x)M0(x −1)

M2(x) = x2

2
M0(x)+

(3

4
− (x − 3

2
)2

)
M0(x −1)+ (3−x)2

2
M0(x −2)

M3(x) = x3

6
M0(x)+

(2

3
− 1

2
x(x −2)2

)
M0(x −1)

+
(2

3
− 1

2
(4−x)(x −2)2

)
M0(x −2)+ (4−x)3

6
M0(x −3)

(2.21)

Martin Reimers

2.6. EXERCISES 41

2.4 Show the following explicit expression for a generic quadratic B-spline

B j ,2(x) = x − t j

t j+2 − t j

[x − t j

t j+1 − t j
B j ,0(x)+ t j+2 −x

t j+2 − t j+1
B j+1,0(x)

]
+ t j+3 −x

t j+3 − t j+1

[x − t j+1

t j+2 − t j+1
B j+1,0(x)+ t j+3 −x

t j+3 − t j+2
B j+2,0(x)

]
= (x − t j)2

(t j+2 − t j)(t j+1 − t j)
B j ,0(x)+ (t j+3 −x)2

(t j+3 − t j+1)(t j+3 − t j+2)
B j+2,0(x)

+
((x − t j)(t j+2 −x)

(t j+2 − t j)(t j+2 − t j+1)
+ (t j+3 −x)(x − t j+1)

(t j+3 − t j+1)(t j+2 − t j+1)

)
B j+1,0(x).

(2.22)

The complexity of this expression gives us a good reason to work with B-splines through
other means than explicit formulas.

2.5 Show that the B-spline B j ,d satisfies properties 1–3 of Lemma 2.3.

2.6 Show that B j ,d is a piecewise polynomial by establishing equation 2.6. Use induction
on the degree d .

2.7 In this exercise we are going to establish some properties of the Bernstein polynomials
of degree d . Recall that

b j ,d (x) :=
(

d

j

)
x j (1−x)d− j , j = 0, . . . ,d

and that b j ,d (x) := 0 for j < 0 and j > d . Prove the following for j = 0,1, . . . ,d

a) The recurrence relation

b j ,d (x) = xb j−1,d−1(x)+ (1−x)b j ,d−1(x)).

b) The differentiation formula

Db j ,d (x) = d(b j−1,d−1(x)−b j ,d−1(x)).

c) The Bernstein basis function b j ,d (x) has a maximum at x = j /d , and this is the
only maximum.

d) ∫ 1

0
b j ,d (x)d x = 1/(d +1).

2.8 a) When a B-spline is evaluated at one of its knots it can be simplified according to
the formula

B(ti | t j , . . . , t j+1+d) = B(ti | t j , . . . , ti−1, ti+1, . . . , t j+1+d) (2.23)

which is valid for j = j , j +1, . . . , j +1+d . Prove this by induction on the degree d .

Martin Reimers
Bytt til ny notasjon B[t_j,…]()뺭

Martin Reimers

42 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

b) Use the formula in (2.23) to compute the following values of a quadratic B-spline
at the interior knots:

B j ,2(t j+1) = t j+1 − t j

t j+2 − t j
, B j ,2(t j+2) = t j+3 − t j+2

t j+3 − t j+1
. (2.24)

c) Prove property (5) of Lemma 2.3.

2.9 Prove the following formula using (2.4) and (??)

B [a,

p︷ ︸︸ ︷
b, . . . ,b,c](x) = (x −a)p

(b −a)p B [a,b](x)+ (c −x)p

(c −b)p B [b,c](x).

Show that this function is continuous at all real numbers.

2.10 Prove the following formulas by induction on d .

B [
d︷ ︸︸ ︷

a, . . . , a,b,c](x) = x −a

b −a

d−1∑
j=0

(c −x)i (b −x)d−1−i

(c −a)i (b −a)d−1−i
B [a,b](x)

+ (c −x)d

(c −a)d−1(c −b)
B [b,c](x),

B [a,b,
d︷ ︸︸ ︷

c, . . . ,c](x) = (x −a)d

(c −a)d−1(b −a)
B [a,b](x)

+ c −x

c −b

d−1∑
j=0

(x −a)i (x −b)d−1−i

(c −a)i (c −b)d−i
B [b,c](x).

2.11 When the knots are simple we can give explicit formulas for the B-splines.

a) Show by induction that if t j < ·· · < t j+1+d then

B j ,d (x) = (t j+1+d − t j)
j+1+d∑

i= j

(x − ti)d+∏ j+1+d
k= j
k,i

(tk − ti)

where

(x − ti)d
+ =

{
(x − ti)d , if x ≥ ti ;

0, otherwise.

b) Show that B j ,d can also be written

B j ,d (x) = (t j+1+d − t j)
j+1+d∑

i= j

(ti −x)d+∏ j+1+d
k= j
k,i

(ti − tk)

but now the (·)+-function must be defined by

(ti −x)d
+ =

{
(ti −x)d , if ti > x;

0, otherwise.

Martin Reimers

2.6. EXERCISES 43

2.12 Let (xi , yi)m
j=1 be a set of data points with xi < xi+1 for j = 1, 2, . . . , m −1. On the knot

vector
t = (t j)m+2

j=1 = (x1, x1, x2, x3, . . . , xm−1, xm , xm)

we consider the linear (d = 1) spline function s(x) =∑m
j=1 y j B j ,1(x), for x ∈ [x1, xm].

a) Show that s(xi) = yi for i = 1, . . . ,m.

b) Show the explicit expression s(x) = xi+1−x
xi+1−xi

yi + x−xi
xi+1−xi

yi+1, whenever x ∈ [xi , xi+1]
for i = 1, . . . ,m −1.

Conclude that s is the piecewise linear interpolant to the data (xi , yi)m
j=1.

2.13 Let f : [a,b] → R be a given function defined on some interval [a,b], and let n be an
integer greater than 2. On [a,b] we assume that we have a knot vector t = (t j)n+3

j=1 ,
where

a = t1 = t2 = t3 < t4 < ·· · < tn < tn+1 = tn+2 = tn+3.

We can then define the quadratic spline function

s(x) =Q f (x) =
n∑

j=1
f (t∗j)B j ,2(x),

where
t∗j = (t j+1 + t j+2)/2, j = 1, . . . ,n.

The function Q f is called the Variation Diminishing Spline Approximation to f of de-
gree 2.

a) Show that
a = t∗1 < t∗2 < ·· · < t∗n = b.

b) As a particular instance of this approximation we consider the function f (x) =p
2sin(π2 x) on the interval [0,3] and the knot vector t = (t j)8

j=1 = (0,0,0,1,2,3,3,3).

c) Show that (t∗j)5
j=1 = (0,1/2,3/2,5/2,3) and s(x) = B2,2(x)+B3,2(x)−B4,2(x)−p

2B5,2(x).
A plot of this function together with f (x) is shown in Figure 2.5 (b).

2.14 Write down the matrix R3(x) for µ = 4 in the case of uniform splines (t j = j for all j).
Do the same for the Bernstein basis (t = (0,0,0,0,1,1,1,1](x)).

2.15 On the knot vector
t = (t j)8

j=1 = (0,0,0,0,1,1,1,1)

we consider the cubic spline function

s(x) =−B1,3(x)+5B2,3(x)−5B3,3(x)+B4,3(x).

In terms of the cubic Bernstein basis we have

s(x) =−b0,3(x)+5b1,3(x)−5b2,3 +b3,3, 0 ≤ x ≤ 1.

This polynomial is shown in Figure 2.6 (b). Show that It is the cubic Chebyshev polyno-
mial T3(2x −1) with respect to the interval [0,1].

44 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

2.16 Matrix representation of cubic B-splines n the cubic case the only nonzero B-splines
on [tµ, tµ+1) are {B j ,3}µj=µ−3. Check that for x in this interval these B-splines may be
written(

Bµ−3,3 Bµ−2,3 Bµ−1,3 Bµ,3
)= (

Bµ−2,2 Bµ−1,2 Bµ,2
)

tµ+1−x

tµ+1−tµ−2

x−tµ−2

tµ+1−tµ−2
0 0

0
tµ+2−x

tµ+2−tµ−1

x−tµ−1

tµ+2−tµ−1
0

0 0
tµ+3−x

tµ+3−tµ

x−tµ
tµ+3−tµ

=
(tµ+1−x

tµ+1−tµ

x−tµ
tµ+1−tµ

)
tµ+1−x

tµ+1−tµ−1

x−tµ−1

tµ+1−tµ−1
0

0
tµ+2−x

tµ+2−tµ

x−tµ
tµ+2−tµ

tµ+1−x

tµ+1−tµ−2

x−tµ−2

tµ+1−tµ−2
0 0

0
tµ+2−x

tµ+2−tµ−1

x−tµ−1

tµ+2−tµ−1
0

0 0
tµ+3−x

tµ+3−tµ

x−tµ
tµ+3−tµ

 .

2.17 Given a knot vector t = (t j)n+d+1
j=1 and a real number x with x ∈ [t1, tn+d+1), write a pro-

cedure for determining the index µ such that tµ ≤ x < tµ+1. A call to this routine is
always needed before Algorithms 2.16 and 2.17 are run. By letting µ be an input pa-
rameter as well as an output parameter you can minimise the searching for example
during plotting when the routine is called with many values of x in the same knot in-
terval.

2.18 Implement Algorithm 2.17 in your favourite programming language.

2.19 Implement Algorithm 2.16 in your favourite programming language.

2.20 Count the number of operations (additions, multiplications, divisions) involved in Al-
gorithm 2.16.

2.21 Count the number of operations (additions, multiplications, divisions) involved in Al-
gorithm 2.17.

2.22 Write a program that plots the cubic B-spline B [0,1,3,5,6] and its polynomial pieces.
Present the results as in Figure 2.3.

2.23 a) What is computed by Algorithm 2.16 if x does not belong to the interval [tµ, tµ+1)?

2.6. EXERCISES 45

b) Repeat (a) for Algorithm 2.17.

2.24 Algorithms 2.16 and 2.17 are high level algorithms. Although they may be implemented
directly by forming the matrices {Rk }d

k=1, it can be better to polish the algorithms a bit
more. In this exercise we will discuss Algorithm 2.17 in more detail. For more details
on Algorithm 2.16, we refer to Algorithm ?? in Chapter 1 and exercise 25 below.

We are going to give two more detailed versions of Algorithm 2.17. In the first one,
we make use of vector operations. This version would be suitable for a language like
Matlab or Mathematica where for-loops are relatively slow, but the built-in vector op-
erations are fast.

We assume that the elementary arithmetic operations may be applied to vectors of the
same size. For example, the vector operation a/b would produce a vector of the same
length as a and b, with entry i equal to ai /bi . We can also combine a scalar and a vector
as in x + a; then the first operand is converted to a vector of the same length as a by
duplicating x the correct number of times.

We will need two more vector operations which we denote a+l and a+ f . The first de-
notes the vector obtained by appending a zero to the end of a, while a+ f denotes the
result of prepending a zero element at the beginning of a. In Matlab syntax this would
be written as a+l = [a,0] and a+ f = [0, a].

a) Algorithm 2.17 corresponds to pre-multiplying each matrix Rk by a row vector. In
component form show that this can be written

(B k−1(x))T Rk (x)) j =
x−t j

t j+k−t j
B j ,k−1(x)+ t j+1+k−x

t j+1+k−t j+1
B j+1,k−1(x) (2.25)

for j =µ−k, . . . , µ, where Bµ−k,k−1(x) = Bµ+1,k−1(x) = 0 when x ∈ [tµ, tµ+1).

b) Verify that Algorithm 2.17 can be written in the following more explicit form. A
vector version of Algorithm 2.16 can be found in exercise 25.

Algorithm 2.18 (R—vector version). Let the polynomial degree d , the knots tµ−d+1 ≤
tµ < tµ+1 ≤ tµ+d and a number x in [tµ, tµ+1) be given. After evaluation of

1. b = 1;
2. For k = 1, 2, . . . , d

1. t 1 = (tµ−k+1, . . . , tµ);

2. t 2 = (tµ+1, . . . , tµ+k);

3. ω= (x − t 1)/(t 2− t 1);

4. b = (
(1−ω)∗b

)
+l +

(
ω∗b

)
+ f ;

the vector b will contain the value of the d +1 B-splines at x,

b = (
Bµ−d ,d (x), . . . ,Bµ,d (x)

)T .

c) When programming in a traditional procedural programming language, the vec-
tor operations will usually have to be replaced by for-loops. This can be accom-
plished as follows.

Martin Reimers

46 CHAPTER 2. BASIC PROPERTIES OF SPLINES AND B-SPLINES

Algorithm 2.19 (R—scalar version). Let the polynomial degree d , the knots tµ−d+1 ≤
tµ < tµ+1 ≤ tµ+d and a number x in [tµ, tµ+1) be given. After evaluation of

1. bd+1 = 1; b j = 0, j = 1, . . . , d ;
2. For r = 1, 2, . . . , d

1. k =µ− r +1;

2. ω2 = (tk+r −x)/(tk+r − tk);

3. bd−r =ω2 bd−r+1;

4. For j = d − r +1, d − r +2, . . . , d −1

1. k = k +1;

2. ω1 =ω2;

3. ω2 = (tk+r −x)/(tk+r − tk);

4. bi = (1−ω1)bi +ω2 bi+1;

5. bd = (1−ω2)bd

the vector b will contain the value of the d +1 B-splines at x,

b = (
Bµ−d ,d (x), . . . ,Bµ,d (x)

)T .

2.25 In Exercise 24 we gave a vector version of Algorithm 2.17 for computing the nonzero
B-splines at a point x. Below is a similar vector version of Algorithm 2.16 for comput-
ing the value of a spline at x. Verify that the algorithm is correct and compare it with
Algorithm 2.18.

Algorithm 2.20. Let f =∑
i c j Bi ,d ,t be a spline inSd ,t , and let x be a real number in the

interval [tµ, tµ+1). Then f (x) can be computed as follows:

1. c = (cµ−d , . . . ,cµ);

2. For k = d , d −1, . . . , 1

1. t 1 = (tµ−k+1, . . . , tµ);

2. t 2 = (tµ+1, . . . , tµ+k);

3. ω= (x − t 1)/(t 2− t 1);

4. c = (1−ω)∗c−l +ω∗c− f ;

After these statements c will be a vector of length 1 that contains the number f (x). Here
the notation c−l and c− f denote the vectors obtained by dropping the last, respectively
the first, entry from c .

2.26 Suppose that d = 3 and that the knot vector is given by

t̂ = (t j)5
j=1 = (0,1,2,3,4).

With this knot vector we can only associate one cubic B-spline, namely B1,3. Therefore,
if we are to compute B1,3(x) for some x in (0,4), none of the algorithms of this section
apply. Define the augmented knot vector t by

t = (−1,−1,−1,−1,0,1,2,3,4,5,5,5,5).

Explain how this knot vector can be exploited to compute the B-spline B1,3(x) by Algo-
rithms 2.16 or 2.17.

Chapter 3
Further properties of splines

In Chapter 2 we established some of the most elementary properties of B-splines. In this
chapter, our focus is on the question “What kind of functions can be represented as linear
combinations of B-splines?” The answer is that our spline space contains a large class of
piecewise polynomials, and this ensures that splines are reasonably flexible, much more so
than polynomials. To prove this, we start by showing that polynomials of degree d can be
represented in terms of splines of degree d in Section 3.1. This is proved by making use of
some simple properties of the B-spline matrices. As a bonus, we also prove that B-splines are
linearly independent and therefore provide a basis for spline spaces, a result that is crucial
for practical computations. In Section 3.2, we investigate the smoothness of splines and B-
splines in detail, and this allows us to conclude in Section 3.3 that spline spaces contain a
large class of piecewise polynomials.

3.1 Linear independence of B-splines and representation of polynomials

Our aim in this section is to show that any polynomial can be represented as a linear combi-
nation of B-splines, and also that B-splines are linearly independent. To do this, we first need
some simple properties of the B-spline matrices defined in Theorem 2.14.

3.1.1 Some properties of the B-spline matrices

To study the B-spline matrices, we associate a certain polynomial with each B-spline.

Definition 3.1. To each B-spline B j ,d ,t we associate a polynomial ρ j ,d ,t of degree d . It is
given by ρ j ,0,t (y) = ρ j ,0(y) := 1 if d = 0 and for d ≥ 1

ρ j ,d ,t (y) = ρ j ,d (y) := (y − t j+1)(y − t j+2) · · · (y − t j+d). (3.1)

This polynomial is called the dual polynomial of the B-spline B j ,d ,t .

47

48 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

On the interval [tµ, tµ+1), we have d + 1 nonzero B-splines that we collect in the vector
B d (x) := (Bµ−d ,d (x), . . . ,Bµ,d (x))T . We collect the corresponding dual polynomials in the vec-
tor

ρd (y) := (ρµ−d ,d (y), . . . ,ρµ,d (y))T . (3.2)

The following lemma shows the effect of applying the matrix Rd to ρd .

Lemma 3.2. Let µ be an integer such that tµ < tµ+1 and let ρd (y) be the dual polynomials
defined by (3.2). For d ≥ 1 the relation

Rd (x)ρd (y) = (y −x)ρd−1(y). (3.3)

holds for all x, y ∈R.

Proof. Writing out (3.3) in component form, we see that what we need to prove is

(x − t j)ρ j ,d (y)+ (t j+d −x)ρ j−1,d (y)

t j+d − t j
= (y −x)ρ j ,d−1(y), (3.4)

for j =µ−d +1, . . . , µ. Since ρ j ,d (y) = (y− t j+d)ρ j ,d−1(y) and ρ j−1,d (y) = (y− t j)ρ j ,d−1(y), the
numerator on the left-hand side of (3.4) can be written(

(x − t j)(y − t j+d)+ (t j+d −x)(y − t j)
)
ρ j ,d−1(y).

A simple calculation reveals that

(x − t j)(y − t j+d)+ (t j+d −x)(y − t j) = (y −x)(t j+d − t j). (3.5)

Inserting this on the left in (3.4) and simplifying, we obtain the right-hand side.

The crucial relation (3.5) is an example of linear interpolation. For if we define the linear
function g by g (x) = y − x for a fixed number y , then linear interpolation at t j and t j+d gives
the relation

t j+d −x

t j+d − t j
g (t j)+ x − t j

t j+d − t j
g (t j+d) = g (x),

see Section 1.3 in Chapter 1. If we multiply both sides of this equation by t j+d − t j , we obtain
equation (3.5).

In equation 3.3, the d + 1-vector ρd is transformed to a vector with d components. We
can reduce the number of components further by applying more R ’s. By making use of all the
matrices R1, . . . , Rd we end up with a scalar.

Corollary 3.3. Letµ be an integer such that tµ < tµ+1 and letρd (y) be the dual polynomials
defined by (3.2). Then the relation

R1(x1)R2(x2) · · ·Rd (xd)ρd (y) = (y −x1)(y −x2) · · · (y −xd). (3.6)

holds for all real numbers x1, x2, . . . , xd and y .

3.1. LINEAR INDEPENDENCE OF B-SPLINES AND REPRESENTATION OF POLYNOMIALS49

We need one more property of the B-spline matrices. This property will not be established
completely until we have proved that the dual polynomials are linearly independent.

Lemma 3.4. For d ≥ 2 and for any x and z in R, the matrices Rd−1 and Rd satisfy the rela-
tion

Rd−1(z)Rd (x) = Rd−1(x)Rd (z). (3.7)

Proof. Applying (3.3) twice, we obtain

Rd−1(x)Rd (z)ρd (y) = (y −x)(y − z)ρd−2(y).

By symmetry we also have

Rd−1(z)Rd (x)ρd (y) = (y −x)(y − z)ρd−2(y),

Equivalently,
Bρd (y) = 0 (3.8)

for all y , where the (d −1)× (d +1) matrix B is defined by

B = Rd−1(x)Rd (z)−Rd−1(z)Rd (x).

To complete the proof, we must show that B = 0. Let a be any vector in Rd−1. Then we
know from (3.8) that aT Bρd (y) = 0 for all y . Since the d +1 polynomials in ρd are linearly
independent, see Lemma 3.8, this means that aT B = 0. But a was arbitrary, so B maps all
vectors to 0, in other words B = 0.

3.1.2 Marsden’s identity and representation of polynomials

The relation (3.6) is a key to finding the B-spline representation of polynomials. If we set
x1 = ·· · = xd = x and remember that R1(x) · · ·Rd (x) = B d (x), the relation becomes

(y −x)d = B d (x)Tρd (y) =
µ∑

j=µ−d
B j ,d (x)ρ j ,d (y), (3.9)

provided x is in the interval [tµ, tµ+1). The interpretation of this is that if for fixed y , we
use the sequence of numbers (ρ j ,d (y))µj=µ−d as B-spline coefficients, the resulting spline is

the polynomial (y − x)d , as long as we restrict our attention to the interval [tµ, tµ+1). But
since the coefficients (ρ j ,d (y))µj=µ−d are independent of µ and therefore of the knot interval,
the polynomial formula (3.9) can be generalised to a statement about how the polynomial
(y −x)d is represented in terms of B-splines.

Theorem 3.5 (Marsden’s identity). Let the knot vector t = (t j)n+d+1
j=1 be given. Then the

relation

(y −x)d =
n∑

j=1
ρ j ,d (y)B j ,d (x) (3.10)

holds for all real numbers y , and all real numbers x in the interval [td+1, tn+1).

50 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

The restriction on x cannot be avoided since we do not have a complete set of B-splines
outside the interval [td+1, tn+1). The relation (3.9) is therefore not valid if x is outside this
interval.

The power of Theorem 3.5 lies in the fact that the coefficients ρd depend on y . Making
use of this result, we can show explicitly how the powers 1, x, . . . , xd can be written in terms
of B-splines.

Corollary 3.6. On the interval [td+1, tn+1), the power basis {xi }d
i=0 can be expressed in

terms of B-splines through the relations

1 =
n∑

j=1
B j ,d (x), for d ≥ 0, (3.11)

x =
n∑

j=1
t∗j ,d B j ,d (x), for d ≥ 1, (3.12)

x2 =
n∑

j=1
t∗∗j ,d B j ,d (x), for d ≥ 2, (3.13)

where

t∗j ,d = (t j+1 +·· ·+ t j+d)
/

d (3.14)

t∗∗j ,d =
j+d−1∑
i= j+1

j+d∑
k=i+1

ti tk

/(
d

2

)
. (3.15)

In general, for r = 0, 1, . . . , d , the relation

xr =
n∑

j=1
σr

j ,d B j ,d (x) (3.16)

holds for any x in the interval [td+1, tn+1). Here σr
j ,d are the symmetric polynomials given

by

σr
j ,d =

(∑
t j1 t j2 · · · t jr

)/(
d

r

)
, for r = 0, 1, . . . , d , (3.17)

where the sum is over all integers j1, . . . , jr with j +1 ≤ j1 < ·· · < jr ≤ j +d , a total of
(d

r

)
terms.

Proof. If we differentiate both sides of equation (3.10) a total of d −r times with respect to y ,
set y = 0, and rearrange constants, we end up with

xr = (−1)r r !

d !
B d (x)T Dd−rρd (0) = (−1)r r !

d !

∑
j

B j ,d (x)Dd−rρ j ,d (0). (3.18)

3.1. LINEAR INDEPENDENCE OF B-SPLINES AND REPRESENTATION OF POLYNOMIALS51

Multiplying together the factors of ρ j ,d , we find

ρ j ,d (y) = yd −d t∗j ,d yd−1 +
(

d

2

)
t∗∗j ,d yd−2 + lower order terms. (3.19)

From this it follows that

Ddρ j ,d (0) = p !, Dd−1ρ j ,d (0) =−(d −1)!pt∗j ,d , Dd−2ρ j ,d (0) = (d −2)!

(
d

2

)
t∗∗j ,d . (3.20)

Setting r = 0, 1 and 2 in (3.18) and inserting the appropriate formula in (3.20), leads to equa-
tions (3.11), (3.12), and (3.13). In general, we have the formula

ρ j ,d (y) =
d∑

r=0
(−1)r

(
d

r

)
σr

j ,d yd−r .

Using the same reasoning as above, we therefore find that

(−1)r r !

d !
Dd−rρ j ,d (0) = r !(d − r)!

d !

(
d

r

)
σr

j ,d =σr
j ,d ,

so (3.16) follows from (3.18).

The coefficients σr
j ,d are scaled versions of the elementary symmetric polynomials of de-

gree d . They play an important role in the study of polynomial rings.

Example 3.7. In the cubic case, the relations (3.11)–(3.13) are

1 =
n∑

j=1
B j ,3(x), (3.21)

x =
n∑

j=1

t j+1 + t j+2 + t j+3

3
B j ,3(x), (3.22)

x2 =
n∑

j=1

t j+1t j+2 + t j+1t j+3 + t j+2t j+3

3
B j ,3(x), (3.23)

x3 =
n∑

j=1
t j+1t j+2t j+3B j ,3(x), (3.24)

which are valid for all x in [td+1, tn+1).

3.1.3 Linear independence of B-splines

Recall from Section A.3.1 in the Appendix that a set of functions {φ j }n
j=1 are linearly indepen-

dent on an interval I if
∑n

j=1 c jφ j (x) = 0 for all x ∈ I implies that c j = 0 for all j . In other
words, the only way to represent the 0-function on I is by letting all the coefficients be zero.
A consequence of this is that any function that can be represented by {φ j }n

j=1 has a unique
representation.

To prove that B-splines are linearly independent, we start by showing that the B-splines
that are nonzero on a single knot interval are linearly independent.

52 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

Lemma 3.8. The B-splines {B j ,d }µj=µ−d and the dual polynomials {ρ j ,d }µj=µ−d are both lin-
early independent on the interval [tµ, tµ+1).

Proof. From Corollary 3.6, we know that the power basis 1, x, . . . , xd , and therefore any poly-
nomial of degree d , can be represented by linear combinations of B-splines. Recall that the
linear space of polynomials of degree d has dimension d + 1. On the interval [tµ, tµ+1), the
only nonzero B-splines are {B j ,d }µj=µ−d . Since all polynomials of degree d can be written in
terms of these d +1 B-splines, they must be linearly independent. These B-splines therefore
form a basis for polynomials of degree d on [tµ, tµ+1). The symmetry of x and y in (3.9) leads
to the same conclusion for the dual polynomials.

From this local result, we are going to obtain a global linear independence result for B-
splines. But first we need to be more precise about the type of knot vectors we consider.

Definition 3.9. A knot vector t = (t j)n+d+1
j=1 is said to be d +1-extended if

1. n ≥ d +1,

2. td+1 < td+2 and tn < tn+1,

3. t j < t j+d+1 for j = 1, 2, . . . , n.

A d+1-extended knot vector for which t1 = td+1 and tn+1 = tn+d+1 is said to be d+1-regular
or d +1-open.

The norm is to use d +1-regular knot vectors, but linear independence can be proved in
the more general situation of a d +1-extended knot vector.

Theorem 3.10. Suppose that t is a d +1-extended knot vector. Then the B-splines in Sd ,t

are linearly independent on the interval [td+1, tn+1).

Proof. Suppose that the spline f = ∑n
j=1 c j B j ,d is identically zero on [td+1, tn+1); we must

prove that c j = 0 for j = 1, . . . , n. Let j be an arbitrary integer in the range [1,n]. Since no knot
occurs more than d +1 times, there is a nonempty interval [tµ, tµ+1) contained in [t j , t j+d+1],
the support of B j ,d . But all the nonzero B-splines on [tµ, tµ+1) are linearly independent, so
f (x) = 0 on this interval implies that ck = 0 for k = µ− d , . . . , µ. Since B j ,d is one of the
nonzero B-splines, we have in particular that c j = 0.

The condition that no knot must occur with multiplicity higher than d +1 is essential, for
otherwise one of the B-splines will be identically zero and then they will certainly be linearly
dependent. The other conditions are not essential for the linear independence, see Exercise 3.

3.2. DIFFERENTIATION AND SMOOTHNESS OF B-SPLINES 53

3.2 Differentiation and smoothness of B-splines

Our study of differentiation and smoothness is based on the matrix representation of B-
splines. But first of all we need to be fairly precise about what we mean by smoothness and
jumps in the derivatives of a function.

3.2.1 Piecewise smooth functions

A C r -function is a function whose derivatives up to order r are continuous at all points of
its domain of definition. A piecewise smooth function is a function that is smooth except at
some isolated points. Although this concept is quite simple, we need to be precise about the
definition as we are going to perform computations with the jumps in a derivative of a spline.

Definition 3.11. A function f defined on some interval [a,b] is piecewise continuous on
[a,b] provided f is continuous on [a,b] except at a finite number of points {xi }n

i=1 where
the one-sided limits

f (z+) = lim
x→z
x>z

f (x), f (z−) = lim
x→z
x<z

f (x). (3.25)

exist for z = xi , and i = 1, 2, . . . , n. The number

Jz f = f (z+)− f (z−) (3.26)

is called the jump of f at z.

Of course there are many functions with infinite jumps, but since the one-sided limits of
a piecewise continuous function exist, these jumps are finite. In particular this holds for a
piecewise polynomial.

We will also need to consider functions with piecewise continuous derivatives.

Definition 3.12. If the function f has piecewise continuous r th derivative f (r) on [a,b] for
some integer r ≥ 0, it is said to be piecewise C r . If Jz (f (k)) = 0 for k = 0, . . . , r at some
z ∈ (a,b), then f is said to be C r at z. Differentiation of functions that are piecewise C r is
defined by

Dr f (x) =
{

Dr+ f (x), x ∈ [a,b),
Dr− f (x), x = b,

where the right derivative Dr+ and the left derivative Dr− are defined by

Dr
+ f (x) = f (r)(x+), x ∈ [a,b),

Dr
− f (x) = f (r)(x−), x ∈ (a,b].

If f is piecewise C r on [a,b] then Dr f (x) exists for every x ∈ [a,b]. At a point where the
r th derivative of f is continuous, this definition of differentiation agrees with the standard
one since the two one-sided derivatives Dr+ f and Dr− f are equal at such a point.

54 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

3.2.2 Derivatives of B-splines

From Definition 3.12 and equation (2.6), we see that the r th derivative of a B-spline B j ,d is
given by

Dr B j ,d =
j+d∑
k= j

Dr B k
j ,d Bk,0, r ≥ 0, (3.27)

where Dr B k
j ,d is the ordinary r th derivative of the polynomial representing B j ,d on the in-

terval [tk , tk+1). This explicit formula is of little interest in practice because it is difficult to
compute. What we want is something similar to the recurrence relation (2.1).

Our approach to derivatives of B-splines will instead follow a customary strategy: We start
by considering what happens on one knot interval. We will then see that the formulas we
obtain are independent of the specific knot interval so they can be generalized to splines.

Recall from Theorem 2.14 that on a knot interval [tµ, tµ+1), the row vector of the nonzero
B-splines B d is given by

B d (x)T = R1(x) · · ·Rd (x). (3.28)

It turns out that we can differentiate this product of matrices as if the factors were numbers.
Indeed, let A be a matrix where each entry is a function of x. The derivative D A of A is
defined as the matrix obtained by differentiating each entry of A with respect to x. We have
the following familiar rule for differentiating a product of two matrices.

Lemma 3.13. Let A and B be two matrices with entries that are functions of x and with
dimensions such that the matrix product AB makes sense. Then

D(AB) = (D A)B + A(DB).

Proof. Let (AB)i j be an arbitrary entry of the matrix AB . Then

D(AB)i j = D
(∑

k
ai k bk j

)
=∑

k
D(ai k bk j)

=∑
k

(
(Dai k)bk j +ai k (Dbk j)

)
=∑

k
(Dai k)bk j +

∑
k

ai k (Dbk j)

= (
(D A)B

)
i j +

(
A(DB)

)
i j

which proves the lemma.

Applying this rule to the product (3.28), we get

DB d (x)T =
d∑

k=1
R1(x) · · ·Rk−1(x)DRk (x)Rk+1(x) . . .Rd (x), (3.29)

3.2. DIFFERENTIATION AND SMOOTHNESS OF B-SPLINES 55

where DRk denotes the matrix obtained by differentiating each entry in Rk (x) with respect
to x,

DRk =

−1

tµ+1−tµ+1−k

1

tµ+1−tµ+1−k
· · · 0

...
. . .

. . .
...

0 . . .
−1

tµ+k−tµ

1

tµ+k−tµ

 . (3.30)

The dimensions of the matrix DRk are the same as those of Rk , so both are transformations
from Rk+1 to Rk .

The following lemma will help us simplify equation 3.29.

Lemma 3.14. For k ≥ 2 and any real number x, the matrices Rk and Rk+1 satisfy the rela-
tion

DRk Rk+1(x) = Rk (x)DRk+1. (3.31)

Proof. Equation 3.31 follows by differentiating both sides of 3.7 with respect to z and letting
d = k +1.

By making use of equation 3.31, we can move the differentiation operator d in (3.29) from
Rk to Rd in term k of the sum. The end result is

DB d (x)T = d R1(x) · · ·Rd−1(x)DRd = d B d−1(x)T DRd . (3.32)

Let us now see how higher derivatives of B-splines can be determined. To find the second
derivative, we differentiate (3.32). Since D(DRd) = 0, we obtain

D2B d (x)T = d DB d−1(x)T DRd .

If we apply (3.32)) to DB d−1, we find

D2B d (x)T = d(d−1)B d−2(x)T DRd−1DRd .

In general, for the r th derivative, we find

Dr B d (x)T = d !

(d−r)!
B d−r (x)T DRd−r+1 · · ·DRd .

Since in addition B d−r (x)T = R1(x) · · ·Rd−r (x), the following theorem has been proved.

56 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

Theorem 3.15. Let x be a number in [tµ, tµ+1). Then the r th derivative of the vector of
B-splines B d (x) = (Bµ−d ,d (x), . . . ,Bµ,d (x))T is given by

Dr B d (x)T = d !

(d−r)!
B d−r (x)T DRd−r+1 · · ·DRd . (3.33)

Suppose that f (x) =∑n
j=1 c j B j ,d (x). With c 0 = (cµ−d , . . . ,cµ)T the r ’th derivative of f at x is

given by

Dr f (x) = d !

(d−r)!
R1(x) · · ·Rd−r (x)DRd−r+1 · · ·DRd c 0, (3.34)

for any integer r such that 0 ≤ r ≤ d .

Note that the symmetry property (3.31) gives us a curious freedom in how to represent
the r th derivative: It does not matter which of the d matrices Rk we differentiate as long as
we differentiate r of them. In Theorem 3.15 it is the r matrices of largest dimension that have
been differentiated.

Theorem 3.15 is the basis for algorithms for differentiating splines and B-splines, see Sec-
tion 3.2.3 below. But let us first record the following recurrence relation for the derivative of a
B-spline.

Theorem 3.16. The derivative of the j th B-spline of degree d on t is given by

DB j ,d (x) = d
(B j ,d−1(x)

t j+d − t j
− B j+1,d−1(x)

t j+1+d − t j+1

)
(3.35)

for d ≥ 1 and for any real number x. The derivative of B j ,d can also be expressed as

DB j ,d (x) = d

d −1

(x − t j

t j+d − t j
DB j ,d−1(x)+ t j+1+d −x

t j+1+d − t j+1
DB j+1,d−1(x)

)
(3.36)

for d ≥ 2 and any x in R. Here the ′0/0 = 0′ convention is used.

Proof. Equation (3.35) clearly holds if x ∉ [t j , t j+1+d), as then both sides of the equation are
identically zero. Suppose therefore that x ∈ [tµ, tµ+1) for some j ≤ µ ≤ j +d . Equation (3.33)
with r = 1 states that(

DBµ−d ,d (x), . . . ,DBµ,d (x)
)= d

(
Bµ−d+1,d−1(x), . . . ,Bµ,d−1(x)

)
DRd .

Carrying out the matrix multiplication on the right and comparing the j th component on
both sides, we obtain (3.35), with x restricted to the interval [tµ, tµ+1). But since (3.35) is
independent of µ, it actually holds for all x ∈ [t j , t j+d+1).

Equation (3.36) is proved in a similar way, we just use Lemma 3.14 and differentiate the
matrix R1 instead of Rd , see Exercise 6.

3.2. DIFFERENTIATION AND SMOOTHNESS OF B-SPLINES 57

3.2.3 Computing derivatives of splines and B-splines

From Theorem 3.15, we know that the r th derivative of a spline f is given by

Dr f (x) = d !

(d−r)!
R1(x) · · ·Rd−r (x)DRd−r+1 · · ·DRd c 0. (3.37)

Just as for evaluation (see Section 2.5), there are two algorithms for computing this derivative;
either from left to right or from right to left.

As before, we assume that x lies in the interval [tµ, tµ+1) and that the vector c 0 = (cµ−d , . . . ,cµ)T

contains the B-spline coefficients that multiply the B-splines that are nonzero on [tµ, tµ+1).
We then have the DL (Derivative Left) Algorithm which computes Dr f (x) by accumulating
matrix products from right to left in (3.37). The DR (Derivative Right) Algorithm computes
the r th derivative of all the nonzero B-splines at x by accumulating matrix products from left
to right, then multiplying with the coefficients and summing.

Algorithm 3.17 (DL). Let the polynomial degree d , the 2d knots tµ−d+1 ≤ tµ < tµ+1 ≤ tµ+d ,

the B-spline coefficients c (0)
0 = c 0 = (cµ−d . . . ,cµ)T of a spline f , and a number x in [tµ, tµ+1)

be given. After evaluation of the products

c (d−k+1)
d−k+1 = DRk c (d−k)

d−k , k = d , . . . , d − r +1,

c (r)
d−k+1 = Rk (x)c (r)

d−k , k = d − r , . . . , 1,

the r th derivative of f at x is given by

Dr f (x) = d !c (r)
d /(d − r)!.

Algorithm 3.18 (DR). Let the polynomial degree d , the knots tµ−d+1 ≤ tµ < tµ+1 ≤ tµ+d and
a number x in [tµ, tµ+1) be given and set B 0 = 1. After evaluation of the products

B k (x)T = B k−1(x)T Rk (x), k = 1, . . . , d − r ,

Dk−d+r B k (x)T = Dk−d+r−1B k−1(x)T DRk , k = d − r +1, . . . , d ,

the vector d !
(d−r)! D

r B d (x) will contain the value of the r th derivative of the nonzero B-
splines at x,

d !

(d − r)!
Dr B d (x) = (

Dr Bµ−d ,d (x), . . . ,d r Bµ,d (x)
)T .

Figure 3.1 shows how the second derivative of a cubic spline can be computed, while
Figure 3.2 shows the computation of the first derivative of all the nonzero B-splines at a
point. In Algorithm 3.17, we have to compute the two matrix-vector products DRk c d−k and
Rk (x)c d−k . The component form of the latter product is given in (2.20), while the component

58 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

cΜ,3
H3L

Τ Μ+1
-x

x-Τ
Μ

ΤΜ+1-ΤΜ

cΜ-1,2
H2L

-1

1

ΤΜ+1-ΤΜ-1

cΜ-2,1
H1L

-1

1

ΤΜ+1-ΤΜ-2

cΜ,2
H2L

-1

1

ΤΜ+2-ΤΜ

cΜ-1,1
H1L

-1

1

ΤΜ+2-ΤΜ-1

cΜ,1
H1L

-1

1

ΤΜ+3-ΤΜ

cΜ-3,0

cΜ-2,0

cΜ-1,0

cΜ,0

Figure 3.1. A triangular algorithm for computation of the second derivative of a cubic spline at x.

BΜ

Τ Μ+1
-x

x-Τ
Μ

ΤΜ+1-ΤΜ

BΜ-1,1

Τ Μ+1
-x

x-Τ
Μ-1

ΤΜ+1-ΤΜ-1

BΜ-2,1

-1

1

ΤΜ+1-ΤΜ-2

BΜ,1

Τ Μ+2
-x

x-Τ
Μ

ΤΜ+2-ΤΜ

BΜ-1,2

-1

1

ΤΜ+2-ΤΜ-1

BΜ,2

-1

1

ΤΜ+3-ΤΜ

DBΜ-3,3

DBΜ-2,3

DBΜ-1,3

DBΜ,3

Figure 3.2. A triangular algorithm for computation of the derivative of the nonzero cubic B-splines at x.

3.2. DIFFERENTIATION AND SMOOTHNESS OF B-SPLINES 59

form of the former is obtained by differentiating the linear factors in (2.20) with respect to x.
The result is

(DRk c d−k) j =
cd−k, j − cd−k, j−1

t j+k−t j
(3.38)

for j =µ−k +1, . . . , µ.
The alternative algorithm accumulates the matrix products in (2.18) from left to right. The

component form of the product B k−1(x)T Rk is given in (2.25), while the component form of
the product B k−1(x)T DRk is

(
B k−1(x)T DRk

)
j =

B j ,k−1(x)

t j+k−t j
− B j+1,k−1(x)

t j+1+k−t j+1
(3.39)

for j =µ−k, . . . , µ.

3.2.4 Smoothness of B-splines

A characteristic feature of splines is their smoothness properties as stated in Theorem 1.2 in
Chapter 1. In this section we will prove the smoothness properties of splines. We start by
stating the precise smoothness of a B-spline.

Theorem 3.19. Suppose that the number z occurs m times among the knots t j , t j+1, . . . ,
t j+d+1, defining the B-spline B j ,d . If 1 ≤ m ≤ d +1, then Dr B j ,d is continuous at z for r = 0,
1, . . . , d −m, but Dd−m+1B j ,d is discontinuous at z.

This theorem will proved via a sequence of steps. We first note from the explicit formula
(??) for the Bernstein basis that Theorem 3.19 holds for m = d +1. At such a knot the B-spline
is discontinuous with a jump of size 1. In particular Theorem 3.19 holds for d = 0 and d = 1.

The first step in the proof of Theorem 3.19 is to show that a B-spline is continuous at a
knot of multiplicity at most d .

Lemma 3.20. Suppose that no knot among t j , t j+1, . . . , t j+d+1 occurs more than d times.
Then the B-spline B j ,d is continuous everywhere.

Proof. The proof is by induction on the degree d . If no knots occur more than d −1 times,
then by the induction hypothesis the two B-splines B j ,d−1 and B j+1,d−1 are both continuous
which means that B j ,d is also continuous. Suppose next that x is equal to a knot which occurs
exactly d times among t j , t j+1, . . . , t j+d+1. There are three cases. Suppose first that x = t j =
·· · = t j+d−1 < t j+d ≤ t j+d+1. Then B j ,d−1 is discontinuous, but the term (x − t j)B j ,d−1(x) in
(2.1) is continuous at x. Moreover, from the induction hypothesis B j+1,d−1 is continuous,
and it follows that B j ,d is continuous. The proof in the case x = t j+1+d is similar. Finally, if
t j < x < t j+1+d , then x = t j+1 = ·· · = t j+d and the result follows from the explicit formula in
Exercise 9. This completes the proof.

Martin Reimers

60 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

Proof. [The continuity part of Theorem 3.19]
For r = 0 the result follows from Lemma 3.20. Differentiating the differentiation formula
(3.35) a total of r −1 times leads to

Dr B j ,d (x) = d
(Dr−1B j ,d−1(x)

t j+d − t j
− Dr−1B j+1,d−1(x)

t j+1+d − t j+1

)
.

By induction on d it follows that Dr B j ,d is continuous for r in the range 1 ≤ r ≤ d −m.

To complete the proof of the continuity property, we determine the jump in the first dis-
continuous derivative of a B-spline.

Lemma 3.21. Suppose that the number z occurs exactly m times among the knots
t j , . . . , t j+1+d . Then the d −m +1th derivative of B j ,d has a jump at z given by

Jz (Dd−m+1B j ,d) = d !

(m −1)!
(t j+1+d − t j)/

j+1+d∏
k= j
tk,z

(tk − z), 0. (3.40)

Proof. As usual, the proof is by induction of the degree d . We use the jump recurrence rela-
tion

Jx (Dr B j ,d) = d
(Jx (Dr−1B j ,d−1)

t j+d − t j
− Jx (Dr−1B j+1,d−1)

t j+1+d − t j+1

)
, for x ∈R and r ≥ 1, (3.41)

see Exercise 7 for a proof. We first note that (3.40) holds in the case where m = d+2, so we may
assume that m ≤ d +1. It is easy to check that equation (3.40) holds when d = 0 and m = 1.
Suppose that (3.40) holds for B-splines of degree d −1. For a B-spline of degree d , we apply
(3.41) with r = d −m +1. There are three cases to consider. Suppose first that z = t j . Since z
occurs m −1 times among the knots of B j+1,d−1, it follows from the continuity property that
Jz (Dd−mB j+1,d−1) = 0. In view of the induction hypothesis, equation (3.41) therefore takes
the form

Jz (Dd−m+1B j ,d) = d
Jz (Dd−mB j ,d−1)

t j+d − t j
= d !

(m −1)!

/ j+d∏
k= j

tk,t j

(tk − t j).

Multiplying the numerator and denominator by t j+1+d−t j proves (3.40) in this case. A similar
argument is valid when z = t j+1+d .

The remaining situation is t j < z < t j+1+d . In this case both B j ,d−1 and B j+1,d−1 have a

3.2. DIFFERENTIATION AND SMOOTHNESS OF B-SPLINES 61

knot of multiplicity m at z. Applying (3.41) and the induction hypothesis, we then obtain

Jz (Dd−m+1B j ,d) = d !

(m −1)!

(j+d∏
k= j
tk,z

(tk − z)−1 −
j+1+d∏
k= j+1

tk,z

(tk − z)−1
)

= d !

(m −1)!

j+d∏
k= j+1

tk,z

(tk − z)−1
(1

t j − z
− 1

t j+1+d − z

)

= d !

(m −1)!
(t j+1+d − t j)/

j+1+d∏
k= j
tk,z

(tk − z)

which completes the proof.

3.2.5 The integral of a B-spline

Using the continuity property and differentiation formula we can show a formula for the in-
tegral of a B-spline.

Theorem 3.22. The integral of the j th B-spline of degree d ≥ 0 on t is given by∫ t j+d+1

t j

B j ,d ,t (x)d x = t j+d+1 − t j

d +1
. (3.42)

Proof. If t j+d+1 = t j there is nothing to prove. Assume first t j+d > t j . Define a knot vector
s = (si)2d+3

i=1 by
s1 = ·· · = sd+1 = a, sd+2+k = t j+k , k = 0,1, . . . ,d +1,

where a is any number strictly less than t j . Integrating the differentiation formula (3.35) for
B-splines of degree d +1 on s gives∫ si+d+2

si

DBi ,d+1,s (x)d x = Ji − Ji+1, i = 1,2, . . . ,d +1, (3.43)

where

Jr = d +1

sr+d+1 − sr

∫ sr+d+1

sr

Br,d ,s (x)d x, r = i , i +1,

and we used the local support property of Br,d ,s . Since no knot in s occurs more than d +1
times it follows from Lemma 3.20 that each Bi ,d+1,s is continuous. Therefore Bi ,d+1,s vanishes
at the endpoints si and si+d+2 of its support. Moreover, since t j+d > t j , each Bi ,d+1,s has a
continuous derivative in the interior of its support. Therefore the integral on the left of (3.43)
is zero and Ji+1 = Ji for i = 1, . . . ,d +1. In particular, Jd+2 = J1 and this implies (3.42). Indeed,
since sd+2 = t j , s2d+3 = t j+d+1 and s1 = ·· · sd+1 we have

Jd+2 =
d +1

t j+d+1 − t j

∫ t j+d+1

t j

B j ,d ,t (x)d x = J1 = d +1

sd+2 − s1

∫ sd+2

s1

(sd+2 −x)d

(sd+2 − s1)d
d x = 1.

62 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

Finally, if t j = t j+d < t j+d+1 then (3.42) follows by direct calculation, (Cf. the calculation for
J1).

3.3 B-splines as a basis for piecewise polynomials

Our ultimate purpose is to use B-splines as building blocks for constructing and representing
functions and data, but what exactly are the functions in a spline space Sd ,t ? We know that
they are piecewise polynomials, with different polynomial pieces meeting at the knots. We
also know that the exact continuity between two pieces is controlled by the multiplicity of the
knot at the join. If the knot z occurs with multiplicity m, we know from Theorem 3.19 that
there is at least one B-spline with its first d−m derivatives continuous, but with the derivative
of order d−m+1 discontinuous. When we take linear combinations of the B-splines and form
Sd ,t , the spline functions will in general inherit this smoothness at z, although there will be
some functions that will be even smoother, like for example the function with all coefficients
zero, the zero function. In this section we will start by defining piecewise polynomial spaces
in terms of the smoothness at the joins and show that Sd ,t can be characterised in this way.
We start by defining piecewise polynomial spaces.

Definition 3.23. Let d be a nonnegative integer, let [a,b] be a real interval, let the sequence
∆= (ξi)N

i=1 be a partition of [a,b],

a = ξ1 < ξ2 < ·· · < ξN−1 < ξN = b,

and let r = (ri)N−1
i=2 be a sequence of integers. BySr

d (∆) we denote the linear space of piece-
wise polynomials of degree d on [a,b] with ri continuous derivatives at ξi . In other words
f ∈Sr

d (∆) if and only if the restriction of f to (ξi−1,ξi) is a polynomial of degree d for i = 2,

. . . , N , and Dk f is continuous at ξi for k = 0, . . . , ri and i = 2, . . . , N −1.

It is quite simple to check that linear combinations of functions in Sr
d (∆) are again in

Sr
d (∆); it is therefore a linear space.

To derive a representation for functions f ∈Sr
d (∆) we define the functions θi ,k :R→R by

θi ,k (x) = (x −ξi)k
+, i = 1, . . . , N , k = 0,1, . . . , (3.44)

where

ak
+ =

{
ak , if a > 0;

0, otherwise;

except that we use the convention 00 = 1. The functions θi ,k are called truncated powers. We
have

Jumpξi (Drθi ,k) =
{

0, if r < k;

k !, if r = k;
i = 1, . . . , N , k = 0,1, (3.45)

3.3. B-SPLINES AS A BASIS FOR PIECEWISE POLYNOMIALS 63

Lemma 3.24. Any f ∈Sr
d (∆) can be written in the form

f =
N−1∑
i=1

d∑
k=ri+1

ci ,kθi ,k , ci ,k ∈R, r1 =−1. (3.46)

Proof. By (3.45) it follows that θi ,k ∈ Sr
d (∆) for ri < k ≤ d and i = 1, . . . , N − 1. Since Sr

d (∆)
is a linear space any f in the form (3.46) must belong to Sr

d (∆). Suppose next f ∈ Sr
d (∆)

and let fi be the polynomial representing f on (ξi ,ξi+1). Now f1(x) = ∑d
k=0 c1,k (x − ξ1)k =∑d

k=r1+1 c1,kθ1,k (x) for x ∈ [ξ1,ξN). Suppose for some j ≥ 2 that f j−1(x) =∑ j−1
i=1

∑d
k=ri+1 ci ,kθi ,k (x)

for x ∈ [ξ1,ξN). Since f ∈C r j (ξ j) we have for some c j ,k ∈R

f j (x)− f j−1(x) =
d∑

k=r j+1
c j ,k (x −ξ j)k .

It follows that

f j (x) =
j∑

i=1

d∑
k=ri+1

ci ,kθi ,k (x), x ∈ [ξ1,ξN), j = 1, . . . , N −1.

Now if x ∈ [ξ1,ξN) then x ∈ [ξ j ,ξ j+1) for some j , and since θi ,k (x) = 0 for i > j we have

f (x) = f j (x) =
N−1∑
i=1

d∑
k=ri+1

ci ,kθi ,k (x).

This completes the proof.

The following theorem shows that any f ∈ Sr
d (∆) can in fact be represented in terms of

B-splines on an appropriate knot vector.

Theorem 3.25 (Curry-Schoenberg). Let Sr
d (∆) be a given space of piecewise polynomials

and let the d +1-extended knot vector t = (t j)n+d+1
j=1 be defined by

t = (t1, . . . , td+1,

d−r2︷ ︸︸ ︷
ξ2, . . . ,ξ2, . . . ,

d−ri︷ ︸︸ ︷
ξi , . . . ,ξi , . . . ,

d−rN−1︷ ︸︸ ︷
ξN−1, . . . ,ξN−1, tn+1, . . . , tn+d+1),

where

n =
N−1∑
i=1

d − ri , r1 =−1, (3.47)

and for any end knots satisfying t1 ≤ ·· · ≤ td+1 ≤ a and b ≤ tn+1 ≤ ·· · ≤ tn+d+1. Then

Sr
d (∆) =Sd ,t |[a,b],

where Sd ,t |[a,b] is the space obtained by restricting the functions in Sd ,t to the interval
[a,b].

64 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

Proof. Let S = Sd ,t |[a,b]. We note that by the construction of the knot vector, the B-splines
in S satisfy the smoothness conditions of Sr

d (∆) so S ⊆ Sr
d (∆). Moreover, since t is d + 1-

extended, the B-splines inS are linearly independent so dimS= n. On the other hand,Sr
d (∆)

is spanned by n functions θi ,k so dimS ≥ dimSr
d (∆). But a subspace that has the same di-

mension as the full space must agree with the full space soS=Sr
d (∆). Moreover the θi .k must

be linearly indepenent.

Corollary 3.26 (Nestedness). Let n be a positive integer, τ= (τ j)n+d+1
j=1 a given knot vector

and let t = (ti)n+d+2
i=1 be the knot vector obtained by inserting a knot anywhere in τ. Then

Sd ,τ ⊂Sd ,t . (3.48)

Proof. We extend τ and t by adding d + 1 knots x1 = ·· · = xd+1 < min(τ1, t1), and similarly
d + 1 knots y1 = ·· · = yd+1 > max(τn+d+1, tn+d+2). For simplicity we denote these extended
knot vectors also by τ and t and we have the corresponding piecewise polynomial spaces
S

r τ
d (∆τ) and Sr t

d (∆t). Since Sr t

d (∆t) is obtained from S
r τ
d (∆τ) by either adding a segment or

reducing the continuity at a breakpoint we have Sr τ
d (∆τ) ⊂ Sr t

d (∆t). The result then follows
from Theorem 3.25.

3.4 Exercises

3.1 a) Show that the quadratic B-spline

B [0,0,1,2](x) = (2x − 3

2
x2)B [0,1](x)+ 1

2
(2−x)2B [1,2](x)

is continuous on R.

b) Show that the first derivative

DB [0,0,1,2](x) = (2−3x)B [0,1](x)− (2−x)B [1,2](x)

is piecewise continuous on Rwith a discontinuity at x = 0.

c) Show that the second derivative

D2B [0,0,1,2](x) =−3B [0,1](x)+B [1,2](x)

is piecewise continuous on Rwith discontinuities at 0, 1, and 2.

d) What about the third derivative?

3.2 Suppose that d = 3 and that t̂ = (0,0,1,3,4,5) so we can associate two cubic B-splines
B̂1,3 and B̂2,3 with t̂ . We want to prove that these two B-splines are linearly independent
on [1,3].

3.4. EXERCISES 65

a) Let t denote the augmented knot vector t = (0,0,0,1,3,4,5,5). Show that we can
associate 4 B-splines {Bi ,3}4

i=1 with t and that these are linearly independent on
[1,3].

b) Show that the two B-splines B̂1,3 and B̂2,3 are linearly independent.

3.3 Let t = (t j)n+d+1
j=1 be a knot vector with n ≥ 1 and such that no knot occurs more than

d +1 times. Show that the B-splines {B j ,d }n
j=1 are linearly independent on the interval

[t1, tn+d+1).

3.4 Let A be matrix where each entry is a function of x and let α be a scalar function of x.
Prove the formula

D(αA) = (Dα)A +α(D A).

3.5 a) Count the number of operations (additions/subtractions, multiplications, divi-
sions) involved in computing the matrix Rk (x) defined in (2.15). Do the same for
the matrix DRk defined in (3.30).

b) Recall that in the formula (3.34) for the r th derivative of f , we have the freedom to
differentiate any r of the d matrices {Rk (x)}d

k=1. Based on the count in (a), show
that the choice made in (3.34) is the most efficient.

3.6 In this exercise we are going to prove the differentiation formula (3.36).

a) Show that
(DBµ−d ,d (x), . . . ,dBµ,d (x)) = dDR1R2(x) · · ·Rd (x) (3.49)

for any x in [tµ, tµ+1).

b) Show that (3.49) leads to (3.36) and that the latter equation is valid for any x. Why
do we need the restriction d ≥ 2?

3.7 a) Show that the jump in B j ,d at x satisfies the recurrence relation

Jx (B j ,d) = x − t j

t j+d − t j
Jx (B j ,d−1)+ t j+1+d −x

t j+1+d − t j+1
Jx (B j+1,d−1), (3.50)

with

Jx (B j ,0) =

1, if x = t j ,

−1, if x = t j+1,

0, otherwise.

(3.51)

b) Show that for r ≥ 1, the jump in the r th derivative at any x ∈R is given by

Jx (Dr B j ,d) = d
(Jx (Dr−1B j ,d−1)

t j+d − t j
− Jx (Dr−1B j+1,d−1)

t j+1+d − t j+1

)
, for x ∈R and r ≥ 1. (3.52)

The convention that ′0/0 = 0′ is used in (3.50) and (3.41).

66 CHAPTER 3. FURTHER PROPERTIES OF SPLINES

3.8 Suppose in Definition 3.23 that d = 3 and ri = 1, i = 2, . . . , N −1. Show using (3.46) that
any f ∈Sr

d (∆) can be represented in the form

f (x) = c0 + c1x + c2x2 + c3x3 +
N−1∑
i=2

ci ,3(x −ξi)3
+, x ∈ [ξ1,ξN].

Chapter 4
Knot insertion

In Chapter 1 we were led to B-splines, defined via the recurrence relation, as a convenient
way to represent spline functions. In Chapters 2 and 3 we then established some of the basic
properties of splines, with the recurrence relation as the major tool. We have seen that splines
can be evaluated efficiently and stably, we have studied the smoothness of splines, we have
shown that B-splines are linearly independent and that they form a basis for certain spaces
of piecewise polynomials.

This chapter supplements the recurrence relation for B-splines with another very versa-
tile tool, namely the idea of knot insertion or knot refinement. We have already seen that
the control polygon of a spline provides a rough sketch of the spline itself. It turns out that
the control polygon approaches the spline it represents as the distance between the knots of
a spline is reduced, a fact that will be proved in Chapter 9. This indicates that it is of interest
to see how the B-spline coefficients of a fixed spline depend on the knots.

Knot insertion amounts to what the name suggests, namely insertion of knots into an
existing knot vector. The result is a new spline space with more B-splines and therefore more
flexibility than the original spline space. This can be useful in many situations, for example
in interactive design of spline curves. It turns out that the new spline space contains the
original spline space as a subspace, so any spline in the original space can also be represented
in terms of the B-splines in the refined space. As mentioned above, an important property of
this new representation is that the control polygon will have moved closer to the spline itself.
This provides us with a new and very powerful tool both for algorithmic manipulation and
theoretical investigations of spline functions.

We start, in Section 4.1, by showing some simple examples of knot insertion. In Sec-
tion 4.2 we then develop algorithms for expressing the B-spline coefficients relative to a re-
fined knot vector in terms of the B-spline coefficients relative to the original knot vector. It
turns out that the B-spline coefficients of a spline are completely characterised by three sim-
ple properties, and this is the topic of Section 4.3. This characterisation is often useful for
developing the theory of splines, and in Section 4.4 this characterisation is used to obtain
formulas for inserting one new knot into a spline function. Finally, in Section 4.5, we make
use of knot insertion to prove that the number of sign changes in a spline is bounded by the

67

68 CHAPTER 4. KNOT INSERTION

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(a)

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(b)

Figure 4.1. A line segment represented as a linear spline with no interior knots (a), and with one interior knot (b).

number of sign changes in its control polygon; another instance of the close relationship be-
tween a spline and its control polygon.

4.1 The control polygon relative to different knot vectors

In this introductory section we will consider some examples of knot insertion with the pur-
pose of gaining an intuitive understanding of this important concept.

Figure 4.1 shows spline representations of a line segment. We all know that a straight line
is uniquely determined by two points and in (a) the line segment is represented by its two
end points. Although one may wonder what the point is, we can of course also represent the
line segment by cutting it into smaller pieces and represent each of these pieces. This is what
is shown in Figure 4.1 (b) where the line segment is represented by a linear spline with an
interior knot at 1 which in effect means that we are using a redundant representation of three
points to represent a line segment.

The redundancy in the representation is obvious and seems useless in the linear case.
But let us increase the degree and consider a quadratic example. Figure 4.2 shows part of the
parabola y = (4x − x2)/6 represented as a spline without interior knots in (a) and with one
interior knot in (b). In general, the representation in (b) requires a spline function and its first
derivative to be continuous at x = 1, whereas a jump is allowed in the second derivative. The
parabola in the figure is certainly continuous and has continuous first derivative at x = 1, but
the jump in the second derivative happens to be 0. The knot at x = 1 is therefore redundant,
but it has the nice effect of bringing the control polygon closer to the spline. We shall see later
that there may be many other good reasons for inserting knots into a spline function.

An example with a cubic spline is shown in Figure 4.3. The situation is the same as before:
The refined knot vector allows jumps in the second derivative at x = 1 and the third derivative
at x = 2, but the jumps may be 0. For the specific spline in (a) these jumps are indeed 0, but
one advantage of representing it in the refined spline space is that the control polygon comes
closer to the spline.

The examples have hopefully shown that insertion of knots can be useful; at the very
least it seems like it may be a useful tool for plotting splines. In the next sections we are going
to develop algorithms for computing the B-spline coefficients on a refined knot vector and

4.1. THE CONTROL POLYGON RELATIVE TO DIFFERENT KNOT VECTORS 69

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(a)

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(b)

Figure 4.2. A piece of a parabola represented as a quadratic spline with no interior knots (a), and with one interior knot (b).

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 4.3. A cubic spline with one interior knot (a). In (b) the same spline is represented with two extra knots (the knot at x = 1
is now double).

70 CHAPTER 4. KNOT INSERTION

deduct various properties of the B-splines coefficients as functions of the knots. A proof of
the fact that the control polygon converges to the spline it represents as the knot spacing goes
to zero has to wait until Chapter 9.

4.2 Knot insertion

In this section we are going to develop two algorithms for computing the B-spline coefficients
of a given spline relative to a refined knot vector. The two algorithms for knot insertion are
closely related to Algorithms 2.16 and 2.17; in fact these two algorithms are special cases of
the algorithms we develop here.

4.2.1 Basic idea

Knot insertion is exactly what the name suggests: extension of a given knot vector by adding
new knots. Let us first define precisely what we mean by knot insertion, or knot refinement
as it is also called.

Definition 4.1. A knot vector t is said to be a refinement of a knot vector τ if any real number
occurs at least as many times in t as in τ.

Note that if t is a refinement of τ then τ is a subsequence of t , and this we will write τ⊆ t
even though knot vectors are sequences and not sets. The term knot insertion is used because
in most situations the knot vector τ is given and t is obtained by ‘inserting’ knots into τ. A
simple example of a knot vector and a refinement is given by

τ= (0,0,0,3,4,5,5,6,6,6) and t = (0,0,0,2,2,3,3,4,5,5,5,6,6,6).

Here two knots have been inserted at 2, one at 3 and one at 5.
With some polynomial degree d given, we can associate the spline spaces Sd ,τ and Sd ,t

with the two knot vectors τ and t . When τ is a subsequence of t , the two spline spaces are
also related.

Lemma 4.2. Let d be a positive integer and let τ be a knot vector with at least d +2 knots. If
t is a knot vector which contains τ as a subsequence then Sd ,τ ⊆Sd ,t .

Proof. Suppose first that both τ and t are d +1-regular knot vectors with common knots at
the ends. By the Curry-Schoenberg theorem (Theorem 3.25) we know that Sd ,t contains all
splines with smoothness prescribed by the knot vector t . Since all knots occur at least as
many times in t as in τ, we see that at any knot, a spline f in Sd ,τ is at least as smooth as
required for a spline in Sd ,t . But then f ∈Sd ,τ and Sd ,τ ⊆Sd ,t .

A proof in the general case where τ and t are not d +1-regular with common knots at the
ends, is outlined in exercise 5.

Suppose that f =∑n
j=1 c j B j ,d ,τ is a spline in Sd ,τ with B-spline coefficients c = (c j). If τ is

a subsequence of t , we know from Lemma 4.2 that Sd ,τ is a subspace of Sd ,t so f must also
lie in Sd ,t . Hence there exist real numbers b = (bi) with the property that f = ∑m

i=1 bi Bi ,d ,t ,
i.e., the vector b contains the B-spline coefficients of f in Sd ,t . Knot insertion is therefore
nothing but a change of basis from the B-spline basis in Sd ,τ to the B-spline basis in Sd ,t .

4.2. KNOT INSERTION 71

Since Sd ,τ ⊆Sd ,t , all the B-splines in Sd ,τ are also in Sd ,t . We can therefore write

B j ,d ,τ =
m∑

i=1
α j ,d (i)Bi ,d ,t , j = 1,2, . . . ,n, (4.1)

for certain numbers α j ,d (i). In the matrix form we have used earlier this can be written

B T
τ = B T

t A, (4.2)

where B T
τ = (B1,d ,τ, . . . ,Bn,d ,τ) and B T

t = (B1,d ,t , . . . ,Bm,d ,t) are row vectors, and the m ×n-
matrix A = (

α j ,d (i)
)

is the basis transformation matrix. Using this notation and remembering
equation (4.2), we can write f in the form

f = B T
t b = B T

τ c = B T
t Ac .

The linear independence of the B-splines inSd ,t therefore means that b and c must be related
by

b = Ac , or bi =
n∑

j=1
ai , j c j for i = 1, 2, . . . , m. (4.3)

The basis transformation A is called the knot insertion matrix of degree d from τ to t and
we will use the notation α j ,d (i) = α j ,d ,τ,t (i) for its entries. The discrete function α j ,d has
many properties similar to those of B j ,d , and it is therefore called a discrete B-spline on t with
knots τ.

To illustrate these ideas, let us consider a couple of simple examples of knot insertion for
splines.

Example 4.3. Let us determine the transformation matrix A for splines with d = 0, when the coarse knot vector
is given by τ= (0,1,2), and the refined knot vector is t = (0,1/2,1,3/2,2) = (ti)5

i=1. In this case

Sd ,τ = span{B1,0,τ,B2,0,τ} and Sd ,t = span{B1,0,t ,B2,0,t ,B3,0,t ,B4,0,t }.

We clearly have
B1,0,τ = B1,0,t +B2,0,t , B2,0,τ = B3,0,t +B4,0,t .

This means that the knot insertion matrix in this case is given by

A =

1 0
1 0
0 1
0 1

 .

Example 4.4. Let us also consider an example with linear splines. Let d = 1, and let τ and t be as in the
preceding example. In this case dimSd ,τ = 1 and we find that

B(x | 0,1,2) = 1

2
B(x | 0,1/2,1)+B(x | 1/2,1,3/2)+ 1

2
B(x | 1,3/2,2).

The situation is shown in Figure 4.4. The linear B-spline on τ is a weighted sum of the three B-splines (dashed)
on t . The knot insertion matrix A is therefore the 3×1-matrix, or row vector, given by

A =
1/2

1

1/2

 .

72 CHAPTER 4. KNOT INSERTION

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 4.4. Refining a linear B-spline.

4.2.2 Conversion between B-spline polynomials

We would obviously like to compute the B-spline coefficients on a refined knot vector by
computer and therefore need a detailed and efficient algorithm. For this we need to study the
matrix A in (4.2) and (4.3) in some more detail. We are going to use the strategy of considering
what happens on individual knot intervals, which has proved successful in earlier chapters.

It will be helpful to specialise the linear algebra that led us to the two relations (4.2) and
(4.3) to the space πd of polynomials of degree d . Suppose we have two bases pT = (p0, . . . , pd)
and q T = (q0, . . . , qd) of πd . We then know that there exists a nonsingular matrix M of dimen-
sion d +1 such that

pT = q T M . (4.4)

Let f be a polynomial of degree d with coefficients b relative to p and c relative to q . Since
f = pT b = q T Mb = q T c it follows that

c = Mb. (4.5)

Conversely, it is not difficult to see that if the representations of any polynomial in two bases
are related as in (4.5), then the bases must be related as in (4.4).

We are specially interested in polynomial bases obtained from B-splines. If u = (ui)2d+2
i=1

is a knot vector with ud+1 < ud+2, the theory in Chapter 3 shows that the corresponding B-
splines form a basis for πd on the interval [ud+1,ud+2]. On this interval the B-splines reduce
to polynomials and therefore correspond to a polynomial basis B u . And as all polynomials,
these basis polynomials are defined on the whole real line (they can be computed for any x
by always using µ= d +1 in the spline evaluation algorithms in Chapter 2).

Suppose now that we have another knot vector v = (vi)2d+2
i=1 with no relation to u. This

will give rise to a similar polynomial basis B v , and these two bases must be related by some
matrix M u,v ,

B T
v = B T

u M u,v .

4.2. KNOT INSERTION 73

We want to find a formula for M u,v and to do this we consider the representation of the
polynomial f (x) = (y − x)d where y is any real number. We know from Marsden’s identity
(Theorem 3.5) that the coefficients of f relative to the basis B u are the dual polynomials
ρu = {ρi ,u}d+1

i=1 where ρi ,u (y) is given by

ρi ,u (y) = (y −ui+1) · · · (y −ui+d).

The B-spline coefficients of f relative to B v are given similarly by ρv , and the general discus-
sion above shows that the two sets of coefficients must be related by the matrix M u,v , as in
(4.5),

ρv (y) = M u,vρu (y).

The i th component of this equation is

ρi ,v (y) = (
M u,v

)
iρu (y).

On the other hand we also know from Corollary 3.3 that

ρi ,v (y) = (y − vi+1) · · · (y − vi+d) = R1(vi+1)R2(vi+2) · · ·Rd (vi+d)ρu (y),

where the matrices R1, . . . , Rd are the bidiagonal B-spline matrices given in Theorem 2.14,

Rk (x) = Rd+1
k,u (x) =

ud+2 −x

ud+2 −ud+2−k

x −ud+2−k

ud+2 −ud+2−k

. . .
. . .

ud+1+k −x

ud+1+k −ud+1

x −ud+1

ud+1+k −ud+1

 .

Since the dual polynomials {ρi ,u }d+1
i=1 are linearly independent we therefore have(

M u,v
)

i = R1(vi+1)R2(vi+2) · · ·Rd (vi+d).

Let us sum up our findings so far.

Proposition 4.5. Let u = (ui)2d+2
i=1 and v = (vi)2d+2

i=1 be two knot vectors with ud+1 < ud+2 and
vd+1 < vd+2, and let B u and B v be the corresponding B-spline polynomials on the intervals
[ud+1,ud+2] and [vd+1, vd+2] respectively. Then the two polynomial bases are related by

B T
v = B T

u M u,v (4.6)

where M u,v is a square matrix of dimension d +1 with rows given by(
M u,v

)
i = R1(vi+1)R2(vi+2) · · ·Rd (vi+d) (4.7)

for i = 1, . . . , d + 1. Here Rk (x) = Rd+1
k,u (x) for k = 1, . . . , d are the B-spline matrices of the

interval [ud+1,ud+2] defined in Theorem 2.14.

74 CHAPTER 4. KNOT INSERTION

Although the expression (4.7) is slightly more complicated than what we encountered
when developing algorithms for computing the value of splines and B-splines, those algo-
rithms can easily be adapted to computing the matrix M u,v or converting from the represen-
tation in terms of B u to a representation in terms of B v , see Algorithms 4.10 and 4.11 below.
Note also that because of the symmetry in the construction, it is easy to find the inverse of
the matrix M u,v ,

M−1
u,v = M v ,u ,

i.e., just reverse the roles of u and v .

4.2.3 Formulas and algorithms for knot insertion

We have seen how we can find formulas for conversion between two polynomial pieces of
two completely unrelated B-spline bases. Let us now apply this to the special situation of
knot insertion.

Suppose as before that we have two knot vectors τ and t with τ⊆ t and a spline function
f =∑

j c j B j ,d ,τ =
∑

i bi Bi ,d ,t which lies inSd ,τ and therefore also inSd ,t . Recall from (4.1) and
(4.2) that the two spaces are related by the basis transformation matrix A whose (i , j)-entry
we denote α j ,d (i). In other words we have

bi =
n∑

j=1
α j ,d (i)c j (4.8)

for i = 1, . . . , m, and

B j ,d ,τ =
m∑

i=1
α j ,d (i)Bi ,d ,t (4.9)

for j = 1, . . . , n. An important observation here is that a B-spline will usually consist of
several polynomial pieces and according to (4.9), all the pieces of a B-spline in Sd ,τ must be
expressible as the same linear combination of the corresponding pieces of the B-splines in
Sd ,t . An example should help to clarify this.

Example 4.6. Suppose that d = 3 and that the knot vector τ = (0,0,0,0,1,4,4,4,4) has been refined to t =
(0,0,0,0,1,2,3,4,4,4,4). In S3,τ we then have the five B-splines {B j ,τ}5

j=1 and in S3,t we have seven B-splines

{Bi ,t }7
i=1 (we have dropped the degree from the notation as it will remain fixed in this example). Relation (4.9) there-

fore becomes

B j ,τ =
7∑

i=1
α j (i)Bi ,t (4.10)

for j = 1, . . . , 5. What does this really mean? It does of course mean that the B-splines in S3,τ are linear combina-
tions of the B-splines in S3,t . But a consequence of this is that each polynomial piece of B j ,τ can be written as a
linear combination of the corresponding pieces of the B-splines in S3,t .

Let us be more specific. The interval of interest is [0,4] and a B-spline B j ,τ inS3,τ consists of two polynomial

pieces within this interval, one piece on [τ4,τ5] = [0,1] which we denote B4
j ,τ and one piece on [τ5,τ6] = [1,4]

which we denote B5
j ,τ. Similarly, a B-spline Bi ,t in S3,t consists of four polynomial pieces which we denote B4

i ,t ,

B5
i ,t , B6

i ,t and B7
i ,t . With this notation, we can elaborate more on the meaning of relation (4.10).

If we restrict x to the interval [0,1] we can write (4.10) as

B4
j ,τ =

4∑
i=1

α j (i)B4
i ,t

4.2. KNOT INSERTION 75

for j = 1, . . . , 5, since the other B-splines inS3,t vanish on this interval. If we ignore B5,τ, this is just a relation be-
tween two polynomial bases on B-spline form for the interval [τ4,τ5], so we can use Proposition 4.5 to determine
the coefficients

(
α j (i)

)4
i , j=1. We find that

α1(1) α2(1) α3(1) α4(1)

α1(2) α2(2) α3(2) α4(2)

α1(3) α2(3) α3(3) α4(3)

α1(4) α2(4) α3(4) α4(4)

=

R4

1(t2)R4
2(t3)R4

3(t4)

R4
1(t3)R4

2(t4)R4
3(t5)

R4
1(t4)R4

2(t5)R4
3(t6)

R4
1(t5)R4

2(t6)R4
3(t7)

where R4

k = R4
k,τ(x) for k = 1, 2, 3 are B-spline matrices for the interval [τ4,τ5]. We can also determine

(
α5(i)

)4
i=1

since B4
5,τ is identically zero. In fact the linear independence of the polynomials {B4

i ,t }4
i=1 on [0,1] means that

α5(i) = 0 for i = 1, 2, 3, 4.
If we move to the right, the next subinterval of τ is [τ5,τ6] = [1,4] while the next subinterval of t is [t5, t6] =

[1,2]. On the smallest common subinterval [1,2] relation (4.10) reduces to

B5
j ,τ =

5∑
i=2

α j (i)B5
i ,t

for j = 1, . . . , 5. Similarly to the previous subinterval we can conclude that
(
α1(i)

)5
i=2 is zero since B5

1,τ is identi-
cally zero on this interval. The remaining α j (i)s involved in the sum can be determined from Proposition 4.5,

α2(2) α3(2) α4(2) α5(2)

α2(3) α3(3) α4(3) α5(3)

α2(4) α3(4) α4(4) α5(4)

α2(5) α3(5) α4(5) α5(5)

=

R5

1(t3)R5
2(t4)R5

3(t5)

R5
1(t4)R5

2(t5)R5
3(t6)

R5
1(t5)R5

2(t6)R5
3(t7)

R5
1(t6)R5

2(t7)R5
3(t8)

 .

If we move further to the right we come to the interval [t6, t7] = [2,3] which is a subinterval of [τ5,τ6] = [1,4].
Relation (4.10) now becomes

B5
j ,τ =

6∑
i=3

α j (i)B6
i ,t

for j = 1, . . . , 5. Again we can conclude that α1(i) = 0 for i = 3, . . . , 6 while

α2(3) α3(3) α4(3) α5(3)

α2(4) α3(4) α4(4) α5(4)

α2(5) α3(5) α4(5) α5(5)

α2(6) α3(6) α4(6) α5(6)

=

R5

1(t4)R5
2(t5)R5

3(t6)

R5
1(t5)R5

2(t6)R5
3(t7)

R5
1(t6)R5

2(t7)R5
3(t8)

R5
1(t7)R5

2(t8)R5
3(t9)

 .

We can move one more interval to the right, to [t7, t8] = [3,4], which is also a subinterval of [τ5,τ6] = [1,4]. On this
interval we can conclude that α1(i) = 0 for i = 4, . . . , 7 and determine the part of A given by

(
α j (i)

)7,5
i=4, j=2.

Note that many of the entries in the matrix A are determined several times in this example simply because
a B-spline consists of several polynomial pieces. This is not really a problem as we will get the same value (up to
round-off) each time.

Example 4.6 makes an important point clear: Since (4.9) is a relation between piecewise
polynomials, the number α j (i) must be the coefficient multiplying Bi ,t in the representation
of B j ,τ, irrespective of which polynomial piece we consider. Therefore, by considering rela-
tion (4.9) as a relation between polynomials on different intervals we get several possibilities
for determining most entries in the matrix A. This leaves us with the question of which poly-
nomial pieces we should use to determine a certain entry in A. Theorem 4.7 uses a standard
choice, but it is worth remembering that other choices are possible.

76 CHAPTER 4. KNOT INSERTION

For simplicity we will make the assumption that τ= (τ j)n+d+1
j=1 and t = (ti)m+d+1

i=1 are both
d +1-regular knot vectors with d +1 common knots at the two ends. Exercise 6 shows that
this causes no loss of generality. The technique in Example 4.6 works in general and can be
used to obtain an explicit formula for the knot insertion matrix A.

Theorem 4.7. Let the polynomial degree d be given, and let τ= (τ j)n+d+1
j=1 and t = (ti)m+d+1

i=1
be two d +1-regular knot vectors with common knots at the ends and τ ⊆ t . In row i of the
knot insertion matrix A the entries are given by α j ,d (i) = 0 for j < µ−d and j > µ, where µ is
determined by τµ ≤ ti < τµ+1 and

αd (i)T = (
αµ−d ,d (i), . . . ,αµ,d (i)

)={
1, if d = 0,

Rµ
1,τ(ti+1) · · ·Rµ

d ,τ(ti+d), if d > 0,
(4.11)

and the matrix Rµ

k,τ is defined in Theorem 2.14. If f = ∑
j c j B j ,d ,τ is a spline in Sd ,τ, with

B-spline coefficients b in Sd ,t , then bi is given by

bi =
µ∑

j=µ−d
α j ,d (i)c j = Rµ

1,τ(ti+1) · · ·Rµ

d ,τ(ti+d)c d , (4.12)

where c d = (cµ−d , . . . ,cµ).

Proof. We note that (4.12) follows from the general discussion earlier in this chapter so we
focus on the proof of (4.11). For degree d = 0 this is easy so we concentrate on the gen-
eral case. We fix the integer i and are going to show how row no. i of A can be determined.
Row i consists of the numbers

(
α j (i)

)n
j=1 where α j (i) gives the coefficient of Bi ,t in the linear

combination of the B-splines in Sd ,t that make up B j ,τ, see (4.9). We will deduce (4.11) by
considering different polynomial pieces of the B-splines that are involved. Let µ be as stated
in the theorem, and let ν be the largest integer such that tν = ti . We then have the two bases
of B-spline polynomials,

Bµ
τ = (Bµ

µ−d ,τ, . . . ,Bµ

µ,d)T ,

Bν
t = (Bν

ν−d ,t , . . . ,Bν
ν,t)T .

The first basis consists of the polynomial pieces of the nonzero B-splines in Sd ,τ on the in-
terval [τµ,τµ+1] and the other consists of the polynomial pieces of the nonzero B-splines in
Sd ,t on the interval [tν, tν+1]. Note that the definition of ν means that Bν

i ,t is one of the B-
spline polynomials in Bν

t . From Proposition 4.5 we know that these two bases are related by
a (d +1)× (d +1)-matrix Mτ,t . Each row of this matrix is associated with one of the B-spline
polynomials in the basis Bν

t and the row associated with Bν
i ,t is given by

Rµ
1,τ(ti+1) · · ·Rµ

d ,τ(ti+d).

On other hand, we also know that the matrix Mτ,t is a submatrix of the knot insertion matrix
A,

Mτ,t =
(
α j (`)

)µ,ν
j=µ−d ,`=ν−d ,

4.2. KNOT INSERTION 77

since the two bases Bµ
τ and Bν

t are part of the two B-spline bases for Sd ,τ and Sd ,t . In partic-
ular we have (

αµ−d (i), . . . ,αµ(i)
)= Rµ

1,τ(ti+1) · · ·Rµ

d ,τ(ti+d).

What remains is to prove that the other entries in row i of A are zero. Suppose that j <
µ− d . By the support properties of B-splines we must then have B j ,τ(x) = Bµ

j ,τ(x) = 0 for
x ∈ [tν, tν+1]. When x varies in this interval we have

0 = Bµ

j ,τ(x) =
ν∑

`=ν−d
α j (`)Bν

`,t (x).

From the linear independence of the B-spline polynomials {B`,t }ν
`=ν−d we can then conclude

thatα j (`) = 0 for `= ν−d , . . . , ν. In particular we have α j (i) = 0. The case j >µ is similar.

Theorem 4.7 shows that the knot insertion matrix is banded: In any row, there are first
some zeros, then some nonzero entries, and then more zeros. As we have already noted there
are several possibilities when it comes to computing the nonzero entries since a B-spline
consists of different polynomial pieces which are all transformed in the same way. In Theo-
rem 4.7 we compute the nonzero entries in row i by considering the knot interval in t which
has ti as its left end and the knot interval in τ whose left end is closest to ti . In general, there
are many other possibilities. With i given, we could for example choose µ by requiring that
τµ+d ≤ ti+d+1 < τµ+d+1.

It should be noted that, in general, not all the d+1 entries of row i of A given by (4.11) will
be nonzero. It is in fact quite easy to see that α j (i) will only be nonzero if the whole support
of Bi ,t is a subset of the support of B j ,τ. More specifically, it can be shown that if there are r
new knots among ti+1, . . . , ti+d then there will be r +1 nonzero entries in row i of A.

Note that if no new knots are inserted (τ = t) then the two sets of B-spline coefficients c
and b are obviously the same. Equation (4.12) then shows that

ci = Rµ
1,τ(τi+1) · · ·Rµ

d ,τ(τi+d)c d . (4.13)

This simple observation will be useful later.
A couple of examples will illustrate the use of Theorem 4.7.

Example 4.8. We consider quadratic splines (d = 2) on the knot vector τ= (−1,−1,−1,0,1,1,1), and insert two
new knots, at −1/2 and 1/2 so t = (−1,−1,−1,−1/2,0,1/2,1,1,1). We note that τ3 ≤ ti < τ4 for 1 ≤ i ≤ 4 so the first
three entries of the first four rows of the 6×4 knot insertion matrix A are given by

α2(i) = R3
1,τ(ti+1)R3

2,τ(ti+2)

for i = 1, . . . , 4. Since

R3
1,τ(x) = (−x 1+x

)
, R3

2,τ(x) =
(−x 1+x 0

0 (1−x)/2 (1+x)/2

)
,

we have from (4.11)

α2(i) = 1

2

(
2ti+1ti+2, 1− ti+1 − ti+2 −3ti+1ti+2, (1+ ti+1)(1+ ti+2)

)
.

78 CHAPTER 4. KNOT INSERTION

-1 -0.5 0.5 1

-2

-1

1

2

(a)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

(b)

Figure 4.5. A quadratic spline together with its control polygon relative to a coarse and a finer knot vector (a), and the same
spline as in (a) with its control polygon relative to an even more refined knot vector (b).

Inserting the correct values for ti+1 and ti+2 and adding one zero at the end of each row, we find that the first four
rows of A are given by

1 0 0 0
1/2 1/2 0 0

0 3/4 1/4 0
0 1/4 3/4 0

 .

To determine the remaining two rows of A we have to move to the interval [τ4,τ5) = [0,1). Here we have

R4
1,τ(x) = (

1−x x
)

R4
2,τ(x) =

(
(1−x)/2 (1+x)/2 0

0 1−x x

)
,

so

a2(i) = R4
1,τ(ti+1)R4

2,τ(ti+2) = 1

2

(
(1− ti+1)(1− ti+2), 1+ ti+1 + ti+2 −3ti+1ti+2, 2ti+1ti+2

)
.

Evaluating this for i = 5, 6 and inserting one zero as the first entry, we obtain the last two rows as(
0 0 1/2 1/2
0 0 0 1

)
.

To see visually the effect of knot insertion, let f = B1,2,τ−2B2,2,τ+2B3,2,τ−B4,2,τ be a spline inSd ,τ with B-spline
coefficients c = (1,−2,2,−1)T . Its coefficients b = (bi)6

i=1 are then given by

b = Ac =

1 0 0 0

1/2 1/2 0 0
0 3/4 1/4 0
0 1/4 3/4 0
0 0 1/2 1/2
0 0 0 1

1
−2
2
−1

=

1

−1/2
−1
1

1/2
−1

 .

Figure 4.5 (a) shows a plot of f together with its control polygons relative to τ and t . We note that the control
polygon relative to t is much closer to f and that both control polygons give a rough estimate of f .

The knot insertion process can be continued. If we insert one new knot halfway between each old knot in t ,
we obtain the new knot vector

t 1 = (−1,−1,−1,−3/4,−1/2,−1/4,0,1/4,1/2,3/4,1,1,1).

A plot of f and its control polygon relative to this knot vector is shown in Figure 4.5 (b).

4.2. KNOT INSERTION 79

Example 4.9. Let us again consider quadratic splines on a uniform knot vector with multiple knots at the ends,

τ= (τ j)n+3
j=1 = (3,3,3,4,5,6, . . . ,n,n +1,n +1,n +1),

and form t by inserting one knot half way between each pair of old knots,

t = (ti)2n+1
i=1 = (3,3,3,7/2,4,9/2,5, . . . ,n, (2n +1)/2,n +1,n +1,n +1).

Since dimSd ,τ = n and dimSd ,t = 2n−2, the knot insertion matrix A is now a (2n−2)×n matrix. As in Example 4.8
we find that the first three columns of the first four rows of A are

1 0 0
1/2 1/2 0

0 3/4 1/4
0 1/4 3/4

 .

To determine rows 2µ−3 and 2µ−2 with 4 ≤µ≤ n −1, we need the matrices R
µ
1,τ and R

µ
2,τ which are given by

R
µ
1,τ(x) = (

µ+1−x x −µ)
, R

µ
2,τ(x) =

(
(µ+1−x)/2 (x +1−µ)/2 0

0 (µ+2−x)/2 (x −µ)/2

)
.

Observe that τi = i for i = 3, . . . , n+1 and ti = (i +3)/2 for i = 3, . . . , 2n−1. Entries µ−2, µ−1 and µ of row 2µ−3
are therefore given by

R
µ
1,τ(t2µ−2)R

µ
2,τ(t2µ−1) = R

µ
1,τ(µ+1/2)R

µ
2,τ(µ+1) = (

1/2 1/2
)(0 1 0

0 1/2 1/2

)
= (

0 3/4 1/4
)

.

Similarly, entries µ−3, µ−2 and µ of row 2µ−2 are given by

R
µ
1,τ(t2µ−1)R

µ
2,τ(t2µ) = R

µ
1,τ(µ+1)R

µ
2,τ(µ+3/2) = (

0 1
)(−1/4 5/4 0

0 1/4 3/4

)
= (

0 1/4 3/4
)

.

Finally, we find as in Example 4.8 that the last three entries of the last two rows are(
0 1/2 1/2
0 0 1

)
.

The complete knot insertion matrix is therefore

A =

1 0 0 0 . . . 0 0 0
1/2 1/2 0 0 . . . 0 0 0

0 3/4 1/4 0 . . . 0 0 0
0 1/4 3/4 0 . . . 0 0 0
0 0 3/4 1/4 . . . 0 0 0
0 0 1/4 3/4 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . 3/4 1/4 0
0 0 0 0 . . . 1/4 3/4 0
0 0 0 0 . . . 0 1/2 1/2
0 0 0 0 . . . 0 0 1

.

The formula for αd (i) shows very clearly the close relationship between B-splines and
discrete B-splines, and it will come as no surprise that α j ,d (i) satisfies a recurrence relation

80 CHAPTER 4. KNOT INSERTION

similar to that of B-splines, see Definition 2.1. The recurrence forα j ,d (i) is obtained by setting
x = ti+d in the recurrence (2.1) for B j ,d (x),

α j ,d (i) = ti+d −τ j

τ j+d −τ j
α j ,d−1(i)+ τ j+1+d − ti+d

τ j+1+d −τ j+1
α j+1,d−1(i), (4.14)

starting with α j ,0(i) = B j ,0(ti).
The two evaluation algorithms for splines, Algorithms 3.17 and 3.18, can be adapted to

knot insertion quite easily. For historical reasons these algorithms are usually referred to as
the Oslo algorithms.

Algorithm 4.10 (Oslo-Algorithm 1). Let the polynomial degree d , and the two d +1-regular
knot vectors τ = (τ j)n+d+1

j=1 and t = (ti)m+d+1
i=1 with common knots at the ends be given. To

compute the m ×n knot insertion matrix A = (
α j ,d (i)

)m,n
i , j=1 from τ to t perform the following

steps:

1. For i = 1, . . . , m.

1.1 Determine µ such that τµ ≤ ti < τµ+1.

1.2 Compute entries µ−d , . . . , µ of row i by evaluating

αd (i)T = (
αµ−d ,d (i), . . . ,αµ,d (i)

)T =
{

1, if d = 0.

R1(ti+1) · · ·Rd (ti+d), if d > 0.

All other entries in row i are zero.

An algorithm for converting a spline from a B-spline representation in Sd ,τ to Sd ,t is as
follows.

Algorithm 4.11 (Oslo-Algorithm 2). Let the polynomial degree d , and the two d +1-regular
knot vectors τ = (τ j)n+d+1

j=1 and t = (ti)m+d+1
i=1 with common knots at the ends be given to-

gether with the spline f in Sd ,τ with B-spline coefficients c = (c j)n
j=1. To compute the B-

spline coefficients b = (bi)m
i=1 of f in Sd ,t perform the following steps:

1. For i = 1, . . . , m.

1.1 Determine µ such that τµ ≤ ti < τµ+1.

1.2 Set c d = (c j)µj=µ−d and compute bi by evaluating

bi =
{

cµ, if d = 0.

R1(ti+1) · · ·Rd (ti+d)c d , if d > 0.

4.3 B-spline coefficients as functions of the knots

Knot insertion allows us to represent the same spline function on different knot vectors. In
fact, any spline function can be given any real numbers as knots, as long as we also include
the original knots. It therefore makes sense to consider the B-spline coefficients as functions

4.3. B-SPLINE COEFFICIENTS AS FUNCTIONS OF THE KNOTS 81

of the knots, and we shall see that this point of view allows us to characterise the B-spline
coefficients completely by three simple properties.

Initially, we assume that the spline f = ∑n
j=1 c j B j ,d ,τ is a polynomial represented on a

d +1-extended knot vector τ. On the knot interval [τµ,τµ+1) we know that f can be written
as

f (x) = R1(x) · · ·Rd (x)c d , (4.15)

where c d = (cµ−d , . . . ,cµ)T , see Section 2.4. Since f is assumed to be a polynomial this repre-
sentation is valid for all real numbers x, although when x is outside [τµ,τµ+1) it is no longer a
true B-spline representation.

Consider the function

F (x1, . . . , xd) = R1(x1) · · ·Rd (xd)c d . (4.16)

We recognise the right-hand side of this expression from equation (4.12) in Theorem 4.7: If
we have a knot vector that includes the knots (x0, x1, . . . , xd , xd+1), then F (x1, . . . , xd) gives the
B-spline coefficient that multiplies the B-spline B(x | x0, . . . , xd+1) in the representation of the
polynomial f on the knot vector x . When f is a polynomial, it turns out that the function F is
completely independent of the knot vector τ that underlie the definition of the R-matrices in
(4.16). The function F is referred to as the blossom of f , and the whole theory of splines can
be built from properties of this function.

4.3.1 The blossom

In this subsection we develop some of the properties of the blossom. We will do this in an
abstract fashion, by starting with a formal definition of the blossom. In the next subsection
we will then show that the function F in (4.16) satisfies this definition.

Definition 4.12. A function on the form f (x) = ax, where a is a real number, is called a linear
function. A function on the form f (x) = ax +b with a and b real constants is called an affine
function. A function of d variables f (x1, . . . , xd) is said to be affine if it is affine viewed as a
function of each xi for i = 1, . . . , d , with the other variables fixed. A symmetric affine function
is an affine function that is not altered when the order of the variables is changed.

It is common to say that a polynomial p(x) = a +bx of degree one is a linear polynomial,
even when a is nonzero. According to Definition 4.12 such a polynomial is an affine polyno-
mial, and this (algebraic) terminology will be used in the present section. Outside this section
however, we will use the term linear polynomial.

For a linear function of one variable we have

f (αx +βy) =α f (x)+β f (y), x, y ∈R (4.17)

for all real numbers α and β, while for an affine function f with b , 0 equation (4.17) only
holds ifα+β= 1. This is in fact a complete characterisation of affine functions: If (4.17) holds
with α+β= 1, then f is affine, see exercise 9.

A general affine function of 2 variables is given by

f (x1, x2) = ax2 +b = (a2x1 +b2)x2 +a1x1 +b1

= c0 + c1x1 + c2x2 + c1,2x1x2.
(4.18)

Martin Reimers

82 CHAPTER 4. KNOT INSERTION

Similarly, an affine function of three variables is a function on the form

f (x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3 + c1,2x1x2 + c1,3x1x3 + c2,3x2x3 + c1,2,3x1x2x3.

In general, an affine function can be written as a linear combination of 2d terms. This follows
by induction as in (4.18) where we passed from one argument to two.

A symmetric and affine function satisfies the equation

f (x1, x2, . . . , xd) = f (xπ1 , xπ2 , . . . , xπd),

for any permutation (π1,π2, . . . ,πd) of the numbers 1, 2, . . . , d . We leave it as an exercise to
show that symmetric, affine functions of two and three variables can be written in the form

f (x1, x2) = a0 +a1(x1 +x2)+a2x1x2,

f (x1, x2, x3) = a0 +a1(x1 +x2 +x3)+a2(x1x2 +x1x3 +x2x3)+a3x1x2x3.

We are now ready to give the definition of the blossom of a polynomial.

Definition 4.13. Let p be a polynomial of degree at most d . The blossom B[p](x1, . . . , xd) of
p is a function of d variables with the properties:

1. Symmetry. The blossom is a symmetric function of its arguments,

B[p](x1, . . . , xd) =B[p](xπ1 , . . . , xπd)

for any permutation π1, . . . , πd of the integers 1, . . . , d .

2. Affine. The blossom is affine in each of its variables,

B[p](. . . ,αx +βy, . . .) =αB[p](. . . , x, . . .)+βB[p](. . . , y, . . .)

whenever α+β= 1.

3. Diagonal property. The blossom agrees with p on the diagonal,

B[p](x, . . . , x) = p(x)

for all real numbers x.

The blossom of a polynomial exists and is unique.

Theorem 4.14. Each polynomial p of degree d has a unique blossom B[p](x1, . . . , xd). The
blossom acts linearly on p, i.e., if p1 and p2 are two polynomials and c1 and c2 are two real
constants then

B[c1p1 + c2p2](x1, . . . , xd) = c1B[p1](x1, . . . , xd)+ c2B[p2](x1, . . . , xd). (4.19)

4.3. B-SPLINE COEFFICIENTS AS FUNCTIONS OF THE KNOTS 83

Proof. The proof of uniqueness follows along the lines sketched at the beginning of this sec-
tion for small d . Start with a general affine function F of d variables

F (x1, . . . , xd) = c0 +
d∑

j=1

∑
1≤i1<···<i j≤d

ci1,...,i j xi1 · · ·xi j .

Symmetry forces all the coefficients multiplying terms of the same degree to be identical. To
see this we note first that

F (1,0, . . . ,0) = c0 + c1 = F (0, . . . ,1, . . . ,0) = c0 + ci

for all i with 1 ≤ i ≤ d . Hence we have c1 = ·· · = cd . To prove that the terms of degree j all
have the same coefficients we use induction and set j of the variables to 1 and the rest to 0.
By the induction hypothesis we know that all the terms of degree less than j are symmetric;
denote the contribution from these terms by p j−1. Symmetry then gives

p j−1 + c1,2,..., j = p j−1 + c1,2,..., j−1, j+1 = ·· · = p j−1 + cd− j+1,...,d .

From this we conclude that all the coefficients multiplying terms of degree j must be equal.
We can therefore write F as

F (x1, . . . , xd) = a0 +
d∑

j=1
a j

∑
1≤i1<···<i j≤d

xi1 · · ·xi j , (4.20)

for suitable constants (a j)d
j=0. From the diagonal property F (x, . . . , x) = f (x) the coefficients

(a j)d
j=0 are all uniquely determined (since 1, x, . . . , xd is basis for πd).
The linearity of the blossom with regards to p follows from its uniqueness: The right-hand

side of (4.19) is affine in each of the xi , it is symmetric, and it reduces to c1p1(x)+ c2p2(x) on
the diagonal x1 = ·· · = xd = x.

Recall that the elementary symmetric polynomials

s j (x1, . . . , xd) =
(∑

1≤i1<···<i j≤d
xi1 xi2 · · ·xi j

)
/

(
d

j

)
that appear in (4.20) (apart from the binomial coefficient) agree with the B-spline coefficients
of the polynomial powers,

σ
j
k,d = s j (τk+1, . . . ,τk+d),

see Corollary 3.6. In fact, the elementary symmetric polynomials are the blossoms of the
powers,

B[x j](x1, . . . , xd) = s j (x1, . . . , xd) for j = 0, . . . , d .

They can also be defined by the relation

(x −x1) · · · (x −xd) =
d∑

k=0
(−1)d−k

(
d

k

)
sd−k (x1, . . . , xd)xk .

Note that the blossom depends on the degree of the polynomial in a nontrivial way. If we
consider the polynomial p(x) = x to be of degree one, then B[p](x1) = x1. But we can also
think of p as a polynomial of degree three (the cubic and quadratic terms are zero); then we
obviously have B[p](x1, x2, x3) = (x1 +x2 +x3)/3.

84 CHAPTER 4. KNOT INSERTION

4.3.2 B-spline coefficients as blossoms

Earlier in this chapter we have come across a function that is both affine and symmetric.
Suppose we have a knot vector τ for B-splines of degree d . On the interval [τµ,τµ+1) the only
nonzero B-splines are B d = (Bµ−d ,d , . . . ,Bµ,d)T which can be expressed in terms of matrices
as

B d (x)T = R1(x) · · ·Rd (x).

If we consider the polynomial piece f = B T
d c d with coefficients c d = (cµ−d , . . . ,cµ)T we can

define a function F of d variables by

F (x1, . . . , xd) = R1(x1) · · ·Rd (xd)c d . (4.21)

From equation (4.12) we recognise F (x1, . . . , xd) as the coefficient multiplying a B-spline with
knots x0, x1, . . . , xd+1 in the representation of the polynomial f .

Equation (3.7) in Lemma 3.4 shows that F is a symmetric function. It is also affine in each
of its variables. To verify this, we note that because of the symmetry it is sufficient to check
that it is affine with respect to the first variable. Recall from Theorem 2.14 that R1 = R1,τ is
given by

R1(x) =
(τµ+1 −x

τµ+1 −τµ
,

x −τµ
τµ+1 −τµ

)
which is obviously an affine function of x.

The function F is also related to the polynomial f in that F (x, . . . , x) = f (x). We have
proved the following lemma.

Lemma 4.15. Let f =∑µ

j=µ−d c j B j ,d be a polynomial represented in terms of the B-splines in

Sd ,τ on the interval [τµ,τµ+1), with coefficients c d = (cµ−d , . . . ,cµ)T . Then the function

F (x1, . . . , xd) = R1(x1) · · ·Rd (xd)c d

is symmetric and affine, and agrees with f on the diagonal,

F (x, . . . , x) = f (x).

Lemma 4.15 and Theorem 4.14 show that the blossom of f is given by

B[f](x1, . . . , xd) = R1(x1) · · ·Rd (xd)c d .

Blossoming can be used to give explicit formulas for the B-spline coefficients of a spline.

Theorem 4.16. Let f =∑n
j=1 c j B j ,d ,τ be a spline on a d +1-regular knot vector τ= (τ j)n+d+1

j=1 .
Its B-spline coefficients are then given by

c j =B[fk](τ j+1, . . . ,τ j+d), for k = j , j +1, . . . , j +d , (4.22)

provided τk < τk+1. Here fk = f |(τk ,τk+1) is the restriction of f to the interval (τk ,τk+1).

4.3. B-SPLINE COEFFICIENTS AS FUNCTIONS OF THE KNOTS 85

Proof. Let us first restrict x to the interval [τµ,τµ+1) and only consider one polynomial piece
fµ of f . From Lemma 4.15 we know that B[fµ](x1, . . . , xd) = R1(x1) · · ·Rd (xd)c d , where c d =
(c j)µj=µ−d are the B-spline coefficients of f active on the interval [τµ,τµ+1). From (4.13) we
then obtain

c j =B[fµ](τ j+1, . . . ,τ j+d) (4.23)

which is (4.22) in this special situation.
To prove (4.22) in general, fix j and choose the integer k in the range j ≤ k ≤ j +d . We

then have

fk (x) =
k∑

i=k−d
ci Bi ,d (x), (4.24)

By the choice of k we see that the sum in (4.24) includes the term c j B j ,d . Equation (4.22)
therefore follows by applying (4.23) to fk .

The affine property allows us to perform one important operation with the blossom; we
can change the arguments.

Lemma 4.17. The blossom of p satisfies the relation

B[p](. . . , x, . . .) = b −x

b −a
B[p](. . . , a . . .)+ x −a

b −a
B[p](. . . ,b, . . .) (4.25)

for all real numbers a, b and x with a , b.

Proof. Observe that x can be written as an affine combination of a and b,

x = b −x

b −a
a + x −a

b −a
b.

Equation (4.25) then follows from the affine property of the blossom.

The next result will be useful later.

Lemma 4.18. Let Bx
[
p(x, y)

]
denote the blossom of p with respect to the variable x. Then

Bx
[
(y −x)k]

(x1, . . . , xd) = k !

d !
Dd−k(

(y −x1) · · · (y −xd)
)
, (4.26)

for k = 0, 1, . . . , d , and

Bx
[
(y1 −x) · · · (y`−x)

]
(x1, . . . , xd) = (d −`)!

d !

∑
1≤i1,...,i`≤d

(y1 −xi1) · · · (y`−xi`), (4.27)

where the sum is over all distinct choices i1, . . . , i` of ` integers from the d integers 1, . . . , d .

Proof. For k = d equation (4.26) follows since the right-hand side is symmetric and affine
in each of the variables xi and it agrees with (y − x)d on the diagonal x1 = ·· · = xd = x. The
general result is then obtained by differentiating both sides k times.

Equation (4.27) follows since the right-hand side is affine, symmetric and reduces to (y1−
x) · · · (y`−x) when x = x1 = ·· · = xd , i.e., it must be the blossom of (y −x)d .

86 CHAPTER 4. KNOT INSERTION

4.4 Inserting one knot at a time

With blossoming we have a simple but powerful tool for determining the B-spline coefficients
of splines. Here we will apply blossoming to develop an alternative knot insertion strategy.
Instead of inserting all new knots simultaneously we can insert them sequentially. We insert
one knot at a time and update the B-spline coefficients between each insertion. This leads to
simple, explicit formulas.

Lemma 4.19 (Böhm’s method). Let τ= (τ j)n+d+1
j=1 be a given knot vector and let t = (ti)n+d+2

i=1
be the knot vector obtained by inserting a knot z in τ in the interval [τµ,τµ+1). If

f =
n∑

j=1
c j B j ,d ,τ =

n+1∑
i=1

bi Bi ,d ,t ,

then (bi)n+1
i=1 can be expressed in terms of (c j)n

j=1 through the formulas

bi =

ci , if 1 ≤ i ≤µ−d ;

z −τi

τi+d −τi
ci + τi+d − z

τi+d −τi
ci−1, if µ−d +1 ≤ i ≤µ;

ci−1, if µ+1 ≤ i ≤ n +1.

(4.28)

Proof. Observe that for j ≤ µ we have τ j = t j . For i ≤ µ−d and with k an integer such that
i ≤ k ≤ i +d it therefore follows from (4.22) that

bi =B[fk](ti+1, . . . , ti+d) =B[fk](τi+1, . . . ,τi+d) = ci .

Similarly, we have ti = τi−1 for i ≥µ+1 so

bi =B[fk](ti+1, . . . , ti+d) =B[fk](τi , . . . ,τi+d−1) = ci−1

for such values of i .
When i satisfies µ−d +1 ≤ i ≤µwe note that z will appear in the sequence (ti+1, . . . , ti+d).

From (4.22) we therefore obtain

bi =B[fµ](ti+1, . . . , z, . . . , ti+d) =B[fµ](τi+1, . . . , z, . . . ,τi+d−1)

since we now may choose k =µ. Applying Lemma 4.17 with x = z, a = τi and b = τi+d yields

bi = τi+d − z

τi+d −τi
B[fµ](τi+1, . . . ,τi , . . . ,τi+d)+ z −τi

τi+d −τi
B[fµ](τi , . . . ,τi+d , . . . ,τi+d−1).

Exploiting the symmetry of the blossom and again applying (4.22) leads to the middle formula
in (4.28).

It is sometimes required to insert the same knot several times; this can of course be ac-
complished by applying the formulas in (4.28) several times. Since blossoms have the prop-
erty B[f](z, . . . , z) = f (z), we see that inserting a knot d times in a spline of degree d gives as

4.4. INSERTING ONE KNOT AT A TIME 87

a by-product the function value of f at z. This can be conveniently illustrated by listing old
and new coefficients in a triangular scheme. Consider the following triangle (d = 3),

· · · c0
µ−4 c0

µ−3 c0
µ−2 c0

µ−1 c0
µ c0

µ+1 · · ·
c1
µ−2 c1

µ−1 c1
µ

c2
µ−1 c2

µ

c3
µ

In the first row we have the coefficients of f on the original knot vector τ. After inserting z in
(τµ,τµ+1) once, the coefficients relative to the knot vector τ1 =τ∪ {z} are

(. . . ,c0
µ−4,c0

µ−3,c1
µ−2,c1

µ−1,c1
µ,c0

µ,c0
µ+1, . . .),

i.e., we move down one row in the triangle. Suppose that z is inserted once more. The new
B-spline coefficients onτ2 =τ1∪{z} are now found by moving down to the second row, across
this row, and up the right hand side,

(. . . ,c0
µ−4,c0

µ−3,c1
µ−2,c2

µ−1,c2
µ,c1

µ,c0
µ,c0

µ+1, . . .).

Similarly, if z is inserted 3 times, we move around the whole triangle. We can also insert z a
full d = 4 times. We then simply repeat c3

µ two times in the last row.
Lemma 4.19 shows that Oslo Algorithm 2 (Algorithm 4.11) is not always efficient. To com-

pute a new coefficient in the case where only one new knot is inserted requires at most one
convex combination according to Lemma 4.19 while Algorithm 4.11 requires the computa-
tion of a full triangle (two nested loops). More efficient versions of the Oslo algorithms can
be developed, but this will not be considered here.

The simplicity of the formulas (4.28) indicates that the knot insertion matrix A must have
a simple structure when only one knot is inserted. Setting c = (ci)n

i=1 and b = (bi)n+1
i=1 and

remembering that b = Ac , we see that A is given by the (n +1)×n matrix

A =

1 0
. . .

. . .

1 0
1−λµ−d+1 λµ−d+1

. . .
. . .

1−λµ λµ
0 1

. . .
. . .

0 1

, (4.29)

where λi = (z −τi)/(τi+d −τi) for µ−d +1 ≤ i ≤ µ. All the entries off the two diagonals are
zero and such matrices are said to be bi-diagonal. Since z lies in the interval [τµ,τµ+1) all the
entries in A are nonnegative. This property generalises to arbitrary knot insertion matrices.

88 CHAPTER 4. KNOT INSERTION

Lemma 4.20. Let τ = (τ j)n+d+1
j=1 and t = (ti)m+d+1

i=1 be two knot vectors for splines of degree
d with τ⊆ t . All the entries of the knot insertion matrix A from Sd ,τ to Sd ,t are nonnegative
and A can be factored as

A = Am−n Am−n−1 · · · A1, (4.30)

where Ai is a bi-diagonal (n + i)× (n + i −1)-matrix with nonnegative entries.

Proof. Let us denote the m −n knots that are in t but not in τ by (zi)m−n
i=1 . Set t 0 = τ and

t i = t i−1 ∪ (zi) for i = 1, . . . , m −n. Denote by Ai the knot insertion matrix from t i−1 to t i .
By applying Böhm’s method m −n times we obtain (4.30). Since all the entries in each of the
matrices Ai are nonnegative the same must be true of A.

4.5 Bounding the number of sign changes in a spline

In this section we will make use of Böhm’s method for knot insertion to prove that the num-
ber of sign changes in a spline function is bounded by the number of sign changes in its
B-spline coefficient vector. This provides a generalisation of an interesting property of poly-
nomials known as Descartes’ rule of signs. Bearing the name of Descartes, this result is of
course classical, but it is rarely mentioned in elementary mathematics textbooks. Before stat-
ing Descartes’ rule of signs let us record what we mean by sign changes in a definition.

Definition 4.21. Let c = (ci)n
i=1 be a vector of real numbers. The number of sign changes

in c (zeros are ignored) is denoted S−(c). The number of sign changes in a function f in
an interval (a,b) is denoted S−

(a,b)(f) = S−(f), provided this number is finite. It is given by the
largest possible integer r such that an increasing sequence of r+1 real numbers x1 < ·· · < xr+1

in (a,b) can be found with the property that S−(
f (x1), . . . , f (xr+1)

)= r .

Example 4.22. Let us consider some simple examples of counting sign changes. It is easily checked that

S−(1,−2) = 1,

S−(1,0,2) = 0,

S−(1,−1,2) = 2,

S−(1,0,−1,3) = 2,

S−(2,0,0,0,−1) = 1,

S−(2,0,0,0,1) = 0.

As stated in the definition, we simply count sign changes by counting the number of jumps from positive to
negative values and from negative to positive, ignoring all components that are zero.

Descartes’ rule of signs bounds the number of zeros in a polynomial by the number of sign
changes in its coefficients. Recall that z is a zero of f of multiplicity r ≥ 1 if f (z) = D f (z) =
·· · = Dr−1 f (z) = 0 but Dr f (z), 0.

Theorem 4.23 (Descartes’ rule of signs). Let p = ∑d
i=0 ci xi be a polynomial of degree d with

coefficients c = (c0, . . . ,cd)T , and let Z (p) denote the total number of zeros of p in the interval
(0,∞), counted with multiplicities. Then

Z (p) ≤ S−(c),

i.e., the number of positive zeros of p is bounded by the number of sign changes in its coeffi-
cients.

4.5. BOUNDING THE NUMBER OF SIGN CHANGES IN A SPLINE 89

0.5 1 1.5 2

-1

-0.5

0.5

1

(a) p(x) = 1−x.

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

(b) p(x) = 1−3x +x2.

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

(c) p(x) = 2−3x +x2.

0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0.5

1

(d) p(x) = 1−4x +4x2 −x3.

Figure 4.6. Illustrations of Descartes’ rule of signs: the number of zeros in (0,∞) is no greater than the number of strong sign
changes in the coefficients.

Figures 4.6 (a)–(d) show some polynomials and their zeros in (0,∞).

Our aim is to generalise this result to spline functions, written in terms of B-splines. This
is not so simple because it is difficult to count zeros for splines. In contrast to polynomials, a
spline may for instance be zero on an interval without being identically zero. In this section
we will therefore only consider zeros that are also sign changes. In the next section we will
then generalise and allow multiple zeros.

To bound the number of sign changes of a spline we will investigate how knot insertion
influences the number of sign changes in the B-spline coefficients. Let Sd ,τ and Sd ,t be two
spline spaces of degree d , with Sd ,τ ⊆Sd ,t . Recall from Section 4.4 that to get from the knot
vector τ to the refined knot vector t , we can insert one knot at a time. If there are ` more
knots in τ than in t , this leads to a factorisation of the knot insertion matrix A as

A = A`A`−1 · · · A1, (4.31)

where Ak is a (n +k)× (n +k −1) matrix for k = 1, . . . , `, if dimSd ,τ = n. Each of the matrices
Ak corresponds to insertion of only one knot, and all the nonzero entries of the bi-diagonal
matrix Ak are found in positions (i , i) and (i +1, i) for i = 1, . . . , n+k−1, and these entries are
all nonnegative (in general many of them will be zero).

We start by showing that the number of sign changes in the B-spline coefficients is re-
duced when the knot vector is refined.

90 CHAPTER 4. KNOT INSERTION

Lemma 4.24. Let Sd ,τ and Sd ,t be two spline spaces such that t is a refinement of τ. Let
f =∑n

j=1 c j B j ,d ,τ =
∑m

i=1 bi Bi ,d ,t be a spline in Sd ,τ with B-spline coefficients c in Sd ,τ and b
in Sd ,t . Then b has no more sign changes than c , i.e.,

S−(Ac) = S−(b) ≤ S−(c), (4.32)

where A is the knot insertion matrix from τ to t .

Proof. Since we can insert the knots one at a time, it clearly suffices to show that (4.32) holds
in the case where there is only one more knot in t than in τ. In this case we know from
Lemma 4.19 that A is bidiagonal so

bi =αi−1(i)ci−1 +αi (i)ci , for i = 1, . . . n +1,

where
(
α j (i)

)n+1,n
i , j=1 are the entries of A (for convenience of notation we have introduced two

extra entries that are zero, α0(1) =αn+1(n+1) = 0). Sinceαi−1(i) andαi (i) both are nonnega-
tive, the sign of bi must be the same as either ci−1 or ci (or be zero). Since the number of sign
changes in a vector is not altered by inserting zeros or a number with the same sign as one of
its neighbours we have

S−(c) = S−(b1,c1,b2,c2, . . . ,bn−1,cn−1,bn ,cn ,bn+1) ≥ S−(b).

The last inequality follows since the number of sign changes in a vector is always reduced
when entries are removed.

From Lemma 4.24 we can quite easily bound the number of sign changes in a spline in
terms of the number of sign changes in its B-spline coefficients.

Theorem 4.25. Let f =∑n
j=1 c j B j ,d be a spline in Sd ,τ. Then

S−(f) ≤ S−(c) ≤ n −1. (4.33)

Proof. Suppose that S−(f) = `, and let (xi)`+1
i=1 be`+1 points chosen so that S−(f) = S−(

f (x1), . . . , f (x`+1)
)
.

We form a new knot vector t that includes τ as a subsequence, but in addition each of the xi

occurs exactly d +1 times in t . From our study of knot insertion we know that f may be writ-
ten f = ∑

j b j B j ,d ,t for suitable coefficients (b j), and from Lemma 2.3 we know that each of
the function values f (xi) will appear as a B-spline coefficient in b. We therefore have

S−(f) ≤ S−(b) ≤ S−(c),

the last inequality following from Lemma 4.24. The last inequality in (4.33) follows since an
n-vector can only have n −1 sign changes.

The validity of Theorem 4.25 can be checked with the two plots in Figure 4.7 as well as all
other figures which include both a spline function and its control polygon.

4.6. EXERCISES 91

1 2 3 4 5 6

-2

-1

1

2

3

(a)

1 2 3 4 5 6

-2

2

4

(b)

Figure 4.7. A quadratic spline (a) and a cubic spline (b) with their control polygons.

4.6 Exercises

4.1 In this exercise we are going to study a change of polynomial basis from the Bernstein
basis to the Monomial basis. Recall that the Bernstein basis of degree d is defined by

B d
j (x) =

(
d

j

)
x j (1−x)d− j , for j = 0, 1, . . . , d . (4.34)

A polynomial p of degree d is said to be written in Monomial form if p(x) = ∑d
j=0 b j x j

and in Bernstein form if p(x) =∑d
j=0 c j B d

j (x). In this exercise the binomial formula

(a +b)d =
d∑

k=0

(
d

k

)
ak bd−k (4.35)

will be useful.

a) By applying (4.35), show that

B d
j (x) =

d∑
i= j

(−1)i− j

(
d

j

)(
d − j

i − j

)
xi , for j = 0, 1, . . . , d .

Also show that
(d

j

)(d− j
i− j

)= (d
i

)(i
j

)
for i = j , . . . , d and j = 0, . . . , d .

b) The two basis vectors B d = (
B d

0 (x), . . . ,B d
d (x)

)T and P d = (1, x, . . . , xd)T are related
by B T

d = P T
d Ad where Ad is a (d +1)× (d +1)-matrix Ad . Show that the entries of

Ad = (ai , j)d
i , j=0 are given by

ai , j =
{

0, if i < j ,

(−1)i− j
(d

i

)(i
j

)
, otherwise.

c) Show that the entries of Ad satisfy the recurrence relation

ai , j =βi
(
ai−1, j−1 −ai−1, j

)
, where βi = (d − i +1)/i .

Give a detailed algorithm for computing Ad based on this formula.

92 CHAPTER 4. KNOT INSERTION

d) Explain how we can find the coefficients of a polynomial relative to the Monomial
basis if Ad is known and the coefficients relative to the Bernstein basis are known.

4.2 In this exercise we are going to study the opposite conversion of that in Exercise 1,
namely from the Monomial basis to the Bernstein basis.

a) With the aid of (4.35), show that for all x and t in Rwe have

(
t x + (1−x)

)d =
d∑

k=0
B d

k (x)t k . (4.36)

The function G(t) = (
t x+(1−x)

)d is called a generating function for the Bernstein
polynomials.

b) Show that
∑d

k=0 B d
k (x) = 1 for all x by choosing a suitable value for t in (4.36).

c) Find two different expressions for G (j)(1)/ j ! and show that this leads to the for-
mulas (

d

j

)
x j =

d∑
i= j

(
i

j

)
B d

k (x), for j = 0, . . . , d . (4.37)

d) Show that the entries of the matrix B d = (bi , j)d
i , j=0 such that P T

d = B T
d B d are given

by

bi , j =
{

0, if i < j ,(i
j

)
/
(d

j

)
, otherwise.

4.3 Let P denote the cubic Bernstein basis on the interval [0,1] and let Q denote the cu-
bic Bernstein basis on the interval [2,3]. Determine the matrix A3 such that P (x)T =
Q(x)T A3 for all real numbers x.

4.4 Let A denote the knot insertion matrix for the linear (d = 1) B-splines on τ= (τ j)n+2
j=1 to

the linear B-splines in t = (ti)m+2
i=1 . We assume that τ and t are 2-extended with τ1 = t1

and τn+2 = tm+2 and τ⊆ t .

a) Determine A when τ= (0,0,1/2,1,1) and t = (0,0,1/4,1/2,3/4,1,1).

b) Device a detailed algorithm that computes A for general τ and t and requires
O(m) operations.

c) Show that the matrix AT A is tridiagonal.

4.5 Prove Lemma 4.2 in the general case whereτ and t are not d+1-regular. Hint: Augment
both τ and t by inserting d +1 identical knots at the beginning and end.

4.6 Prove Theorem 4.7 in the general case where the knot vectors are not d +1-regular with
common knots at the ends. Hint: Use the standard trick of augmenting τ and t with
d+1 identical knots at both ends to obtain new knot vectors τ̂ and t̂ . The knot insertion
matrix from τ to t can then be identified as a sub-matrix of the knot insertion matrix
from τ̂ to t̂ .

4.6. EXERCISES 93

4.7 Show that if τ and t are d +1-regular knot vectors with τ⊆ t whose knots agree at the
ends then

∑
j α j ,d (i) = 1.

4.8 Implement Algorithm 4.11 and test it on two examples. Verify graphically that the con-
trol polygon converges to the spline as more and more knots are inserted.

4.9 Let f be a function that satisfies the identity

f (αx +βy) =α f (x)+β f (y) (4.38)

for all real numbers x and y and all real numbersα and β such thatα+β= 1. Show that
then f must be an affine function. Hint: Use the alternative form of equation (4.38)
found in Lemma 4.17.

4.10 Find the cubic blossom B[p](x1, x2, x3) when p is given by:

a) p(x) = x3.

b) p(x) = 1.

c) p(x) = 2x +x2 −4x3.

d) p(x) = 0.

e) p(x) = (x −a)2 where a is some real number.

94 CHAPTER 4. KNOT INSERTION

Chapter 5
Spline Approximation

This chapter introduces a number of methods for obtaining spline approximations to given
functions, or more precisely, to data obtained by sampling a function. In Section 5.1, we focus
on local methods where the approximation at a point x only depends on data values near x.
Connecting neighbouring data points with straight lines is one such method where the value
of the approximation at a point only depends on the two nearest data points.

In order to get smoother approximations, we must use splines of higher degree. With cu-
bic polynomials we can prescribe, or interpolate, position and first derivatives at two points.
Therefore, given a set of points with associated function values and first derivatives, we can
determine a sequence of cubic polynomials that interpolate the data, joined together with
continuous first derivatives. This is the cubic Hermite interpolant of Section 5.1.2.

In Section 5.2 we study global cubic approximation methods where we have to solve a
system of equations involving all the data points in order to obtain the approximation. Like
the local methods in Section 5.1, these methods interpolate the data, which now only are
positions. The gain in turning to global methods is that the approximation may have more
continuous derivatives and still be as accurate as the local methods.

The cubic spline interpolant with so called natural end conditions solves an interesting
extremal problem. Among all functions with a continuous second derivative that interpolate
a set of data, the natural cubic spline interpolant is the one whose integral of the square of the
second derivative is the smallest. This is the foundation for various interpretations of splines,
and is all discussed in Section 5.2.

Two approximation methods for splines of arbitrary degree are described in Section 5.3.
The first method is spline interpolation with B-splines defined on some rather arbitrary knot
vector. The disadvantage of using interpolation methods is that the approximations have a
tendency to oscillate. If we reduce the dimension of the approximating spline space, and
instead minimize the error at the data points this problem can be greatly reduced. Such least
squares methods are studied in Section 5.3.2.

We end the chapter by a discussing a very simple approximation method, the Variation
Diminishing Spline Approximation. This approximation scheme has the desirable ability to
transfer the sign of some of the derivatives of a function to the approximation. This is impor-

95

96 CHAPTER 5. SPLINE APPROXIMATION

tant since many important characteristics of the shape of a function is closely related to the
sign of the derivatives.

5.1 Local Approximation Methods

When we construct an approximation to data, it is usually an advantage if the approximation
at a point x only depends on the data near x. If this is the case, changing the data in some
small area will only affect the approximation in the same area. The variation diminishing
approximation method and in particular piecewise linear interpolation has this property, it
is a local method. In this section we consider another local approximation method.

5.1.1 Piecewise linear interpolation

The simplest way to obtain a continuous approximation to a set of ordered data points is to
connect neighbouring data points with straight lines. This approximation is naturally enough
called the piecewise linear interpolant to the data. It is clearly a linear spline and can therefore
be written as a linear combination of B-splines on a suitable knot vector. The knots must be
at the data points, and since the interpolant is continuous, each interior knot only needs to
occur once in the knot vector. The construction is given in the following proposition.

Proposition 5.1. Let (xi , yi)m
i=1 be a set of data points with xi < xi+1 for i = 1, . . . , m −1, and

construct the 2-regular knot vector t as

t = (ti)m+2
i=1 = (x1, x1, x2, x3, . . . , xm−1, xm , xm).

Then the linear spline g given by

g (x) =
m∑

i=1
yi Bi ,1(x)

satisfies the interpolation conditions

g (xi) = yi , for i = 1, . . . , m −1, and lim
x→x−

m

g (x) = ym . (5.1)

The last condition states that the limit of g from the left at xm is ym . If the data are taken from
a function f so that yi = f (xi) for i = 1, . . . , m, the interpolant g is often denoted by I1 f .

Proof. From Example 2.2 in Chapter 2, we see that the B-spline Bi ,1 for 1 ≤ i ≤ m is given by

Bi ,1(x) =

(x −xi−1)/(xi −xi−1), if xi−1 ≤ x < xi ,

(xi+1 −x)/(xi+1 −xi), if xi ≤ x < xi+1,

0, otherwise,

where we have set x0 = x1 and xm+1 = xm . This means that Bi ,1(xi) = 1 for i < m and limx→x−
m

Bm,1(x) =
1, while Bi ,1(x j) = 0 for all j , i , so the interpolation conditions (5.1) are satisfied.

5.1. LOCAL APPROXIMATION METHODS 97

The piecewise linear interpolant preserves the shape of the data extremely well. The ob-
vious disadvantage of this approximation is its lack of smoothness.

Intuitively, it seems reasonable that if f is continuous, it should be possible to approxi-
mate it to within any accuracy by piecewise linear interpolants, if we let the distance between
the data points become small enough. This is indeed the case. Note that the symbol C j [a,b]
denotes the set of all functions defined on [a,b] with values in R whose first j derivatives are
continuous.

Proposition 5.2. Suppose that a = x1 < x2 < ·· · < xm = b are given points, and set ∆x =
max1≤i≤m−1{xi+1 −xi }.

1. If f ∈ C [a,b], then for every ε > 0 there is a δ > 0 such that if ∆x < δ, then | f (x) −
I1 f (x)| < ε for all x ∈ [a,b].

2. If f ∈C 2[a,b] then for all x ∈ [a,b],

| f (x)− (I1 f)(x)| ≤ 1

8
(∆x)2 max

a≤z≤b
| f ′′(z)|, (5.2)

| f ′(x)− (I1 f)′(x)| ≤ 1

2
∆x max

a≤z≤b
| f ′′(z)|. (5.3)

Part (i) of Proposition 5.2 states that piecewise linear interpolation to a continuous func-
tion converges to the function when the distance between the data points goes to zero. More
specifically, given a tolerance ε, we can make the error less than the tolerance by choosing∆x
sufficiently small.

Part (ii) of Proposition 5.2 gives an upper bound for the error in case the function f is
smooth, which in this case means that f and its first two derivatives are continuous. The
inequality in (5.2) is often stated as “piecewise linear approximation has approximation order
two”, meaning that ∆x is raised to the power of two in (5.2).

The bounds in Proposition 5.2 depend both on ∆x and the size of the second derivative
of f . Therefore, if the error is not small, it must be because one of these quantities are large.
If in some way we can find an upper bound M for f ′′, i.e.,

| f ′′(x)| ≤ M , for x ∈ [a,b], (5.4)

we can determine a value of∆x such that the error, measured as in (5.2), is smaller than some
given tolerance ε. We must clearly require (∆x)2M/8 < ε. This inequality holds provided
∆x < p

8ε/M . We conclude that for any ε> 0, we have the implication

∆x <
√

8ε

M
=⇒ | f (x)− I1 f (x)| < ε, for x ∈ [x1, xm]. (5.5)

This estimate tells us how densely we must sample f in order to have error smaller than ε

everywhere.
We will on occasions want to compute the piecewise linear interpolant to a given higher

degree spline f . A spline does not necessarily have continuous derivatives, but at least we
know where the discontinuities are. The following proposition is therefore meaningful.

98 CHAPTER 5. SPLINE APPROXIMATION

Proposition 5.3. Suppose that f ∈ Sd ,t for some d and t with interior knots of multiplicity
at most d (so f is continuous). If the break points (xi)m

i=1 are chosen so as to include all the
knots in t where f ′ is discontinuous, the bounds in (5.2) and (5.3) continue to hold.

5.1.2 Cubic Hermite interpolation

The piecewise linear interpolant has the nice property of being a local construction: The
interpolant on an interval [xi , xi+1] is completely defined by the value of f at xi and xi+1. The
other advantage of f is that it does not oscillate between data points and therefore preserves
the shape of f if∆x is small enough. In this section we construct an interpolant which, unlike
the piecewise linear interpolant, has continuous first derivative, and which, like the piecewise
linear interpolant, only depends on data values locally. The price of the smoothness is that
this interpolant requires information about derivatives, and shape preservation in the strong
sense of the piecewise linear interpolant cannot be guaranteed. The interpolant we seek is
the solution of the following problem.

Problem 5.4 (Piecewise Cubic Hermite Interpolation). Let the discrete data
(xi , f (xi), f ′(xi))m

i=1 with a = x1 < x2 < ·· · < xm = b be given. Find a function g = H3 f that
satisfies the following conditions:

1. On each subinterval (xi , xi+1) the function g is a cubic polynomial.

2. The given function f is interpolated by g in the sense that

g (xi) = f (xi), and g ′(xi) = f ′(xi), for i = 1, . . . , m. (5.6)

A spline g that solves Problem 5.4 must be continuous and have continuous first deriva-
tive since two neighbouring pieces meet with the same value f (xi) and first derivative f ′(xi)
at a join xi . Since H f should be a piecewise cubic polynomial, it is natural to try and de-
fine a knot vector so that H f can be represented as a linear combination of B-splines on this
knot vector. To get the correct smoothness, we need at least a double knot at each data point.
Since d = 3 and we have 2m interpolation conditions, the length of the knot vector should be
2m+4, and we might as well choose to use a 4-regular knot vector. We achieve this by making
each interior data point a knot of multiplicity two and place four knots at the two ends. This
leads to the knot vector

τ= (τi)2m+4
i=1 = (x1, x1, x1, x1, x2, x2, . . . , xm−1, xm−1, xm , xm , xm , xm), (5.7)

which we call the Cubic Hermite knot vector on x = (x1, . . . , xm). This allows us to construct
the solution to Problem 5.4.

Proposition 5.5. Problem 5.4 has a unique solution H f in the spline space S3,τ, where τ is
given in equation (5.7). More specifically, the solution is given by

H f =
2m∑
i=1

ci Bi ,3, (5.8)

5.1. LOCAL APPROXIMATION METHODS 99

where

c2i−1 = f (xi)− 1

3
∆xi−1 f ′(xi),

c2i = f (xi)+ 1

3
∆xi f ′(xi),

 for i = 1, . . . , m, (5.9)

where ∆x j = x j+1 −x j , and the points x0 and xm+1 are defined by x0 = x1 and xm+1 = xm .

Proof. We leave the proof that the spline defined by (5.9) satisfies the interpolation condi-
tions in Problem 5.4 to the reader.

By construction, the solution is clearly a cubic polynomial. That there is only one solution
follows if we can show that the only solution that solves the problem with f (xi) = f ′(xi) = 0
for all i is the function that is zero everywhere. For if the general problem has two solutions,
the difference between these must solve the problem with all the data equal to zero. If this
difference is zero, the two solutions must be equal.

To show that the solution to the problem where all the data are zero is the zero function, it
is clearly enough to show that the solution is zero in one subinterval. On each subinterval the
function H f is a cubic polynomial with value and derivative zero at both ends, and it there-
fore has four zeros (counting multiplicity) in the subinterval. But the only cubic polynomial
with four zeros is the polynomial that is identically zero. From this we conclude that H f must
be zero in each subinterval and therefore identically zero.

Let us see how this method of approximation behaves in a particular situation.

Example 5.6. We try to approximate the function f (x) = x4 on the interval [0,1] with only one polynomial
piece so that m = 2 and [a,b] = [x1, xm] = [0,1]. Then the cubic Hermite knots are just the Bernstein knots. From
(5.9) we find (c1,c2,c3,c4) = (0,0,−1/3,1), and

(H f)(x) =−1

3
3x2(1−x)+x3 = 2x3 −x2.

The two functions f and H f are shown in Figure 5.1.

Example 5.7. Let us again approximate f (x) = x4 on [0,1], but this time we use two polynomial pieces so that
m = 3 and x = (0,1/2,1). In this case the cubic Hermite knots are τ = (0,0,0,0,1/2,1/2,1,1,1,1), and we find the
coefficients c = (0,0,−1/48,7/48,1/3,1). The two functions f and H f are shown in Figure 5.1 (a). With the extra
knots at 1/2 (cf. Example 5.6), we get a much more accurate approximation to x4. In fact, we see from the error
plots in Figures 5.1 (b) and 5.1 (b) that the maximum error has been reduced from 0.06 to about 0.004, a factor of
about 15.

Note that in Example 5.6 the approximation becomes negative even though f is nonneg-
ative in all of [0,1]. This shows that in contrast to the piecewise linear interpolant, the cubic
Hermite interpolant H f does not preserve the sign of f . However, it is simple to give condi-
tions that guarantee H f to be nonnegative.

Proposition 5.8. Suppose that the function f to be approximated by cubic Hermite interpo-
lation satisfies the conditions

f (xi)− 1

3
∆xi−1 f ′(xi) ≥ 0,

f (xi)+ 1

3
∆xi f ′(xi) ≥ 0,

 for i = 1, . . . , m.

Then the cubic Hermite interpolant H f is nonnegative on [a,b].

100 CHAPTER 5. SPLINE APPROXIMATION

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a)

0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

0.05

0.06

(b)

Figure 5.1. Figure (a) shows the cubic Hermite interpolant (solid) to f (x) = x4 (dashed), see Example 5.6, while the error in this
approximation is shown in (b).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a)

0.2 0.4 0.6 0.8 1

0.001

0.002

0.003

0.004

(b)

Figure 5.2. Figure (a) shows the cubic Hermite interpolant (solid) to f (x) = x4 (dashed) with two polynomial pieces, see Exam-
ple 5.7, while the error in the approximation is shown in (b).

5.1. LOCAL APPROXIMATION METHODS 101

Proof. In this case, the spline approximation H f given by Proposition 5.5 has nonnegative B-
spline coefficients, so that (H f)(x) for each x is a sum of nonnegative quantities and therefore
nonnegative.

As for the piecewise linear interpolant, it is possible to relate the error to the spacing in x
and the size of some derivative of f .

Proposition 5.9. Suppose that f has continuous derivatives up to order four on the interval
[x1, xm]. Then

| f (x)− (H f)(x)| ≤ 1

384
(∆x)4 max

a≤z≤b
| f (i v)(z)|, for x ∈ [a,b]. (5.10)

This estimate also holds whenever f is in some spline spaceSd ,τ provided f has a continuous
derivative at all the xi .

Proof. See a text on numerical analysis.

The error estimate in (5.10) says that if we halve the distance between the interpolation
points, then we can expect the error to decrease by a factor of 24 = 16. This is usually referred
to as “fourth order convergence”. This behaviour is confirmed by Examples 5.6 and 5.7 where
the error was reduced by a factor of about 15 when ∆x was halved.

From Proposition 5.9, we can determine a spacing between data points that guarantees
that the error is smaller than some given tolerance. Suppose that

| f (i v)(x)| ≤ M , for x ∈ [a,b].

For any ε> 0 we then have

∆x ≤
(

384ε

M

)1/4

=⇒ | f (x)− (H f)(x)| ≤ ε, for x ∈ [a,b].

When ε→ 0, the number ε1/4 goes to zero more slowly than the term ε1/2 in the corresponding
estimate for piecewise linear interpolation. This means that when ε becomes small, we can
usually use a larger ∆x in cubic Hermite interpolation than in piecewise linear interpolation,
or equivalently, we generally need fewer data points in cubic Hermite interpolation than in
piecewise linear interpolation to obtain the same accuracy.

5.1.3 Estimating the derivatives

Sometimes we have function values available, but no derivatives, and we still want a smooth
interpolant. In such cases we can still use cubic Hermite interpolation if we can somehow
estimate the derivatives. This can be done in many ways, but one common choice is to use
the slope of the parabola interpolating the data at three consecutive data-points. To find this
slope we observe that the parabola pi such that pi (x j) = f (x j), for j = i−1, i and i+1, is given
by

pi (x) = f (xi−1)+ (x −xi−1)δi−1 + (x −xi−1)(x −xi)
δi −δi−1

∆xi−1 +∆xi
,

102 CHAPTER 5. SPLINE APPROXIMATION

where
δ j =

(
f (x j+1)− f (x j)

)
/∆x j .

We then find that

p ′
i (xi) = δi−1 +∆xi−1

δi −δi−1

∆xi−1 +∆xi
.

After simplification, we obtain

p ′
i (xi) = ∆xi−1δi +∆xiδi−1

∆xi−1 +∆xi
, for i = 2, . . . , m −1, (5.11)

and this we use as an estimate for f ′(xi). Using cubic Hermite interpolation with the choice
(5.11) for derivatives is known as cubic Bessel interpolation. It is equivalent to a process known
as parabolic blending. The end derivatives f ′(x1) and f ′(xm) must be estimated separately.
One possibility is to use the value in (5.11) with x0 = x3 and xm+1 = xm−2.

5.2 Cubic Spline Interpolation

Cubic Hermite interpolation works well in many cases, but it is inconvenient that the deriva-
tives have to be specified. In Section 5.1.3 we saw one way in which the derivatives can be
estimated from the function values. There are many other ways to estimate the derivatives at
the data points; one possibility is to demand that the interpolant should have a continuous
second derivative at each interpolation point. As we shall see in this section, this leads to a
system of linear equations for the unknown derivatives so the locality of the construction is
lost, but we gain one more continuous derivative which is important in some applications. A
surprising property of this interpolant is that it has the smallest second derivative of all C 2-
functions that satisfy the interpolation conditions. The cubic spline interpolant therefore has
a number of geometric and physical interpretations that we discuss briefly in Section 5.2.1.

Our starting point is m points a = x1 < x2 < ·· · < xm = b with corresponding values yi =
f (xi). We are looking for a piecewise cubic polynomial that interpolates the given values and
belongs to C 2[a,b]. In this construction, it turns out that we need two extra conditions to
specify the interpolant uniquely. One of the following boundary conditions is often used.

(i) g ′(a) = f ′(a) and g ′(b) = f ′(b); H(ermite)

(ii) g ′′(a) = g ′′(b) = 0; N(atural)

(iii) g ′′′ is continuous at x2 and xm−1. F(ree)

(iv) D j g (a) = D j g (b) for j = 1, 2. P(eriodic)

(5.12)

The periodic boundary conditions are suitable for closed parametric curves where f (x1) =
f (xm).

In order to formulate the interpolation problems more precisely, we will define the ap-
propriate spline spaces. Since we want the splines to have continuous derivatives up to order
two, we know that all interior knots must be simple. For the boundary conditions H, N, and
F, we therefore define the 4-regular knot vectors

τH =τN = (τi)m+6
i=1 = (x1, x1, x1, x1, x2, x3, . . . , xm−1, xm , xm , xm , xm),

τF = (τi)m+4
i=1 = (x1, x1, x1, x1, x3, x4, . . . , xm−2, xm , xm , xm , xm).

(5.13)

5.2. CUBIC SPLINE INTERPOLATION 103

This leads to three cubic spline spaces S3,τH , S3,τN and S3,τF , all of which will have two
continuous derivatives at each interior knot. Note that x2 and xm−1 are missing in τF . This
means that any h ∈S3,τF will automatically satisfy the free boundary conditions.

We consider the following interpolation problems.

Problem 5.10. Let the data (xi , f (xi))m
i=1 with a = x1 < x2 < ·· · < xm = b be given, together

with f ′(x1) and f ′(xm) if they are needed. For Z denoting one of H , N , or F , we seek a spline
g = gZ = IZ f in the spline spaceS3,τZ , such that g (xi) = f (xi) for i = 1,2, . . . ,m, and such that
boundary condition Z holds.

We consider first Problem 5.10 in the case of Hermite boundary conditions. Our aim is
to show that the problem has a unique solution, and this requires that we study it in some
detail.

It turns out that any solution of Problem 5.10 H has a remarkable property. It is the in-
terpolant which, in some sense, has the smallest second derivative. To formulate this, we
need to work with integrals of the splines. An interpretation of these integrals is that they are
generalizations of the dot product or inner product for vectors. Recall that if u and v are two
vectors in Rn , then their inner product is defined by

〈u, v〉 = u ·v =
n∑

i=1
ui vi ,

and the length or norm of u can be defined in terms of the inner product as

||u|| = 〈u,u〉1/2 =
(n∑

i=1
u2

i

)1/2
.

The corresponding inner product and norm for functions are

〈u, v〉 =
∫ b

a
u(x)v(x)d x =

∫ b

a
uv

and

||u|| =
(∫ b

a
u(t)2d t

)1/2 =
(∫ b

a
u2

)1/2
.

It therefore makes sense to say that two functions u and v are orthogonal if 〈u, v〉 = ∫
uv = 0.

The first result that we prove says that the error f − IH f is orthogonal to a family of linear
splines.

Lemma 5.11. Denote the error in cubic spline interpolation with Hermite end conditions by
e = f − IH f , and let τ be the 2-regular knot vector

τ= (τi)m+2
i=1 = (x1, x1, x2, x3, . . . , xm−1, xm , xm).

Then the second derivative of e is orthogonal to the spline space S1,τ. In other words∫ b

a
e ′′(x)h(x)d x = 0, for all h ∈S1,τ.

104 CHAPTER 5. SPLINE APPROXIMATION

Proof. Dividing [a,b] into the subintervals [xi , xi+1] for i = 1, . . . , m−1, and using integration
by parts, we find ∫ b

a
e ′′h =

m−1∑
i=1

∫ xi+1

xi

e ′′h =
m−1∑
i=1

(
e ′h

∣∣∣xi+1

xi

−
∫ xi+1

xi

e ′h′
)
.

Since e ′(a) = e ′(b) = 0, the first term is zero,

m−1∑
i=1

e ′h
∣∣∣xi+1

xi

= e ′(b)h(b)−e ′(a)h(a) = 0. (5.14)

For the second term, we observe that since h is a linear spline, its derivative is equal to
some constant hi in the subinterval (xi , xi+1), and therefore can be moved outside the inte-
gral. Because of the interpolation conditions we have e(xi+1) = e(xi) = 0, so that

m−1∑
i=1

∫ xi+1

xi

e ′h′ =
m−1∑
i=1

hi

∫ xi+1

xi

e ′(x)d x = 0.

This completes the proof.

We can now show that the cubic spline interpolant solves a minimization problem. In any
minimization problem, we must specify the space over which we minimize. The space in this
case is EH (f), which is defined in terms of the related space E(f)

E(f) = {
g ∈C 2[a,b] | g (xi) = f (xi) for i = 1, . . . , m

}
,

EH (f) = {
g ∈ E(f) | g ′(a) = f ′(a) and g ′(b) = f ′(b)

}
.

(5.15)

The space E(f) is the set of all functions with continuous derivatives up to the second order
that interpolate f at the data points. If we restrict the derivatives at the ends to coincide with
the derivatives of f we obtain EH (f).

The following theorem shows that the second derivative of a cubic interpolating spline
has the smallest second derivative of all functions in EH (f).

Theorem 5.12. Suppose that g = IH f is the solution of Problem 5.10 H. Then∫ b

a

(
g ′′(x)

)2 d x ≤
∫ b

a

(
h′′(x)

)2 d x for all h in EH (f), (5.16)

with equality if and only if h = g .

Proof. Select some h ∈ EH (f) and set e = h − g . Then we have∫ b

a
h′′2 =

∫ b

a

(
e ′′+ g ′′)2 =

∫ b

a
e ′′2 +2

∫ b

a
e ′′g ′′+

∫ b

a
g ′′2. (5.17)

Since g ∈ S3,τH we have g ′′ ∈ S1,τ, where τ is the knot vector given in Lemma 5.11. Since

g = IH h = IH f , we have e = h − IH h so we can apply Lemma 5.11 and obtain
∫ b

a e ′′g ′′ = 0. We

conclude that
∫ b

a h′′2 ≥ ∫ b
a g ′′2.

5.2. CUBIC SPLINE INTERPOLATION 105

To show that we can only have equality in (5.16) when h = g , suppose that
∫ b

a h′′2 = ∫ b
a g ′′2.

Using (5.17), we observe that we must have
∫ b

a e ′′2 = 0. But since e ′′ is continuous, this means
that we must have e ′′ = 0. Since we also have e(a) = e ′(a) = 0, we conclude that e = 0. This
can be shown by using Taylor’s formula

e(x) = e(a)+ (x −a)e ′(a)+
∫ x

a
e ′′(t)(x − t)d t .

Since e = 0, we end up with g = h.

Lemma 5.11 and Theorem 5.12 allow us to show that the Hermite problem has a unique
solution.

Theorem 5.13. Problem 5.10 H has a unique solution.

Proof. We seek a function

g = IH f =
m+2∑
i=1

ci Bi ,3

in S3,τH such that
m+2∑
j=1

c j B j ,3(xi) = f (xi), for i = 1, . . . , m,

m+2∑
j=1

c j B ′
j ,3(xi) = f ′(xi), for i = 1 and m.

(5.18)

This is a linear system of m+2 equations in the m+2 unknown B-spline coefficients. From lin-
ear algebra we know that such a system has a unique solution if and only if the corresponding
system with zero right-hand side only has the zero solution. This means that existence and
uniqueness of the solution will follow if we can show that Problem 5.10 H with zero data only
has the zero solution. Suppose that g ∈ S3,τH solves Problem 5.10 H with zero data. Clearly
g = 0 is a solution. According to Theorem 5.12, any other solution must also minimize the
integral of the second derivative. By the uniqueness assertion in Theorem 5.12, we conclude
that g = 0 is the only solution.

We have similar results for the “natural” case.

Lemma 5.14. If e = f − IN f and τ the knot vector

τ= (τi)m
i=1 = (x1, x2, x3, . . . , xm−1, xm),

the second derivative of e is orthogonal to S1,τ,∫ b

a
e ′′(x)h(x)d x = 0, for all h in S1,τ.

Proof. The proof is similar to Lemma 5.11. The relation in (5.14) holds since every h ∈ S1,τ

now satisfies h(a) = h(b) = 0.

106 CHAPTER 5. SPLINE APPROXIMATION

Lemma 5.14 allows us to prove that the cubic spline interpolation problem with natural
boundary conditions has a unique solution.

Theorem 5.15. Problem 5.10 N has a unique solution g = IN f . The solution is the unique
function in C 2[a,b] with the smallest possible second derivative in the sense that∫ b

a

(
g ′′(x)

)2 d x ≤
∫ b

a

(
h′′(x)

)2 d x, for all h ∈ E(f),

with equality if and only if h = g .

Proof. The proof of Theorem 5.12 carries over to this case. We only need to observe that the
natural boundary conditions imply that g ′′ ∈S1,τ.

From this it should be clear that the cubic spline interpolants with Hermite and natural
end conditions are extraordinary functions. If we consider all continuous functions with two
continuous derivatives that interpolate f at the xi , the cubic spline interpolant with natural
end conditions is the one with the smallest second derivative in the sense that the integral of
the square of the second derivative is minimized. This explains why the N boundary condi-
tions in (5.12) are called natural. If we restrict the interpolant to have the same derivative as
f at the ends, the solution is still a cubic spline.

For the free end interpolant we will show existence and uniqueness in the next section.
No minimization property is known for this spline.

5.2.1 Interpretations of cubic spline interpolation

Today engineers use computers to fit curves through their data points; this is one of the main
applications of splines. But splines have been used for this purpose long before computers
were available, except that at that time the word spline had a different meaning. In industries
like for example ship building, a thin flexible ruler was used to draw curves. The ruler could
be clamped down at fixed data points and would then take on a nice smooth shape that in-
terpolated the data and minimized the bending energy in accordance with the physical laws.
This allowed the user to interpolate the data in a visually pleasing way. This flexible ruler was
known as a draftmans spline.

The physical laws governing the classical spline used by ship designers tell us that the
ruler will take on a shape that minimizes the total bending energy. The linearised bending
energy is given by

∫
g ′′2, where g (x) is the position of the centreline of the ruler. Outside the

first and last fixing points the ruler is unconstrained and will take the shape of a straight line.
From this we see that the natural cubic spline models such a linearised ruler. The word spline
was therefore a natural choice for the cubic interpolants we have considered here when they
were first studied systematically in 1940’s.

The cubic spline interpolant also has a related, geometric interpretation. From differen-
tial geometry we know that the curvature of a function g (x) is given by

κ(x) = g ′′(x)(
1+ (

g ′(x)
)2

)3/2
.

5.2. CUBIC SPLINE INTERPOLATION 107

The curvature κ(x) measures how much the function curves at x and is important in the
study of parametric curves. If we assume that 1+ g ′2 ≈ 1 on [a,b], then κ(x) ≈ g ′′(x). The
cubic spline interpolants IH f and IN f can therefore be interpreted as the interpolants with
the smallest linearised curvature.

5.2.2 Numerical solution and examples

If we were just presented with the problem of finding the C 2 function that interpolate a given
function at some points and have the smallest second derivative, without the knowledge that
we obtained in Section 5.2, we would have to work very hard to write a reliable computer
program that could solve the problem. With Theorem 5.15, the most difficult part of the
work has been done, so that in order to compute the solution to say Problem 5.10 H, we only
have to solve the linear system of equations (5.18). Let us take a closer look at this system. We
order the equations so that the boundary conditions correspond to the first and last equation,
respectively. Because of the local support property of the B-splines, only a few unknowns
appear in each equation, in other words we have a banded linear system. Indeed, since τi+3 =
xi , we see that only {B j ,3}i+3

j=i can be nonzero at xi . But we note also that xi is located at the

first knot of Bi+3,3, which means that Bi+3,3(xi) = 0. Since we also have B ′
j ,3(x1) = 0 for j ≥ 3

and B ′
j ,3(xm) = 0 for j ≤ m, we conclude that the system can be written in the tridiagonal

form

Ac =

α1 γ1

β2 α2 γ2
. . .

. . .
. . .

βm+1 αm+1 γm+1

βm+2 αm+2

c1

c2
...

cm+1

cm+2

=

f ′(x1)
f (x1)

...
f (xm)
f ′(xm)

= f , (5.19)

where the elements of A are given by

α1 = B ′
1,3(x1), αm+2 = B ′

m+2,3(xm),

γ1 = B ′
2,3(x1), βm+2 = B ′

m+1,3(xm),

βi+1 = Bi ,3(xi), αi+1 = Bi+1,3(xi), γi+1 = Bi+2,3(xi).

(5.20)

The elements of A can be computed by one of the triangular algorithms for B-bases.
For H3 f we had explicit formulas for the B-spline coefficients that only involved a few

function values and derivatives, in other words the approximation was local. In cubic spline
interpolation the situation is quite different. All the equations in (5.19) are coupled and we
have to solve a linear system of equations. Each coefficient will therefore in general depend
on all the given function values which means that the value of the interpolant at a point also
depends on all the given function values. This means that cubic spline interpolation is not a
local process.

Numerically it is quite simple to solve (5.19). It follows from the proof of Theorem 5.13
that the matrix A is nonsingular, since otherwise the solution could not be unique. Since it
has a tridiagonal form it is recommended to use Gaussian elimination. It can be shown that
the elimination can be carried out without changing the order of the equations (pivoting),
and a detailed error analysis shows that this process is numerically stable .

108 CHAPTER 5. SPLINE APPROXIMATION

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

(a)

5 10 15 20

0.2

0.4

0.6

0.8

1

(b)

Figure 5.3. Cubic spline interpolation to smoothly varying data (a) and data with sharp corners (b).

In most cases, the underlying function f is only known through the data yi = f (xi), for
i = 1, . . . , m. We can still use Hermite end conditions if we estimate the end slopes f ′(x1) and
f ′(xm). A simple estimate is f ′(a) = d1 and f ′(b) = d2, where

d1 = f (x2)− f (x1)

x2 −x1
and d2 = f (xm)− f (xm−1)

xm −xm−1
. (5.21)

More elaborate estimates like those in Section 5.1.3 are of course also possible.
Another possibility is to turn to natural and free boundary conditions which also lead to

linear systems similar to the one in equation (5.19), except that the first and last equations
which correspond to the boundary conditions must be changed appropriately. For natural
end conditions we know from Theorem 5.15 that there is a unique solution. Existence and
uniqueness of the solution with free end conditions is established in Corollary 5.19.

The free end condition is particularly attractive in a B-spline formulation, since by not
giving any knot at x2 and xm−1 these conditions take care of themselves. The free end con-
ditions work well in many cases, but extra wiggles can sometimes occur near the ends of the
range. The Hermite conditions give us better control in this respect.

Example 5.16. In Figure 5.3 (a) and 5.3 (b) we show two examples of cubic spline interpolation. In both cases
we used the Hermite boundary conditions with the estimate in (5.21) for the slopes. The data to be interpolated
is shown as bullets. Note that in Figure 5.3 (a) the interpolant behaves very nicely and predictably between the
data points.

In comparison, the interpolant in Figure 5.3 (b) has some unexpected wiggles. This is a characteristic fea-
ture of spline interpolation when the data have sudden changes or sharp corners. For such data, least squares
approximation by splines usually gives better results, see Section 5.3.2.

5.3 General Spline Approximation

So far, we have mainly considered spline approximation methods tailored to specific degrees.
In practise, cubic splines are undoubtedly the most common, but there is an obvious ad-
vantage to have methods available for splines of all degrees. In this section we first con-
sider spline interpolation for splines of arbitrary degree. The optimal properties of the cubic
spline interpolant can be generalized to spline interpolants of any odd degree, but here we
only focus on the practical construction of the interpolant. Least squares approximation,

5.3. GENERAL SPLINE APPROXIMATION 109

which we study in Section 5.3.2, is a completely different approximation procedure that of-
ten give better results than interpolation, especially when the data changes abruptly like in
Figure 1.16 (b).

5.3.1 Spline interpolation

Given points (xi , yi)m
i=1, we again consider the problem of finding a spline g such that

g (xi) = yi , i = 1, . . . ,m.

In the previous section we used cubic splines where the knots of the spline were located at
the data points. This works well if the data points are fairly evenly spaced, but can otherwise
give undesirable effects. In such cases the knots should not be chosen at the data points.
However, how to choose good knots in general is difficult.

In some cases we might also be interested in doing interpolation with splines of degree
higher than three. We could for example be interested in a smooth representation of the
second derivative of f . However, if we want f ′′′ to be continuous, say, then the degree d must
be higher than three. We therefore consider the following interpolation problem.

Problem 5.17. Let there be given data
(
xi , yi

)m
i=1 and a spline space Sd ,τ whose knot vector

τ= (τi)m+d+1
i=1 satisfies τi+d+1 > τi , for i = 1, . . . , m. Find a spline g in Sd ,τ such that

g (xi) =
m∑

j=1
c j B j ,d (xi) = yi , for i = 1, . . . , m. (5.22)

The equations in (5.22) form a system of m equations in m unknowns. In matrix form
these equations can be written

Ac =

 B1,d (x1) . . . Bm,d (x1)
...

. . .
...

B1,d (xm) . . . Bm,d (xm)

 c1

...
cm

=

 y1
...

ym

= y . (5.23)

Theorem 5.18 gives necessary and sufficient conditions for this system to have a unique so-
lution, in other words for A to be nonsingular.

Theorem 5.18. The matrix A in (5.23) is nonsingular if and only if the diagonal elements
ai ,i = Bi ,d (xi) are positive for i = 1, . . .m.

Proof. See Theorem 10.6 in Chapter 10.

The condition that the diagonal elements of A should be nonzero can be written

τi < xi < τi+d+1, i = 1,2, . . . ,m, (5.24)

provided we allow xi = τi if τi = ·· · = τi+d . Conditions (5.24) are known as the Schoenberg-
Whitney nesting conditions.

As an application of Theorem 5.18, let us verify that the coefficient matrix for cubic spline
interpolation with free end conditions is nonsingular.

110 CHAPTER 5. SPLINE APPROXIMATION

Corollary 5.19. Cubic spline interpolation with free end conditions (Problem 5.10 F) has a
unique solution.

Proof. The coefficients of the interpolant are found by solving a linear system of equations
of the form (5.22). Recall that the knot vector τ=τF is given by

τ= (τi)m+4
i=1 = (x1, x1, x1, x1, x3, x4, . . . , xm−2, xm , xm , xm , xm).

From this we note that B1(x1) and B2(x2) are both positive. Since τi+2 = xi for i = 3, . . . , m−2,
we also have τi < xi−1 < τi+4 for 3 ≤ i ≤ m −2. The last two conditions follow similarly, so the
coefficient matrix is nonsingular.

For implementation of general spline interpolation, it is important to make use of the
fact that at most d + 1 B-splines are nonzero for a given x, just like we did for cubic spline
interpolation. This means that in any row of the matrix A in (5.22), at most d + 1 entries
are nonzero, and those entries are consecutive. This gives A a band structure that can be
exploited in Gaussian elimination. It can also be shown that nothing is gained by rearranging
the equations or unknowns in Gaussian elimination, so the equations can be solved without
pivoting.

5.3.2 Least squares approximation

In this chapter we have described a number of spline approximation techniques based on
interpolation. If it is an absolute requirement that the spline should pass exactly through the
data points, there is no alternative to interpolation. But such perfect interpolation is only
possible if all computations can be performed without any round-off error. In practise, all
computations are done with floating

point numbers, and round-off errors are inevitable. A small error is
therefore always present and must be tolerable whenever computers are used for approx-

imation. The question is what is a tolerable error? Often the data are results of measurements
with a certain known resolution. To interpolate such data is not recommended since it means
that the error is also approximated. If it is known that the underlying function is smooth, it is
usually better to use a method that will only approximate the data, but approximate in such
a way that the error at the data points is minimized. Least squares approximation is a general
and simple approximation method for accomplishing this. The problem can be formulated
as follows.

Problem 5.20. Given data (xi , yi)m
i=1 with x1 < ·· · < xm , positive real numbers wi for i = 1,

. . . , m, and an n-dimensional spline space Sd ,τ, find a spline g in Sd ,τ which solves the min-
imization problem

min
h∈Sd ,τ

m∑
i=1

wi
(
yi −h(xi)

)2 . (5.25)

The expression (5.25) that is minimized is a sum of the squares of the errors at each data
point, weighted by the numbers wi which are called weights. This explains the name least
squares approximation, or more precisely weighted least squares approximation. If wi is large
in comparison to the other weights, the error yi −h(xi) will count more in the minimization.

5.3. GENERAL SPLINE APPROXIMATION 111

As the the weight grows, the error at this data point will go to zero. On the other hand, if the
weight is small in comparison to the other weights, the error at that data point gives little con-
tribution to the total least squares deviation. If the weight is zero, the approximation is com-
pletely independent of the data point. Note that the actual value of the weights is irrelevant,
it is the relative size that matters. The weights therefore provides us with the opportunity to
attach a measure of confidence to each data point. If we know that yi is a very accurate data
value we can give it a large weight, while if yi is very inaccurate we can give it a small weight.
Note that it is the relative size of the weights that matters, a natural ‘neutral’ value is therefore
wi = 1.

From our experience with interpolation, we see that if we choose the spline spaceSd ,τ so
that the number of B-splines equals the number of data points and such that Bi (xi) > 0 for all
i , then the least squares approximation will agree with the interpolant and give zero error, at
least in the absence of round-off errors. Since the

whole point of introducing the least squares approximation is to avoid interpolation of
the data, we must make sure that n is smaller than m and that the knot vector is appropriate.
This all means that the spline spaceSd ,τ must be chosen appropriately, but this is not easy. Of
course we would like the spline space to be such that a “good” approximation g can be found.
Good, will have different interpretations for different applications. A statistician would like
g to have certain statistical properties. A designer would like an aesthetically pleasing curve,
and maybe some other shape and tolerance requirements to be satisfied. In practise, one of-
ten starts with a small spline space, and then adds knots in problematic areas until hopefully
a satisfactory approximation is obtained.

Different points of view are possible in order to analyse Problem 5.20 mathematically. Our
approach is based on linear algebra. Our task is to find the vector c = (c1, . . . ,cn) of B-spline
coefficients of the spline g solving Problem 5.20. The following matrix-vector formulation is
convenient.

Lemma 5.21. Problem 5.20 is equivalent to the linear least squares problem

min
c∈Rn

‖Ac −b‖2,

where A ∈Rm,n and b ∈Rm have components

ai , j = p
wi B j (xi) and bi = p

wi yi , (5.26)

and for any u = (u1, . . . ,um),

‖u‖ =
√

u2
1 +·· ·+u2

m ,

is the usual Euclidean length of a vector in Rm .

112 CHAPTER 5. SPLINE APPROXIMATION

Proof. Suppose c = (c1, . . . ,cn) are the B-spline coefficients of some h ∈Sd ,τ. Then

‖Ac −b‖2
2 =

m∑
i=1

(n∑
j=1

ai , j c j −bi

)2

=
m∑

i=1

(n∑
j=1

p
wi B j (xi)c j − p

wi yi

)2

=
m∑

i=1
wi

(
h(xi)− yi

)2
.

This shows that the two minimization problems are equivalent.

In the next lemma, we collect some facts about the general linear least squares problem.
Recall that a symmetric matrix N is positive semidefinite if c T N c ≥ 0 for all c ∈Rn , and posi-
tive definite if in addition c T N c > 0 for all nonzero c ∈Rn .

Lemma 5.22. Suppose m and n are positive integers with m ≥ n, and let the matrix A in Rm,n

and the vector b in Rm be given. The linear least squares problem

min
c∈Rn

‖Ac −b‖2 (5.27)

always has a solution c∗ which can be found by solving the linear set of equations

AT Ac∗ = AT b. (5.28)

The coefficient matrix N = AT A is symmetric and positive semidefinite. It is positive definite,
and therefore nonsingular, and the solution of (5.27) is unique if and only if A has linearly
independent columns.

Proof. Let span(A) denote the n-dimensional linear subspace ofRm spanned by the columns
of A,

span(A) = {Ac | c ∈Rn}.

From basic linear algebra we know that a vector b ∈ Rm can be written uniquely as a sum
b = b1+b2, where b1 is a linear combination of the columns of A so that b1 ∈ span(A), and b2

is orthogonal to span(A), i.e., we have bT
2 d = 0 for all d in span(A). Using this decomposition

of b, and the Pythagorean theorem, we have for any c ∈Rn ,

‖Ac −b‖2 = ‖Ac −b1 −b2‖2 = ‖Ac −b1‖2 +‖b2‖2.

It follows that ‖Ac −b‖2
2 ≥ ‖b2‖2

2 for any c ∈ Rn , with equality if Ac = b1. A c = c∗ such that
Ac∗ = b1 clearly exists since b1 is in span(A), and c∗ is unique if and only if A has linearly in-
dependent columns. To derive the linear system for c∗, we note that any c that is minimising
satisfies Ac −b =−b2. Since we also know that b2 is orthogonal to span(A), we must have

d T (Ac −b) = c T
1 AT (Ac −b) = 0

for all d = Ac 1 in span(A), i.e., for all c 1 in Rn . But this is only possible if AT (Ac −b) = 0. This
proves (5.28).

5.3. GENERAL SPLINE APPROXIMATION 113

5 10 15 20

0.25
0.5

0.75
1

1.25
1.5

1.75
2

(a)

5 10 15 20

0.25
0.5

0.75
1

1.25
1.5

1.75
2

(b)

Figure 5.4. Figure (a) shows the cubic spline interpolation to the noisy data of Example 5.24, while least squares approximation
to the same data is shown in (b).

The n ×n-matrix N = AT A is clearly symmetric and

c T N c = ‖Ac‖2
2 ≥ 0, (5.29)

for all c ∈Rn , so that N is positive semi-definite. From (5.29) we see that we can find a nonzero
c such that c T N c = 0 if and only if Ac = 0, i.e., if and only if A has linearly dependent columns
. We conclude that N is positive definite if and only if A has linearly independent columns.

Applying these results to Problem 5.20 we obtain.

Theorem 5.23. Problem 5.20 always has a solution. The solution is unique if and only if we
can find a sub-sequence (xi`)n

`=1 of the data abscissas such that

B`(xi`), 0 for `= 1, . . . , n.

Proof. By Lemma 5.21 and Lemma 5.22 we conclude that Problem 5.20 always has a solution,
and the solution is unique if and only if the matrix A in Lemma 5.21 has linearly independent
columns. Now A has linearly independent columns if and only if we can find a subset of n
rows of A such that the square submatrix consisting of these rows and all columns of A is non-
singular. But such a matrix is of the form treated in Theorem 5.18. Therefore, the submatrix is
nonsingular if and only if the diagonal elements are nonzero. But the diagonal elements are
given by B`(xi`).

Theorem 5.23 provides a nice condition for checking that we have a unique least squares
spline approximation to a given data set; we just have to check that each B-spline has its
‘own’ xi` in its support. To find the B-spline coefficients of the approximation, we must solve
the linear system of equations (5.28). These equations are called the normal equations of
the least squares system and can be solved by Cholesky factorization of a banded matrix fol-
lowed by back substitution. The least squares problem can also be solved by computing a
QR-factorization of the matrix A; for both methods we refer to a standard text on numerical
linear algebra for details.

114 CHAPTER 5. SPLINE APPROXIMATION

Example 5.24. Least squares approximation is especially appropriate when the data is known to be noisy.
Consider the data represented as bullets in Figure 5.4 (a). These data were obtained by adding random pertur-
bations in the interval [−0.1,0.1] to the function f (x) = 1. In Figure 5.4 (a) we show the cubic spline interpolant
(with free end conditions) to the data, while Figure 5.4 (b) shows the cubic least squares approximation to the
same data, using no interior knots. We see that the least squares approximation smooths out the data nicely. We
also see that the cubic spline interpolant gives a nice approximation to the given data, but it also reproduces the
noise that was added artificially.

Once we have made the choice of approximating the data in Example 5.24 using cubic
splines with no interior knots, we have no chance of representing the noise in the data. The
flexibility of cubic polynomials is nowhere near rich enough to represent all the oscillations
that we see in Figure 5.4 (a), and this gives us the desired smoothing effect in Figure 5.4 (b).
The advantage of the method of least squares is that it gives a reasonably simple method for
computing a reasonably good approximation to quite arbitrary data on quite arbitrary knot
vectors. But it is largely the knot vector that decides how much the approximation is allowed
to oscillate, and good methods for choosing the knot vector is therefore of fundamental im-
portance. Once the knot vector is given there are in fact many approximation methods that
will provide good approximations.

5.4 The Variation Diminishing Spline Approximation

In this section we describe a simple, but very useful method for obtaining spline approxima-
tions to a function f defined on an interval [a,b]. This method is a generalization of piecewise
linear interpolation and has a nice shape preserving behaviour. For example, if the function
f is positive, then the spline approximation will also be positive.

Definition 5.25. Let f be a given continuous function on the interval [a,b], let d be a given
positive integer, and letτ= (τ1, . . . ,τn+d+1) be a d+1-regular knot vector with boundary knots
τd+1 = a and τn+1 = b. The spline given by

(V f)(x) =
n∑

j=1
f (τ∗j)B j ,d (x) (5.30)

where τ∗j = (τ j+1 + ·· · + τ j+d)/d are the knot averages, is called the Variation Diminishing
Spline Approximation of degree d to f on the knot vector τ.

The approximation method that assigns to f the spline approximation V f is about the
simplest method of approximation that one can imagine. Unlike some of the other methods
discussed in this chapter there is no need to solve a linear system. To obtain V f , we simply
evaluate f at certain points and use these function values as B-spline coefficients directly.

Note that if all interior knots occur less than d +1 times in τ, then

a = τ∗1 < τ∗2 < . . . < τ∗n−1 < τ∗n = b. (5.31)

This is because τ1 and τn+d+1 do not occur in the definition of τ∗1 and τ∗n so that all selections
of d consecutive knots must be different.

Example 5.26. Suppose that d = 3 and that the interior knots of τ are uniform in the interval [0,1], say

τ= (0,0,0,0,1/m,2/m, . . . ,1−1/m,1,1,1,1). (5.32)

5.4. THE VARIATION DIMINISHING SPLINE APPROXIMATION 115

0.2 0.4 0.6 0.8 1

1.25

1.5

1.75

2

2.25

2.5

2.75

(a)

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

(b)

Figure 5.5. The exponential function together with the cubic variation diminishing approximation of Example 5.26 in the spe-
cial case m = 5 is shown in (a). The error in the approximation is shown in (b).

For m ≥ 2 we then have

τ∗ = (0,1/(3m),1/m,2/m, . . . ,1−1/m,1−1/(3m),1). (5.33)

Figure 5.5 (a) shows the cubic variation diminishing approximation to the exponential function on the knot
vector in (5.32) with m = 5, and the error is shown in Figure 5.5 (b). The error is so small that it is difficult to
distinguish between the two functions in Figure 5.5 (a).

The variation diminishing spline can also be used to approximate functions with singu-
larities, that is, functions with discontinuities in a derivative of first or higher orders.

Example 5.27. Suppose we want to approximate the function

f (x) = 1−e−50|x|, x ∈ [−1,1], (5.34)

by a cubic spline V f . In order to construct a suitable knot vector, we take a closer look at the function, see
Figure 5.6 (a). The graph of f has a cusp at the origin, so f ′ is discontinuous and changes sign there. Our spline
approximation should therefore also have some kind of singularity at the origin. Recall from Theorem 3.19 that
a B-spline can have a discontinuous first derivative at a knot provided the knot has multiplicity at least d . Since
we are using cubic splines, we therefore place a triple knot at the origin. The rest of the interior knots are placed
uniformly in [−1,1]. A suitable knot vector is therefore

τ= (−1,−1,−1,−1,−1+1/m, . . . ,−1/m,0,0,0,1/m, . . . ,1−1/m,1,1,1,1). (5.35)

The integer m is a parameter which is used to control the number of knots and thereby the accuracy of the ap-
proximation. The spline V f is shown in Figure 5.6 (a) for m = 4 together with the function f itself. The error is
shown in Figure 5.6 (b), and we note that the error is zero at x = 0, but quite large just outside the origin.

Figures 5.6 (c) and 5.6 (d) show the first and second derivatives of the two functions, respectively. Note that
the sign of f and its derivatives seem to be preserved by the variation diminishing spline approximation.

The variation diminishing spline approximation is a very simple procedure for obtaining
spline approximations. In Example 5.27 we observed that the approximation has the same
sign as f everywhere, and more than this, even the sign of the first two derivatives is pre-
served in passing from f to the approximation V f . This is important since the sign of the
derivative gives important information about the shape of the graph of the function. A non-
negative derivative for example, means that the function is nondecreasing, while a nonnega-
tive second derivative roughly means that the function is convex, in other words it curves in

116 CHAPTER 5. SPLINE APPROXIMATION

-0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

(a)

-0.5 0 0.5 1

0.1

0.2

0.3

0.4

0.5

(b)

-0.5 0 0.5 1

-40

-20

20

40

(c)

-0.5 0 0.5 1

-2500

-2000

-1500

-1000

-500

(d)

Figure 5.6. Figure (a) shows the function f (x) = 1− e−50|x| (dashed) and its cubic variation diminishing spline approximation
(solid) on the knot vector described in Example 5.27, and the error in the approximation is shown in Figure (b). The first
derivative of the two functions is shown in (c), and the second derivatives in (d).

5.4. THE VARIATION DIMINISHING SPLINE APPROXIMATION 117

the same direction everywhere. Approximation methods that preserve the sign of the deriva-
tive are therefore important in practical modelling of curves. We will now study such shape
preservation in more detail.

5.4.1 Preservation of bounds on a function

Sometimes it is important that the maximum and minimum values of a function are pre-
served under approximation. Splines have some very useful properties in this respect.

Lemma 5.28. Let g be a spline in some spline spaceSd ,τ of dimension n. Then g is bounded
by its smallest and largest B-spline coefficients,

min
i

{ci } ≤∑
i

ci Bi (x) ≤ max
i

{ci }, for all x ∈ [τd+1,τn+1). (5.36)

Proof. Let cmax be the largest coefficient. Then we have∑
i

ci Bi (x) ≤∑
i

cmaxBi (x) = cmax
∑

i
Bi (x) = cmax,

since
∑

i Bi (x) = 1. This proves the second inequality in (5.36). The proof of the first inequality
is similar.

Note that this lemma only says something interesting if n ≥ d+1. Any plot of a spline with
its control polygon will confirm the inequalities (5.36), see for example Figure 5.7.

1 2 3 4

-3

-2

-1

1

2

3

4

Figure 5.7. A cubic spline with its control polygon. Note how the extrema of the control polygon bound the extrema of the
spline.

With Lemma 5.28 we can show that bounds on a function are preserved by its variation
diminishing approximation.

Proposition 5.29. Let f be a function that satisfies

fmin ≤ f (x) ≤ fmax for all x ∈R.

118 CHAPTER 5. SPLINE APPROXIMATION

Then the variation diminishing spline approximation to f from some spline space Sd ,τ has
the same bounds,

fmin ≤ (V f)(x) ≤ fmax for all x ∈R. (5.37)

Proof. Recall that the B-spline coefficients ci of V f are given by

ci = f (τ∗i) where τ∗i = (τi+1 +·· ·+τi+d)/d .

We therefore have that all the B-spline coefficients of V f are bounded below by fmin and
above by fmax. The inequalities in (5.37) therefore follow as in Lemma 5.28.

5.4.2 Preservation of monotonicity

Many geometric properties of smooth functions can be characterized in terms of the deriva-
tive of the function. In particular, the sign of the derivative tells us whether the function is
increasing or decreasing. The variation diminishing approximation also preserves informa-
tion about the derivatives in a very convenient way. Let us first define exactly what we mean
by increasing and decreasing functions.

Definition 5.30. A function f defined on an interval [a,b] is increasing if the inequality f (x0) ≤
f (x1) holds for all x0 and x1 in [a,b] with x0 < x1. It is decreasing if f (x0) ≥ f (x1) for all x0 and
x1 in [a,b] with x0 < x1. A function that is increasing or decreasing is said to be monotone.

The two properties of being increasing and decreasing are clearly completely symmetric
and we will only prove results about increasing functions.

If f is differentiable, monotonicity can be characterized in terms of the derivative.

Proposition 5.31. A differentiable function is increasing if and only if its derivative is non-
negative.

Proof. Suppose that f is increasing. Then (f (x+h)− f (x))/h ≥ 0 for all x and positive h such
that both x and x +h are in [a,b]. Taking the limit as h tends to zero, we must have f ′(x) ≥ 0
for an increasing differentiable function. At x = b a similar argument with negative h may be
used.

If the derivative of f is nonnegative, let x0 and x1 be two distinct points in [a,b] with
x0 < x1. The mean value theorem then states that

f (x1)− f (x0)

x1 −x0
= f ′(θ)

for some θ ∈ (x0, x1). Since f ′(θ) ≥ 0, we conclude that f (x1) ≥ f (x0).

Monotonicity of a spline can be characterized in terms of some simple conditions on its
B-spline coefficients.

Proposition 5.32. Let τ be a d + 1-extended knot vector for splines on the interval [a,b] =
[τd+1,τn+1], and let g =∑n

i=1 ci Bi be a spline in Sd ,τ. If the coefficients are increasing, that is
ci ≤ ci+1 for i = 1, . . . , n −1, then g is increasing. If the coefficients are decreasing then g is
decreasing.

5.4. THE VARIATION DIMINISHING SPLINE APPROXIMATION 119

Proof. The proposition is certainly true for d = 0, so we can assume that d ≥ 1. Suppose
first that there are no interior knots in τ of multiplicity d + 1. If we differentiate g we find
g ′(x) =∑n

i=1∆ci Bi ,d−1(x) for x ∈ [a,b], where

∆ci = d
ci − ci−1

τi+d −τi
.

Since all the coefficients of g ′ are nonnegative we must have g ′(x) ≥ 0 (really the one sided
derivative from the right) for x ∈ [a,b]. Since we have assumed that there are no knots of
multiplicity d +1 in (a,b), we know that g is continuous and hence that it must be increasing.

If there is an interior knot at τi = τi+d of multiplicity d +1, we conclude from the above
that g is increasing on both sides of τi . But we also know that g (τi) = ci while the limit of g
from the left is ci−1. The jump is therefore ci −ci−1 which is nonnegative so g increases across
the jump.

An example of an increasing spline with its control polygon is shown in Figure 5.8 (a). Its
derivative is shown in Figure 5.8 (b) and is, as expected, positive.

1 2 3 4

-1

1

2

3

(a)

1 2 3 4

0.5

1

1.5

2

2.5

3

(b)

Figure 5.8. An increasing cubic spline (a) and its derivative (b).

From Proposition 5.32 it is now easy to deduce that V f preserves monotonicity in f .

Proposition 5.33. Let f be function defined on the interval [a,b] and letτbe a d+1-extended
knot vector with τd+1 = a and τn+1 = b. If f is increasing (decreasing) on [a,b], then the
variation diminishing approximation V f is also increasing (decreasing) on [a,b].

Proof. The variation diminishing approximation V f has as its i ’th coefficient ci = f (t∗i), and
since f is increasing these coefficients are also increasing. Proposition 5.32 then shows that
V f is increasing.

That V f preserves monotonicity means that the oscillations we saw could occur in spline
interpolation are much less pronounced in the variation diminishing spline approximation.
In fact, we shall also see that V f preserves the sign of the second derivative of f which re-
duces further the possibility of oscillations.

120 CHAPTER 5. SPLINE APPROXIMATION

Figure 5.9. A convex function and the cord connecting two points on the graph.

5.4.3 Preservation of convexity

From elementary calculus, we know that the sign of the second derivative of a function tells
us in whether the function curves upward or downwardsupward, or whether the function is
convex or concave. These concepts can be defined for functions that have no a priori smooth-
ness.

Definition 5.34. A function f is said to be convex on an interval (a,b) if

f
(
(1−λ)x0 +λx2

)≤ (1−λ) f (x0)+λ f (x2) (5.38)

for all x0 and x2 in [a,b] and for all λ in [0,1]. If − f is convex then f is said to be concave.

From Definition 5.34 we see that f is convex if the line between two points on the graph
of f is always above the graph, see Figure 5.9. It therefore ‘curves upward’ just like smooth
functions with nonnegative second derivative.

Convexity can be characterized in many different ways, some of which are listed in the
following lemma.

Lemma 5.35. Let f be a function defined on the open interval (a,b).

1. The function f is convex if and only if

f (x1)− f (x0)

x1 −x0
≤ f (x2)− f (x1)

x2 −x1
(5.39)

for all x0, x1 and x2 in (a,b) with x0 < x1 < x2.

2. If f is differentiable on (a,b), it is convex if and only if f ′(y0) ≤ f ′(y1) when a < y0 <
y1 < b, that is, the derivative of f is increasing.

3. If f is two times differentiable it is convex if and only if f ′′(x) ≥ 0 for all x in (a,b).

5.4. THE VARIATION DIMINISHING SPLINE APPROXIMATION 121

Proof. Let λ= (x1 − x0)/(x2 − x0) so that x1 = (1−λ)x0 +λx2. Then (5.38) is equivalent to the
inequality

(1−λ)
(

f (x1)− f (x0)
)≤λ(

f (x2)− f (x1)
)
.

Inserting the expression for λ gives (5.39), so (i) is equivalent to Definition 5.34.
To prove (ii), suppose that f is convex and let y0 and y1 be two points in (a,b) with y0 < y1.

From (5.39) we deduce that

f (y0)− f (x0)

y0 −x0
≤ f (y1)− f (x1)

y1 −x1
,

for any x0 and x1 with x0 < y0 < x1 < y1. Letting x0 and x1 tend to y0 and y1 respectively, we
see that f ′(y0) ≤ f ′(y1).

For the converse, suppose that f ′ is increasing, and let x0 < x1 < x2 be three points in
(a,b). By the mean value theorem we have

f (x1)− f (x0)

x1 −x0
= f ′(θ0) and

f (x2)− f (x1)

x2 −x1
= f ′(θ1),

where x0 < θ0 < x1 < θ1 < x2. Since f ′ is increasing, conclude that (5.39) holds and therefore
that f is convex.

For part (iii) we use part (ii) and Proposition 5.31. From (ii) we know that f is convex if
and only if f ′ is increasing, and by Proposition 5.31 we know that f ′ is increasing if and only
if f ′′ is nonnegative.

It may be a bit confusing that the restrictions on x0 < x1 < x2 in Lemma 5.35 are stronger
than the restrictions on x0, x2 and λ in Definition 5.34. But this is only superficial since in the
special cases x0 = x2, and λ= 0 and λ= 1, the inequality (5.38) is automatically satisfied.

It is difficult to imagine a discontinuous convex function. This is not so strange since all
convex functions are in fact continuous.

Proposition 5.36. A function that is convex on an open interval is continuous on that inter-
val.

Proof. Let f be a convex function on (a,b), and let x and y be two points in some subinterval
(c,d) of (a,b). Using part (i) of Lemma 5.35 repeatedly, we find that

f (c)− f (a)

c −a
≤ f (y)− f (x)

y −x
≤ f (b)− f (d)

b −d
. (5.40)

Set M = max{(f (c)− f (a))/(c −a), (f (b)− f (d))/(b −d)}. Then (5.40) is equivalent to

| f (y)− f (x)| ≤ M |y −x|.

But this means that f is continuous at each point in (c,d). For if z is in (c,d) we can choose
x = z and y > z and obtain that f is continuous from the right at z. Similarly, we can also
choose y = z and x < z to find that f is continuous from the left as well. Since (c,d) was
arbitrary in (a,b), we have showed that f is continuous in all of (a,b).

122 CHAPTER 5. SPLINE APPROXIMATION

The assumption in Proposition 5.36 that f is defined on an open interval is essential.
On the interval (0,1] for example, the function f that is identically zero except that f (1) = 1,
is convex, but clearly discontinuous at x = 1. For splines however, this is immaterial if we
assume a spline to be continuous from the right at the left end of the interval of interest
and continuous from the left at the right end of the interval of interest. In addition, since
a polynomial never is infinite, we see that our results in this section remain true for splines
defined on some closed interval [a,b].

We can now give a simple condition that ensures that a spline function is convex.

Proposition 5.37. Letτbe a d+1-extended knot vector for some d ≥ 1, and let g =∑n
i=1 ci Bi ,d

be a spline in Sd ,τ. Define ∆ci by

∆ci =
{

(ci − ci−1)/(τi+d −τi), if τi < τi+d ,

∆ci−1, if τi = τi+d ;

for i = 2, . . . , n. Then g is convex on [τd+1,τn+1] if it is continuous and

∆ci−1 ≤∆ci for i = 2, . . . , n. (5.41)

Proof. Note that (∆ci)n
i=2 are the B-spline coefficients of g ′ on the interval [τd+1,τn+1], bar

the constant d . Since (5.41) ensures that these are increasing, we conclude from Proposi-
tion 5.32 that g ′ is increasing. If g is also differentiable everywhere in [τd+1,τn+1], part (ii) of
Lemma 5.35 shows that g is convex.

In the rest of the proof, the short hand notation

δ(u, v) = g (v)− g (u)

v −u

will be convenient. Suppose now that there is only one point z where g is not differentiable,
and let x0 < x1 < x2 be three points in [τd+1,τn+1]. We must show that

δ(x0, x1) ≤ δ(x1, x2). (5.42)

The case where all three x’s are on one side of z are covered by the first part of the proof.
Suppose therefore that x0 < z ≤ x1 < x2. Since δ(u, v) = g ′(θ) with u < θ < v when g is differ-
entiable on [a,b], and since g ′ is increasing, we certainly have δ(x0, z) ≤ δ(z, x2), so that (5.42)
holds in the special case where x1 = z. When x1 > z we use the simple identity

δ(x0, x1) = δ(x0, z)
z −x0

x1 −x0
+δ(z, x1)

x1 − z

x1 −x0
,

which shows that δ(x0, x1) is a weighted average of δ(x0, z) and δ(z, x1). But then we have

δ(x0, x1) ≤ δ(z, x1) ≤ δ(x1, x2),

the first inequality being valid since δ(x0, z) ≤ δ(z, x1) and the second one because g is convex
to the right of z. This shows that g is convex.

The case where x0 < x1 < z < x2 and the case of several discontinuities can be treated
similarly.

5.4. THE VARIATION DIMINISHING SPLINE APPROXIMATION 123

1 2 3 4

1

2

3

4

1 2 3 4

-6

-4

-2

2

4

6

1 2 3 4

2

4

6

8

10

12

Figure 5.10. A convex spline with its control polygon (a), its first derivative (b) and its second derivative (c).

An example of a convex spline is shown in Figure 5.10, together with its first and second
derivatives in.

With Proposition 5.37 at hand, it is simple to show that the variation diminishing spline
approximation preserves convexity.

Proposition 5.38. Let f be a function defined on the interval [a,b], let d ≥ 1 be an integer,
and let τ be a d +1-extended knot vector with τd+1 = a and τn+1 = b. If f is convex on [a,b]
then V f is also convex on [a,b].

Proof. Recall that the coefficients of V f are
(

f (τ∗i)
)n

i=1 so that the differences in Proposi-
tion 5.37 are

∆ci =
f (τ∗i)− f (τ∗i−1)

τi+d −τi
= f (τ∗i)− f (τ∗i−1)

(τ∗i −τ∗i−1)d
,

if τi < τi+d . Since f is convex, these differences must be increasing. Proposition 5.37 then
shows that V f is convex.

At this point, we can undoubtedly say that the variation diminishing spline approxima-
tion is a truly remarkable method of approximation. In spite of its simplicity, it preserves the
shape of f both with regards to convexity, monotonicity and bounds on the function values.

124 CHAPTER 5. SPLINE APPROXIMATION

This makes it very attractive as an approximation method in for example design where the
shape of a curve is more important than how accurately it approximates given data.

It should be noted that the shape preserving properties of the variation diminishing ap-
proximation is due to the properties of B-splines. When we determine V f we give its control
polygon directly by sampling f at the knot averages, and the results that we have obtained
about the shape preserving properties of V f are all consequences of relationships between
a spline and its control polygon: A spline is bounded by the extrema of its control polygon, a
spline is monotone if the control polygon is monotone, a spline is convex if the control polygon
is convex. In short: A spline is a smoothed out version of its control polygon. We will see many
more realisations of this general principle in later chapters

Chapter 6
Parametric Spline Curves

When we introduced splines in Chapter 1 we focused on spline curves, or more precisely,
vector valued spline functions. In Chapters 2, 3 and 4 we then established the basic theory of
spline functions and B-splines, and in Chapter 5 we studied a number of methods for con-
structing spline functions that approximate given data. In this chapter we return to spline
curves and show how the approximation methods in Chapter 5 can be adapted to this more
general situation.

We start by giving a formal definition of parametric curves in Section 6.1, and introduce
parametric spline curves in Section 6.2.1. In the rest of Section 6.2 we then generalise the
approximation methods in Chapter 5 to curves. It turns out that the generalisation is virtually
trivial, except for one difficult point.

6.1 Definition of Parametric Curves

In Section 1.2 we gave an intuitive introduction to parametric curves and discussed the sig-
nificance of different parameterisations. In this section we will give a more formal definition
of parametric curves, but the reader is encouraged to first go back and reread Section 1.2 in
Chapter 1.

6.1.1 Regular parametric representations

A parametric curve will be defined in terms of parametric representations.

Definition 6.1. A vector function or mapping f : [a,b] 7→ Rs of the interval [a,b] into Rs for
s ≥ 2 is called a parametric representation of class C m for m ≥ 1 if each of the s components
of f has continuous derivatives up to order m. If, in addition, the first derivative of f does
not vanish in [a,b],

D f (u) = f ′(u), 0, for u ∈ [a,b],

then f is called a regular parametric representation of class C m .

A parametric representation will often be referred to informally as a curve, although the
term parametric curve will be given a more precise meaning later. In this chapter we will
always assume the parametric representations to be sufficiently smooth for all operations to

125

126 CHAPTER 6. PARAMETRIC SPLINE CURVES

make sense. Note that a function y = h(x) always can be considered as a curve through the
parametric representation f (u) = (

u,h(u)
)
.

If we imagine travelling along the curve and let u denote the elapsed time of our journey,
then the length of f ′(u) which we denote by || f ′(u)||, gives the speed with which we travel
at time u, while the direction of f ′(u) gives the direction in which we travel, in other words
the tangent to the curve at time u. With these interpretations a regular curve is one where we
never stop as we travel along the curve.

The straight line segment

f (u) = (1−u)p0 +up1, for u ∈ [0,1],

where p0 and p1 are points in the plane, is a simple example of a parametric representation.
Since f ′(u) = p1 −p0 for all u, we have in fact that f is a regular parametric representation,
provided that p0 , p1. The tangent vector is, as expected, parallell to the curve, and the speed
along the curve is constant.

As another example, let us consider the unit circle. It is easy to check that the mapping
given by

f (u) = (
x(u), y(u)

)= (cosu, sinu)

satisfies the equation x(u)2 + y(u)2 = 1, so that if u varies from 0 to 2π, the whole unit cir-
cle will be traced out. We also have || f ′(u)|| = 1 for all u, so that f is a regular parametric
representation.

One may wonder what the significance of the regularity condition f ′(u) , 0 is. Let us
consider the parametric representation given by

f (u) =
{

(0,u2), for u < 0;

(u2,0), for u ≥ 0;

in other words, for u < 0 the image of f is the positive y-axis and for u > 0, the image is the
positive x-axis. A plot of f for u ∈ [−1,1] is shown in Figure 6.1 (a). The geometric figure
traced out by f clearly has a right angle corner at the origin, but f ′ which is given by

f ′(u) =
{

(0,2u), for u < 0;

(2u,0), for u > 0;

is still continuous for all u. The source of the problem is the fact that f ′(0) = 0. For this
means that as we travel along the curve, the speed becomes zero at u = 0 and cancels out
the discontinuity in the tangent direction, so that we can manage to turn the corner. On the
other hand, if we consider the unit tangent vector θ(u) defined by

θ(u) = f ′(u)/|| f ′(u)||,

we see that

θ(u) =
{

(0,−1), for u < 0;

(1,0), for u > 0.

6.1. DEFINITION OF PARAMETRIC CURVES 127

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a)

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

(b)

Figure 6.1. A parametric representation with continuous first derivative but discontinuous unit tangent (a), and the parametric
representation f (u) = (u2,u3) (b).

As expected, the unit tangent vector is discontinuous at u = 0.
A less obvious example where the same problem occurs is shown in Figure 6.1 (b). The

parametric representation is f (u) = (u2,u3) which clearly has a continuous tangent, but again
we have f ′(0) = (0,0) which cancels the discontinuity in the unit tangent vector at u = 0. To
avoid the problems that may occur when the tangent becomes zero, it is common, as in Def-
inition 6.1, to assume that the parametric representation is regular.

6.1.2 Changes of parameter and parametric curves

If we visualise a parametric representation through its graph as we have done here, it is im-
portant to know whether the same graph may be obtained from different parametric repre-
sentations. It is easy to see that the answer to this question is yes. As an example, consider
again the unit circle f (u) = (cosu, sinu). If we substitute u = 2πv , we obtain the parametric
representation

r̂ (v) = (cos2πv, sin2πv).

As v varies in the interval [0,1], the original parameter u will vary in the interval [0,2π] so that
r̂ (v) will trace out the same set of points in R2 and therefore yield the same graph as f (u).
The mapping u = 2πv is called a change of parameter.

Definition 6.2. A real function u(v) defined on an interval I is called an allowable change of
parameter of class C m if it has m continuous derivatives, and the derivative u′(v) is nonzero
for all v in I . If u′(v) is positive for all v then it is called an orientation preserving change of
parameter.

From the chain rule we observe that if g (v) = f
(
u(v)

)
then

g ′(v) = u′(v) f ′(u(v)
)
.

This means that even if f is a regular parametric representation, we can still have g ′(v) = 0
for some v if u′(v = 0). This is avoided by requiring u′(v), 0 as in Definition 6.2.

If u′(v) > 0 for all v , the points on the graph of the curve are traced in the same order both
by f and g , the two representations have the same orientation. If u′(v) < 0 for all v , then f

128 CHAPTER 6. PARAMETRIC SPLINE CURVES

and g have opposite orientation, the points on the graph are traced in opposite orders. The
change of parameter u(v) = 2πv of the circle above was orientation preserving.

Note that since u′(v) , 0, the function u(v) is one-to-one so that the inverse v(u) exists
and is an allowable change of parameter as well.

The redundancy in the representation of geometric objects can be resolved in a standard
way. We simply say that two parametric representations are equivalent if they are related
by a change of parameter. If this is the case we will often say that one representation is a
reparametrisation of the other.

Definition 6.3. A regular parametric curve is the equivalence class of parameterisations of a
given regular parametric representation. A particular parametric representation of a curve is
called a parametrisation of the curve.

We will use this definition very informally. Most of the time we will just have a parametric
representation f which we will refer to as a parametrisation of a curve or simply a curve.

As an interpretation of the different parameterisations of a curve it is constructive to ex-
tend the analogy to travelling along a road. As mentioned above, we can think of the parame-
ter u as measuring the elapsed time as we travel along the curve, and the length of the tangent
vector as the speed with which we travel. The road with its hills and bends is fixed, but there
are still many ways to travel along it. We can both travel at different velocities and in different
directions. This corresponds to different parameterisations.

A natural question is whether there is a preferred way of travelling along the road. A math-
ematician would probably say that the best way to travel is to maintain a constant speed, and
we shall see later that this does indeed simplify the analysis of a curve. On the other hand, a
physicist (and a good automobile driver) would probably say that it is best to go slowly around
sharp corners and faster along straighter parts of the curve. For the purpose of constructing
spline curves it turns out that this latter point of view usually gives the best results.

6.1.3 Arc length parametrisation

Let us end this brief introduction to parametric curves by a discussion of parameterisations
with constant speed. Suppose that we have a parametrisation such that the tangent vector
has constant unit length along the curve. Then the difference in parameter value at the be-
ginning and end of the curve equals the length of the curve, which is reason enough to study
such parameterisations. This justifies the next definition.

Definition 6.4. A regular parametric curve g (σ) in Rs is said to be parametrised by arc length
if ||g ′(σ)|| = 1 for all σ.

Let f (u) be a given regular curve with u ∈ [a,b], and let g (σ) = f (u(σ)) be a reparametri-
sation such that ||g ′(σ)|| = 1 for all σ. Since g ′(σ) = u′(σ) f ′(u(σ)), we see that we must have
|u′(σ)| = 1/|| f ′(u(σ))|| or |σ′(u)| = || f ′(u)|| (this follows since u(σ) is invertible with inverse
σ(u) and u′(σ)σ′(u) = 1). The natural way to achieve this is to define σ(u) by

σ(u) =
∫ u

a
|| f ′(v)||d v. (6.1)

We sum this up in a proposition.

6.2. APPROXIMATION BY PARAMETRIC SPLINE CURVES 129

Proposition 6.5. Let f (u) be a given regular parametric curve. The change of parameter
given by (6.1) reparametrises the curve by arc length, so that if g (σ) = f

(
u(σ)

)
then ||g ′(σ)|| =

1.

Note that σ(u) as given by (6.1) gives the length of the curve from the starting point f (a)
to the point f (u). This can be seen by sampling f at a set of points, computing the length of
the piecewise linear interpolant to these points, and then letting the density of the points go
to infinity.

Proposition 6.6. The length of a curve f defined on an interval [a,b] is given by

L(f) =
∫ b

a
‖ f ′(u)‖du

It should be noted that parametrisation by arc length is not unique. The orientation can
be reversed and the parameterisation may be translated by a constant. Note also that if we
have a parametrisation that is constant but not arc length, then arc length parametrisation
can be obtained by a simple scaling.

Parametrisation by arc length is not of much practical importance in approximation since
the integral in (6.1) very seldom can be expressed in terms of elementary functions, and the
computation of the integral is usually too expensive. One important exception is the circle.
As we saw at the beginning of the chapter, the parametrisation r (u) = (cosu, sinu) is by arc
length.

6.2 Approximation by Parametric Spline Curves

Having defined parametric curves formally, we are now ready to define parametric spline
curves. This is very simple, we just let the coefficients that multiply the B-splines be points in
Rs instead of real numbers. We then briefly consider how the spline approximation methods
that we introduced for spline functions can be generalised to curves.

6.2.1 Definition of parametric spline curves

A spline curve f must, as all curves, be defined on an interval I and take its values inRs . There
is a simple and obvious way to achieve this.

Definition 6.7. A parametric spline curve in Rs is a spline function where each B-spline coef-
ficient is a point inRs . More specifically, letτ= (τi)n+d+1

i=1 be a knot vector for splines of degree
d . Then a parametric spline curve of degree d with knot vector τ and coefficients c = (c i)n

i=1
is given by

g (u) =
n∑

i=1
c i Bi ,d ,τ(u),

where each c i = (c1
i ,c2

i , . . . ,c s
i) is a vector in Rs . The set of all spline curves in Rs of degree d

with knot vector τ is denoted by Ss
d ,τ.

130 CHAPTER 6. PARAMETRIC SPLINE CURVES

-1 1 2 3

-1

-0.5

0.5

1

1.5

2

Figure 6.2. A cubic parametric spline curve with its control polygon.

In Definition 6.7, a spline curve is defined as a spline function where the coefficients are
points in Rs . From this it follows that

g (u) =∑
i

c i Bi (u) =∑
i

(c1
i , . . . ,c s

i)Bi (u)

=
(∑

i
c1

i Bi (u), . . . ,
∑

i
c s

i Bi (u)
)

= (
g 1(u), . . . , g s(u)

)
,

(6.2)

so that g is a vector of spline functions. This suggests a more general definition of spline
curves where the degree and the knot vector in the s components need not be the same, but
this is not common and seems to be of little practical interest.

Since a spline curve is nothing but a vector of spline functions as in (6.2), it is simple
to compute f (u): Just apply a routine like Algorithm 2.16 to each of the component spline
functions g 1, . . . , g s . If the algorithm has been implemented in a language that supports
vector arithmetic, then evaluation is even simpler. Just apply Algorithm 2.16 directly to g ,
with vector coefficients. The result will be the vector g (u) = (

g 1(u), . . . , g s(u)
)
.

Example 6.8. As an example of a spline curve, suppose that we are given n points p = (p i)n
i=1 in the plane with

p i = (xi , yi), and define the knot vector τ by

τ= (1,1,2,3,4, . . . ,n −2,n −1,n,n).

Then the linear spline curve

g (u) =
n∑

i=1
p i Bi ,1,τ(u) =

(n∑
i=1

xi Bi ,1,τ(u),
n∑

i=1
yi Bi ,1,τ(u)

)
is a representation of the piecewise linear interpolant to the points p .

An example of a cubic spline curve with its control polygon is shown in Figure 6.2, and
this example gives a good illustration of the fact that a spline curve is contained in the convex

6.2. APPROXIMATION BY PARAMETRIC SPLINE CURVES 131

hull of its control points. This, we remember, is clear from the geometric construction of
spline curves in Chapter 1.

Proposition 6.9. A spline curve g = ∑n
i=1 c i Bi ,d ,τ defined on a d +1-extended knot vector τ

is a subset of the convex hull of its coefficients,

g (u) ∈CH(c 1, . . . ,c n), for any u ∈ [τd+1,τn+1].

If u is restricted to the interval [τµ,τµ+1] then

g (u) ∈CH(cµ−d , . . . ,cµ).

To create a spline curve, we only have to be able to create spline functions, since a spline
curve is just a vector with spline functions in each component. All the methods described in
previous chapters for approximation with spline functions can therefore also be utilised for
construction of spline curves. To differentiate between curve approximation and function
approximation, we will often refer to the methods of Chapter 5 as functional approximation
methods.

6.2.2 The parametric variation diminishing spline approximation

In Section 5.4, we introduced the variation diminishing spline approximation to a function.
This generalises nicely to curves.

Definition 6.10. Let f be a parametric curve defined on the interval [a,b], and let τ be a
d+1-extended knot vector with τd+1 = a and τn+1 = b. The parametric variation diminishing
spline approximation V f is defined by

(V f)(u) =
n∑

i=1
f (τ∗i)Bi ,d ,τ(u),

where τ∗i = (τi+1 +·· ·τi+d)/d .

Note that the definition of V f means that

V f = (V f 1, . . . ,V f s).

If we have implemented a routine for determining the variation diminishing approximation
to a scalar function (s = 1), we can therefore determine V f by calling the scalar routine s
times, just as was the case with evaluation of the curve at a point. Alternatively, if the imple-
mentation uses vector arithmetic, we can call the function once but with vector data.

A variation diminishing approximation to a segment of the unit circle is shown in Fig-
ure 6.3.

It is much more difficult to employ the variation diminishing spline approximation when
only discrete data are given, since somehow we must determine a knot vector. This is true for
functional data, and for parametric data we have the same problem. In addition, we must also
determine a parametrisation of the points. This is common for all parametric approximation
schemes when they are applied to discrete data and is most easily discussed for cubic spline
interpolation where it is easy to determine a knot vector.

132 CHAPTER 6. PARAMETRIC SPLINE CURVES

-1 -0.5 0.5 1

-0.2

0.2

0.4

0.6

0.8

1

Figure 6.3. A cubic variation diminishing approximation to part of a circle.

6.2.3 Parametric spline interpolation

In Section 5.2, we considered interpolation of a given function or given discrete data by cubic
splines, and we found that the cubic C 2 spline interpolant in a sense was the best of all C 2

interpolants. How can this be generalised to curves?

Proposition 6.11. Let
(
ui , f (ui)

)m
i=1 be given data sampled from the curve f in Rs , and form

the knot vector
τ= (u1,u1,u1,u1,u2, . . . ,um−1,um ,um ,um ,um).

Then there is a unique spline curve g = IN f in Ss
3,τ that satisfies

g (ui) = f (ui), for i = 1, . . . , m, (6.3)

with the natural end conditions g ′′(u1) = g ′′(um) = 0, and this spline curve g uniquely min-
imises ∥∥∥∫ um

u1

h′′(u)du
∥∥∥

when h varies over the class of C 2 parametric representations that satisfy the interpolation
conditions (6.3).

Proof. All the statements follow by considering the s functional interpolation problems sep-
arately.

Note that Proposition 6.11 can also be expressed in the succinct form

IN f = (IN f 1, . . . , IN f s).

6.2. APPROXIMATION BY PARAMETRIC SPLINE CURVES 133

This means that the interpolant can be computed by solving s functional interpolation prob-
lems. If we go back to Section 5.2.2, we see that the interpolant is determined by solving a
system of linear equations. If we consider the s systems necessary to determine IN f , we see
that it is only the right hand side that differs; the coefficient matrix A remains the same. This
can be exploited to speed up the computations since the LU -factorisation of the coefficient
matrix can be computed once and for all and the s solutions computed by back substitution;
for more information consult a text on numerical linear algebra. As for evaluation and the
variation diminishing approximation, this makes it very simple to implement cubic spline
interpolation in a language that supports vector arithmetic: Simply call the routine for func-
tional interpolation with vector data.

We have focused here on cubic spline interpolation with natural end conditions, but Her-
mite and free end conditions can be treated completely analogously.

Let us turn now to cubic parametric spline interpolation in the case where the data are
just given as discrete data.

Problem 6.12. Let (p i)m
i=1 be a set of points in Rs . Find a cubic spline g in some spline space

Ss
3,τ such that

g (ui) = p i , for i = 1, . . . , m,

for some parameter values (ui)m
i=1 with u1 < u2 < ·· · < um .

Problem 6.12 is a realistic problem. A typical situation is that somehow a set of points on
a curve has been determined, for instance through measurements; the user then wants the
computer to draw a ‘nice’ curve through the points. In such a situation the knot vector is of
course not known in advance, but for functional approximation it could easily be determined
from the abscissae. In the present parametric setting this is a fundamentally more difficult
problem as long as we have no parameter values associated with the data points. An example
may be illuminating.

Example 6.13. Suppose that m points in the plane p = (p i)m
i=1 with p i = (xi , yi) are given. We seek a cubic

spline curve that interpolates the points p . We can proceed as follows. Associate with each data point p i the
parameter value i . If we are also given the derivatives (tangents) at the ends as (x′

1, y ′1) and (x′
m , y ′m), we can

apply cubic spline interpolation with Hermite end conditions to the two sets of data (i , xi)n
i=1 and (i , yi)n

i=1. The
knot vector will then for both of the two components be

τ= (1,1,1,1,2,3,4, . . . ,m −2,m −1,m,m,m,m).

We can then perform the two steps

(i) Find the spline function p1 ∈S3,τ with coefficients c1 = (c1
i)m+2

i=1 that interpolates the points (i , xi)m
i=1 and

satisfies Dp1(1) = x′
1 and Dp1(m) = x′

m .

(ii) Find the spline function p2 ∈S3,τ with coefficients c2 = (c2
i)m+2

i=1 that interpolates the points (i , yi)m
i=1 and

satisfies Dp2(1) = y ′1 and Dp2(m) = y ′m .

Together this yields a cubic spline curve

g (u) =
m+2∑
i=1

c i Bi ,3,τ(u)

that satisfies g (i) = p i for i = 1, 2, . . . , m.

134 CHAPTER 6. PARAMETRIC SPLINE CURVES

The only part of the construction of the cubic interpolant in Example 6.13 that is different
from the corresponding construction for spline functions is the assignment of the parameter
value i to the point f i = (xi , yi) for i = 1, 2, . . . , n, and therefore also the construction of the
knot vector. When working with spline functions, the abscissas of the data points became the
knots; for curves we have to choose the knots specifically by giving the parameter values at the
data points. Somewhat arbitrarily we gave point number i parameter value i in Example 6.13,
this is often termed uniform parametrisation.

Going back to Problem 6.12 and the analogy with driving, we have certain places that we
want to visit (the points p i) and the order in which they should be visited, but we do not
know when we should visit them (the parameter values ui). Should one for example try to
drive with a constant speed between the points, or should one try to make the time spent
between points constant? With the first strategy one might get into problems around a sharp
corner where a good driver would usually slow down, and the same can happen with the
second strategy if two points are far apart (you must drive fast to keep the time), with a sharp
corner just afterwards.

In more mathematical terms, the problem is to guess how the points are meant to be
parametrised—which parametric representation are they taken from? This is a difficult prob-
lem that so far has not been solved in a satisfactory way. There are methods available though,
and in the next section we suggest three of the simplest.

6.2.4 Assigning parameter values to discrete data

Let us recall the setting. We are given m points (p i)m
i=1 in Rs and need to associate a pa-

rameter value ui with each point that will later be used to construct a knot vector for spline
approximation. Here we give three simple alternatives.

1. Uniform parametrisation which amounts to ui = i for i = 1, 2, . . . , m. This has the
shortcomings discussed above.

2. Cord length parametrisation which is given by

u1 = 0 and ui = ui−1 +||p i −p i−1|| for i = 2, 3, . . . , m.

If the final approximation should happen to be the piecewise linear interpolant to the
data, this method will correspond to parametrisation by arc length. This often causes
problems near sharp corners in the data where it is usually wise to move slowly.

3. Centripetal parametrisation is given by

u1 = 0 and ui = ui−1 +||p i −p i−1||1/2 for i = 2, 3, . . . , m.

For this method, the difference ui−ui−1 will be smaller than when cord length parametri-
sation is used. But like the other two methods it does not take into consideration sharp
corners in the data, and may therefore fail badly on difficult data.

There are many other methods described in the literature for determining good param-
eter values at the data points, but there is no known ‘best’ method. In fact, the problem of
finding good parameterisations is an active research area.

6.2. APPROXIMATION BY PARAMETRIC SPLINE CURVES 135

1 2 3 4 5 6

2

4

6

8

(a)

1 2 3 4 5 6

2

4

6

8

(b)

1 2 3 4 5 6

2

4

6

8

(c)

Figure 6.4. Parametric, cubic spline interpolation with uniform parametrisation (a), cord length parametrisation (b), and cen-
tripetal parametrisation (c).

Figures 6.4 (a)–(c) show examples of how the three methods of parametrisation described
above perform on a difficult data set.

6.2.5 General parametric spline approximation

In Chapter 5, we also defined other methods for spline approximation like cubic Hermite
interpolation, general spline interpolation and least squares approximation by splines. All
these and many other methods for functional spline approximation can be generalised very
simply to parametric curves. If the data is given in the form of a parametric curve, the desired
functional method can just be applied to each component function of the given curve. If
the data is given as a set of discrete points (p i)m

i=1, a parametrisation of the points must be
determined using for example one of the methods in Section 6.2.4. Once this has been done,

a functional method can be applied to each of the s data sets (ui , p j
i)m,d

i , j=1,1. If we denote the
functional approximation scheme by A and denote the data by f , so that f i = (ui , p i) for
i = 1, . . . , m, the parametric spline approximation satisfies

A f = (A f 1, . . . , A f s), (6.4)

where f j denotes the data set (ui , p j
i)m

i=1 which we think of as
(
ui , f j (ui)

)m
i=1. As we have seen

several times now, the advantage of the relation (6.4) is that the parametric approximation
can be determined by applying the corresponding functional approximation scheme to the
s components, or, if we use a language that supports vector arithmetic, we simply call the

136 CHAPTER 6. PARAMETRIC SPLINE CURVES

routine for functional approximation with vector data. In Chapter 7, we shall see that the
functional methods can be applied repeatedly in a similar way to compute tensor product
spline approximations to surfaces.

Chapter 7
Tensor Product Spline Surfaces

Earlier we introduced parametric spline curves by simply using vectors of spline functions,
defined over a common knot vector. In this chapter we introduce spline surfaces, but again
the construction of tensor product surfaces is deeply dependent on univariate spline func-
tions. We first construct spline functions of two variables of the form z = f (x, y), so called ex-
plicit spline surfaces, whose graph can be visualized as a surface in three dimensional space.
We then pass to parametric surfaces in the same way that we passed from spline functions to
spline curves.

The advantage of introducing tensor product surfaces is that all the approximation meth-
ods that we introduced in Chapter 5 generalize very easily as we shall see below. The meth-
ods also generalize nicely to parametric tensor product surfaces, but here we get the added
complication of determining a suitable parametrisation in the case where we are only given
discrete data.

7.1 Explicit tensor product spline surfaces

The reader is undoubtedly familiar with polynomial surfaces of degree one and two. A linear
surface

z = ax +by + c

represents a plane in 3-space. An example of a quadratic surface is the circular paraboloid

z = x2 + y2

shown in Figure 7.1 (a). The spline surfaces we will consider are made by gluing together
polynomial “patches” like these.

7.1.1 Definition of the tensor product spline

For x ∈ [0,1] the line segment
b0(1−x)+b1x

connects the two values b0 and b1. Suppose b0(y) and b1(y) are two functions defined for y in
some interval [c,d]. Then for each y ∈ [c,d] the function b0(y)(1−x)+b1(y)x is a line segment

137

138 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

(a) (b)

Figure 7.1. A piece of the circular paraboloid z = x2 + y2 is shown in (a), while the surface (1−x)y2 +x sin(πy) is shown in (b).

connecting b0(y) and b1(y). When y varies we get a family of straight lines representing a
surface

z = b0(y)(1−x)+b1(y)x.

Such a “ruled” surface is shown in Figure 7.1 (b). Here we have chosen b0(y) = y2 and b1(y) =
sin(πy) for y ∈ [0,1].

An interesting case is obtained if we take b0 and b1 to be linear polynomials. Specifically,
if

b0(y) = c0,0(1− y)+ c0,1 y, and b1(y) = c1,0(1− y)+ c1,1 y,

we obtain
f (x, y) = c0,0(1−x)(1− y)+ c0,1(1−x)y + c1,0x(1− y)+ c1,1x y,

for suitable coefficients ci , j . In fact these coefficients are the values of f at the corners of
the unit square. This surface is ruled in both directions. For each fixed value of one variable
we have a linear function in the other variable. We call f a bilinear polynomial. Note that f
reduces to a quadratic polynomial along the diagonal line x = y .

We can use similar ideas to construct spline surfaces from families of spline functions.
Suppose that for some integer d and knot vector σwe have the spline space

S1 =Sd ,σ = span{φ1, . . . ,φn1 }.

To simplify the notation we have denoted the B-splines by {φi }n1
i=1. Consider a spline in S1

with coefficients that are functions of y ,

f (x, y) =
n1∑

i=1
ci (y)φi (x). (7.1)

For each value of y we now have a spline in S1, and when y varies we get a family of spline
functions that each depends on x. Any choice of functions ci results in a surface, but a par-
ticularly useful construction is obtained if we choose the ci to be splines as well. Suppose we
have another spline space of degree ` and with knots τ,

S2 =S`,τ = span{ψ1, . . . ,ψn2 }

7.1. EXPLICIT TENSOR PRODUCT SPLINE SURFACES 139

where {ψ j }n2
j=1 denotes the B-spline basis inS2. If each coefficient function ci (y) is a spline in

S2, then

ci (y) =
n2∑

j=1
ci , jψ j (y) (7.2)

for suitable numbers (ci , j)n1,n2
i , j=1. Combining (7.1) and (7.2) we obtain

f (x, y) =
n1∑

i=1

n2∑
j=1

ci , jφi (x)ψ j (y). (7.3)

Definition 7.1. The tensor product of the two spaces S1 and S2 is defined to be the family of
all functions of the form

f (x, y) =
n1∑

i=1

n2∑
j=1

ci , jφi (x)ψ j (y),

where the coefficients (ci , j)n1,n2
i , j=1 can be any real numbers. This linear space of functions is

denoted S1 ⊗S2.

The spaceS1⊗S2 is spanned by the functions {φi (x)ψ j (y)}n1,n2
i , j=1 and therefore has dimen-

sion n1n2. Some examples of these basis functions are shown in Figure 7.2. In Figure 7.2 (a)
we haveφ=ψ= B(·|0,1,2). The resulting function is a bilinear polynomial in each of the four
squares [i , i +1)× [j , j +1) for i , j = 0,1. It has the shape of a curved pyramid with value one
at the top. In Figure 7.2 (b) we show the result of taking φ =ψ = B(·|0,1,2,3). This function
is a biquadratic polynomial in each of the 9 squares [i , i + 1)× [j , j + 1) for i , j = 0,1,2. In
Figure 7.2 (c) we have changed φ to B(·|0,0,0,1).

Tensor product surfaces are piecewise polynomials on rectangular domains. A typical
example is shown in Figure 7.3. Each vertical line corresponds to a knot for the S1 space,
and similarly, each horizontal line stems from a knot in theS2 space. The surface will usually
have a discontinuity across the knot lines, and the magnitude of the discontinuity is inherited
directly from the univariate spline spaces. For example, across a vertical knot line, partial
derivatives with respect to x have the continuity properties of the univariate spline functions
in S1. This follows since the derivatives, say the first derivative, will involve sums of terms of
the form

∂

∂x

(
ci , jφi (x)ψ j (y)

)= ci , jφ
′
i (x)ψ j (y).

A tensor product surface can be written conveniently in matrix-vector form. If f (x, y) is
given by (7.3) then

f (x, y) =φ(x)T Cψ(y), (7.4)

where

φ= (φ1, . . . ,φn1)T , ψ= (ψ1, . . . ,ψn2)T ,

and C = (ci , j)n1,n2
i , j=1 is the matrix of coefficients. This can be verified quite easily by expanding

the matrix products in (7.4).

140 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

(a)

(b) (c)

Figure 7.2. A bilinear B-spline (a), a biquadratic B-spline (b) and biquadratic B-spline with a triple knot in one direction (c).

Figure 7.3. The knot lines for a tensor product spline surface.

7.2. APPROXIMATION METHODS FOR TENSOR PRODUCT SPLINES 141

7.1.2 Evaluation of tensor product spline surfaces

There are many ways to construct surfaces from two spaces of univariate functions, but the
tensor product has one important advantage: many standard operations that we wish to per-
form with the surfaces are very simple generalizations of corresponding univariate opera-
tions. We will see several examples of this, but start by showing how to compute a point on a
tensor product spline surface.

To compute a point on a tensor product spline surface, we can make use of the algorithms
we have for computing points on spline functions. Suppose we want to compute f (x, y) =
φ(x)T Cψ(y)T , and suppose for simplicity that the polynomial degree in the two directions
are equal, so that d = `. If the integers µ and ν are such that σν ≤ x <σν+1 and τµ ≤ y < τµ+1,
then we know that only (φi (x))νi=ν−d and (ψ j (y))µj=µ−d can be nonzero at (x, y). To compute

f (x, y) =φ(x)T Cψ(y) (7.5)

we therefore first make use of Algorithm 2.17 to compute the d+1 nonzero B-splines at x and
the d +1 nonzero B-splines at y . We can then pick out that part of the coefficient matrix C
which corresponds to these B-splines and multiply together the right-hand side of (7.5).

A pleasant feature of this algorithm is that its operation count is of the same order of
magnitude as evaluation of univariate spline functions. If we assume, for simplicity, that
`= d , we know that roughly 3(d +1)2/2 multiplications are required to compute the nonzero
B-splines at x, and the same number of multiplications to compute the nonzero B-splines at
y . To finish the computation of f (x, y), we have to evaluate a product like that in (7.5), with C
a (d +1)×(d +1)-matrix and the two vectors of dimension d +1. This requires roughly (d +1)2

multiplications, giving a total of 4(d + 1)2 multiplications. The number of multiplications
required to compute a point on a spline surface is therefore of the same order as the number
of multiplications required to compute a point on a univariate spline function. The reason
we can compute a point on a surface this quickly is the rather special structure of tensor
products.

7.2 Approximation methods for tensor product splines

One of the main advantages of the tensor product definition of surfaces is that the approxi-
mation methods that we developed for functions and curves can be utilised directly for ap-
proximation of surfaces. In this section we consider some of the approximation methods in
Chapter 5 and show how they can be generalized to surfaces.

7.2.1 The variation diminishing spline approximation

Consider first the variation diminishing approximation. Suppose f is a function defined on a
rectangle

Ω=
{

(x, y) | a1 ≤ x ≤ b1 & a2 ≤ y ≤ b2

}
= [a1,b1]× [a2,b2].

Let σ= (σi)n1+d+1
i=1 be a d +1-regular knot vector with boundary knots σd = a1 and σn1 = b1,

and let τ= (τ j)n2+`+1
j=1 be an `+1-regular knot vector with boundary knots τ` = a2 and τn2 =

142 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0
0.25
0.5

0.75
1

0
0.2

0.4

0.6

0.8

1

0
0.25
0.5

0.75
1

(a)

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0
0.25
0.5

0.75
1

0
0.2

0.4

0.6

0.8

1

0
0.25
0.5

0.75
1

(b)

Figure 7.4. The function f (x, y) given in Example 7.2 is shown in (a) and its variation diminishing spline approximation is
shown in (b).

b2. As above we let φi = Bi ,d ,σ and ψ j = B j ,`,τ be the B-splines on σ and τ respectively. The
spline

V f (x, y) =
n1∑

i=1

n2∑
j=1

f (σ∗
i ,τ∗j)φi (x)ψ j (y) (7.6)

where
σ∗

i =σ∗
i ,d = (σi+1 + . . .+σi+d)/d

τ∗j = τ∗j ,` = (τ j+1 + . . .+τ j+`)/`,
(7.7)

is called the variation diminishing spline approximation on (σ,τ) of degree (d ,`). If no inte-
rior knots in σ has multiplicity d +1 then

a1 =σ∗
1 <σ∗

2 < . . . <σ∗
n1

= b1,

and similarly, if no interior knots in τ has multiplicity `+1 then

a2 = τ∗1 < τ∗2 < . . . < τ∗n2
= b2.

This means that the nodes (σ∗
i ,τ∗j)n1,n2

i , j=1 divides the domainΩ into a rectangular grid.

Example 7.2. Suppose we want to approximate the function

f (x, y) = g (x)g (y), (7.8)

where

g (x) =
{

1, 0 ≤ x ≤ 1/2,

e−10(x−1/2), 1/2 < x ≤ 1,

on the unit square

Ω=
{

(x, y) | 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1
}
= [0,1]2.

A graph of this function is shown in Figure 7.4 (a), and we observe that f has a flat spot on the square [0,1/2]2

and falls off exponentially on all sides. In order to approximate this function by a bicubic variation diminishing

7.2. APPROXIMATION METHODS FOR TENSOR PRODUCT SPLINES 143

spline we observe that the surface is continuous, but that it has discontinuities partial derivatives across the lines
x = 1/2 and y = 1/2. We obtain a tensor product spline space with similar continuity properties across these lines
by making the value 1/2 a knot of multiplicity 3 inσ and τ. For an integer q with q ≥ 2 we define the knot vectors
by

σ=τ= (0,0,0,0,1/(2q), . . . ,1/2−1/(2q),1/2,1/2,1/2,

1/2+1/(2q), . . .1−1/(2q),1,1,1,1).

The corresponding variation diminishing spline approximation is shown in Figure 7.4 (b) for q = 2.

The tensor product variation diminishing approximation V f has shape preserving prop-
erties analogous to those discussed in Section 5.4 for curves. In Figures 7.4 (a) and (b) we
observe that the constant part of f in the region [0,1/2]× [0,1/2] is reproduced by V f , and
V f appears to have the same shape as f . These and similar properties can be verified for-
mally, just like for functions.

7.2.2 Tensor Product Spline Interpolation

We consider interpolation at a set of gridded data

(xi , y j , fi , j)m1,m2
i=1, j=1, (7.9)

where

a1 = x1 < x2 < ·· · < xm1 = b1, a2 = y1 < y2 < ·· · < ym2 = b2.

For each i , j we can think of fi , j as the value of an unknown function f = f (x, y) at the point
(xi , y j). Note that these data are given on a grid of the same type as that of the knot lines in
Figure 7.3.

We will describe a method to find a function g = g (x, y) in a tensor product spaceS1⊗S2

such that

g (xi , y j) = fi , j , i = 1, . . . ,m1, j = 1, . . . ,m2. (7.10)

We think of S1 and S2 as two univariate spline spaces

S1 = span{φ1, . . . ,φm1 }, S2 = span{ψ1, . . . ,ψm2 }, (7.11)

where the φ’s and ψ’s are bases of B-splines for the two spaces. Here we have assumed that
the dimension of S1 ⊗S2 agrees with the number of given data points since we want to ap-
proximate using interpolation. With g on the form

g (x, y) =
m1∑

p=1

m2∑
q=1

cp,qψq (y)φp (x) (7.12)

the interpolation conditions (7.10) lead to a set of equations

m1∑
p=1

m2∑
q=1

cp,qψq (y j)φp (xi) = fi , j , for all i and j .

144 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

This double sum can be split into two sets of simple sums

m1∑
p=1

dp, jφp (xi) = fi , j , (7.13)

m2∑
q=1

cp,qψq (y j) = dp, j . (7.14)

In order to study existence and uniqueness of solutions, it is convenient to have a matrix
formulation of the equations for the cp,q . We define the matrices

Φ= (φi ,p) ∈Rm1,m1 , φi ,p =φp (xi),

Ψ= (ψ j ,q) ∈Rm2,m2 , ψ j ,q =ψq (y j),

D = (dp, j) ∈Rm1,m2 , F = (fi , j) ∈Rm1,m2 , C = (cp,q) ∈Rm1,m2 .

(7.15)

We then see that (7.13) and (7.14) may be written as

m1∑
p=1

dp, jφp (xi) =
m1∑

p=1
φi ,p dp, j = (ΦD)i , j = (F)i , j ,

m2∑
q=1

cp,qψq (y j) =
m2∑

q=1
ψ j ,q cp,q = (ΨC T) j ,p = (DT) j ,p .

It follows that (7.13) and (7.14) can be expressed on matrix form as

ΦD = F and CΨT = D . (7.16)

From these equations we obtain the following proposition.

Proposition 7.3. Suppose the matricesΦ andΨ are nonsingular. Then there is a unique g ∈
S1 ⊗S2 such that (7.10) holds. This g is given by (7.12) where the coefficient matrix C = (cp,q)
satisfies the matrix equation

ΦCΨT = F .

Proof. The above derivation shows that there is a unique g ∈S1⊗S2 such that (7.10) holds if
and only if the matrix equations in (7.16) have unique solutions D and C . But this is the case
if and only if the matricesΦ andΨ are nonsingular. The final matrix equation is just the two
equations in (7.16) combined.

There is a geometric interpretation of the interpolation process. Let us define a family of
x-curves by

X j (x) =
m1∑

p=1
dp, jφp (x), j = 1,2, . . . ,m2.

Here the dp, j are taken from (7.13). Then for each j we have

X j (xi) = fi , j , i = 1,2, . . . ,m1.

7.2. APPROXIMATION METHODS FOR TENSOR PRODUCT SPLINES 145

We see that X j is a curve which interpolates the data f j = (f1, j , . . . , fm1, j) at the y-level y j .
Moreover, by using (7.10) we see that for all x

X j (x) = g (x, y j), j = 1,2, . . . ,m2.

This means that we can interpret (7.13) and (7.14) as follows:

(i) Interpolate in the x-direction by determining the curves X j interpolating the data f j .

(ii) Make a surface by filling in the space between these curves.

This process is obviously symmetric in x and y . Instead of (7.13) and (7.14) we can use the
systems

m2∑
q=1

ei ,qψq (y j) = fi , j , (7.17)

m1∑
p=1

cp,qφp (xi) = ei ,q . (7.18)

In other words we first make a family of y-curves Yi (y) = ∑m2
q=1 ei ,qψq (y) interpolating the

row data vectors Fi = (fi ,1, . . . , fi ,m2). We then blend these curves to obtain the same surface
g (x, y).

The process we have just described is a special instance of a more general process which
we is called lofting. By lofting we mean any process to construct a surface from a family of
parallel curves. The word lofting originated in ship design. To draw a ship hull, the designer
would first make parallel cross-sections of the hull. These curves were drawn in full size using
mechanical splines. Then the cross-sections were combined into a surface by using longitu-
dinal curves. Convenient space for this activity was available at the loft of the shipyard.

We have seen that tensor product interpolation is a combination of univariate interpo-
lation processes. We want to take a second look at this scheme. The underlying univariate
interpolation process can be considered as a map converting the data x , f into a spline inter-
polating this data. We can write such a map as

g = I [x , f] =
m1∑

p=1
cpφp .

The coefficients c = (cp) are determined from the interpolation requirements g (xi) = fi for
i = 1,2, . . . ,m1. We also have a related map Ĩ which maps the data into the coefficients

c = Ĩ [x , f].

Given m2 data sets (xi , fi , j)m1
i=1 for j = 1,2, . . . ,m2, we combine the function values into a ma-

trix
F = (f 1, . . . , f n) = (fi , j) ∈Rm1,m2

and define
C = Ĩ [x ,F] = (Ĩ [x , f 1], . . . , Ĩ [x , f n]). (7.19)

146 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

With this notation the equations in (7.16) correspond to

D = Ĩ1[x ,F], C T = Ĩ2[y ,DT],

where Ĩ1 and Ĩ2 are the univariate interpolation operators in the x and y directions, respec-
tively. Combining these two equations we have

C = (Ĩ1 ⊗ Ĩ2)[x , y ,F] = Ĩ2[y , Ĩ1[x ,F]T]T . (7.20)

We call Ĩ1 ⊗ Ĩ2, defined in this way, for the tensor product of Ĩ1 and Ĩ2. We also define (I1 ⊗
I2)[x , y ,F] as the spline in S1 ⊗S2 with coefficients (Ĩ1 ⊗ Ĩ2)[x , y ,F].

These operators can be applied in any order. We can apply I1 on each of the data vectors
f j to create the X j curves, and then use I2 for the lofting. Or we could start by using I2 to
create y-curves Yi (y) and then loft in the x-direction using I1. From this it is clear that

(Ĩ1 ⊗ Ĩ2)[x , y ,F] = (Ĩ2 ⊗ Ĩ1)[y , x ,F T].

Tensor product interpolation is quite easy to program on a computer. In order to imple-
ment the Ĩ [x ,F] operation we need to solve linear systems of the form given in (7.16). These
systems have one coefficient matrix, but several right hand sides.

Two univariate programs can be combined easily and efficiently as in (7.20) provided we
have a linear equation solver that can handle several right-hand sides simultaneously. Corre-
sponding to the operator I [x , f] we would have a program

I P [x , f ,d ,τ,c],

which to given data x and f will return a spline space represented by the degree d and the
knot vector τ, and the coefficients c of an interpolating spline curve in the spline space. Sup-
pose we have two such programs I P

1 and I P
2 corresponding to interpolation in spline spaces

S1 = Sq,σ and S2 = S`,τ. Assuming that these programs can handle data of the form x ,F , a
program to carry out the process in (7.20) would be

1. I P
1 [x ,F ,d ,σ,D];

2. I P
2 [y ,DT ,`,τ,G];

3. C =GT ;

7.2.3 Least Squares for Gridded Data

The least squares technique is a useful and important technique for fitting of curves and sur-
faces to data. In principle, it can be used for approximation of functions of any number of
variables. Computationally there are several problems however, the main one being that usu-
ally a large linear system has to be solved. The situation is better when the data is gridded,
say of the form (7.9). We study this important special case in this section and consider the
following problem:

7.2. APPROXIMATION METHODS FOR TENSOR PRODUCT SPLINES 147

Problem 7.4. Given data

(xi , y j , fi , j)m1,m2
i=1, j=1,

positive weights (wi)m1
i=1 and (v j)m2

j=1, and univariate spline spaces S1 and S2, find a spline
surface g in S1 ⊗S2 which solves the minimisation problem

min
g∈S1⊗S2

m1∑
i=1

m2∑
j=1

wi v j
[
g (xi , y j)− fi , j

]2 .

We assume that the vectors of data abscissas x = (xi)m1
i=1 and y = (y j)m2

j=1 have distinct
components, but that they do not need to be ordered. Note that we only have m1 +m2 inde-
pendent weights. Since we have m1×m2 data points it would have been more natural to have
m1 ×m2 weights, one for each data point. The reason for associating weights with grid lines
instead of points is computational. As we will see, this assures that the problem splits into a
sequence of univariate problems.

We assume that the spline spaces S1 and S2 are given in terms of B-splines

S1 = span{φ1, . . . ,φn1 }, S2 = span{ψ1, . . . ,ψn2 },

and seek the function g in the form

g (x, y) =
n1∑

p=1

n2∑
q=1

cp,qψq (y)φp (x).

Our goal in this section is to show that Problem 7.4 is related to the univariate least squares
problem just as the interpolation problem in the last section was related to univariate inter-
polation. We start by giving a matrix formulation analogous to Lemma 5.21 for the univariate
case.

Lemma 7.5. Problem 7.4 is equivalent to the following matrix problem

min
C∈Rn1,n2

‖AC B T −G‖2, (7.21)

where
A = (ai ,p) ∈Rm1,n1 , ai ,p = p

wiφp (xi),

B = (b j ,q) ∈Rm2,n2 , b j ,q = √
v jψq (y j),

G = (
p

wi
√

v j fi , j) ∈Rm1,m2 , C = (cp,q) ∈Rn1,n2 .

(7.22)

Here, the norm ‖ ·‖ is the Frobenius norm,

‖E‖ =
(m∑

i=1

n∑
j=1

|ei , j |2
)1/2

(7.23)

for any rectangular m ×n matrix E = (ei , j).

148 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

Proof. Suppose C = (cp,q) are the B-spline coefficients of some g ∈S1 ⊗S2. Then

‖AC B T −G‖2 =
m1∑
i=1

m2∑
j=1

(n1∑
p=1

n2∑
q=1

ai ,p cp,q b j ,q − gi , j

)2

=
m1∑
i=1

m2∑
j=1

(n1∑
p=1

n2∑
q=1

p
wiφp (xi)cp,q

√
v jψq (y j)− p

wi
√

v j fi , j

)2

=
m1∑
i=1

m2∑
j=1

wi v j
[
g (xi , y j)− fi , j

]2 .

This shows that the two minimisation problems are equivalent.

We next state some basic facts about the matrix problem (7.21).

Proposition 7.6. The problem (7.21) always has a solution C =C∗, and the solution is unique
if and only if both matrices A and B have linearly independent columns. The solution C∗ can
be found by solving the matrix equation

AT AC∗B T B = AT GB . (7.24)

Proof. By arranging the entries of C in a one dimensional vector it can be seen that the min-
imisation problem (7.21) is a linear least squares problem. The existence of a solution then
follows from Lemma 5.22. For the rest of the proof we introduce some additional notation.
For matrices H = (hi , j) and K = (ki , j) in Rm,n we define the scalar product

(H ,K) =
m∑

i=1

n∑
j=1

hi , j qi , j .

This is a scalar product of the matrices H and K regarded as vectors. We have (H , H) = ‖H‖2,
the Frobenius norm of H , squared. We also observe that for any m ×n matrices H and K , we
have

‖H +K ‖2 = ‖H‖2 +2(H ,K)+‖K ‖2.

Moreover,
(E , HK) = (H T E ,K) = (E K T , H), (7.25)

for any matrices E , H ,K such that the matrix operations make sense. For any C ∈ Rn1,n2 we
let

q(C) = ‖AC B T −G‖2.

This is the function we want to minimize. Suppose C∗ is the solution of (7.24). We want to
show that q(C∗ + εD) ≥ q(C∗) for any real ε and any D ∈ Rn1×n2 . This will follow from the
relation

q(C∗+εD) = q(C∗)+2ε(AT AC∗B T B − AT GB ,D)+ε2‖ADB T ‖2. (7.26)

For if C∗ satisfies (7.24) then the complicated middle term vanishes and

q(C∗+εD) = q(C∗)+ε2‖ADB T ‖2 ≥ q(C∗).

7.2. APPROXIMATION METHODS FOR TENSOR PRODUCT SPLINES 149

To establish (7.26) we have to expand q(C∗+εD),

q(C∗+εD) = ‖(AC∗B T −G)+εADB T ‖2

= q(C∗)+2ε(AC∗B T −G , ADB T)+ε2‖ADB T ‖2.

Using (7.25) on the middle term, we can move A and B T to the left-hand side of the inner
product form, and we obtain (7.26). The uniqueness is left as a problem.

Conversely, suppose that C does not satisfy (7.24). We need to show that C does not min-
imize q . Now, for at least one matrix component i , j we have

z = (AT AC B T B − AT GB)i , j , 0.

We choose D as the matrix where the i , j element is equal to 1 and all other entries are 0.
Then (7.26) takes the form

q(C +εD) = q(C)+2εz +ε2‖ADB T ‖2,

and this implies that q(C +εD) < q(C) for εz < 0 and |ε| sufficiently small. But then C cannot
minimize q .

In order to find the solution of Problem 7.4, we have to solve the matrix equation (7.24).
We can do this in two steps:

1. Find D from the system AT AD = AT G .

2. Find C from the system B T BC T = B T DT .

The matrix C is then the solution of (7.24). The first step is equivalent to

AT Ad j = AT g j , j = 1,2, . . . ,m2,

where D = (d 1, . . . ,d m2) and G = (g 1, . . . , g m2
). This means that we need to solve m2 linear

least squares problems
min‖Ad j −g j‖2

2, j = 1,2, . . . ,m2.

We then obtain a family of x-curves

X j (x) =
n1∑

p=1
dp, jφp (x).

In the second step we solve n1 linear least squares problems of the form

min‖B hi −e i‖2
2, i = 1,2, . . . ,n1,

where the e i are the rows of D , and the hi are the rows of C

D =

eT
1
...

eT
n1

 , C =

hT
1
...

hT
n1

 .

150 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

Alternatively we can do the computation by first performing a least squares approximation
in the y-direction by constructing a family of y-curves, and then use least squares in the x-
direction for the lofting. The result will be the same as before. To minimize the number of
arithmetic operations one should start with the direction corresponding to the largest of the
integers m1 and m2.

Corresponding to Problem 7.4 we have the univariate least squares problem defined in
Problem 5.20. Associated with this problem we have an operator L[x , w , f] which to given
univariate data x = (xi)m

i=1 and f = (fi)m
i=1, and positive weights w = (wi)m

i=1, assigns a spline

g = L[x , w , f] =
n∑

p=1
cpφp ,

in a spline space S = span{φ1, . . . ,φn}. We also have the operator L̃[x , w , f] which maps the
data into the B-spline coefficients and is defined analagously to (7.19). With L̃1 and L̃2 being
least squares operators in the x and y direction, respectively, the B-spline coefficients of the
solution of Problem 7.4 can now be written

C = (L̃1 ⊗ L̃2)[x , y ,F , w , v] = L̃2[y , v , L̃1[x , w ,F]T]T , (7.27)

in analogy with the interpolation process (7.20).

7.3 General tensor product methods

In the previous sections we saw how univariate approximation schemes could be combined
into a surface scheme for gridded data. Examples of this process is given by (7.20) and (7.27).
This technique can in principle be applied quite freely. We could for example combine least
squares in the x direction with cubic spline interpolation in the y direction. If Q̃1[x , f] and
Q̃2[y , g] define univariate approximation methods then we define their tensor product as

(Q̃1 ⊗Q̃2)[x , y ,F] = Q̃2[y ,Q̃1[x ,F]T]T . (7.28)

In this section we want to show that

(Q̃1 ⊗Q̃2)[x, y,F] = (Q̃2 ⊗Q̃1)[y, x,F T]

for a large class of operators Q1 and Q2. Thus, for such operators we are free to use Q2 in the
y-direction first and then Q1 in the x-direction, or vice-versa.

We need to specify more abstractly the class of approximation schemes we consider. Sup-
pose Q[x , f] is a univariate approximation operator mapping the data into a spline in a uni-
variate spline space

S= span{φ1, . . . ,φn}.

Thus

Q[x , f] =
n∑

p=1
ap (f)φp (x). (7.29)

The coefficients ap (f) of the spline are functions of both x and f , but here we are mostly
interested in the dependence of f . We also let (ap (f)) = Q̃[x , f] be the coefficients of Q[x , f].
We are interested in the following class of operators Q.

7.3. GENERAL TENSOR PRODUCT METHODS 151

Definition 7.7. The operator Q :Rm →S given by (7.29) is linear if

ap (f) =
m∑

i=1
ap,i fi , (7.30)

for suitable numbers ap,i independent of f .

If Q is linear then
Q[x ,αg +βh] =αQ[x , g]+βQ[x ,h]

for all α,β ∈R and all g ,h ∈Rm .

Example 7.8. All methods in Chapter 5 are linear approximation schemes.

1. For the Schoenberg Variation Diminishing Spline Approximation we have f = (f1, . . . , fm) = (f (τ∗1), . . . , f (τ∗m)).
Thus V f is of the form (7.29) with ap (f) = fp , and ap,i = δp,i .

2. All the interpolation schemes in Chapter 5, like cubic Hermite, and cubic spline with various boundary
conditions are linear. This follows since the coefficients c = (cp) are found by solving a linear system
Φc = f . Thus c =Φ−1 f , and cp is of the form (7.30) with ap,i being the (p, i)-element of Φ−1. For cubic
Hermite interpolation we also have the explicit formulas in Proposition 5.5.

3. The least squares approximation method is also a linear approximation scheme. Recall that Q in this case
is constructed from the solution of the minimisation problem

min
c

m∑
i=1

wi

[
n∑

p=1
cpφp (xi)− fi

]2

.

The vector c is determined as the solution of a linear system

AT Ac = AT f .

Thus ap,i is the (p, i)-element of the matrix (AT A)−1 AT .

Consider now the surface situation. Suppose we are given a set of gridded data and two
univariate approximation operators Q1 and Q2, and associated with these operators we have
the coefficient operators Q̃1 and Q̃2 assigning the coefficient vectors to the data.

Proposition 7.9. Suppose Q1 and Q2 are linear operators of the form given by (7.29). Then
for all data

(x , y ,F) = (xi , y j , fi , j)m1,m2
i=1, j=1, (7.31)

we have
(Q̃1 ⊗Q̃2)[x , y ,F] = (Q̃2 ⊗Q̃1)[y , x ,F T].

Proof. To see this we go through the constructions in detail. Suppose that

Q1[x , f] =
n1∑

p=1
ap (f)φp , ap (f) =

m1∑
i=1

ap,i fi ,

Q2[y , g] =
n2∑

q=1
bp (g)ψp , bq (g) =

m2∑
j=1

bq, j g j .

152 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

The matrix F = (fi , j)) ∈Rm1,m2 can be partitioned either by rows or by columns.

F = (f 1, . . . , f m2
) =

 g 1
...

g m1

 .

If we use Q1 first then we obtain a family of x-curves from the columns f j of the data F

Q1[x , f j] =
n1∑

p=1
ap (f j)φp (x), j = 1,2, . . . ,m2.

From these curves we get the final surface

g (x, y) =
n1∑

p=1

n2∑
q=1

cp,qψq (y)φp (x),

where
cp,q = bq

(
ap (f 1), . . . , ap (f m2

)
)

.

Using the linearity we obtain

cp,q =
m2∑
j=1

bq, j ap (f j) =
m2∑
j=1

m1∑
i=1

bq, j ap,i fi , j . (7.32)

Suppose now we use Q2 first and then Q1. We then obtain a surface

h(x, y) =
n2∑

q=1

n1∑
p=1

dp,qψq (y)φp (x),

where
dp,q = ap

(
bq (g 1), . . . ,bq (g m1

)
)

.

Thus,

dp,q =
m1∑
i=1

ap,i bq (g i) =
m1∑
i=1

m2∑
j=1

ap,i bq, j fi , j .

Comparing this with (7.32) we see that dp,q = cp,q for all integers p and q , and hence g = h.
We conclude that we end up with the same surface in both cases.

7.4 Trivariate Tensor Product Methods

The tensor product construction can be extended to higher dimensions. For trivariate ap-
proximation we can combine three univariate approximation schemes into a method to ap-
proximate trivariate data

(xi , y j , zk , fi , j ,k)m1, m2, m3

i=1, j=1,k=1. (7.33)

Here the f ’s are function values of an unknown trivariate function

f = f (x, y, z).

7.4. TRIVARIATE TENSOR PRODUCT METHODS 153

Figure 7.5. A cubical gridded region in space.

The data is given on a cubical region determined from the grid points
(xi , y j , zk) in space. We write

F = (fi , j ,k) ∈Rm1,m2,m3

to indicate that the data can be thought of as sitting in a cube of dimensions m1,m2,m3. Such
a cubical grid is shown in Figure 7.5.

The approximation we seek have the form

g (x, y, z) =
n1∑

p=1

n2∑
q=1

n3∑
r=1

cp,q,rωr (z)ψq (y)φp (x). (7.34)

Here

S1 = span{φ1, . . . ,φn1 }, S2 = span{ψ1, . . . ,ψn2 }, S3 = span{ω1, . . . ,ωn3 },

are three univariate spline spaces spanned by some B-splines. We can construct g by forming

154 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

a a sequence of simpler sums as follows

g (x, y, z) =
n1∑

p=1
dp (y, z)φp (x),

dp (y, z) =
n2∑

q=1
ep,q (z)ψq (y),

ep,q (z) =
n3∑

r=1
cp,q,rωr (z).

(7.35)

In order to interpolate the data given by (7.33) we obtain the following set of equations

n1∑
p=1

dp (y j , zk)φp (xi) = fi , j ,k , i = 1,2, . . . ,m1,

n2∑
q=1

ep,q (zk)ψq (y j) = dp (y j , zk), j = 1,2, . . . ,m2,

n3∑
r=1

cp,q,rωr (zk) = ep,q (zk). k = 1,2, . . . ,m3,

(7.36)

These are square systems if ni = mi , and have to be solved in the least squares sense if mi > ni

for one or more i .
Consider now writing these systems in matrix form. The equations involve arrays with 3

subscripts. For a positive integer s we define a rank s tensor to be a s-dimensional table of
the form

A = (ai1,i2,...,is)m1, m2, ... ,ms

i1=1,i2=1,...,is=1.

We write
A ∈Rm1,m2,...,ms =Rm ,

for membership in the class of all rank s tensors with real elements. These tensors are general-
isations of ordinary vectors and matrices. A rank s tensor can be arranged in a s-dimensional
cuboidal array. This is the usual rectangular array for s = 2 and a rectangular parallelepiped
for s = 3.

The operations of addition and scalar multiplication for vectors and matrices extend eas-
ily to tensors. The product of two tensors, say A ∈ Rm1,m2,...,ms and B ∈ Rn1,n2,...,ne can be
defined if the last dimension of A equals the first dimension of B . Indeed, with m = ms = n1,
we define the product AB as the tensor

C = AB ∈Rm1,m2,...,ms−1,n2,...,ns

with elements

ci1,...,is−1, j2,..., je =
m∑

i=1
ai1,...,is−1,i bi , j2,..., je .

For s = e = 2 this is the usual product of two matrices, while for s = e = 1 we have the inner
product of vectors. In general this ‘inner product’ of tensors is a tensor of rank s + e −2. We

7.4. TRIVARIATE TENSOR PRODUCT METHODS 155

just contract the last index of A and the first index of B . Another product is known as the
outer product.

Let us now write the equations in (7.36) in tensor form. The first equation can be written

ΦD = F . (7.37)

Here

Φ= (φi ,p) = (φp (xi)) ∈Rm1,n1 ,

D = (dp, j ,k) = dp (y j , zk) ∈Rn1,m2,m3 , F = (fi , j ,k) ∈Rm1,m2,m3 .

The system (7.37) is similar to the systems we had earlier for bivariate approximation. We
have the same kind of coefficient matrix, but many more right-hand sides.

For the next equation in (7.36) we define

Ψ= (ψ j ,q) = (ψq (y j)) ∈Rm2,n2 ,

E = (eq,k,p) = (ep,q (zk)) ∈Rn2,m3,n1 , D ′ = (d j ,k,p) ∈Rm2,m3,n1 .

The next equation can then be written

ΨE = D ′. (7.38)

The construction of D ′ from D involves a cyclic rotation of the dimensions from (n1,m2, m3)
to (m2,m3,n1). The same operation is applied to E for the last equation in (7.36). We obtain

ΩG = E ′, (7.39)

where

Ω= (ωk,r) = (ωr (zk)) ∈Rm3,n3 ,

E ′ = (ek,p,q) = (ep,q (zk)) ∈Rm3,n1,n2 , G = (gr,p,q) ∈Rn3,n1,n2 .

The coefficients C ′ are obtained by a final cyclic rotation of the dimensions

C =G ′. (7.40)

The systems (7.37), (7.38), and (7.39) corresponds to three univariate operators of the form
Q[x , f]. We denote these Q1,Q2, and Q3. We assume that Qi can be applied to a tensor. The
tensor product of these three operators can now be defined as follows

(Q1 ⊗Q2 ⊗Q3)[x , y , z ,F] =Q3[z ,Q2[y ,Q1[x ,F]′]′]′. (7.41)

The actual implementation of this scheme on a computer will depend on how arrays are
sorted in the actual programming language used. Some languages arrange by columns, while
others arrange by rows.

156 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

7.5 Parametric Surfaces

Parametric curves and explicit surfaces have a natural generalisation to parametric surfaces.
Let us consider the plane P through three points in space which we call p0, p1 and p2. We
define the function f :R2 7→ P by

f (u, v) = p0 + (p1 −p0)u + (p2 −p0)v. (7.42)

We see that f (0,0) = p0, while f (1,0) = p1 and f (0,1) = p2, so that f interpolates the three
points. Since f is also a linear function, we conclude that it is indeed a representation for the
plane P .

We start by generalising and formalising this.

Definition 7.10. A parametric representation of class C m of a set S ⊆R3 is a mapping f of an
open setΩ⊆R2 onto S such that

(i) f has continuous derivatives up to order m.

Suppose that f (u, v) = (
f 1(u, v), f 2(u, v), f 3(u, v)

)
and let D1 f and D2 f denote differentia-

tion with respect to the first and second variables of f , respectively. The parametric repre-
sentation f is said to be regular if in addition

(ii) the Jacobian matrix of f given by

J (f) =
D1 f 1(u, v) D2 f 1(u, v)

D1 f 2(u, v) D2 f 2(u, v)
D1 f 3(u, v) D2 f 3(u, v)

has full rank for all (u, v) inΩ.

That J (f) has full rank means that its two columns must be linearly independent for all
(u, v) ∈Ω, or equivalently, that for all (u, v) there must be at least one nonsingular 2×2 sub-
matrix of J (f).

A function of two variables z = h(x, y) can always be considered as a parametric surface
through the representation f (u, v) = (

u, v,h(u, v)
)
. In the following we will always assume

that f is sufficiently smooth for all operations on f to make sense.
It turns out that there are many surfaces that cannot be described as the image of a regular

parametric representation. One example is a sphere. It can be shown that it is impossible to
find one regular parametric representation that can cover the whole sphere. Instead one uses
several parametric representations to cover different parts of the sphere and call the collec-
tion of such representations a parametric surface. For our purposes this is unnecessary, since
we are only interested in analysing a single parametric representation given as a spline. We
will therefore often adopt the sloppy convention of referring to a parametric representation
as a surface.

Let us check that the surface given by (7.42) is regular. The Jacobian matrix is easily com-
puted as

J (f) = (
p1 −p0, p2 −p0

)
,

7.5. PARAMETRIC SURFACES 157

(the two vectors p1 −p0 and p2 −p0 give the columns of J (f)). We see that J (f) has full rank
unless p1−p0 =λ(p2−p0) for some real numberλ, i.e., unless all three points lie on a straight
line.

A curve on the surface S of the form f (u, v0) for fixed v0 is called a u-curve, while a curve
of the form f (u0, v) is called a v-curve. A collective term for such curves is iso-parametric
curves.

Iso-parametric curves are often useful for plotting. By drawing a set of u- and v-curves,
one gets a simple but good impression of the surface.

The first derivatives D1 f (u, v) and D2 f (u, v) are derivatives of, and therefore tangent to,
a u- and v-curve respectively. For a regular surface the two first derivatives are linearly inde-
pendent and therefore the cross product D1 f (u, v)×D2 f (u, v) is nonzero and normal to the
two tangent vectors.

Definition 7.11. The unit normal of the regular parametric representation f is the vector

N (u, v) = D1 f (u, v)×D2 f (u, v)

‖D1 f (u, v)×D2 f (u, v)‖ .

The normal vector will play an important role when we start analysing the curvature of
surfaces.

Let
(
u(σ), v(σ)

)
be a regular curve in the domainΩ of a parametric representation f . This

curve is mapped to a curve g (σ) on the surface,

g (σ) = f
(
u(σ), v(σ)

)
.

The tangent of g is given by

g ′(σ) = u′(σ)D1 f
(
u(σ), v(σ)

)+ v ′(σ)D2 f
(
u(σ), v(σ)

)
,

in other words, a linear combination of the two tangent vectors D1 f
(
u(σ), v(σ)

)
and D2 f

(
u(σ), v(σ)

)
.

Note that g is regular since g ′(σ) = 0 implies u′(σ) = v ′(σ) = 0.
All regular curves on S through the point f (u, v) has a tangent vector on the form δ1D1 f +

δ2D2 f , whereδ= (δ1,δ2) is a vector inR2. The space of all such tangent vectors is the tangent
plane of S at f (u, v).

Definition 7.12. Let S be a surface with a regular parametric representation f . The tangent
space or tangent plane T f (u, v) of S at f (u, v) is the plane in R3 spanned by the two vectors
D1 f (u, v) and D2 f (u, v), i.e., all vectors on the form δ1D1 f (u, v)+δ2D2 f (u, v).

Note that the normal of the tangent plane T f (u, v) is the normal vector N (u, v).

7.5.1 Parametric Tensor Product Spline Surfaces

Recalling how we generalized from spline functions to parametric spline curves, we see that
the definition of parametric tensor product spline surfaces is the obvious generalization of
tensor product spline functions.

Definition 7.13. A parametric tensor product spline surface is given by a parametric repre-
sentation on the form

f (u, v) =
m∑

i=1

n∑
j=1

c i , j Bi ,d ,σ(u)B j ,`,τ(v),

158 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

where the coefficients (c i , j)m,n
i , j=1 are points in space,

c i , j = (c1
i , j ,c2

i , j ,c3
i , j),

and σ= (σi)m+d+1
i=1 and τ= (τ j)n+`+1

j=1 are knot vectors for splines of degrees d and `.

As for curves, algorithms for tensor product spline surfaces can easily be adapted to give
methods for approximation with parametric spline surfaces. Again, as for curves, the only
complication is the question of parametrization, but we will not consider this in more detail
here.

Chapter 8
Quasi-interpolation methods

In Chapter 5 we considered a number of methods for computing spline approximations. The
starting point for the approximation methods is a data set that is usually discrete and in the
form of function values given at a set of abscissas. The methods in Chapter 5 roughly fall
into two categories: global methods and local methods. A global method is one where any
B-spline coefficient depends on all initial data points, whereas a local method is one where a
B-spline coefficient only depends on data points taken from the neighbourhood of the sup-
port of the corresponding B-spline. Typical global methods are cubic spline interpolation and
least squares approximation, while cubic Hermite interpolation and the Schoenberg varia-
tion diminishing spline approximation are popular local methods.

In this chapter we are going to describe a general recipe for developing local spline ap-
proximation methods. This will enable us to produce an infinite number of approximation
schemes that can be tailored to any special needs that we may have or that our given data set
dictates. In principle, the methods are local, but by allowing the area of influence for a given
B-spline coefficient to grow, our general recipe may even encompass the global methods in
Chapter 5.

The recipe we describe produces approximation methods known under the collective
term quasi-interpolation methods. Their advantage is their flexibility and their simplicity.
There is considerable freedom in the recipe to produce tailor-made approximation schemes
for initial data sets with special structure. Quasi-interpolants also allow us to establish im-
portant properties of B-splines. In the next chapter we will employ them to study how well
a given function can be approximated by splines, and to show that B-splines form a stable
basis for splines.

8.1 A general recipe

A spline approximation method consists of two main steps: First the degree and knot vec-
tor are determined, and then the B-spline coefficients of the approximation are computed
from given data according to some formula. For some methods like spline interpolation and
least squares approximation, this formula corresponds to the solution of a linear system of

159

160 CHAPTER 8. QUASI-INTERPOLATION METHODS

equations. In other cases, like cubic Hermite interpolation and Schoenberg’s Variation Di-
minishing spline approximation, the formula for the coefficients is given directly in terms of
given values of the function to be interpolated.

8.1.1 The basic idea

The basic idea behind the construction of quasi-interpolants is very simple. We focus on
how to compute the B-spline coefficients of the approximation and assume that the degree
and knot vector are known. The procedure depends on two versions of the local support
property of B-splines that we know well from earlier chapters: (i) The B-spline B j is nonzero
only within the interval [τ j ,τ j+d+1], and (ii) on the interval [τµ,τµ+1) there are only d +1 B-
splines in Sd ,τ that are nonzero so a spline g in Sd ,τ can be written as g (x) =∑µ

i=µ−d bi Bi (x)
when x is restricted to this interval.

Suppose we are to compute an approximation g =∑
i ci Bi inSd ,τ to a given function f . To

compute c j we can select one knot interval I = [τµ,τµ+1] which is a subinterval of [τ j ,τ j+d+1].
We denote the restriction of f to this interval by f I and determine an approximation g I =∑µ

i=µ−d bi Bi to f I . One of the coefficients of g I will be b j and we fix c j by setting c j = b j . The
whole procedure is then repeated until all the ci have been determined.

It is important to note the flexibility of this procedure. In choosing the interval I we will
in general have the d + 1 choices µ = j , j , . . . , j +d (fewer if there are multiple knots). As
we shall see below we do not necessarily have to restrict I to be one knot interval; all that is
required is that I ∩ [τµ,τµ+d+1] is nonempty. When approximating f I by g I we have a vast
number of possibilities. We may use interpolation or least squares approximation, or any
other approximation method. Suppose we settle for interpolation, then we have complete
freedom in choosing the interpolation points within the interval I . In fact, there is so much
freedom that we can have no hope of exploring all the possibilities.

It turns out that some of this freedom is only apparent — to produce useful quasi-interpolants
we have to enforce certain conditions. With the general setup described above, a useful re-
striction is that if f I should happen to be a polynomial of degree d then g I should reproduce
f I , i.e., in this case we should have g I = f I . This has the important consequence that if f is a
spline inSd ,τ then the approximation g will reproduce f exactly (apart from rounding errors
in the numerical computations). To see why this is the case, suppose that f = ∑

i b̂i Bi is a
spline in Sd ,τ. Then f I will be a polynomial that can be written as f I = ∑µ

i=µ−d b̂i Bi . Since

we have assumed that polynomials will be reproduced we know that g I = f I so
∑µ

i=µ−d bi Bi =∑µ

i=µ−d b̂i Bi , and by the linear independence of the B-splines involved we conclude that

bi = b̂i for i = µ− d , . . . , µ. But then we see that c j = b j = b̂ j so g will agree with f . An
approximation scheme with the property that P f = f for all f in a space S is said to repro-
duce the space.

8.1.2 A more detailed description

Hopefully, the basic idea behind the construction of quasi-interpolants became clear above.
In this section we describe the construction in some more detail with the generalisations
mentioned before. We first write down the general procedure for determining quasi-interpolants
and then comment on the different steps afterwards.

8.1. A GENERAL RECIPE 161

Algorithm 8.1 (Construction of quasi-interpolants). Let the spline space Sd ,τ of dimension
n and the real function f defined on the interval [τd+1,τn+1] be given, and suppose that τ is a
d +1-regular knot vector. To approximate f from the space Sd ,τ perform the following steps
for j = 1, 2, . . . , n:

1. Choose a subinterval I = [τµ,τν] of [τd+1,τn+1] with the property that I ∩ (τ j ,τ j+d+1) is
nonempty, and let f I denote the restriction of f to this interval.

2. Choose a local approximation method P I and determine an approximation g I to f I ,

g I = P I f I =
ν−1∑

i=µ−d
bi Bi , (8.1)

on the interval I .

3. Set coefficient j of the global approximation P f to b j , i.e.,

c j = b j .

The spline P f =∑n
j=1 c j B j will then be an approximation to f .

The coefficient c j obviously depends on f and this dependence on f is often indicated
by using the notation λ j f for c j . This will be our normal notation in the rest of the chapter.

An important point to note is that the restriction Sd ,τ,I of the spline space Sd ,τ to the
interval I can be written as a linear combination of the B-splines {Bi }ν−1

i=µ−d . These are exactly
the B-splines whose support intersect the interior of the interval I , and by construction, one
of them must clearly be B j . This ensures that the coefficient b j that is needed in step 3 is
computed in step 2.

Algorithm 8.1 generalizes the simplified procedure in Section 8.1.1 in that I is no longer
required to be a single knot interval in [τ j ,τ j+d+1]. This gives us considerably more flexibility
in the choice of local approximation methods. Note in particular that the classical global
methods are included as special cases since we may choose I = [τd+1,τn+1].

As we mentioned in Section 8.1.1, we do not get good approximation methods for free.
If P f is going to be a decent approximation to f we must make sure that the local methods
used in step 2 reproduce polynomials or splines.

Lemma 8.2. Suppose that all the local methods used in step 2 of Algorithm 8.1 reproduce
all polynomials of some degree d1 ≤ d . Then the global approximation method P will also
reproduce polynomials of degree d1. If all the local methods reproduce all the splines in
Sd ,τ,I then P will reproduce the whole spline space Sd ,τ.

Proof. The proof of both claims follow just as in the special case in Section 8.1.1, but let
us even so go through the proof of the second claim. We want to prove that if all the local
methods P I reproduce the local spline spacesSd ,τ,I and f is a spline inSd ,τ, then P f = f . If f
is inSd ,τ we clearly have f =∑n

i=1 b̂i Bi for appropriate coefficients (b̂i)n
i=1, and the restriction

162 CHAPTER 8. QUASI-INTERPOLATION METHODS

of f to I can be represented as f I = ∑ν−1
i=µ−d b̂i Bi . Since P I reproduces Sd ,τ,I we will have

P I f I = f I or
ν−1∑

i=µ−d
bi Bi =

ν−1∑
i=µ−d

b̂i Bi .

The linear independence of the B-splines involved over the interval I then allows us to con-
clude that bi = b̂i for all indices i involved in this sum. Since j is one the indices we therefore
have c j = b j = b̂ j . When this holds for all values of j we obviously have P f = f .

The reader should note that if I is a single knot interval, the local spline space Sd ,τ,I re-
duces to the space of polynomials of degree d . Therefore, when I is a single knot interval, lo-
cal reproduction of polynomials of degree d leads to global reproduction of the whole spline
space.

Why does reproduction of splines or polynomials ensure that P will be a good approxi-
mation method? We will study this in some detail in Chapter 9, but as is often the case the
basic idea is simple: The functions we want to approximate are usually nice and smooth, like
the exponential functions or the trigonometric functions. An important property of polyno-
mials is that they approximate such smooth functions well, although if the interval becomes
wide we may need to use polynomials of high degree. A quantitative manifestation of this
phenomenon is that if we perform a Taylor expansion of a smooth function, then the error
term will be small, at least if the degree is high enough. If our approximation method repro-
duces polynomials it will pick up the essential behaviour of the Taylor polynomial, while the
approximation error will pick up the essence of the error in the Taylor expansion. The ap-
proximation method will therefore perform well whenever the error in the Taylor expansion
is small. If we reproduce spline functions we can essentially reproduce Taylor expansions on
each knot interval as long as the function we approximate has at least the same smoothness
as the splines in the spline space we are using. So instead of increasing the polynomial de-
gree because we are approximating over a wide interval, we can keep the spacing in the knot
vector small and thereby keep the polynomial degree of the spline low. Another way to view
this is that by using splines we can split our function into suitable pieces that each can be ap-
proximated well by polynomials of relatively low degree, even though this is not possible for
the complete function. By constructing quasi-interpolants as outlined above we obtain ap-
proximation methods that actually utilise this approximation power of polynomials on each
subinterval. In this way we can produce good approximations even to functions that are only
piecewise smooth.

8.2 Some quasi-interpolants

It is high time to try out our new tool for constructing approximation methods. Let us see
how some simple methods can be obtained from Algorithm 8.1.

8.2.1 Piecewise linear interpolation

Perhaps the simplest, local approximation method is piecewise linear interpolation. We as-
sume that our n-dimensional spline space S1,τ is given and that τ is a 2-regular knot vector.
For simplicity we also assume that all the interior knots are simple. The function f is given

8.2. SOME QUASI-INTERPOLANTS 163

on the interval [τ2,τn+1]. To determine c j we choose the local interval to be I = [τ j ,τ j+1]. In
this case, we have no interior knots in I so S1,τ,I is the two dimensional space of linear poly-
nomials. A basis for this space is given by the two linear B-splines B j−1 and B j , restricted to
the interval I . A natural candidate for our local approximation method is interpolation at τ j

andτ j+1. On the interval I , the B-spline B j−1 is a straight line with value 1 at τ j and value 0
at τ j+1, while B j is a straight line with value 0 at τ j and value 1 at τ j+1. The local interpolant
can therefore be written

P I
1 f (x) = f (τ j)B j−1(x)+ f (τ j+1)B j (x).

From Algorithm 8.1 we know that the coefficient multiplying B j is the one that should mul-
tiply B j also in our global approximation, in other words c j = λ j f = f (τ j+1). The global
approximation is therefore

P1 f (x) =
n∑

j=1
f (τ j+1)B j (x).

Since a straight line is completely characterized by its value at two points, the local approx-
imation will always give zero error and therefore reproduce all linear polynomials. Then we
know from Lemma 8.2 that P1 will reproduce all splines S1,τ.

This may seem like unnecessary formalism in this simple case where the conclusions are
almost obvious, but it illustrates how the construction works in a very transparent situation.

8.2.2 A 3-point quadratic quasi-interpolant

In our repertoire of approximation methods, we only have one local, quadratic method, Schoen-
berg’s variation diminishing spline. With the quasi-interpolant construction it is easy to con-
struct alternative, local methods. Our starting point is a quadratic spline spaceS2,τ based on
a 3-regular knot vector with distinct interior knots, and a function f to be approximated by a
scheme which we denote P2. The support of the B-spline B j is [τ j ,τ j+3], and we choose our
local interval as I = [τ j+1,τ j+2]. Since I is one knot interval, we need a local approximation
method that reproduces quadratic polynomials. One such method is interpolation at three
distinct points. We therefore choose three distinct points x j ,0, x j ,1 and x j ,2 in I . Some degree
of symmetry is always a good guide so we choose

x j ,0 = τ j+1, x j ,1 =
τ j+1 +τ j+2

2
, x j ,2 = τ j+2.

To determine P I
2 f we have to solve the linear system of three equations in the three unknowns

b j−1, b j and b j+1 given by

P I
2 f (x j ,k) =

j+1∑
i= j−1

bi Bi (x j ,k) = f (x j ,k), for k = 0, 1, 2.

With the aid of a tool like Mathematica we can solve these equations symbolically. The result
is that

b j = 1

2
(− f (τ j+1)+4 f (τ j+3/2)− f (τ j+2)

)
,

164 CHAPTER 8. QUASI-INTERPOLATION METHODS

where τ j+3/2 = (τ j+1+τ j+2)/2. The expressions for b j−1 and b j+1 are much more complicated
and involve the knots τ j and τ j+3 as well. The simplicity of the expression for b j stems from
the fact that x j ,1 was chosen as the midpoint between τ j+1 and τ j+2.

The expression for b j is valid whenever τ j+1 < τ j+2 which is not the case for j = 1 and
j = n since τ1 = τ2 = τ3 and τn+1 = τn+2 = τn+3. But from Lemma 2.9 we know that any spline
g in S3,τ will interpolate its first and last B-spline coefficient at these points so we simply set
c1 = f (τ1) and cn = f (τn+1).

Having constructed the local interpolants, we have all the ingredients necessary to con-
struct the quasi-interpolant P2 f =∑n

j=1λ j f B j , namely

λ j f =

f (τ1), when j = 1;

1

2
(− f (x j ,0)+4 f (x j ,1)− f (x j ,2), when 1 < j < n;

f (τn+1), when j = n.

Since the local approximation reproduced the local spline space (the space of quadratic poly-
nomials in this case), the complete quasi-interpolant will reproduce the whole spline space
S2,τ.

8.2.3 A 5-point cubic quasi-interpolant

The most commonly used splines are cubic, so let us construct a cubic quasi-interpolant. We
assume that the knot vector is 4-regular and that the interior knots are all distinct. As usual
we focus on the coefficient c j = λ j f . It turns out that the choice I = [τ j+1,τ j+3] is conve-
nient. The local spline space S3,τ,I has dimension 5 and is spanned by the (restriction of the)

B-splines {Bi } j+2
i= j−2. We want the quasi-interpolant to reproduce the whole spline space and

therefore need P I to reproduce S3,τ,I . We want to use interpolation as our local approxima-
tion method, and we know from Chapter 5 that spline interpolation reproduces the spline
space as long as it has a unique solution. The solution is unique if the coefficient matrix of
the resulting linear system is nonsingular, and from Theorem 5.18 we know that a B-spline
coefficient matrix is nonsingular if and only if its diagonal is positive. Since the dimension of
S3,τ,I is 5 we need 5 interpolation points. We use the three knots τ j+1, τ j+2 and τ j+3 and one
point from each of the knot intervals in I ,

x j ,0 = τ j+1, x j ,1 ∈ (τ j+1,τ j+2), x j ,2 = τ j+2, x j ,3 ∈ (τ j+2,τ j+3), x j ,4 = τ j+3.

Our local interpolation problem is

j+2∑
i= j−2

bi Bi (x j ,k) = f (x j ,k), for k = 0, 1, . . . , 4.

In matrix-vector form this becomes
B j−2(x j ,0) B j−1(x j ,0) B j (x j ,0) 0 0
B j−2(x j ,1) B j−1(x j ,1) B j (x j ,1) B j+1(x j ,1) 0
B j−2(x j ,2) B j−1(x j ,2) B j (x j ,2) B j+1(x j ,2) B j+2(x j ,2)

0 B j−1(x j ,3) B j (x j ,3) B j+1(x j ,3) B j+2(x j ,3)
0 0 B j (x j ,4) B j+1(x j ,4) B j+2(x j ,4)

b j−2

b j−1

b j

b j+1

b j+2

=

f (x j ,0)
f (x j ,1)
f (x j ,2)
f (x j ,3)
f (x j ,4)

8.2. SOME QUASI-INTERPOLANTS 165

when we insert the matrix entries that are zero. Because of the way we have chosen the in-
terpolation points we see that all the entries on the diagonal of the coefficient matrix will be
positive so the matrix is nonsingular. The local problem therefore has a unique solution and
will reproduce S3,τ,I . The expression for λ j f is in general rather complicated, but in the spe-
cial case where the widths of the two knot intervals are equal and x j ,2 and x j ,4 are chosen as
the midpoints of the two intervals we end up with

λ j f = 1

6

(
f (τ j+1)−8 f (τ j+3/2)+20 f (τ j+2)−8 f (τ j+5/2)+ f (τ j+3)

)
where τ j+3/2 = (τ j+1 + τ j+2)/2 and τ j+5/2 = (τ j+2 + τ j+3)/2. Unfortunately, this formula is
not valid when j = 1, 2, n −1 or n since then one or both of the knot intervals in I collapse
to one point. However, our procedure is sufficiently general to derive alternative formulas
for computing the first two coefficients. The first value of j for which the general procedure
works is j = 3. In this case I = [τ4,τ6] and our interpolation problem involves the B-splines
{Bi }5

i=1. This means that when we solve the local interpolation problem we obtain B-spline
coefficients multiplying all of these B-splines, including B1 and B2. There is nothing stopping
us from using the same interval I for computation of several coefficients, so in addition to
obtaining λ3 f from this local interpolant, we also use it as our source for the first two coef-
ficients. In the special case when the interior knots are uniformly distributed and x3,1 = τ9/2

and x3,3 = τ11/2, we find

λ1 f = f (τ4),

λ2 f = 1

18

(−5 f (τ4)+40 f (τ9/2)−36 f (τ5)+18 f (τ11/2)− f (τ6)
)
.

In general, the second coefficient will be much more complicated, but the first one will not
change.

This same procedure can obviously be used to determine values for the last two coef-
ficients, and under the same conditions of uniformly distributed knots and interpolation
points we find

λn−1 f = 1

18

(− f (τn−1)+18 f (τn−1/2)−36 f (τn)+40 f (τn+1/2)−5 f (τn+1)
)
,

λn f = f (τn+1).

8.2.4 Some remarks on the constructions

In all our constructions, we have derived specific formulas for the B-spline coefficients of the
quasi-interpolants in terms of the function f to be approximated, which makes it natural to
use the notation c j = λ j f . To do this, we had to solve the local linear system of equations
symbolically. When the systems are small this can be done quite easily with a computer al-
gebra system like Maple or Mathematica, but the solutions quickly become complicated and
useless unless the knots and interpolation points are nicely structured, preferably with uni-
form spacing. The advantage of solving the equations symbolically is of course that we obtain
explicit formulas for the coefficients once and for all and can avoid solving equations when
we approximate a particular function.

166 CHAPTER 8. QUASI-INTERPOLATION METHODS

For general knots, the local systems of equations usually have to be solved numerically,
but quasi-interpolants can nevertheless prove very useful. One situation is real-time pro-
cessing of data. Suppose we are in a situation where data are measured and need to be fitted
with a spline in real time. With a global approximation method we would have to recompute
the whole spline each time we receive new data. This would be acceptable at the beginning,
but as the data set grows, we would not be able to compute the new approximation quickly
enough. We could split the approximation into smaller pieces at regular intervals, but quasi-
interpolants seem to be a perfect tool for this kind of application. In a real-time application
the data will often be measured at fixed time intervals, and as we have seen it is then easy
to construct quasi-interpolants with explicit formulas for the coefficients. Even if this is not
practicable because the explicit expressions are not available or become too complicated, we
just have to solve a simple, linear set of equations to determine each new coefficient. The im-
portant fact is that the size of the system is constant so that we can handle almost arbitrarily
large data sets, the only limitation being available storage space.

Another important feature of quasi-interpolants is their flexibility. In our constructions
we have assumed that the function we approximate can be evaluated at any point that we
need. This may sometimes be the case, but often the function is only partially known by a
few discrete, measured values at specific abscissas. The procedure for constructing quasi-
interpolants has so much inherent freedom that it can be adapted in a number of ways to
virtually any specific situation, whether the whole data set is available a priori or the approx-
imation has to be produced in real-time as the data is generated.

8.3 Quasi-interpolants are linear operators

Now that we have seen some examples of quasi-interpolants, let us examine them from a
more general point of view. The basic ingredient of quasi-interpolants is the computation of
each B-spline coefficient, and we have have used the notation c j = λ j f = λ j (f) to indicate
that each coefficient depends on f . It is useful to think of λ j as a ’function’ that takes an
ordinary function as input and gives a real number as output; such ’functions’ are usually
called functionals. If we go back and look at our examples, we notice that in each case the
dependency of our coefficient functionals on f is quite simple: The function values occur
explicitly in the coefficient expressions and are not multiplied or operated on in any way
other than being added together and multiplied by real numbers. This is familiar from linear
algebra.

Definition 8.3. In the construction of quasi-interpolants, each B-spline coefficient is com-
puted by evaluating a linear functional. A linear functional λ is a mapping from a suitable
space of functions S into the real numbers R with the property that if f and g are two arbi-
trary functions in S and α and β are two real numbers then

λ(α f +βg) =αλ f +βλg .

Linearity is a necessary property of a functional that is being used to compute B-spline
coefficients in the construction of quasi-interpolants. If one of the coefficient functionals is
nonlinear, then the resulting approximation method is not a quasi-interpolant. Linearity of
the coefficient functionals leads to linearity of the approximation scheme.

8.4. DIFFERENT KINDS OF LINEAR FUNCTIONALS AND THEIR USES 167

Lemma 8.4. Any quasi-interpolant P is a linear operator, i.e., for any two admissible func-
tions f and g and any real numbers α and β,

P (α f +βg) =αP f +βP g .

Proof. Suppose that the linear coefficient functionals are (λ j)n
j=1. Then we have

P (α f +βg) =
n∑

i=1
λ j (α f +βg)Bi =α

n∑
i=1

λ j f Bi +β
n∑

i=1
λ j g Bi =αP f +βP g

which demonstrates the linearity of P .

This lemma is simple, but very important since there are so many powerful mathemat-
ical tools available to analyse linear operators. In Chapter 9 we are going to see how well a
given function can be approximated by splines. We will do this by applying basic tools in the
analysis of linear operators to some specific quasi-interpolants.

8.4 Different kinds of linear functionals and their uses

In our examples of quasi-interpolants in Section 8.2 the coefficient functionals were all linear
combinations of function values, but there are other functionals that can be useful. In this
section we will consider some of these and how they turn up in approximation problems.

8.4.1 Point functionals

Let us start by recording the form of the functionals that we have already encountered. The
coefficient functionals in Section 8.2 were all in the form

λ f = ∑̀
i=0

wi f (xi) (8.2)

for suitable numbers (wi)`i=0 and (xi)`i=0. Functionals of this kind can be used if a procedure
is available to compute values of the function f or if measured values of f at specific points
are known. Most of our quasi-interpolants will be of this kind.

Point functionals of this type occur naturally in at least two situations. The first is when
the local approximation method is interpolation, as in our examples above. The second is
when the local approximation method is discrete least squares approximation. As a simple
example, suppose our spline space is S2,τ and that in determining c j we consider the sin-
gle knot interval I = [τ j+1,τ j+2]. Suppose also that we have 10 function values at the points
(x j ,k)9

k=0 in this interval. Since the dimension ofS2,τ,I is 3, we cannot interpolate all 10 points.
The solution is to perform a local least squares approximation and determine the local ap-
proximation by minimising the sum of the squares of the errors,

min
g∈S2,τ,I

9∑
k=0

(
g (x j ,k)− f (x j ,k)

)2.

The result is that c j will be a linear combination of the 10 function values,

c j =λ j f =
9∑

k=0
w j ,k f (x j ,k).

168 CHAPTER 8. QUASI-INTERPOLATION METHODS

8.4.2 Derivative functionals

In addition to function values, we can also compute derivatives of a function at a point. Since
differentiation is a linear operator it is easy to check that a functional likeλ f = f ′′(xi) is linear.
The most general form of a derivative functional based at a point that we will consider is

λ f =
r∑

k=0
wk f (k)(x)

where x is a suitable point in the domain of f . We will construct a quasi-interpolant based
on this kind of coefficient functionals in Section 8.6.1. By combining derivative functionals
based at different points we obtain

λ f = ∑̀
i=0

ri∑
k=0

wi ,k f (k)(xi)

where each ri is a nonnegative integer. A typical functional of this kind is the divided differ-
ence of a function when some of the arguments are repeated. Such functionals are funda-
mental in interpolation with polynomials. Recall that if the same argument occurs r +1 times
in a divided difference, this signifies that all derivatives of order 0, 1, . . . , r are to be interpo-
lated at the point. Note that the point functionals above are derivative functionals with ri = 0
for all i .

8.4.3 Integral functionals

The final kind of linear functionals that we will consider are based on integration. A typical
functional of this kind is

λ f =
∫ b

a
f (x)φ(x)d x (8.3)

where φ is some fixed function. Because of basic properties of integration, it is easy to check
that this is a linear functional. Just as with point functionals, we can combine several func-
tionals like the one in (8.3) together,

λ f = w0

∫ b

a
f (x)φ0(x)d x +w1

∫ b

a
f (x)φ1(x)d x +·· ·+w`

∫ b

a
f (x)φ`(x)d x,

where (wi)`i=0 are real numbers and {φi }`i=0 are suitable functions. Note that the right-hand
side of this equation can be written in the form (8.3) if we define φ by

φ(x) = w0φ0(x)+w1φ1(x)+·· ·+w`φ`(x).

Point functionals can be considered a special case of integral functionals. For if φε is a
function that is positive on the interval Iε = (xi − ε, xi + ε) and

∫
Iε
φε = 1, then we know from

the mean value theorem that ∫
Iε

f (x)φε(x)d x = f (ξ)

8.4. DIFFERENT KINDS OF LINEAR FUNCTIONALS AND THEIR USES 169

for some ξ in Iε, as long as f is a nicely behaved (for example continuous) function. If we let
ε tend to 0 we clearly have

lim
ε→0

∫
Iε

f (x)φε(x)d x = f (xi), (8.4)

so by letting φ in (8.3) be a nonnegative function with small support around x and unit inte-
gral we can come as close to point interpolation as we wish.

If we include the condition that
∫ b

a φd x = 1, then the natural interpretation of (8.3) is that
λ f gives a weighted average of the function f , with φ(x) giving the weight of the function
value f (x). A special case of this is when φ is the constant φ(x) = 1/(b − a); then λ f is the
traditional average of f . From this point of view the limit (8.4) is quite obvious: if we take the
average of f over ever smaller intervals around xi , the limit must be f (xi).

The functional
∫ b

a f (x)d x is often referred to as the first moment of f . As the name sug-
gests there are more moments. The i +1st moment of f is given by∫ b

a
f (x)xi d x.

Moments of a function occur in many applications of mathematics like physics and the the-
ory of probability.

8.4.4 Preservation of moments and interpolation of linear functionals

Interpolation of function values is a popular approximation method, and we have used it
repeatedly in this book. However, is it a good way to approximate a given function f ? Is it
not a bit haphazard to pick out a few, rather arbitrary, points on the graph of f and insist
that our approximation should reproduce these points exactly and then ignore all other in-
formation about f ? As an example of what can happen, suppose that we are given a set of
function values

(
xi , f (xi)

)m
i=1 and that we use piecewise linear interpolation to approximate

the underlying function. If f has been sampled densely and we interpolate all the values,
we would expect the approximation to be good, but consider what happens if we interpolate
only two of the values. In this case we cannot expect the resulting straight line to be a good
approximation. If we are only allowed to reproduce two pieces of information about f we
would generally do much better by reproducing its first two moments, i.e., the two integrals∫

f (x)d x and
∫

f (x)x d x, since this would ensure that the approximation would reproduce
some of the average behaviour of f .

Reproduction of moments is quite easy to accomplish. If our approximation is g , we just
have to ensure that the conditions∫ b

a
g (x)xi d x =

∫ b

a
f (x)xi d x, i = 0, 1, . . . , n −1

are enforced if we want to reproduce n moments. In fact, this can be viewed as a generalisa-
tion of interpolation if we view interpolation to be preservation of the values of a set of linear
functionals (ρi)n

i=1,

ρi g = ρi f , for i = 1, 2, . . . , n. (8.5)

170 CHAPTER 8. QUASI-INTERPOLATION METHODS

When ρi f = ∫ b
a f (x)xi−1 d x for i = 1, . . . , n we preserve moments, while if ρi f = f (xi) for

i = 1, . . . , n we preserve function values. Suppose for example that g is required to lie in the
linear space spanned by the basis {ψ j }n

j=1. Then we can determine coefficients (c j)n
j=1 so that

g (x) = ∑n
j=1 c jψ j (x) satisfies the interpolation conditions (8.5) by inserting this expression

for g into (8.5). By exploiting the linearity of the functionals, we end up with the n linear
equations

c1ρi (ψ1)+ c2ρi (ψ2)+·· ·+cnρi (ψn) = ρi (f), i = 1, . . . , n

in the n unknown coefficients (ci)n
i=1. In matrix-vector form this becomes

ρ1(ψ1) ρ1(ψ2) · · · ρ1(ψn)
ρ2(ψ1) ρ2(ψ2) · · · ρ1(ψn)

...
...

. . .
...

ρn(ψ1) ρn(ψ2) · · · ρn(ψn)

c1

c2
...

cn

=

ρ1(f)
ρ2(f)

...
ρn(f)

 . (8.6)

A fundamental property of interpolation by point functionals is that the only polynomial of
degree d that interpolates the value 0 at d +1 points is the zero polynomial. This corresponds
to the fact that when ρi f = f (xi) and ψi (x) = xi for i = 0, . . . , d , the matrix in (8.6) is nonsin-
gular. Similarly, it turns out that the only polynomial of degree d whose d +1 first moments
vanish is the zero polynomial, which corresponds to the fact that the matrix in (8.6) is non-
singular when ρi f = ∫ b

a f (x)xi d x and ψi (x) = xi for i = 0, . . . , d .
If the equations (8.6) can be solved, each coefficient will be a linear combination of the

entries on the right-hand side,

c j =λ j f = w j ,1ρ1(f)+w j ,2ρ2(f)+·· ·+w j ,nρn(f).

We recognise this as (8.2) when the ρi correspond to point functionals, whereas we have

c j =λ j f = w j ,1

∫ b

a
f (x)d x +w j ,2

∫ b

a
f (x)x d x +·· ·+w j ,n

∫ b

a
f (x)xn−1 d x

=
∫ b

a
f (x)

(
w j ,1 +w j ,2x +·· ·+w j ,n xn−1)d x

when the ρi correspond to preservation of moments.

8.4.5 Least squares approximation

In the discussion of point functionals, we mentioned that least squares approximation leads
to coefficients that are linear combinations of point functionals when the error is measured
by summing up the squares of the errors at a given set of data points. This is naturally termed
discrete least squares approximation. In continuous least squares approximation we min-
imise the integral of the square of the error. If the function to be approximated is f and the
approximation g is required to lie in a linear space S, we solve the minimisation problem

min
g∈S

∫ b

a

(
f (x)− g (x)

)2 d x.

8.5. ALTERNATIVE WAYS TO CONSTRUCT COEFFICIENT FUNCTIONALS 171

If S is spanned by (ψi)n
i=1, we can write g as g = ∑n

i=1 ciψ and the minimisation problem
becomes

min
(c1,...,cn)∈Rn

∫ b

a

(
f (x)−

n∑
i=1

ciψ(x)
)2

d x.

To determine the minimum we differentiate with respect to each coefficient and set the deriva-
tives to zero which leads to the so-called normal equations

n∑
i=1

ci

∫ b

a
ψi (x)ψ j (x)d x =

∫ b

a
ψ j (x) f (x)d x, for j = 1, . . . , n.

If we use the notation above and introduce the linear functionals ρi f = ∫ b
a ψi (x) f (x) repre-

sented by the basis functions, we recognise this linear system as an instance of (8.6). In other
words, least squares approximation is nothing but interpolation of the linear functionals rep-
resented by the basis functions. In particular, preservation of moments corresponds to least
squares approximation by polynomials.

8.4.6 Computation of integral functionals

In our discussions involving integral functionals we have tacitly assumed that the values of
integrals like

∫ b
a f (x)ψ(x)d x are readily available. This is certainly true if both f and ψ are

polynomials, and it turns out that it is also true if both f and ψ are splines. However, if f is
some general function, then the integral cannot usually be determined exactly, even when
ψi is a polynomial. In such situations we have to resort to numerical integration methods.
Numerical integration amounts to computing an approximation to an integral by evaluating
the function to be integrated at certain points, multiplying the function values by suitable
weights, and then adding up to obtain the approximate value of the integral,∫ b

a
f (x)d x ≈ w0 f (x0)+w1 f (x1)+·· ·+w` f (x`).

In other words, when it comes to practical implementation of integral functionals we have to
resort to point functionals. In spite of this, integral functionals and continuous least squares
approximation are such important concepts that it is well worth while to have an exact math-
ematical description. And it is important to remember that we do have exact formulas for the
integrals of polynomials and splines.

8.5 Alternative ways to construct coefficient functionals

In Section 8.2 we constructed three quasi-interpolants by following the general procedure in
Section 8.1. In this section we will deduce two alternative ways to construct quasi-interpolants.

8.5.1 Computation via evaluation of linear functionals

Let us use the 3-point, quadratic quasi-interpolant in subsection 8.2.2 as an example. In
this case we used I = [τ j+1,τ j+2] as the local interval for determining c j = λ j f . This meant
that the local spline space S2,τ,I become the space of quadratic polynomials on I which has

172 CHAPTER 8. QUASI-INTERPOLATION METHODS

dimension three. This space is spanned by the three B-splines {Bi } j+1
i= j−1 and interpolation at

the three points

τ j+1, τ j+3/2 =
τ j+1 +τ j+2

2
, τ j+2

allowed us to determine a local interpolant g I =∑ j+1
i= j−1 bi Bi whose middle coefficient b j we

used as λ j f .
An alternative way to do this is as follows. Since g I is constructed by interpolation at the

three points τ j+1, τ j+3/2 and τ j+2, we know that λ j f can be written in the form

λ j f = w1 f (τ j+1)+w2 f (τ j+3/2)+w3 f (τ j+2). (8.7)

We want to reproduce the local spline space which in this case is just the space of quadratic
polynomials. This means that (8.7) should be valid for all quadratic polynomials. Reproduc-
tion of quadratic polynomials can be accomplished by demanding that (8.7) should be exact
when f is replaced by the three elements of a basis for S2,τ,I . The natural basis to use in our

situation is the B-spline basis {Bi } j+1
i= j−1. Inserting this, we obtain the system

λ j B j−1 = w1B j−1(τ j+1)+w2B j−1(τ j+3/2)+w3B j−1(τ j+2),

λ j B j = w1B j (τ j+1)+w2B j (τ j+3/2)+w3B j (τ j+2),

λ j B j+1 = w1B j+1(τ j+1)+w2B j+1(τ j+3/2)+w3B j+1(τ j+2).

in the three unknowns w1, w2 and w3. The left-hand sides of these equations are easy to
determine. Since λ j f denotes the j th B-spline coefficient, it is clear that λ j Bi = δi , j , i.e., it is
1 when i = j and 0 otherwise.

To determine the right-hand sides we have to compute the values of the B-splines. For
this it is useful to note that the w j ’s in equation (8.7) cannot involve any of the knots other
than t j+1 and t j+2 since a general polynomial knows nothing about these knots. This means
that we can choose the other knots so as to make life simple for ourselves. The easiest option
is to choose the first three knots equal to t j+1 and the last three equal to t j+2. But then we are
in the Bézier setting, and we know that the B-splines in this case will have the same values if
we choose τ j+1 = 0 and τ j+2 = 1. The knots are then (0,0,0,1,1,1) which means that τ j+3/2 =
1/2. If we denote the B-splines on these knots by {B̃i }3

i=1, we can replace Bi in (8.5.1) by B̃i− j+2

for i = 1, 2, 3. We can now simplify (8.5.1) to

0 = w1B̃1(0)+w2B̃1(1/2)+w3B̃1(1),

1 = w1B̃2(0)+w2B̃2(1/2)+w3B̃2(1),

0 = w1B̃3(0)+w2B̃3(1/2)+w3B̃3(1).

If we insert the values of the B-splines we end up with the system

w1 +w2/4 = 0,

w2/2 = 1,

w2/4+w3 = 0,

8.6. TWO QUASI-INTERPOLANTS BASED ON POINT FUNCTIONALS 173

which has the solution w1 =−1/2, w2 = 2 and w3 =−1/2. In conclusion we have

λ j f = − f (t j+1)+4 f (t j+3/2)− f (t j+2)

2
,

as we found in Section 8.2.2.
This approach to determining the linear functional works quite generally and is often the

easiest way to compute the weights (wi).

8.5.2 Computation via explicit representation of the local approximation

There is a third way to determine the expression for λ j f . For this we write down an explicit
expression for the approximation g I . Using the 3-point quadratic quasi-interpolant as our
example again, we introduce the abbreviations a = τ j+1, b = τ j+3/2 and c = τ j+2. We can
write the local interpolant g I as

g I (x) = (x −b)(x − c)

(a −b)(a − c)
f (a)+ (x −a)(x − c)

(b −a)(b − c)
f (b)+ (x −a)(x −b)

(c −a)(c −b)
f (c),

as it is easily verified that g I then satisfies the three interpolation conditions g I (a) = f (a),
g I (b) = f (b) and g I (c) = f (c). What remains is to write this in terms of the B-spline basis

{Bi } j+1
i= j−1 and pick out coefficient number j . Recall that we have the notation γ j (f) for the

j th B-spline coefficient of a spline f . Coefficient number j on the left-hand side is λ j f . On
the right, we find the B-spline coefficients of each of the three polynomials and add up. The
numerator of the first polynomial is (x − b)(x − c) = x2 − (b + c)x + bc. To find the j th B-
spline of this polynomial, we make use of Corollary 3.6 which tells that, when d = 2, we have
γ j (x2) = τ j+1τ j+2 = ac and γ j (x) = (τ j+1 +τ j+2)/2 = (a + c)/2 = b, respectively. The j th B-
spline coefficient of the first polynomial is therefore

γ j

(ac − (b + c)b +bc

(a −b)(a − c)

)
= ac −b2

(a −b)(a − c)
(8.8)

which simplifies to −1/2 since b = (a+c)/2. Similarly, we find that the j th B-spline coefficient
of the second and third polynomials are 2 and −1/2, respectively. The complete j th B-spline
coefficient of the right-hand side of (8.8) is therefore − f (a)/2+ 2 f (b)− f (c)/2. In total, we
have therefore obtained

λ j f = γ j (g I) =− f (τ j+1)

2
+2 f (τ j+3/2)− f (τ j+2)

2
,

as required.
This general procedure also works generally, and we will see another example of it in Sec-

tion 8.6.1.

8.6 Two quasi-interpolants based on point functionals

In this section we consider two particular quasi-interpolants that can be constructed for any
polynomial degree. They may be useful for practical approximation problems, but we are
going to use them to prove special properties of spline functions in Chapters 9 and 10. Both
quasi-interpolants are based on point functionals: In the first case all the points are identical
which leads to derivative functionals, in the second case all the points are distinct.

174 CHAPTER 8. QUASI-INTERPOLATION METHODS

8.6.1 A quasi-interpolant based on the Taylor polynomial

A very simple local, polynomial approximation is the Taylor polynomial. This leads to a quasi-
interpolant based on derivative functionals. Even though we use splines of degree d , our local
approximation can be of lower degree; in Theorem 8.5 this degree is given by r .

Theorem 8.5 (de Boor-Fix). Let r be an integer with 0 ≤ r ≤ d and let x j be a number in
[τ j ,τ j+d+1] for j = 1, . . . , n. Consider the quasi-interpolant

Qd ,r f =
n∑

j=1
λ j (f)B j ,d , where λ j (f) = 1

d !

r∑
k=0

(−1)k Dd−kρ j ,d (x j)Dk f (x j), (8.9)

and ρ j ,d (y) = (y −τ j+1) · · · (y −τ j+d). Then Qd ,r reproduces all polynomials of degree r and
Qd ,d reproduces all splines in Sd ,τ.

Proof. To construct Qd ,r we let I be the knot interval that contains x j and let the local ap-
proximation g I = P I

r f be the Taylor polynomial of degree r at the point x j ,

g I (x) = P I
r f (x) =

r∑
k=0

(x −x j)k

k !
Dk f (x j).

To construct the linear functional λ j f , we have to find the B-spline coefficients of this poly-
nomial. We use the same approach as in Section 8.5.2. For this Marsden’s identity,

(y −x)d =
n∑

j=1
ρ j ,d (y)B j ,d (x),

will be useful. Setting y = x j , we see that the j th B-spline coefficient of (x j − x)d is ρ j ,d (x j).
Differentiating Marsden’s identity d−k times with respect to y , setting y = xi and rearranging,
we obtain the j th B-spline coefficient of (x −x j)k /k ! as

γ j
(
(x −x j)k /k !

)= (−1)k Dd−kρ j ,d (x j)/d ! for k = 0, . . . , r .

Summing up, we find that

λ j (f) = 1

d !

r∑
k=0

(−1)k Dd−kρ j ,d (x j)Dk f (x j).

Since the Taylor polynomial of degree r reproduces polynomials of degree r , we know that
the quasi-interpolant will do the same. If r = d , we reproduce polynomials of degree d which
agrees with the local spline spaceSd ,τ,I since I is a single knot interval. The quasi-interpolant
therefore reproduces the whole spline space Sd ,τ in this case.

Example 8.6. We find

Ddρ j ,d (y)/d ! = 1, Dd−1ρ j ,d (y)/d ! = y −τ∗j , where τ∗j =
τ j+1 +·· ·+τ j+d

d
. (8.10)

8.6. TWO QUASI-INTERPOLANTS BASED ON POINT FUNCTIONALS 175

For r = 1 and x j = τ∗j we therefore obtain

Qd ,r f =
n∑

j=1
f (τ∗j)B j ,d

which is the Variation Diminishing spline approximation. For d = r = 2 we obtain

Q2,2 f =
n∑

j=1

[
f (x j)− (x j −τ j+3/2)D f (x j)+ 1

2
(x j −τ j+1)(x j −τ j+2)D2 f (x j)

]
B j ,2. (8.11)

while for d = r = 3 and x j = τ j+2 we obtain

Q3,3 f =
n∑

j=1

[
f (τ j+2)+ 1

3
(τ j+3 −2τ j+2 +τ j+1)D f (τ j+2)− 1

6
(τ j+3 −τ j+2)(τ j+2 −τ j+1)D2 f (τ j+2)

]
B j ,3. (8.12)

We leave the detailed derivation as a problem for the reader.

Since Qd ,d f = f for all f ∈Sd ,τ it follows that the coefficients of a spline f = ∑n
j=1 c j B j ,d

can be written in the form

c j = 1

d !

d∑
k=0

(−1)k Dd−kρ j ,d (x j)Dk f (x j), for j = 1, . . . , n, (8.13)

where x j is any number in [τ j ,τ j+d+1].

8.6.2 Quasi-interpolants based on evaluation

Another natural class of linear functionals is the one where each λ j used to define Q is con-
structed by evaluating the data at r +1 distinct points

τ j ≤ x j ,0 < x j ,1 < ·· · < x j ,r ≤ τ j+d+1 (8.14)

located in the support [τ j ,τ j+d+1] of the B-spline B j ,d for j = 1, . . . , n. We consider the quasi-
interpolant

Pd ,r f =
n∑

j=1
λ j ,r (f)B j ,d , (8.15)

where

λ j ,r (f) =
r∑

k=0
w j ,k f (x j ,k). (8.16)

From the preceding theory we know how to choose the constants w j ,k so that Pd ,r f = f for
all f ∈πr .

Theorem 8.7. Let Sd ,τ be a spline space with a d +1-regular knot vector τ = (τi)n+d+1
i=1 . Let

(x j ,k)r
k=0 be r +1 distinct points in [τ j ,τ j+d+1] for j = 1, . . . , n, and let w j ,k be the j th B-spline

coefficient of the polynomial

p j ,k (x) =
r∏

s=0
s,k

x −x j ,s

x j ,k −x j ,s
.

Then Pd ,r f = f for all f ∈πr , and if r = d and all the numbers (x j ,k)r
k=0 lie in one subinterval

τ j ≤ τ` j ≤ x j ,0 < x j ,1 < ·· · < x j ,r ≤ τ` j+1 ≤ τ j+d+1 (8.17)

then Pd ,d f = f for all f ∈Sd ,τ.

176 CHAPTER 8. QUASI-INTERPOLATION METHODS

Proof. It is not hard to see that

p j ,k (x j ,i) = δk,i , k, i = 0, . . . , r

so that the polynomial

P I
d ,r f (x) =

r∑
k=0

p j ,k (x) f (x j ,k)

satisfies the interpolation conditions P I
d ,r f (x j ,r) = f (x j ,r) for all j and r . The result therefore

follows from the general recipe.

In order to give examples of quasi-interpolants based on evaluation we need to know the
B-spline coefficients of the polynomials p j ,k . We will return to this in more detail in Chap-
ter 9, see (9.15) in the case r = d . A similar formula can be given for r < d .

Example 8.8. For r = 1 we have

p j ,0(x) =
x j ,1 −x

x j ,1 −x j ,0
, p j ,1(x) =

x −x j ,0

x j ,1 −x j ,0

and (8.15) takes the form

Pd ,1 f =
n∑

j=1

[
x j ,1 −τ∗j

x j ,1 −x j ,0
f (x j ,0)+

τ∗j −x j ,0

x j ,1 −x j ,0
f (x j ,1)

]
B j ,d . (8.18)

This quasi-interpolant reproduces straight lines for any choice of τ j ≤ x j ,0 < x j ,1 ≤ τ j+d+1. If we choose x j ,0 = τ∗j
the method simplifies to

P̃d ,1 f =
n∑

j=1
f (τ∗j)B j ,d . (8.19)

This is again the Variation diminishing method of Schoenberg.

8.7 Exercises

8.1 In this exercise we assume that the points (xi ,k) and the spline space Sd ,τ are as in
Theorem 8.7.

a) Show that for r = d = 2

P2,2 f =
n∑

j=1

[(τ j+1 −x j ,1)(τ j+2 −x j ,2)+ (τ j+2 −x j ,1)(τ j+1 −x j ,2)

2(x j ,0 −x j ,1)(x j ,0 −x j ,2)
f (x j ,0)

+ (τ j+1 −x j ,0)(τ j+2 −x j ,2)+ (τ j+2 −x j ,0)(τ j+1 −x j ,2)

2(x j ,1 −x j ,0)(x j ,1 −x j ,2)
f (x j ,1)

+ (τ j+1 −x j ,0)(τ j+2 −x j ,1)+ (τ j+2 −x j ,0)(τ j+1 −x j ,1)

2(x j ,2 −x j ,0)(x j ,2 −x j ,1)
f (x j ,2)

]
B j ,2

(8.20)

b) Show that (8.20) reduces to the operator (9.6) for a suitable choice of (x j ,k)2
k=0.

8.7. EXERCISES 177

8.2 Derive the following operators Qd ,l and show that they are exact forπr for the indicated
r . Again we the points (x j ,k) and the spline space Sd ,τ are is in Theorem 8.7. Which of
the operators reproduce the whole spline space?

a) Qd ,0 f =∑n
j=1 f (x j)B j ,d , (r = 0).

b) Qd ,1 f =∑n
j=1

[
f (x j)+ (τ j −x j)D f (x j)

]
B j ,d , (r = 1).

c) Q̃d ,1 f =∑n
j=1 f (τ∗j)B j ,d , (r = 1).

d)

Q2,2 f =
n∑

j=1

[
f (x j)− (x j −τ j+3/2)D f (x j)

+ 1

2
(x j −τ j+1)(x j −τ j+2)D2 f (x j)

]
B j ,2, (r=2).

e) Q̃2,2 f =∑n
j=1

[
f (τ j+3/2)− 1

2 (τ j+2 −τ j+1)2D2 f (τ j+3/2)
]
B j ,2, (r = 2).

f)

Q3,3 f =
n∑

j=1

[
f (τ j+2)+ 1

3
(τ j+3 −2τ j+2 +τ j+1)D f (τ j+2)

− 1

6
(τ j+3 −τ j+2)(τ j+2 −τ j+1)D2 f (τ j+2)

]
B j ,3, (r = 3).

178 CHAPTER 8. QUASI-INTERPOLATION METHODS

Chapter 9
Approximation theory and stability

Polynomials of degree d have d +1 degrees of freedom, namely the d +1 coefficients relative
to some polynomial basis. It turns out that each of these degrees of freedom can be utilised
to gain approximation power so that the possible rate of approximation by polynomials of
degree d is hd+1, see Section 9.1. The meaning of this is that when a smooth function is
approximated by a polynomial of degree d on an interval of length h, the error is bounded by
C hd+1, where C is a constant that is independent of h. The exponent d +1 therefore controls
how fast the error tends to zero with h.

When several polynomials are linked smoothly together to form a spline, each polyno-
mial piece has d +1 coefficients, but some of these are tied up in satisfying the smoothness
conditions. It therefore comes as a nice surprise that the approximation power of splines of
degree d is the same as for polynomials, namely hd+1, where h is now the largest distance be-
tween two adjacent knots. In passing from polynomials to splines we have therefore gained
flexibility without sacrificing approximation power. We prove this in Section 9.2, by making
use of some of the simple quasi-interpolants that we constructed in Chapter 8; it turns out
that these produce spline approximations with the required accuracy.

The quasi-interpolants also allow us to establish two important properties of B-splines.
The first is that B-splines form a stable basis for splines, see Section 9.3. This means that
small perturbations of the B-spline coefficients can only lead to small perturbations in the
spline, which is of fundamental importance for numerical computations. An important con-
sequence of the stability of the B-spline basis is that the control polygon of a spline converges
to the spline as the knot spacing tends to zero; this is proved in Section 9.4.

9.1 The distance to polynomials

We start by determining how well a given real valued function f defined on an interval [a,b]
can be approximated by a polynomial of degree d . We measure the error in the approximation
with the uniform norm which for a bounded function g defined on an interval [a,b] is defined
by

‖g‖∞,[a,b] = sup
a≤x≤b

|g (x)|.

179

180 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Whenever we have an approximation p to f we can use the norm and measure the error by
‖ f −p‖∞,[a,b]. There are many possible approximations to f by polynomials of degree d , and
the approximation that makes the error as small as possible is of course of special interest.
This approximation is referred to as the best approximation and the corresponding error is
referred to as the distance from f to the spaceπd of polynomials of degree ≤ d . This is defined
formally as

dist∞,[a,b](f ,πd) = inf
p∈πd

‖ f −p‖∞,[a,b].

In order to bound this approximation error, we have to place some restrictions on the func-
tions that we approximate, and we will only consider functions with piecewise continuous
derivatives. Such functions lie in a space that we denote Ck

∆[a,b] for some integer k ≥ 0. A
function f lies in this space if it has k − 1 continuous derivatives on the interval [a,b], and
the kth derivative Dk f is continuous everywhere except for a finite number of points in the
interior (a,b), given by ∆ = (z j). At the points of discontinuity ∆ the limits from the left and
right, given by Dk f (z j+) and Dk f (z j−), should exist so all the jumps are finite. If there are
no continuous derivatives we write C∆[a,b] = C0

∆[a,b]. Note that we will often refer to these
spaces without stating explicitly what the singularities∆ are.

It is quite simple to give an upper bound for the distance of f to polynomials of degree d
by choosing a particular approximation, namely Taylor expansion.

Theorem 9.1. Given a polynomial degree d and a function f in Cd+1
∆ [a,b], then

dist∞,[a,b](f ,πd) ≤Cd hd+1‖Dd+1 f ‖∞,[a,b],

where h = b −a and the constant Cd only depends on d ,

Cd = 1

2d+1(d +1)!
.

Proof. Consider the truncated Taylor series of f at the midpoint m = (a +b)/2 of [a,b],

Td f (x) =
d∑

k=0

(x −m)k

k !
Dk f (m), for x ∈ [a,b].

Since Td f is a polynomial of degree d we clearly have

dist∞,[a,b](f ,πd) ≤ ‖ f −Td f ‖∞,[a,b]. (9.1)

The error is given by the integral form of the remainder in the Taylor expansion,

f (x)−Td f (x) = 1

d !

∫ x

m
(x − y)d Dd+1 f (y)d y,

which is valid for any x ∈ [a,b]. If we restrict x to the interval [m,b] we obtain

| f (x)−Td f (x)| ≤ ‖Dd+1 f ‖∞,[a,b]
1

d !

∫ x

m
(x − y)d d y.

9.2. THE DISTANCE TO SPLINES 181

The integral is given by

1

d !

∫ x

m
(x − y)d d y = 1

(d +1)!
(x −m)d+1 ≤ 1

(d +1)!

(h

2

)d+1
,

so for x ≥ m we have

| f (x)−Td f (x)| ≤ 1

2d+1(d +1)!
hd+1‖Dd+1 f ‖∞,[a,b].

By symmetry this estimate must also hold for x ≤ m. Combining the estimate with (9.1) com-
pletes the proof.

It is in fact possible to compute the best possible constant Cd . It turns out that for each
f ∈Cd+1[a,b] there is a point ξ ∈ [a,b] such that

dist∞,[a,b](f ,πd) = 2

4d+1(d +1)!
hd+1|Dd+1 f (ξ)|

Applying this formula to the function f (x) = xd+1 we see that the exponent d +1 in hd+1 is
best possible.

9.2 The distance to splines

Just as we defined the distance from a function f to the space of polynomials of degree d we
can define the distance from f to a spline space. Our aim is to show that on one knot inter-
val, the distance from f to a spline space of degree d is essentially the same as the distance
from f to the space of polynomials of degree d on a slightly larger interval, see Theorem 9.2
and Corollary 9.12. Our strategy is to consider the cases d = 0, 1 and 2 separately and then
generalise to degree d . The main ingredient in the proof is to construct a simple but good
approximation method that we can use in the same way that Taylor expansion was used in
the polynomial case above. Some of the quasi-interpolants that we constructed in Chapter 8
will do this job very nicely.

We consider a spline space Sd ,τ where d is a nonnegative integer and τ = (τi)n+d+1
i=1 is a

d +1 regular knot vector and set

a = τ1, b = τn+d+1, h j = τ j+1 −τ j , h = max
1≤ j≤n

h j .

Given a function f we consider the distance from f to Sd ,τ defined by

dist∞,[a,b](f ,Sd ,τ) = inf
g∈Sd ,τ

‖ f − g‖∞,[a,b].

We want to show the following.

Theorem 9.2. Let the polynomial degree d and the function f in Cd+1
∆ [a,b] be given. The

distance between f and the spline space Sd ,τ is bounded by

dist∞,[a,b](f ,Sd ,τ) ≤ Dd hd+1‖Dd+1 f ‖∞,[a,b], (9.2)

where the constant Dd depends on d , but not on f or τ.

182 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

We will prove this theorem by constructing a spline Pd f such that

| f (x)−Pd f (x)| ≤ Dd hd+1‖Dd+1 f ‖∞,[a,b], x ∈ [a,b] (9.3)

for a constant Dd that depends only on d . The approximation Pd f will be a quasi-interpolant
on the form

Pd f =
n∑

i=1
λi (f)Bi ,d

whereλi is a rule for computing the i th B-spline coefficient. We will restrict ourselves to rules
λi like

λi (f) =
d∑

k=0
wi ,k f (xi ,k)

where the points (xi ,k)d
k=0 all lie in one knot interval and (wi ,k)d

k=0 are suitable coefficients.

9.2.1 The constant and linear cases

We first prove Theorem 9.2 in the simplest cases d = 0 and d = 1. For d = 0 the knots form a
partition a = τ1 < ·· · < τn+1 = b of [a,b] and the B-spline Bi ,0 is the characteristic function of
the interval [τi ,τi+1) for i = 1, . . . , n −1, while Bn,0 is the characteristic function of the closed
interval [τn ,τn+1]. We consider the step function

g (x) = P0 f (x) =
n∑

i=1
f (τi+1/2)Bi ,0(x), (9.4)

where τi+1/2 = (τi +τi+1)/2. Fix x ∈ [a,b] and let µ be an integer such that τµ ≤ x < τµ+1. We
then have

f (x)−P0 f (x) = f (x)− f (τµ+1/2) =
∫ x

τµ+1/2

D f (y)d y

so

| f (x)−P0 f (x)| ≤ |x −τµ+1/2| ‖D f ‖∞,[τµ,τµ+1] ≤ h

2
‖D f ‖∞,[a,b].

In this way we obtain (9.2) with D0 = 1/2.
In the linear case d = 1 we define P1 f to be the piecewise linear interpolant to f on τ

defined by

g = P1 f =
n∑

i=1
f (τi+1)Bi ,1. (9.5)

Proposition 5.2 gives an estimate of the error in linear interpolation and by applying this re-
sult on each interval we obtain

‖ f −P1 f ‖∞,[a,b] ≤
h2

8
‖D2 f ‖∞,[a,b]

which is (9.2) with D1 = 1/8.

9.2. THE DISTANCE TO SPLINES 183

9.2.2 The quadratic case

The quadratic case d = 2 is more involved. We shall approximate f by the quasi-interpolant
P2 f that we constructed in Section 8.2.2 and then estimate the error. The relevant properties
of P2 are summarised in the following lemma.

Lemma 9.3. Suppose τ= (τi)n+3
i=1 is a knot vector with τi+3 > τi for i = 1, . . . ,n and set τi+3/2 =

(τi+1 +τi+2)/2. The operator

P2 f =
n∑

i=1
λi (f)Bi ,2,τ with λi (f) =−1

2
f (τi+1)+2 f (τi+3/2)− 1

2
f (τi+2) (9.6)

is linear and satisfies P2 f = f for all f ∈S2,τ.

Note that since the knot vector is 3-regular we have λ1(f) = f (τ2) and λn(f) = f (τn+1).
We also note that since P2 reproduces all splines in Sd ,τ it certainly reproduces all quadratic
polynomial. This fact that will be useful in the proof of Lemma 9.6.

Our aim is to show that (9.3) holds for d = 2 and we are going to do this by establishing a
sequence of lemmas. The first lemma shows that λi (f) can become at most 3 times as large
as f , irrespective of what the knot vector is.

Lemma 9.4. Let P2(f) be as in (9.6). Then

|λi (f)| ≤ 3‖ f ‖∞,[τi+1,τi+2], for i = 1, . . . , n. (9.7)

Proof. Fix an integer i . Then

|λi (f)| =
∣∣∣−1

2
f (τi+1)+2 f (τi+3/2)− 1

2
f (τi+2)

∣∣∣≤ (1

2
+2+ 1

2

)
‖ f ‖∞,[τi+1,τi+2]

from which the result follows.

Since the B-spline coefficients of P2 f are bounded it is easy to see that the spline P2 f is
also bounded by the same constant.

Lemma 9.5. Select some interval [τµ,τµ+1) of [τ3,τn+1). On this interval the spline P2 f is
bounded by

‖P2 f ‖∞,[τµ,τµ+1] ≤ 3‖ f ‖∞,[τµ−1,τµ+2]. (9.8)

Proof. Fix x ∈ [τµ,τµ+1]. Since the B-splines are nonnegative and form a partition of unity
we have

|P2 f (x)| =
∣∣∣ µ∑
i=µ−2

λi (f)Bi ,2,τ(x)
∣∣∣≤ max

µ−2≤i≤µ
|λi (f)|

≤ 3 max
µ−2≤i≤µ

‖ f ‖∞,[τi+1,τi+2] = 3‖ f ‖∞,[τµ−1,τµ+2],

where we used Lemma 9.4. This completes the proof.

The following lemma shows that on one knot interval the spline P2 f approximates f al-
most as well as the best quadratic polynomial over a slightly larger interval. The proof de-
pends on a standard trick that we will also use in the general case.

184 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Lemma 9.6. Let [τµ,τµ+1) be a subinterval of [τ3,τn+1). On this interval the error f −P2 f is
bounded by

‖ f −P2 f ‖∞,[τµ,τµ+1] ≤ 4dist∞,[τµ−1,τµ+2](f ,π2). (9.9)

Proof. Let p ∈ π2 be any quadratic polynomial. Since P2p = p and P2 is a linear operator,
application of (9.8) to f −p yields

| f (x)− (P2 f)(x)| = | f (x)−p(x)− (
(P2 f)(x)−p(x)

)|
≤ | f (x)−p(x)|+ |P2(f −p)(x)|
≤ (1+3)‖ f −p‖∞,[τµ−1,τµ+2].

(9.10)

Since p is arbitrary we obtain (9.9).

Proof of Theorem 9.2 for d = 2. Theorem 9.1 with d = 2 states that

dist∞,[a,b](f ,π2) ≤C2h3‖D3 f ‖∞,[a,b],

where h = b−a and C2 = 1/(23 3!). Specialising this estimate to the interval [a,b] = [τµ−1,τµ+2]
and combining with (9.9) we obtain (9.3) and hence (9.2) with D2 = 1/12.

9.2.3 The general case

The general case is analogous to the quadratic case, but the details are more involved. The
crucial part is to find a sufficiently good local approximation operator. The operator P2 is a
quasi interpolant that is based on local interpolation with quadratic polynomials at the three
points xi ,k = τi+1 +k(τi+2 −τi+1)/2 for k = 0, 1, 2. Those points are located symmetrically in
the middle subinterval of the support of the B-spline Bi ,2.

We will follow the same strategy for general degree. The resulting quasi-interpolant will
be a special case of the one given in Theorem 8.7. The challenge is to choose the local in-
terpolation points in such a way that the B-spline coefficients of the approximation can be
bounded independently of the knots, as in Lemma 9.4. The key is to let all the d +1 points be
uniformly distributed in the largest subinterval [ai ,bi] = [τµ,τµ+1] of [τi+1,τi+d],

xi ,k = ai + k

d
(bi −ai), for k = 0, 1, . . . , d . (9.11)

Given f ∈C∆[a,b] we define Pd f ∈Sd ,τ by

Pd f (x) =
n∑

i=1
λi (f)Bi ,d (x), where λi (f) =

d∑
k=0

wi ,k f (xi ,k). (9.12)

In this situation Theorem 8.7 specialises to the following.

Lemma 9.7. Suppose that the functionals λi in (9.12) are given by λi (f) = f (τi+1) if τi+d =
τi+1, while if τi+d > τi+1 the coefficients of λi (f) are given by

wi ,k = γi (pi ,k), for k = 0, 1, . . . , d , (9.13)

9.2. THE DISTANCE TO SPLINES 185

where γi (pi ,k) is the i th B-spline coefficient of the polynomial

pi ,k (x) =
d∏

j=0
j,k

x −xi , j

xi ,k −xi , j
. (9.14)

Then the operator Pd in (9.12) satisfies Pd f = f for all f ∈Sd ,τ.

We really only need reproduction of polynomials of degree d , but since all the interpola-
tion points lie in one knot interval we automatically get reproduction of all of Sd ,τ.

The first challenge is to find a formula for the B-spline coefficients of pi ,k . Blossoming
makes this easy.

Lemma 9.8. Suppose the spline spaceSd ,τ is given together with the numbers v1, . . . , vd . The
i th B-spline coefficient of the polynomial p(x) = (x − v1) . . . (x − vd) can be written

γi (p) = 1

d !

∑
(j1,..., jd)∈Πd

(τi+ j1 − v1) · · · (τi+ jd − vd), (9.15)

whereΠd is the set of all permutations of the integers {1,2, . . . ,d}.

Proof. By Theorem 4.16 we have

γi (p) =B[p](τi+1, . . . ,τi+d),

where B[p] is the blossom of p. It therefore suffices to verify that the expression (9.15) satis-
fies the three properties of the blossom. This is simple and is left to the reader.

Let us consider the special case d = 2 as an example. The set of all permutations of {1,2}
areΠ2 = {(1,2), (2,1)} and therefore

γi
(
(x − v1)(x − v2)

)= 1

2

(
(τi+1 − v1)(τi+2 − v2)+ (τi+2 − v1)(τi+1 − v2)

)
.

The next and most difficult step is to obtain a bound for λi (f).

Theorem 9.9. Let Pd (f) =∑n
i=1λi (f)Bi ,d be the operator in Lemma 9.7. Then

|λi (f)| ≤ Kd‖ f ‖∞,[τi+1,τi+d], i = 1, . . . ,n, (9.16)

where

Kd = 2d

d !

(
d(d −1)

)d (9.17)

depends only on d .

Proof. Fix an integer i . We may as well assume that τi+1 < τi+d since otherwise the result is
obvious. From Lemma 9.8 we have

wi ,k = ∑
(j1,..., jd)∈Πd

d∏
r=1

(τi+ jr − vr

xi ,k − vr

)
/d !, (9.18)

186 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

where (vr)d
r=1 = (xi ,0, . . . , xi ,k−1, xi ,k+1, . . . , xi ,d), and Πd denotes the set of all permutations of

the integers {1,2, . . . ,d}. Since the numbers τi+ jr and vr belongs to the interval [τi+1,τi+d] for
all r we have the inequality

d∏
r=1

(τi+ jr − vr) ≤ (τi+d −τi+1)d . (9.19)

We also note that xi ,k −vr = (k−q)(bi −ai)/d for some q in the range 1 ≤ q ≤ d but with q , k.
Taking the product over all r we therefore obtain

d∏
r=1

|xi ,k − vr | =
d∏

q=0
q,k

|k −q|
d

(bi −ai)

= k !(d −k)!

(
bi −ai

d

)d

≥ k !(d −k)!

(
τi+d −τi+1

d(d −1)

)d

(9.20)

for all values of k and r since [ai ,bi] is the largest subinterval of [τi+1,τi+d]. The sum in (9.18)
contains d ! terms which means that

d∑
k=0

|wi ,k | ≤
[d(d −1)]d

d !

d∑
k=0

(
d

k

)
= 2d

d !
[d(d −1)]d = Kd

and therefore

|λi (f)| ≤ ‖ f ‖∞,[τi+1,τi+d]

d∑
k=0

|wi ,k | ≤ Kd‖ f ‖∞,[τi+1,τi+d] (9.21)

which is the required inequality.

Theorem 9.9 is the central ingredient in the proof of Theorem 9.2, but it has many other
consequences as well, some of which we will consider later in this chapter. In fact Theo-
rem 9.9 gives one of the key properties of B-splines. If f =∑n

i=1 ci Bi ,d ,τ is a spline in Sd ,τ we
know that λi (f) = ci . The inequality (9.16) therefore states that a B-spline coefficient is at
most Kd times larger than the spline it represents, where the constant Kd is independent of
the knots. A similar conclusion holds for d ≤ 2, see Lemma 9.4 and the definition of P0 and
P1 in (9.4) and (9.5). For later reference we record this in a corollary.

Corollary 9.10. For any spline f = ∑n
i=1 ci Bi ,d in Sd ,τ the size of the B-spline coefficients is

bounded by
|ci | ≤ Kd‖ f ‖∞,[τi+1,τi+d],

where the the constant Kd depends only on d .

From the bound on λi (f) we easily obtain a similar bound for the norm of Pd f .

Theorem 9.11. Let f be a function in the space C∆[a,b]. On any subinterval [τµ,τµ+1) of
[τd+1,τn+1) the approximation Pd f is bounded by

‖Pd f ‖∞,[τµ,τµ+1] ≤ Kd‖ f ‖∞,[τµ−d+1,τµ+d], (9.22)

where Kd is the constant in Theorem 9.9.

9.2. THE DISTANCE TO SPLINES 187

Proof. Fix an x in some interval [τµ,τµ+1). Since the B-splines are nonnegative and form a
partition of unity we have by Theorem 9.9

|Pd f (x)| =
∣∣∣ µ∑
i=µ−d

λi (f)Bi ,d ,τ(x)
∣∣∣≤ max

µ−d≤i≤µ
|λi (f)|

≤ Kd max
µ−d≤i≤µ

‖ f ‖∞,[τi+1,τi+d] = Kd‖ f ‖∞,[τµ−d+1,τµ+d]

This completes the proof.

The following corollary shows that Pd f locally approximates f essentially as well as the
best polynomial approximation of f of degree d .

Corollary 9.12. On any subinterval [τµ,τµ+1) the error f −Pd f is bounded by

‖ f −Pd f ‖∞,[τµ,τµ+1] ≤ (1+Kd)dist∞,[τµ−d+1,τµ+d](f ,πd), (9.23)

where Kd is the constant in Theorem 9.9

Proof. We argue exactly as in the quadratic case. Let p ∈ πd be any polynomial in πd . Since
Pd p = p and Pd is a linear operator we have

| f (x)− (Pd f)(x)| = | f (x)−p(x)− (
(Pd f)(x)−p(x)

)|
≤ | f (x)−p(x)|+ |Pd (f −p)(x)|
≤ (1+Kd)‖ f −p‖∞,[τµ−d+1,τµ+d].

Since p is arbitrary we obtain (9.23).

Proof of Theorem 9.2 for general d . By Theorem 9.1 we have for any interval [a,b]

dist∞,[a,b](f ,πd) ≤Cd hd+1‖Dd+1 f ‖∞,[a,b],

where h = b−a and Cd only depends on d . Combining this estimate on [a,b] = [τµ−d+1,τµ+d]
with (9.23) we obtain (9.3) and hence (9.2) with Dd = (Kd +1)Cd .

We have accomplished our task of estimating the distance from a function inCd+1
∆ [a,b] to

an arbitrary spline spaceSd ,τ. However, there are several unanswered questions. Perhaps the
most obvious is whether the constant Kd is the best possible. A moment’s thought will make
you realise that it certainly is not. One reason is that we made use of some rather coarse
estimates in the proof of Theorem 9.9. Another reason is that we may obtain better estimates
by using a different approximation operator.

In fact, it is quite easy to find a better operator which is also a quasi-interpolant based on
local interpolation. Instead of choosing the local interpolation points uniformly in the largest
subinterval of [τi+1,τi+d], we simply choose the points uniformly in [τi+1,τi+d],

xi ,k = τi+1 + k

d
(τi+d −τi+1), for k = 0, 1, . . . , d .

188 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

It is easy to check that the bound (9.19) on the numerator still holds while the last estimate in
the bound on the denominator (9.20) is now unnecessary so we have

d∏
r=1

|xi ,k − vr | =
d∏

q=0
q,k

|k −q |
d

(τi+d −τi+1) = k !(d −k)!

d d
(τi+d −τi+1)d .

This gives a new constant

K̃d = 2d d d

d !
.

Note that the new approximation operator will not reproduce the whole spline space for d >
2. This improved constant can therefore not be used in Corollary 9.10.

The constant can be improved further by choosing the interpolation points to be the ex-
trema of the Chebyshev polynomial, adjusted to the interval [τi+1,τi+d].

9.3 Stability of the B-spline basis

In order to compute with polynomials or splines we need to choose a basis to represent the
functions. If a basis is to be suitable for computer manipulations it should be reasonably in-
sensitive to round-off errors. In particular, functions with ‘small’ function values should have
‘small’ coefficients and vice versa. A basis with this property is said to be well conditioned or
stable and the stability is measured by the condition number of the basis. In this section we
will study the condition number of the B-spline basis.

9.3.1 A general definition of stability

The stability of a basis can be defined quite generally. Instead of considering polynomials
we can consider a general linear vector space where we can measure the size of the elements
through a norm; this is called a normed linear space.

Definition 9.13. Let V be a normed linear space. A basis (φ j) for V is said to be stable with
respect to a vector norm ‖ ·‖ if there are small positive constants C1 and C2 such that

C−1
1 ‖(c j)‖ ≤

∥∥∥∑
j

c jφ j

∥∥∥≤C2‖(c j)‖, (9.24)

for all sets of coefficients c = (c j). Let C∗
1 and C∗

2 denote the smallest possible values of C1

and C2 such that (9.24) holds. The condition number of the basis is then defined to be κ =
κ((φi)i) =C∗

1 C∗
2 .

At the risk of confusion we have used the same symbol both for the norm in V and the
vector norm of the coefficients. In our case V will be some spline space Sd ,t and the basis
(φ j) will be the B-spline basis. The norms we will consider are the p-norms which are defined
by

‖ f ‖p = ‖ f ‖p,[a,b] =
(∫ b

a
| f (x)|p d x

)1/p

and ‖c‖p =
(∑

j
|c j |p

)1/p

9.3. STABILITY OF THE B-SPLINE BASIS 189

where p is a real number in the range 1 ≤ p <∞. Here f is a function on the interval [a,b]
and c = (c j) is a real vector. For p =∞ the norms are defined by

‖ f ‖∞ = ‖ f ‖∞,[a,b] = max
a≤x≤b

| f (x)| and ‖c‖∞ = ‖(c j)‖∞ = max
j

|c j |,

In practice, the most important norms are the 1-, 2- and ∞-norms.
In Definition 9.13 we require the constants C1 and C2 to be ‘small’, but how small is ‘small’?

There is no unique answer to this question, but it is typically required that C1 and C2 should
be independent of the dimension n of V, or at least grow very slowly with n. Note that we
always have κ≥ 1, and κ= 1 if and only if we have equality in both inequalities in (9.24).

A stable basis is desirable for many reasons, and the constant κ=C1C2 crops up in many
different contexts. The condition number κ does in fact act as a sort of derivative of the basis
and gives a measure of how much an error in the coefficients is magnified in a function value.

Proposition 9.14. Suppose (φ j) is a stable basis forV. If f =∑
j c jφ j and g =∑

j b jφ j are two
elements in Vwith f , 0, then

‖ f − g‖
‖ f ‖ ≤ κ‖c −b‖

‖c‖ , (9.25)

where κ is the condition number of the basis as in Definition 9.13.

Proof. From (9.24), we have the two inequalities ‖ f −g‖ ≤C2‖(c j−b j)‖ and 1/‖ f ‖ ≤C1/‖(c j)‖.
Multiplying these together gives the result.

If we think of g as an approximation to f then (9.25) says that the relative error in f −g is
bounded by at most κ times the relative error in the coefficients. If κ is small a small relative
error in the coefficients gives a small relative error in the function values. This is important in
floating point calculations on a computer. A function is usually represented by its coefficients
relative to some basis. Normally, the coefficients are real numbers that must be represented
inexactly as floating point numbers in the computer. This round-off error means that the
computed spline, here g , will differ from the exact f . Proposition 9.14 shows that this is not
so serious if the perturbed coefficients of g are close to those of f and the basis is stable.

Proposition 9.14 also provides some information as to what are acceptable values of C∗
1

and C∗
2 . If for example κ = C∗

1 C∗
2 = 100 we risk losing 2 decimal places in evaluation of a

function; exactly how much accuracy one can afford to lose will of course vary.
One may wonder whether there are any unstable polynomial bases. It turns out that the

power basis 1, x, x2, . . . , on the interval [0,1] is unstable even for quite low degrees. Already
for degree 10, one risks losing as much as 4 or 5 decimal digits in the process of computing
the value of a polynomial on the interval [0,1] relative to this basis, and other operations such
as numerical root finding is even more sensitive.

9.3.2 Stability of the B-spline basis, p =∞
Since splines and B-splines are defined via the knot vector, it is quite conceivable that the
condition number of the B-spline basis could become arbitrarily large for certain knot con-
figurations, for example in the limit when two knots merge into one. One of the key features
of splines is that this cannot happen.

190 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Theorem 9.15. There is a constant Kd which depends only on the polynomial degree d , such
that for all spline spaces Sd ,t and all splines f = ∑n

i=1 ci Bi ,d ∈Sd ,t with B-spline coefficients
c = (ci)n

i=1, the two inequalities

K −1
d ‖c‖∞ ≤ ‖ f ‖∞,[t1,tn+d] ≤ ‖c‖∞ (9.26)

hold.

Proof. We have already proved variants of the second inequality several times; it follows
since B-splines are nonnegative and sum to (at most) 1.

The first inequality is a consequence of Corollary 9.10. The value of the constant Kd is
K0 = K1 = 1, K2 = 3 while it is given by (9.17) for d > 2.

The condition number of the B-spline basis on the knot vector τ with respect to the ∞-
norm is usually denoted κd ,∞,τ. By taking the supremum over all knot vectors we obtain the
knot independent condition number κd ,∞,

κd ,∞ = sup
τ
κd ,∞,τ.

Theorem 9.15 shows that κd ,∞ is bounded above by Kd .
Although Kd is independent of the knots, it grows quite quickly with d and seems to in-

dicate that the B-spline basis may well be unstable for all but small values of d . However,
by using different techniques it is possible to find better estimates for the condition number,
and it is indeed known that the B-spline basis is very stable, at least for moderate values of
d . It is simple to determine the condition number for d ≤ 2; we have κ0,∞ = κ1,∞ = 1 and
κ2,∞ = 3. For d ≥ 3 it has recently been shown that κd ,∞ = O(2d). The first few values are
known to be approximately κ3,∞ ≈ 5.5680 and κ4,∞ ≈ 12.088.

9.3.3 Stability of the B-spline basis, p <∞
In this section we are going to generalise Theorem 9.15 to any p-norm. This is useful in some
contexts, especially the case p = 2 which is closely related to least squares approximation.
The proof uses standard tools from analysis, but may seem technical for the reader who is
not familiar with the techniques.

Throughout this section p is a fixed real number in the interval [1,∞) and q is a related
number defined by the identity 1/p +1/q = 1. A classical inequality for functions that will be
useful is the Hölder inequality ∫ b

a
| f (x)g (x)|d x ≤ ‖ f ‖p‖g‖q .

We will also need the Hölder inequality for vectors which is given by

n∑
i=1

|bi ci | ≤ ‖(bi)n
i=1‖p‖(ci)n

i=1‖q .

9.3. STABILITY OF THE B-SPLINE BASIS 191

In addition to the Hölder inequalities we need a fundamental inequality for polynomials.
This states that for any polynomial g ∈πd and any interval [a,b] we have

|g (x)| ≤ C

b −a

∫ b

a
|g (z)|d z, for any x ∈ [a,b], (9.27)

where the constant C only depends on the degree d . This is a consequence of the fact that all
norms on a finite dimensional vector space are equivalent.

In order to generalise the stability result (9.26) to arbitrary p-norms we need to introduce
a different scaling of the B-splines. We define the p-norm B-splines to be identically zero if
τi+d+1 = τi and

B p
i ,d ,t =

(d +1

τi+d+1 −τi

)1/p
Bi ,d ,t , (9.28)

otherwise. We can then state the p-norm stability result for B-splines.

Theorem 9.16. There is a constant K that depends only on the polynomial degree d , such
that for all 1 ≤ p ≤∞, all spline spacesSd ,t and all splines f =∑n

i=1 ci B p
i ,d ∈Sd ,t with p-norm

B-spline coefficients c = (ci)n
i=1 the inequalities

K −1‖c‖p ≤ ‖ f ‖p,[τ1,τm+d] ≤ ‖c‖p (9.29)

hold.

Proof. We first prove the upper inequality. Let γi = (d+1)/(τi+d+1−τi) denote the pth power
of the scaling factor in (9.28) for i = 1, . . . , n and set [a,b] = [τ1,τn+d+1]. Remembering the
definition of B p

i ,d ,τ and the identity 1/p+1/q = 1 and applying the Hölder inequality for sums
we obtain ∑

i
|ci B p

i ,d | =
∑

i
|ciγ

1/p
i B 1/p

i ,d |B 1/q
i ,d ≤

(∑
i
|ci |pγi Bi ,d

)1/p(∑
i

Bi ,d

)1/q
.

Raising both sides of this inequality to the pth power and recalling that B-splines sum to (at
most) 1 we obtain the inequality

|∑
i

ci B p
i ,d (x)|p ≤∑

i
|ci |pγi Bi ,d (x) for any x ∈R. (9.30)

It can be shown that the integral of a B-spline is given by∫ τi+d+1

τi

Bi ,d (x)d x = τi+d+1 −τi

d +1
= 1

γi
.

Making use of this and (9.30) we find

‖ f ‖p
p,[a,b] =

∫ b

a

∣∣∣∑
i

ci B p
i ,d (x)

∣∣∣p
d x ≤∑

i
|ci |pγi

∫ b

a
Bi ,d (x)d x =∑

i
|ci |p .

Taking pth roots on both sides proves the upper inequality.

192 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Consider now the lower inequality. The spline f is given as a linear combination of p-
norm B-splines, but can very simply be written as a linear combination of the usual B-splines,

f =∑
i

ci B p
i ,d =∑

i
ciγ

1/p
i Bi ,d .

From the first inequality in (9.26) we then obtain for each i(d +1

τi+d+1 −τi

)1/p
|ci | ≤ Kd max

τi+1≤x≤τi+d
| f (x)|,

where the constant Kd only depends on d . Extending the maximum to a larger subinterval
and applying the inequality (9.27) we find

|ci | ≤ Kd (d +1)−1/p(
τi+d+1 −τi

)1/p | max
τi≤x≤τi+d+1

| f (x)|

≤C Kd (d +1)−1/p(
τi+d+1 −τi

)−1+1/p
∫ τi+d+1

τi

| f (y)|d y.

Next, we apply the Hölder inequality for integrals to the product
∫ τi+d+1
τi

| f (y)|1d y and obtain

|ci | ≤C Kd (d +1)−1/p
(∫ τi+d+1

τi

| f (y)|p d y
)1/p

.

Raising both sides to the pth power and summing over i we obtain∑
i
|ci |p ≤C p K p

d (d +1)−1
∑

i

∫ τi+d+1

τi

| f (y)|p d y ≤C p K p
d ‖ f ‖p

p,[a,b].

Taking pth roots we obtain the lower inequality in (9.29) with K =C Kd .

9.4 Convergence of the control polygon for spline functions

Recall that for a spline function f (x) =∑
i ci Bi ,d ,τ the control polygon is the piecewise linear

interpolant to the points (τ∗i ,ci), where τ∗i = (τi+1+·· ·+τi+d)/d is the i th knot average. In this
section we are going to prove that the control polygon converges to the spline it represents
when the knot spacing approaches zero. The main work is done in Lemma 9.17 which shows
that a corner of the control polygon is close to the spline since ci is close to f (τ∗i), at least
when the spacing in the knot vector is small. The proof of the lemma makes use of the fact
that the size of a B-spline coefficient ci can be bounded in terms of the size of the spline on the
interval [τi+1,τi+d+1], which we proved in Theorem 9.9 and Lemma 9.4 (and Section 9.2.1),

|ci | ≤ Kd‖ f ‖[τi+1,τi+d]. (9.31)

The norm used here and throughout this section is the ∞-norm.

Lemma 9.17. Let f be a spline in Sd ,τ with coefficients (ci). Then

|ci − f (τ∗i)| ≤ K (τi+d −τi+1)2‖D2 f ‖[τi+1,τi+d], (9.32)

where τ∗i = (τi+1+·· ·+τi+d)/d , the operator D2 denotes (one-sided) differentiation (from the
right), and the constant K only depends on d .

9.4. CONVERGENCE OF THE CONTROL POLYGON FOR SPLINE FUNCTIONS 193

Proof. Let i be fixed. If τi+1 = τi+d then we know from property 5 in Lemma 2.3 that Bi ,d (τ∗i) =
1 so ci = f (τ∗i) and there is nothing to prove. Assume for the rest of the proof that the interval
J = (τi+1,τi+d) is nonempty. Since J contains at most d − 2 knots, it follows from the con-
tinuity property of B-splines that f has at least two continuous derivatives in J . Let x0 be a
number in the interval J and consider the spline

g (x) = f (x)− f (x0)− (x −x0)D f (x0)

which is the error in a first order Taylor expansion of f at x0. This spline lies in Sd ,τ and can
therefore be written as g =∑

i bi Bi ,d ,τ for suitable coefficients (bi). More specifically we have

bi = ci − f (x0)− (τ∗i −x0)D f (x0).

Choosing x0 = τ∗i we have bi = ci − f (τ∗i) and according to the inequality (9.31) and the error
term in first order Taylor expansion we find

|ci − f (τ∗i)| = |bi | ≤ Kd‖g‖J ≤ Kd (τi+d −τi+1)2

2
‖D2 f ‖J .

The inequality (9.32) therefore holds with K = Kd /2 and the proof is complete.

Lemma 9.17 shows that the corners of the control polygon converge to the spline as the
knot spacing goes to zero. This partly explains why the control polygon approaches the spline
when we insert knots. What remains is to show that the control polygon as a whole also
converges to the spline.

Theorem 9.18. Let f =∑n
i=1 ci Bi ,d be a spline in Sd ,τ, and let Γd ,τ(f) be its control polygon.

Then

‖Γd ,τ(f)− f ‖[τ∗1 ,τ∗n] ≤ K h2‖D2 f ‖[τ1,τn+d+1], (9.33)

where h = maxi {τi+1 −τi } and the constant K only depends on d .

Proof. As usual, we assume that τ is d +1-regular (if not we extend it with d +1-tuple knots
at either ends and add zero coefficients). Suppose that x is in [τ∗1 ,τ∗m] and let j be such
that τ∗j ≤ x < τ∗j+1. Observe that since the interval J∗ = (τ∗j ,τ∗j+1) is nonempty we have
τ j+1 < τ j+d+1 and J∗ contains at most d −1 knots. From the continuity property of B-splines
we conclude that f has a continuous derivative and the second derivative of f is at least
piecewise continuous in J∗. Let

g (x) =
(τ∗j+1 −x) f (τ∗j)+ (x −τ∗j) f (τ∗j+1)

τ∗j+1 −τ∗j
be the linear interpolant to f on this interval. We will show that both Γ = Γd ,τ(f) and f are
close to g on J∗ and then deduce that Γ is close to f because of the triangle inequality

|Γ(x)− f (x)| ≤ |Γ(x)− g (x)|+ |g (x)− f (x)|. (9.34)

194 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Let us first consider the difference Γ− g . Note that

Γ(x)− g (x) =
(τ∗j+1 −x)(b j − f (τ∗j))+ (x −τ∗j)(b j+1 − f (τ∗j+1))

τ∗j+1 −τ∗j
for any x in J∗. We therefore have

|Γ(x)− g (x)| ≤ max
{
|b j − f (τ∗j)|, |b j+1 − f (τ∗j+1)|

}
,

for x ∈ J∗. From Lemma 9.17 we then conclude that

|Γ(x)− g (x)| ≤ K1h2‖D2 f ‖J , x ∈ J∗, (9.35)

where J = [τ1,τm+d+1] and K1 is a constant that only depends on d .
The second difference f (x)− g (x) in (9.34) is the error in linear interpolation to f at the

endpoints of J∗. For this process we have the standard error estimate

| f (x)− g (x)| ≤ 1

8
(τ∗j+1 −τ∗j)2‖D2 f ‖J∗ ≤ 1

8
h2‖D2 f ‖J , x ∈ J∗. (9.36)

If we now combine (9.35) and (9.36) as indicated in (9.34), we obtain the Theorem with con-
stant K = K1 +1/8.

Because of the factor h2 in Theorem 9.18 we say (somewhat loosely) that the control poly-
gon converges quadratically to the spline.

9.5 Exercises

9.1 In this exercise we will study the order of approximation by the Schoenberg Variation
Diminishing Spline Approximation of degree d ≥ 2. This approximation is given by

Vd f =
n∑

i=1
f (τ∗i)Bi ,d , with τ∗i = τi+1 +·· ·τi+d

d
.

Here Bi ,d is the i th B-spline of degree d on a d+1-regular knot vector τ= (τi)n+d+1
i=1 . We

assume that τi+d > τi for i = 2, . . . ,n. Moreover we define the quantities

a = τ1, b = τn+d+1, h = max
1≤i≤n

τi+1 −τi .

We want to show that Vd f is an O(h2) approximation to a sufficiently smooth f .

We first consider the more general spline approximation

Ṽd f =
n∑

i=1
λi (f)Bi ,d , with λi (f) = wi ,0 f (xi ,0)+wi ,1 f (xi ,1).

Here xi ,0 and xi ,1 are two distinct points in [τi ,τi+d] and wi ,0, wi ,1 are constants, i =
1, . . . ,n.

Before attempting to solve this exercise the reader might find it helpful to review Sec-
tion 9.2.2

9.5. EXERCISES 195

a) Suppose for i = 1, . . . ,n that wi ,0 and wi ,1 are such that

wi ,0 +wi ,1 = 1

xi ,0wi ,0 +xi ,1wi ,1 = τ∗i
Show that then Ṽd p = p for all p ∈ π1. (Hint: Consider the polynomials p(x) = 1
and p(x) = x.)

b) Show that if we set xi ,0 = τ∗i for all i then Ṽd f =Vd f for all f , regardless of how we
choose the value of xi ,1.

In the rest of this exercise we set λi (f) = f (τ∗i) for i = 1, . . . ,n, i.e. we consider Vd f .
We define the usual uniform norm on an interval [c,d] by

‖ f ‖[c,d] = sup
c≤x≤d

| f (x)|, f ∈C∆[c,d].

c) Show that for d +1 ≤ l ≤ n

‖Vd f ‖[τl ,τl+1] ≤ ‖ f ‖[τ∗l−d ,τ∗l], f ∈C∆[a,b].

d) Show that for f ∈C∆[τ∗l−d ,τ∗l] and d +1 ≤ l ≤ n

‖ f −Vd f ‖[τl ,τl+1] ≤ 2dist[τ∗l−d ,τ∗l](f ,π1).

e) Explain why the following holds for d +1 ≤ l ≤ n

dist[τ∗l−d ,τ∗l](f ,π1) ≤ (τ∗l −τ∗l−d)2

8
‖D2 f ‖[τ∗l−d ,τ∗l].

f) Show that the following O(h2) estimate holds

‖ f −Vd f ‖[a,b] ≤
d 2

4
h2‖D2 f ‖[a,b].

(Hint: Verify that τ∗l −τ∗l−d ≤ hd .)

9.2 In this exercise we want to perform a numerical simulation experiment to determine
the order of approximation by the quadratic spline approximations

V2 f =
n∑

i=1
f (τ∗i)Bi ,2, with τ∗i = τi+1 +τi+2

2
,

P2 f =
n∑

i=1

(− 1

2
f (τi+1)+2 f (τ∗i)− 1

2
f (τi+2)

)
Bi ,2.

We want to test the hypotheses f −V2 f =O(h2) and f −P2 f =O(h3) where h = maxi τi+1−
τi . We test these on the function f (x) = sin x on [0,π] for various values of h. Consider

196 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

for m ≥ 0 and nm = 2+2m the 3-regular knot vector τm = (τm
i)nm+3

i=1 on the interval [0,π]
with uniform spacing hm =π2−m . We define

V m
2 f =

n∑
i=1

f (τm
i+3/2)B m

i ,2, with τm
i = τm

i+1 +τm
i+2

2
,

P m
2 f =

n∑
i=1

(− 1

2
f (τm

i+1)+2 f (τm
i+3/2)− 1

2
f (τm

i+2)
)
B m

i ,2,

and B m
i ,2 is the i th quadratic B-spline on τm . As approximations to the norms ‖ f −

V m
2 f ‖[0,π] and ‖ f −P m

2 f ‖[0,π] we use

E m
V = max

0≤ j≤100
| f (jπ/100)−V m

2 f (jπ/100)|,

E m
P = max

0≤ j≤100
| f (jπ/100)−P m

2 f (jπ/100)|.

Write a computer program to compute numerically the values of E m
V and E m

P for m =
0,1,2,3,4,5, and the ratios E m

V /E m−1
V and E m

P /E m−1
P for 1 ≤ m ≤ 5. What can you deduce

about the approximation order of the two methods?

Make plots of V m
2 f , P m

2 f , f −V m
2 f , and f −P m

2 f for some values of m.

9.3 Suppose we have m ≥ 3 data points
(
xi , f (xi)

)m
i=1 sampled from a function f , where

the abscissas x = (xi)m
i=1 satisfy x1 < ·· · < xm . In this exercise we want to derive a local

quasi-interpolation scheme which only uses the data values at the xi ’s and which has
O(h3) order of accuracy if the y-values are sampled from a smooth function f . The
method requires m to be odd.

From x we form a 3-regular knot vector by using every second data point as a knot

τ= (τ j)n+3
j=1 = (x1, x1, x1, x3, x5, . . . , xm−2, xm , xm , xm), (9.37)

where n = (m+3)/2. In the quadratic spline spaceS2,τ we can then construct the spline

Q2 f =
n∑

j=1
λ j (f)B j ,2, (9.38)

where the B-spline coefficients λ j (f)n
j=1 are defined by the rule

λ j (f) = 1

2

(
−θ−1

j f (x2 j−3)+θ−1
j (1+θ j)2 f (x2 j−2)−θ j f (x2 j−1)

)
, (9.39)

for j = 1, . . . , n. Here θ1 = θn = 1 and

θ j =
x2 j−2 −x2 j−3

x2 j−1 −x2 j−2

for j = 2, . . . , n −1.

9.5. EXERCISES 197

a) Show that Q2 simplifies to P2 given by (9.6) when the data abscissas are uniformly
spaced.

b) Show that Q2p = p for all p ∈ π2 and that because of the multiple abscissas at the
ends we have λ1(f) = f (x1), λn(f) = f (xm), so only the original data are used to
define Q2 f . (Hint: Use the formula in Exercise 1.

c) Show that for j = 1, . . . ,n and f ∈C∆[x1, xm]

|λ j (f)| ≤ (2θ+1)‖ f ‖∞,[τ j+1,τ j+2],

where
θ = max

1≤ j≤n
{θ−1

j ,θ j }.

d) Show that for l = 3, . . . ,n, f ∈C∆[x1, xm], and x ∈ [τl ,τl+1]

|Q2(f)(x)| ≤ (2θ+1)‖ f ‖∞,[τl−1,τl+2].

e) Show that for l = 3, . . . ,n and f ∈C∆[x1, xm]

‖ f −Q2 f ‖∞,[τl ,τl+1] ≤ (2θ+2)dist[τl−1,τl+2](f ,π2).

f) Show that for f ∈C3
∆[x1, xm] we have the O(h3) estimate

‖ f −Q2 f ‖∞,[x1,xm] ≤ K (θ)|∆x|3‖D3 f ‖‖‖∞,[x1,xm],

where
|∆x| = max

j
|x j+1 −x j |

and the constant K (θ) only depends on θ.

198 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Chapter 10
Shape Preserving Properties of B-splines

In earlier chapters we have seen a number of examples of the close relationship between a
spline function and its B-spline coefficients. This is especially evident in the properties of
the Schoenberg operator, but the same phenomenon is apparent in the diagonal property
of the blossom, the stability of the B-spline basis, the convergence of the control polygon to
the spline it represents and so on. In the present chapter we are going to add to this list by
relating the number of zeros of a spline to the number of sign changes in the sequence of
its B-spline coefficients. From this property we shall obtain an accurate characterisation of
when interpolation by splines is uniquely solvable. In the final section we show that the knot
insertion matrix and the B-spline collocation matrix are totally positive, i.e., all their square
submatrices have nonnegative determinants.

10.1 Bounding the number of zeros of a spline

In Section 4.5 of Chapter 4 we showed that the number of sign changes in a spline is bounded
by the number of sign changes in its B-spline coefficients, a generalisation of Descartes’ rule
of signs for polynomials, Theorem 4.23. Theorem 4.25 is not a completely satisfactory gener-
alisation of Theorem 4.23 since it does not allow multiple zeros. In this section we will prove
a similar result that does allow multiple zeros, but we cannot allow the most general spline
functions. we have to restrict ourselves to connected splines.

Definition 10.1. A spline f = ∑n
j=1 c j B j ,d in Sd ,t is said to be connected if for each x in

(t1, tn+d+1) there is some j such that t j < x < t j+d+1 and c j , 0. A point x where this con-
dition fails is called a splitting point for f .

To develop some intuition about connected splines, let us see when a spline is not con-
nected. A splitting point of f can be of two kinds:

(i) The splitting point x is not a knot. If tµ < x < tµ+1, then t j < x < t j+d+1 for j = µ−d ,
. . . , µ (assuming the knot vector is long enough) so we must have cµ−d = ·· · = cµ = 0. In
other words f must be identically zero on (tµ, tµ+1). In this case f splits into two spline

199

200 CHAPTER 10. SHAPE PRESERVING PROPERTIES OF B-SPLINES

functions f1 and f2 with knot vectors t 1 = (t j)µj=1 and t 2 = (t j)n+d+1
j=µ+1 . We clearly have

f1 =
µ−d−1∑

j=1
c j B j ,d , f2 =

n∑
j=µ+1

c j B j ,d .

(ii) The splitting point x is a knot of multiplicity m, say

tµ < x = tµ+1 = ·· · = tµ+m < tµ+m+1.

In this case we have t j < x < t j+1+d for j = µ+m −d , . . . , µ. We must therefore have
cµ+m−d = ·· · = cµ = 0. (Note that if m = d +1, then no coefficients need to be zero). This
means that all the B-splines that “cross” x do not contribute to f (x). It therefore splits
into two parts f1 and f2, but now the two pieces are not separated by an interval, but
only by the single point x. The knot vector of f1 is t 1 = (t j)µ+m

j=1 while the knot vector of

f2 is t 2 = (t j)n+d+1
j=µ+1 . The two spline functions are given by

f1 =
µ+m−d−1∑

j=1
c j B j ,d , f2 =

n∑
j=µ+1

c j B j ,d .

Before getting on with our zero counts we need the following lemma.

Lemma 10.2. Suppose that z is a knot that occurs m times in t ,

ti < z = ti+1 = ·· · = ti+m < ti+m+1

for some i . Let f =∑
j c j B j ,d be a spline in Sd ,t . Then

c j = 1

d !

d−m∑
k=0

(−1)k Dd−kρ j ,d (z)Dk f (z) (10.1)

for all j such that t j < z < t j+d+1, where ρ j ,d (y) = (y − t j+1) · · · (y − t j+d).

Proof. Recall from Theorem 8.5 that the B-spline coefficients of f can be written as

c j =λ j f = 1

d !

d∑
k=0

(−1)k Dd−kρ j ,d (y)Dk f (y),

where y is a number such that B j ,d (y) > 0. In particular, we may choose y = z for j = i+m−d ,
. . . , i so

c j =λ j f = 1

d !

d∑
k=0

(−1)k Dd−kρ j ,d (z)Dk f (z), (10.2)

for these values of j . But in this caseρ j ,d (y) contains the factor (y−ti+1) · · · (y−ti+m) = (y−z)m

so Dd−kρ j ,d (z) = 0 for k > d −m and j = i +m −d , . . . , i , i.e., for all values of j such that
t j < z < t j+d+1. The formula (10.1) therefore follows from (10.2).

10.1. BOUNDING THE NUMBER OF ZEROS OF A SPLINE 201

In the situation of Lemma 10.2, we know from Lemma 2.3 that Dk f is continuous at z for
k = 0, . . . , d −m, but Dd+1−m f may be discontinuous. Equation (10.1) therefore shows that
the B-spline coefficients of f can be computed solely from continuous derivatives of f at a
point.

Lemma 10.3. Let f be a spline that is connected. For each x in (t1, tn+d+1) there is then a
nonnegative integer r such that Dr f is continuous at x and Dr f (x), 0.

Proof. The claim is clearly true if x is not a knot, for otherwise f would be identically zero
on an interval and therefore not connected. Suppose next that x is a knot of multiplicity m.
Then the first discontinuous derivative at x is Dd−m+1 f , so if the claim is not true, we must
have Dk f (x) = 0 for k = 0, . . . , d −m. But then we see from Lemma 10.2 that cl = λl f = 0 for
all l such that tl < x < tl+d+1. But this is impossible since f is connected.

The lemma shows that we can count zeros of connected splines precisely as for smooth
functions. If f is a connected spline then a zero must be of the form f (z) = D f (z) = ·· · =
Dr−1 f (z) = 0 with Dr f (z), 0 for some integer r . Moreover Dr f is continuous at z. The total
number of zeros of f on (a,b), counting multiplicities, is denoted Z (f) = Z(a,b)(f). Recall
from Definition 4.21 that S−(c) denotes the number of sign changes in the vector c (zeros are
completely ignored).

Example 10.4. Below are some examples of zero counts of functions. For comparison we have also included
counts of sign changes. All zero counts are over the whole real line.

Z (x) = 1,

Z (x2) = 2,

Z (x7) = 7,

S−(x) = 1,

S−(x2) = 0,

S−(x7) = 1,

Z
(
x(1−x)2)= 3,

Z
(
x3(1−x)2)= 5,

Z (−1−x2 +cos x) = 2,

S−(
x(1−x)2)= 1,

S−(
x3(1−x)2)= 1,

S−(−1−x2 +cos x) = 0.

We are now ready to prove a generalization of Theorem 4.23 that allows zeros to be counted
with multiplicities.

Theorem 10.5. Let f =∑n
j=1 c j B j ,d be a spline in Sd ,t that is connected. Then

Z(t1,tn+d+1)(f) ≤ S−(c) ≤ n −1.

Proof. Let z1 < z2 < ·· · < z` be the zeros of f in the interval (t1, tn+d+1), each of multiplicity
ri ; Lemma 10.2 shows that zi occurs at most d − ri times in t . For if zi occured m > d − ri

times in t then d −m < ri , and hence all the derivatives of f involved in (10.1) would be zero
for all j such that t j < z < t j+d+1. But this means that z is a splitting point for f which is
impossible since f is connected.

Now we form a new knot vector t̂ where zi occurs exactly d − ri times and the numbers
zi −h and zi +h occur d +1 times. Here h is a number that is small enough to ensure that
there are no other zeros of f or knots from t other than zi in [zi −h, zi +h] for 1 ≤ i ≤ `. Let ĉ
be the B-spline coefficients of f relative to t̂ . By Lemma 4.24 we then have S−(ĉ) ≤ S−(c) so it
suffices to prove that Z(t1,tn+d+1)(f) ≤ S−(ĉ). But since

Z(t1,tn+d+1)(f) = ∑̀
i=1

Z(zi−h,zi+h)(f),

202 CHAPTER 10. SHAPE PRESERVING PROPERTIES OF B-SPLINES

it suffices to establish the theorem in the following situation: The knot vector is given by

t = (

d+1︷ ︸︸ ︷
z −h, . . . , z −h,

d−r︷ ︸︸ ︷
z, . . . , z,

d+1︷ ︸︸ ︷
z +h, . . . , z +h)

and z is a zero of f of multiplicity r . The key to proving the theorem in this more specialised
situation is to show that

c j = (d − r)!

d !
(−1)d+1− j hr Dr f (z), j = d +1− r, . . . ,d +1, (10.3)

as this means that the r+1 coefficients (c j)d+1
j=d+1−r alternate in sign and S−(c) ≥ r = Z(z−h,z+h)(f).

Fix j in the range d +1− r ≤ j ≤ d +1. By equation (10.1) we have

c j = 1

d !

r∑
k=0

(−1)k Dd−kρ j ,d (z)Dk f (z) = (−1)r

d !
Dd−rρ j ,d (z)Dr f (z),

since D j f (z) = 0 for j = 0 . . . , r −1. With our special choice of knot vector we have

ρ j ,d (y) = (y − z +h)d+1− j (y − z)d−r (y − z −h)r−d−1+ j .

Taking d − r derivatives we therefore obtain

Dd−rρ j ,d (z) = (d − r)!hd+1− j (−h)r−d−1+ j = (d − r)!(−1)r−d−1+ j hr

and (10.3) follows.

Figures 10.1 (a)–(d) show some examples of splines with multiple zeros of the sort dis-
cussed in the proof of Theorem 10.5. All the knot vectors are d + 1-regular on the interval
[0,2], with additional knots at x = 1. In Figure 10.1 (a) there is one knot at x = 1 and the spline
is the polynomial (x −1)2 which has a double zero at x = 1. The control polygon models the
spline in the normal way and has two sign changes. In Figure 10.1 (b) the knot vector is the
same, but the spline is now the polynomial (x −1)3. In this case the multiplicity of the zero
is so high that the spline has a splitting point at x = 1. The construction in the proof of The-
orem 10.5 prescribes a knot vector with no knots at x = 1 in this case. Figure 10.1 (c) shows
the polynomial (x −1)3 as a degree 5 spline on a 6-regular knot vector with a double knot at
x = 1. As promised by the theorem and its proof the coefficients change sign exactly three
times. The spline in Figure 10.1 (d) is more extreme. It is the polynomial (x −1)8 represented
as a spline of degree 9 with one knot at x = 1. The control polygon has the required 8 changes
of sign.

10.2 Uniqueness of spline interpolation

Having established Theorem 10.5, we return to the problem of showing that the B-spline
collocation matrix that occurs in spline interpolation, is nonsingular. We first consider La-
grange interpolation, and then turn to Hermite interpolation where we also allow interpola-
tion derivatives.

10.2. UNIQUENESS OF SPLINE INTERPOLATION 203

0.5 1 1.5 2
-0.2

0.2

0.4

0.6

0.8

1

(a) Cubic, 2 zeros, simple knot.

0.5 1 1.5 2

-1

-0.5

0.5

1

(b) Cubic, multiplicity 3, simple knot.

0.5 1 1.5 2

-1

-0.5

0.5

1

(c) Degree 5, multiplicity 3, double knot.

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(d) Degree 9, multiplicity 8, simple knot.

Figure 10.1. Splines of varying degree with a varying number of zeros and knots at x = 1.

10.2.1 Lagrange Interpolation

In Chapter 8 we studied spline interpolation. With a spline space Sd ,t of dimension n and
data (yi)n

i=1 given at n distinct points x1 < x2 < ·· · < xn , the aim is to determine a spline
g =∑n

i=1 ci Bi ,d in Sd ,t such that

g (xi) = yi , for i = 1, . . . , n. (10.4)

This leads to the linear system of equations

Ac = y ,

where

A =

B1,d (x1) B2,d (x1) . . . Bn,d (x1)
B1,d (x2) B2,d (x2) . . . Bn,d (x2)

...
...

. . .
...

B1,d (xn) B2,d (xn) . . . Bn,d (xn)

 , c =

c1

c2
...

cn

 , y =

y1

y2
...

yn

 .

The matrix A is often referred to as the B-spline collocation matrix. Since Bi ,d (x) is nonzero
only if ti < x < ti+d+1 (we may allow ti = x if ti = ti+d < ti+d+1), the matrix A will in general be
sparse. The following theorem tells us exactly when A is nonsingular.

Theorem 10.6. Let Sd ,t be a given spline space, and let x1 < x2 < ·· · < xn be n distinct num-
bers. The collocation matrix A with entries

(
B j ,d (xi)

)n
i , j=1 is nonsingular if and only if its

204 CHAPTER 10. SHAPE PRESERVING PROPERTIES OF B-SPLINES

diagonal is positive, i.e.,
Bi ,d (xi) > 0 for i = 1, . . . , n. (10.5)

Proof. We start by showing that A is singular if a diagonal entry is zero. Suppose that xq ≤
tq (strict inequality if tq = tq+d < tq+d+1) for some q so that Bq,d (xq) = 0. By the support
properties of B-splines we must have ai , j = 0 for i = 1, . . . , q and j = q , . . . , n. But this means
that only the n−q last entries of each of the last n−q +1 columns of A can be nonzero; these
columns must therefore be linearly dependent and A must be singular. A similar argument
shows that A is also singular if xq ≥ tq+d+1.

To show the converse, suppose that (10.5) holds but A is singular. Then there is a nonzero
vector c such that Ac = 0. Let f = ∑n

i=1 ci Bi ,d denote the spline with B-spline coefficients c .
We clearly have f (xq) = 0 for q = 1, . . . , n. Let G denote the set

G =∪i
{
(ti , ti+d+1) | ci , 0

}
.

Since each x in G must be in (ti , ti+d+1) for some i with ci , 0, we note that G contains no
splitting points of f . Note that if xi = ti = ti+d < ti+d+1 occurs at a knot of multiplicity d +1,
then 0 = f (xi) = ci . To complete the proof, suppose first that G is an open interval. Since
xi is in G if ci , 0, the number of zeros of f in G is greater than or equal to the number `
of nonzero coefficients in c . Since we also have S−(c) < ` ≤ ZG (f), we have a contradiction
to Theorem 10.5. In general G consists of several subintervals which means that f is not
connected, but can be written as a sum of connected components, each defined on one of
the subintervals. The above argument then leads to a contradiction on each subinterval, and
hence we conclude that A is nonsingular.

Theorem 10.6 makes it simple to ensure that the collocation matrix is nonsingular. We
just place the knots and interpolation points in such a way that ti < xi < ti+d+1 for i = 1, . . . ,
n (note again that if ti = ti+d < ti+d+1, then xi = ti is allowed).

10.2.2 Hermite Interpolation

In earlier chapters, particularly in Chapter 8, we made use of polynomial interpolation with
Hermite data—data based on derivatives as well as function values. This is also of interest for
splines, and as for polynomials this is conveniently indicated by allowing the interpolation
point to coalesce. If for example x1 = x2 = x3 = x, we take x1 to signify interpolation of func-
tion value at x, the second occurrence of x signifies interpolation of first derivative, and the
third tells us to interpolate second derivative at x. If we introduce the notation

λx (i) = max
j

{ j | xi− j = xi }

and assume that the interpolation points are given in nondecreasing order as x1 ≤ x2 ≤ ·· · ≤
xn , then the interpolation conditions are

Dλx (i)g (xi) = Dλx (i) f (xi) (10.6)

where f is a given function and g is the spline to be determined. Since we are dealing with
splines of degree d we cannot interpolate derivatives of higher order than d ; we therefore

10.2. UNIQUENESS OF SPLINE INTERPOLATION 205

assume that xi < xi+d+1 for i = 1, . . . , n −d − 1. At a point of discontinuity (10.6) is to be
interpreted according to our usual convention of taking limits from the right. The (i , j)-entry
of the collocation matrix A is now given by

ai , j = Dλx (i)B j ,d (xi),

and as before the interpolation problem is generally solvable if and only if the collocation
matrix is nonsingular. Also as before, it turns out that the collocation matrix is nonsingu-
lar if and only if ti ≤ xi < ti+d+1, where equality is allowed in the first inequality only if
Dλx (i)Bi ,d (xi), 0. This result will follow as a special case of our next theorem where we con-
sider an even more general situation.

At times it is of interest to know exactly when a submatrix of the collocation matrix is
nonsingular. The submatrices we consider are obtained by removing the same number of
rows and columns from A. Any columns may be removed, or equivalently, we consider a
subset {B j1,d , . . . ,B j`,d } of the B-splines. When removing rows we have to be a bit more careful.
The convention is that if a row with derivatives of order r at z is included, then we also include
all the lower order derivatives at z. This is most easily formulated by letting the sequence of
interpolation points only contain ` points as in the following theorem.

Theorem 10.7. Let Sd ,t be a spline space and let {B j1,d , . . . ,B j`,d } be a subsequence of its B-
splines. Let x1 ≤ ·· · ≤ x` be a sequence of interpolation points with xi ≤ xi+d+1 for i = 1, . . . ,
`−d −1. Then the `×` matrix A(j) with entries given by

ai ,q = Dλx (i)B jq ,d (xi)

for i = 1, . . . , ` and q = 1, . . . , ` is nonsingular if and only if

t ji ≤ xi < t ji+d+1, for i = 1, . . . , `, (10.7)

where equality is allowed in the first inequality if Dλx (i)B ji ,d (xi), 0.

Proof. The proof follows along the same lines as the proof of Theorem 10.6. The most chal-
lenging part is the proof that condition (10.7) is necessary so we focus on this. Suppose that
(10.7) holds, but A(j) is singular. Then we can find a nonzero vector c such that A(j)c = 0.
Let f =∑`

i=1 ci B ji ,d denote the spline with c as its B-spline coefficients, and let G denote the
set

G =∪`i=1{(t ji , t ji+d+1) | ci , 0}.

To carry through the argument of Theorem 10.6 we need to verify that in the exceptional case
where xi = t ji then ci = 0.

Set r = λx (i) and suppose that the knot t ji occurs m times in t and that t ji = xi so
Dr B ji ,d (xi), 0. In other words

tµ < xi = tµ+1 = ·· · = tµ+m < tµ+m+1

for some integer µ, and in addition ji = µ+k for some integer k with 1 ≤ k ≤ m. Note that f
satisfies

f (xi) = D f (xi) = ·· · = Dr f (xi) = 0.

206 CHAPTER 10. SHAPE PRESERVING PROPERTIES OF B-SPLINES

(Remember that if a derivative is discontinuous at xi we take limits from the right.) Re-
call from Lemma 2.3 that all B-splines have continuous derivatives up to order d −m at xi .
Since Dr B ji clearly is discontinuous at xi , it must be true that r > d −m. We therefore have
f (xi) = D f (xi) = ·· · = Dd−m f (xi) = 0 and hence cµ+m−d = ·· · = cµ = 0 by Lemma 10.2. The re-
maining interpolation conditions at xi are Dd−m+1 f (xi) = Dd−m+2 f (xi) = ·· · = Dr f (xi) = 0.
Let us consider each of these in turn. By the continuity properties of B-splines we have
Dd−m+1Bµ+1(xi), 0 and Dd−m+1Bµ+ν = 0 for ν> 1. This means that

0 = Dd−m+1 f (xi) = cµ+1Dd−m+1Bµ+1(xi)

and cµ+1 = 0. Similarly, we also have

0 = Dd−m+2 f (xi) = cµ+2Dd−m+2Bµ+2(xi),

and hence cµ+2 = 0 since Dd−m+2Bµ+2(xi), 0. Continuing this process we find

0 = Dr f (xi) = cµ+r+m−d Dr Bµ+r+m−d (xi),

so cµ+r+m−d = 0 since Dr Bµ+r+m−d (xi), 0. This argument also shows that ji cannot be cho-
sen independently of r ; we must have ji =µ+ r +m −d .

For the rest of the proof it is sufficient to consider the case where G is an open interval,
just as in the proof of Theorem 10.6. Having established that ci = 0 if xi = t ji , we know that
if ci , 0 then xi ∈ G . The number of zeros of f in G (counting multiplicities) is therefore
greater than or equal to the number of nonzero coefficients. But this is impossible according
to Theorem 10.5.

10.3 Total positivity

In this section we are going to deduce another interesting property of the knot insertion ma-
trix and the B-spline collocation matrix, namely that they are totally positive. We follow the
same strategy as before and establish this first for the knot insertion matrix and then obtain
the total positivity of the collocation matrix by recognising it as a submatrix of a knot inser-
tion matrix.

Definition 10.8. A matrix A in Rm,n is said to be totally positive if all its square submatrices
have nonnegative determinant. More formally, let i = (i1, i2, . . . , i`) and j = (j1, j2, . . . , j`) be
two integer sequences such that

1 ≤ i1 < i2 < ·· · < i` ≤ m, (10.8)

1 ≤ i1 < i2 < ·· · < i` ≤ n, (10.9)

and let A(i , j) denote the submatrix of A with entries (aip , jq)`p,q=1. Then A is totally positive
if det A(i , j) ≥ 0 for all sequences i and j on the form (10.8) and (10.9), for all ` with 1 ≤ `≤
min{m,n}.

We first show that knot insertion matrices are totally positive.

10.3. TOTAL POSITIVITY 207

Theorem 10.9. Let τ and t be two knot vectors with τ ⊆ t . Then the knot insertion matrix
from Sd ,τ to Sd ,t is totally positive.

Proof. Suppose that there are k more knots in t than in τ; our proof is by induction on k. We
first note that if k = 0, then A = I , the identity matrix, while if k = 1, then A is a bi-diagonal
matrix with one more rows than columns. Let us denote the entries of A by

(
α j (i)

)n+1,n
i , j=1 (if

k = 0 the range of i is 1, . . . , n). In either case all the entries are nonnegative and α j (i) = 0 for
j < i−1 and j > i . Consider now the determinant of A(i , j). If j` ≥ i` then j` > iq for q = 1, . . . ,
`−1 soα j`(iq) = 0 for q < `. This means that only the last entry of the last column of A(i , j) is
nonzero. The other possibility is that j` ≤ i`−1 so that jq < i`−1 for q < `. Then α jq (i`) = 0
for q < ` so only the last entry of the last row of A(i , j) is nonzero. Expanding the determinant
either by the last column or last row we therefore have det A(i , j) =α j`(i`)det A(i ′, j ′) where
i ′ = (i1, . . . , i`−1) and j ′ = (j1, . . . , j`−1). Continuing this process we find that

det A(i , j) =α j1 (i1)α j2 (i2) · · ·α j`(i`)

which clearly is nonnegative.
For k ≥ 2, we make use of the factorization

A = Ak · · · A1 = Ak B , (10.10)

where each Ar corresponds to insertion of one knot and B = Ak−1 · · · A1 is the knot insertion
matrix for inserting k−1 of the knots. By the induction hypothesis we know that both Ak and
B are totally positive; we must show that A is totally positive. Let (ai) and (bi) denote the
rows of A and B , and let

(
α j (i)

)m,m−1
i , j=1 denote the entries of Ak . From (10.10) we have

ai =αi−1(i)bi−1 +αi (i)bi for i = 1, . . . , m,

where α0(1) = αm(m) = 0. Let ai (j) and bi (j) denote the vectors obtained by keeping only
entries (jq)`q=1 of ai and bi respectively. Row q of A(i , j) of A is then given by

aiq (j) =αiq−1(iq)biq−1(j)+αiq (iq)biq (j).

Using the linearity of the determinant in row q we therefore have

det

ai1 (j)
...

aiq (j)
...

ai`(j)

= det

ai1 (j)
...

αiq−1(iq)biq−1(j)+αiq (iq)biq (j)
...

ai`(j)

=αiq−1(iq)det

ai1 (j)
...

biq−1(j)
...

ai`(j)

+αiq (iq)det

ai1 (j)
...

biq (j)
...

ai`(j)

 .

208 CHAPTER 10. SHAPE PRESERVING PROPERTIES OF B-SPLINES

By expanding the other rows similarly we find that det A(i , j) can be written as a sum of deter-
minants of submatrices of B , multiplied by products of α j (i)’s. By the induction hypothesis
all these quantities are nonnegative, so the determinant of A(i , j) must also be nonnegative.
Hence A is totally positive.

Knowing that the knot insertion matrix is totally positive, we can prove a similar property
of the B-spline collocation matrix, even in the case where multiple collocation points are
allowed.

Theorem 10.10. Let Sd ,τ be a spline space and let {B j1,d , . . . ,B j`,d } be a subsequence of its
B-splines. Let x1 ≤ ·· · ≤ x` be a sequence of interpolation points with xi ≤ xi+d+1 for i = 1,
. . . , `−d −1, and denote by A(j) the `×` matrix with entries given by

ai ,q = Dλx (i)B jq ,d (xi)

for i = 1, . . . , ` and q = 1, . . . , `. Then

det A(j) ≥ 0.

Proof. We first prove the claim in the case x1 < x2 < ·· · < x`. By inserting knots of multiplicity
d+1 at each of (xi)`i=1 we obtain a knot vector t that containsτ as a subsequence. If ti−1 < ti =
ti+d < ti+d+1 we know from Lemma 2.3 that B j ,d ,τ(ti) = α j ,d (i). This means that the matrix
A(j) appears as a submatrix of the knot insertion matrix from τ to t . It therefore follows from
Theorem 10.9 that det A(j) ≥ 0 in this case.

To prove the theorem in the general case we consider a set of distinct collocation points
y1 < ·· · < y` and let A(j , y) denote the corresponding collocation matrix. Set λi = λx (i) and
let ρi denote the linear functional given by

ρi f =λi ! [yi−λi , . . . , yi] f (10.11)

for i = 1, . . . , `. Here [·, . . . , ·] f is the divided difference of f . By standard properties of divided
differences we have

ρi B j ,d =
i∑

s=i−λi

γi ,sB j ,d (ys)

and γi ,i > 0. Denoting by D the matrix with (i , j)-entry ρi B j ,d , we find by properties of deter-
minants and (10.11) that

detD = γ1,1 · · ·γ`,`det A(j , y).

If we now let y tend to x we know from properties of the divided difference functional that
ρi B j tends to Dλi

B j in the limit. Hence D tends to A(j) so det A(j) ≥ 0.

10.3. TOTAL POSITIVITY 209

Chapter 11
Computing Zeros of Splines

A commonly occurring mathematical operation in many applications is to find the zeros of a
function, and a number of methods for accomplishing this have been devised. Most of these
methods work for quite general types of functions, including splines. Two popular methods
are Newton’s method and the secant method which both leave us with a problem that is typ-
ical of root-finding methods, namely how to find a good starting value for the iterations. For
this we can exploit some standard properties of splines like the fact that a spline whose con-
trol polygon is everywhere of one sign cannot have any zeros. Likewise, a good starting point
for an iterative procedure is a point in the neighbourhood of a zero of the control polygon.
More refined methods exploit the fact that the control polygon converges to the spline as the
spacing of the knots goes to zero. One can then start by inserting knots to obtain a control
polygon where the zeros are clearly isolated and then apply a suitable iterative method to
determine the zeros accurately. Although hybrid methods of this type can be tuned to per-
form well, there are important unanswered problems. Where should the knots be inserted in
the initial phase? How many knots should be inserted in the initial phase? How should the
starting value for the iterations be chosen? Will the method always converge?

In this paper we propose a simple method that provides answers to all the above ques-
tions. The method is very simple: Iteratively insert zeros of the control polygon as new knots
of the spline. It turns out that all accumulation points of this procedure will be zeros of the
spline function and we prove below that the method is unconditionally convergent. In addi-
tion it is essentially as efficient as Newton’s method, and asymptotically it behaves like this
method.

11.1 Counting zeros of the control polygon

Our root-finding algorithm reduces the problem of computing a zero of a spline to iteratively
calculating zeros of the control polygon. Before we turn to the details of the algorithm, we
therefore need to recall some basic facts about the control polygon.

As before we denote the control polygon of the spline f =∑
i=1 nci Bi ,p,t inSp,t by Γp,t (f),

215

216 CHAPTER 11. COMPUTING ZEROS OF SPLINES

or just Γ(f), or even Γ, when no confusion is possible. In this section we will use the notation

t i ,p = t i =
ti+1 +·· ·+ ti+p

p

for the knot averages, so the i th vertex of the control polygon of f is (t i ,ci).
Recall from section 4.4 that if we insert a new knot z in t and form the new knot vector

t 1 = t ∪ {z} then f = ∑n
i=1 ci Bi ,p,t = ∑n+1

i=1 c1
i Bi ,p,t 1 . More specifically, if z ∈ [tµ, tµ+1) we have

c1
i = ci for i = 1, . . . , µ−p;

c1
i = (1−µi)ci−1 +µi ci with µi = z − ti

ti+p − ti
(11.1)

for i =µ−p+1, . . . , µ; and c1
i = ci−1 for i =µ+1, . . . , n+1. It is not hard to verify that the same

relation holds for the knot averages,

t
1
i = (1−µi)t i−1 +µi t i (11.2)

for i = µ−p +1, . . . , µ. This means that the corners of Γ1, the refined control polygon, lie on
Γ. This property is useful when studying the effect of knot insertion on the number of zeros
of Γ.

We count the number of zeros of the control polygonΓ as the number of strict sign changes
in the coefficient sequence (ci)n

i=1. The position of a zero of the control polygon is obvious
when the two ends of a line segment have opposite signs. However, the control polygon can
also be identically zero on an interval in which case we associate the zero with the left end
point of the zero interval. More formally, if ck−1ck+` < 0 and ck+i = 0 for i = 0, . . . , `−1, we
say that k is the index of the zero z, which is given by

z = min
{

x ∈ [t k−1, t k+`] | Γ(x) = 0
}
.

Note that in this case ck−1 , 0 and ck−1ck ≤ 0.
We let S−

i , j (Γ) denote the number of zeros of Γ in the half-open interval (t i , t j]. It is clear
that S−

1,n(Γ) = S−(Γ) and that S−
i ,k (Γ) = S−

i , j (Γ)+S−
j ,k (Γ) for i , j ,k such that 1 ≤ i < j < k ≤ n. We

note that if Γ1 is the control polygon of f after inserting one knot, then for any k = 2, . . . ,n

S−(Γ1) ≤ S−(Γ)−S−
k−1,k (Γ)+S−

k−1,k+1(Γ1). (11.3)

To prove this we first observe that the two inequalities

S−
1,k−1(Γ1) ≤ S−

1,k−1(Γ),

S−
k+1,n+1(Γ1) ≤ S−

k,n(Γ),

are true since the corners of Γ1 lie on Γ, see (11.1). The inequality (11.3) follows from the
identity

S−(Γ1) = S−
1,k−1(Γ1)+S−

k−1,k+1(Γ1)+S−
k+1,n+1(Γ1),

and the two inequalities above.

11.2. ROOT FINDING ALGORITHM 217

11.2 Root finding algorithm

The basic idea of the root finding algorithm is to exploit the close relationship between the
control polygon and the spline, and we do this by using the zeros of the control polygon as
an initial guess for the zeros of the spline. In the next step we refine the control polygon by
inserting these zeros as knots. We can then find the zeros of the new control polygon, insert
these zeros as knots and so on. The method can be formulated in a particularly simple way if
we focus on determining the left-most zero. There is no loss in this since once the left-most
zero has been found, we can split the spline at this point by inserting a knot of multiplicity p
into t and then proceed with the other zeros.

Note that the case where f has a zero at the first knot t1 can easily be detected a priori; the
spline is then disconnected at t1, see definition 10.1 for a definition of disconnectedness. In
fact, disconnected splines are degenerate, and this degeneracy is easy to detect. We therefore
assume that the spline under consideration is connected.

We give a more refined version of the method in Algorithm 11.3 which focuses on deter-
mining an arbitrary zero of f .

Algorithm 11.1. Let f be a connected spline inSp,t and set t 0 = t . Repeat the following steps
for j = 0, 1, . . . , until the sequence (x j) is found to converge or no zero of the control polygon
can be found.

1. Determine the first zero x j+1 of the control polygon Γ j of f relative to the space Sp,t j .

2. Form the knot vector t j+1 = t j ∪ {x j+1}.

We will show below that if f has zeros, this procedure will converge to the first zero of
f , otherwise it will terminate after a finite number of steps. A typical example of how the
algorithm behaves is shown in Figure 11.1.

In the following, we only discuss the first iteration through Algorithm 11.1 and therefore
omit the superscripts. In case p = 1 the control polygon and the spline are identical and
so the zero is found in the first iteration. We will therefore assume p > 1 in the rest of this
chapter. The first zero of the control polygon is the zero of the linear segment connecting
the two points (t k−1,ck−1) and (t k ,ck) where k is the smallest zero index, i.e. k is the smallest
integer such that ck−1ck ≤ 0 and ck−1 , 0, see page 216 for the definition of zero index. The
zero is characterised by the equation

(1−λ)ck−1 +λck = 0

which has the solution
λ= −ck−1

ck − ck−1
.

The control polygon therefore has a zero at

x1 = (1−λ)t k−1 +λt k = t k−1 −
ck−1(tk+p − tk)

p(ck − ck−1)

= t k −
ck (tk+p − tk)

p(ck − ck−1)
.

(11.4)

218 CHAPTER 11. COMPUTING ZEROS OF SPLINES

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Figure 11.1. Our algorithm applied to a cubic spline with knot vector t = (0,0,0,0,1,1,1,1) and B-spline coefficients c =
(−1,−1,1/2,0)

Using the notation ∆ci = p(ci − ci−1)/(ti+p − ti), we can write this in the simple form

x1 = t k −
ck

∆ck
= t k−1 −

ck−1

∆ck
(11.5)

from which it is apparent that the method described by Algorithm 11.1 resembles a discrete
version of Newton’s method.

When x1 is inserted in t , we can express f on the resulting knot vector via a new coeffi-
cient vector c 1 as in (11.1). The new control points lie on the old control polygon and hence
this process is variation diminishing in the sense that the number of zeros of the control
polygon is non-increasing. In fact, the knot insertion step in Algorithm 11.1 either results in a
refined control polygon that has at least one zero in the interval (t

1
k−1, t

1
k+1] or the number of

zeros in the refined control polygon has been reduced by at least 2 compared with the original
control polygon.

Lemma 11.2. If k is the index of a zero of Γ and S−
k−1,k+1(Γ1) = 0 then S−(Γ1) ≤ S−(Γ)−2.

Proof. From (11.3) we see that the number of sign changes in Γ1 is at least one less than in Γ,
and since the number of sign changes has to decrease in even numbers the result follows.

This means that if Γ1 has no zero in (t
1
k−1, t

1
k+1], the zero in (t k−1, t k] was a false warning;

there is no corresponding zero in f . In fact, we have accomplished more than this since we
have also removed a second false zero from the control polygon. If we still wish to find the first
zero of f we can restart the algorithm from the leftmost zero of the refined control polygon.
However, it is useful to be able to detect that zeros in the control polygon have disappeared

11.2. ROOT FINDING ALGORITHM 219

so we reformulate our algorithm with this ingredient. In addition, we need this slightly more
elaborate algorithm to carry out a detailed convergence analysis.

Algorithm 11.3. Let f be a connected spline in Sp,t , and set t 0 = t and c 0 = c . Let k0 = k be
a zero index for Γ. Repeat the following steps for j = 0, 1, . . . , or until the process is halted in
step 3:

1. Compute x j+1 = t
j
k j
− c j

k j
/∆c j

k j
.

2. Form the knot vector t j+1 = t j ∪ {x j+1} and compute the B-spline coefficients c j+1 of f
in Sp,t j+1 .

3. Choose k j+1 to be the smallest of the two integers k j and k j +1, but such that k j+1 is
the index of a zero of Γ j+1. Stop if no such number can be found or if f is disconnected
at x j+1.

Before turning to the analysis of convergence, we establish a few basic facts about the
algorithm. We shall call an infinite sequence (x j) generated by this algorithm a zero sequence.

We also introduce the notation t̂ j = (t j
k j

, . . . , t j
k j+p) to denote what we naturally term the active

knots at level j . In addition we denote by

a j = 1

p −1

p−1∑
i=1

t j
k j+i

the average of the interior, active knots.

Lemma 11.4. The zero x j+1 computed in Algorithm 11.3 satisfies the relations x j+1 ∈ (t
j
k j−1, t

j
k j

] ⊆
(t j

k j
, t j

k j+p], and if x j+1 = t j
k j+p then f is disconnected at x j+1 with f (x j+1) = 0.

Proof. Since c j
k−1 , 0 we must have x j+1 ∈ (t

j
k−1, t

j
k]. Since we also have (t

j
k−1, t

j
k] ⊆ (t j

k , t j
k+p],

the first assertion follows.
For the second assertion, we observe that we always have x j+1 ≤ t

j
k ≤ t j

k+p . This means

that if x j+1 = t j
k+p we must have x j+1 = t

j
k and c j

k = 0. But then x j+1 = t j
k+1 = ·· · = t j

k+p so

f (x j+1) = c j
k = 0.

Our next result shows how the active knots at one level are derived from the active knots
on the previous level.

Lemma 11.5. If k j+1 = k j then t̂ j+1 = t̂ j ∪ {x j+1} \ {t j
k j+p }. Otherwise, if k j+1 = k j + 1 then

t̂ j+1 = t̂ j ∪ {x j+1} \ {t j
k j

}.

Proof. We know that x j+1 ∈ (t j
k j

, t j
k j+p]. Therefore, if k j+1 = k j the latest zero x j+1 becomes a

new active knot while t j
k j+p is lost. The other case is similar.

220 CHAPTER 11. COMPUTING ZEROS OF SPLINES

11.3 Convergence

We now have the necessary tools to prove that a zero sequence (x j) converges; afterwards we
will then prove that the limit is a zero of f .

We first show convergence of the first and last active knots.

Lemma 11.6. Let (x j) be a zero sequence. The corresponding sequence of initial active knots

(t j
k j

) j is an increasing sequence that converges to some real number t− from below, and the

sequence of last active knots (t j
k j+p) is a decreasing sequence that converges to some real

number t+ from above with t− ≤ t+.

Proof. From Lemma 11.4 we have x j+1 ∈ (t j
k j

, t j
k j+p], and due to Lemma 11.5 we have t j+1

k j+1
≥

t j
k j

and t j+1
k j+1+p ≤ t j

k j+p for each j . Since t j
k j

≤ t j
k j+p the result follows.

This Lemma implies that x j ∈ (t`k` , t`k`+p] for all j and ` such that j > `. Also, the set of

intervals
{
[t j

k j
, t j

k j+p]
}∞

j=0 in which we insert the new knots is nested and these intervals tend

to a limit,

[tk0 , tk0+p] ⊇ [t 1
k1

, t 1
k1+p] ⊇ [t 2

k2
, t 2

k2+p] ⊇ ·· · ⊇ [t−, t+].

Proposition 11.7. A zero sequence converges to either t− or t+.

The proof of convergence goes via several lemmas; however in one situation the result is
quite obvious: From Lemma 11.6 we deduce that if t− = t+, the active knots and hence the
zero sequence must all converge to this number so there is nothing to prove. We therefore
focus on the case t− < t+.

Lemma 11.8. None of the knot vectors (t j)∞j=0 have knots in (t−, t+).

Proof. Suppose that there is at least one knot in (t−, t+); by the definition of t− and t+ this

must be an active knot for all j . Then, for all j sufficiently large, the knot t j
k j

will be so close

to t− and t j
k j+p so close to t+ that the two averages t k j−1 and t

j
k j

will both lie in (t−, t+). Since

x j+1 ∈ (t
j
k j−1, t

j
k j

], this means that x j+1 ∈ (t−, t+). As a consequence, there are infinitely many

knots in (t−, t+). But this is impossible since for any given j only the knots (t j
k j+i)p−1

i=1 can

possibly lie in this interval.

Lemma 11.9. Suppose t− < t+. Then there is an integer ` such that for all j ≥ ` either

t j
k j

, . . . , t j
k j+p−1 ≤ t− and t j

k j+p = t+ or t j
k j+1, . . . , t j

k j+p ≥ t+ and t j
k j

= t−.

Proof. Let K denote the constant K = (t+ − t−)/(p − 1) > 0. From Lemma 11.6 we see that

there is an ` such that t j
k j

> t−−K and t j
k j+p < t++K for j ≥ `. If the lemma was not true,

it is easy to check that t
j
k j−1 and t

j
k j

would have to lie in (t−, t+) and hence x j+1 would lie in

(t−, t+) which contradicts the previous lemma.

11.3. CONVERGENCE 221

Lemma 11.10. Suppose that t− < t+. Then the zero sequence (x j) and the sequences of in-

terior active knots (t j
k j+1), . . . , (t j

k j+p−1) all converge and one of the following is true: Either

all the sequences converge to t− and x j ≤ t− for j larger than some `, or all the sequences
converge to t+ and x j ≥ t+ for all j larger than some `.

Proof. We consider the two situations described in Lemma 11.9 in turn. Suppose that t j
k j

,

. . . , t j
k j+p−1 ≤ t− for j ≥ `. This means that t

j
k j

< t+ and since x j+1 cannot lie in (t−, t+), we

must have x j+1 ≤ t− for j ≥ `. Since no new knots can appear to the right of t+ we must

have t j
k j+p = t+ for j ≥ `. Moreover, since t j

k j
< x j+1 ≤ t−, we conclude that (x j) and all the

sequences of interior active knots converge to t−. The proof for the case t j
k j+1, . . . , t j

k j+p ≥ t+
is similar.

Lemma 11.10 completes the proof of Proposition 11.7. It remains to show that the limit of
a zero sequence is a zero of f .

Lemma 11.11. Any accumulation point of a zero sequence is a zero of f .

Proof. Let z be an accumulation point for a zero sequence (x j), and let ε be any positive,
real number. Then there must be positive integers ` and k such that t`k+1, . . . , t`k+p and x`+1

all lie in the interval (z − ε/2, z + ε/2). Let t = t
`
k and let Γ = Γt`(f) be the control polygon of

f in Sp,t` . We know that the derivative f ′ = ∑
i ∆ci Bi ,p−1,t` is a spline in Sp−1,t` , and from

Theorem 9.15 it follows that ‖(∆ci)‖∞ ≤ Kp−1‖ f ′‖∞ for some constant Kp−1 depending only
on p. From this we note that for any real numbers x and y we have the inequalities

|Γ(x)−Γ(y)| ≤
∫ y

x
|Γ′(t)|d t ≤‖(∆ci)‖∞|y −x| ≤ Kp−1‖ f ′‖∞|y −x|.

In particular, since Γ(x`+1) = 0 it follows that

|Γ(t)| = |Γ(t)−Γ(x`+1)| ≤ Kp−1‖ f ′‖∞ ε.

In addition it follows from Theorem 9.18 that

| f (t)−Γ(t)| ≤C (t`k+p − t`k+1)2 ≤Cε2,

where C is another constant depending on f and p, but not on t`. Combining these estimates
we obtain

| f (z)| ≤ | f (z)− f (t)|+ | f (t)−Γ(t)|+ |Γ(t)|
≤ ‖ f ′‖ε+Cε2 +Kp−1‖ f ′‖ε.

Since this is valid for any positive value of ε we must have f (z) = 0.

Lemmas 11.6, 11.10 and 11.11 lead to our main result.

Theorem 11.12. A zero sequence converges to a zero of f .

222 CHAPTER 11. COMPUTING ZEROS OF SPLINES

Recall that the zero finding algorithm does not need a starting value and there are no
conditions in Theorem 11.12. On the other hand all control polygons of a spline with a zero
must have at least one zero. For such splines the algorithm is therefore unconditionally con-
vergent (for splines without zeros the algorithm will detect that the spline is of one sign in a
finite number of steps).

11.4 Rate of convergence

In the previous section we saw that algorithm 11.3 always converges to the first zero of f , or
halts in a finite number of steps if there are no zeros. In this section we will state two results
about how quickly the algorithm converges to a simple zero. The proofs are based on Taylor
expansions of the blossom of f and are omitted here. The first result is the most general one.

Theorem 11.13. Let (x j) be a zero sequence converging to a zero z and suppose that f ′(z),
0. Then there is a constant C depending on f and p but not on t , such that for sufficiently
large j we have

|x j+1 − z| ≤C max
i=1,...,p−1

|t j
k j+i − z|2.

Recall that the knots (t j
k j+i)p−1

i=1 typically correspond to recently inserted knots, i.e., recent

estimates of the zero. The result therefore shows that the algorithm has a kind of quadratic
convergence to simple zeros. This can be made ore explicit in case a zero sequence (x j) con-
verges monotonically to z.

Theorem 11.14. Let (x j) be a zero sequence converging to a zero z, suppose that f ′(z) and
f ′′(z) are both nonzero, and set en = |xn − z|. Then there is a constant C depending on f and
p, but not on t , such that for sufficiently large j we have

e j+1 ≤Ce2
j−p+2.

This result implies that if we sample the error in Algorithm 11.3 after every p − 1 knot
insertions, the resulting sequence converges quadratically to zero. Insertion of p −1 knots is
roughly equivalent to computation of a function value, so Theorem 11.14 roughly says that for
each computation of a function value the error is squared. This is similar to Newton’s method
which also converges quadratically and requires computation of f (x) and f ′(x) during each
iteration.

11.5 Stability

In this section we briefly discuss the stability properties of Algorithm 11.3. It is well known
that a situation where large rounding errors may occur is when a small value is computed
from relatively large values. Computing zeros of functions fall in this category as we need
to compute values of the function near the zero, while the function is usually described by
reasonably large parameters. For example, spline functions are usually given by reasonably
large values of the knots and B-spline coefficients, but near a zero these numbers combine
such that the result is small. It is therefore particularly important to keep an eye on rounding
errors when computing zeros.

11.6. IMPLEMENTATION AND NUMERICAL EXAMPLES 223

Our method consists of two parts where rounding errors potentially may cause problems,
namely the computation of x j+1 by the first step in Algorithm 11.3 and the computation of
the new B-spline coefficients in step 2. Let us consider each of these steps in turn.

The new estimate for the zero is given by the formula

x j+1 = t
j
k j
−

c j
k j

(t j
k j+p − t j

k j
)

(c j
k j
− c j

k j−1)p
,

which is in fact a convex combination of the two numbers t
j
k j−1 and t

j
k j

, see (11.4). Recall that

c j
k j−1 and c j

k j
have opposite signs while t j

k j
and t j

k j+p are usually well separated so the second

term on the right can usually be computed without much cancellation. The total estimate
x j+1 is then inserted as a new knot, and new coefficients are computed via (11.1) as a series
of convex combinations. Convex combinations are generally well suited to floating-point
computations except when combining two numbers of opposite signs to obtain a number
near zero. This can potentially happen when computing the new coefficient

c j+1
k = (1−µk)c j

k−1 +µk c j
k ,

since we know that c j
k−1 and c j

k have opposite signs. However, it can be shown that in most
cases, the magnitude of one of the two coefficients tends to zero with j whereas the other one
remains bounded away from zero. This ensures that the most critical convex combination
usually behaves nicely, so in most cases there should not be problems with numerical stabil-
ity, which corresponds well with practical experience. However, as with Newton’s method and
many others, we must expect the numerical performance to deteriorate when f ′(z) becomes
small.

11.6 Implementation and numerical examples

Algorithm is very simple to implement and does not require any elaborate spline software.
To illustrate this fact we provide pseudo code for an algorithm to compute the smallest zero
of a spline, returned in the variable x. The knots t and the coefficients c are stored in vectors
(indexed from 1). For efficiency the algorithm overwrites the old coefficients with the new
ones during knot insertion.

Pseudo code for Algorithm 11.1

// Connected spline of degree d
// with knots t and coefficients c given
if (c(1)==0) return t(1);
k=2;
for (it = 1; it<=max_iterations; it++) {

// Compute the index of the smallest zero
// of the control polygon

224 CHAPTER 11. COMPUTING ZEROS OF SPLINES

n = size(c);
while (k<=n AND c(k-1)*c(k)>0) k++;
if (k>n) return NO_ZERO;

// Find zero of control polygon and check convergence
x = knotAverage(t,p,k)

- c(k) * (t(k+p)-t(k))/(c(k)-c(k-1))/p;
xlist.append(x);
if (converged(t,p,xlist)) return x;

// Refine spline by Boehms algorithm
mu = k;
while (x>=t(mu+1)) mu++;
c.append(c(n)); //Length of c increased by one
for (i=n; i>=mu+1; i--) c(i) = c(i-1);
for (i=mu ; i>=mu-p+1; i--) {
alpha = (x-t(i))/(t(i+p)-t(i));
c(i) = (1-alpha)*c(i-1) + alpha*c(i);

}
t.insert(mu+1,x);

}
// Max_iterations too small for convergence

This code will return an approximation to the leftmost root of the spline unless the total
number of allowed iterations max_iterations is too low (or the tolerance is too small, see
below). Note that it is assumed that the spline is connected. In particular, this means that the
first coefficient must be nonzero.

The function converged returns true when the last inserted knot x equals tk+p (in which
case the spline has become disconnected at x, see Lemma 11.4), or when the sequence of
computed zeros of the control polygons are deemed to converge in a traditional sense. Our
specific criterion for convergence is (after at least p knots have been inserted),

maxi , j |xi −x j |
max(|tk |, |tk+p |)

< ε,

where the maximium is taken over the p last inserted knots and ε> 0 is a small user-defined
constant. This expression measures the relative difference of the last p knots and ε= 10−15 is
a good choice when the computations are performed in double precision arithmetic.

In principle, our method should always converge, so there should be no need for a bound
on the number of iterations. However, this is always a good safety net, as long as the maxi-
mum number of iterations is chosen as a sufficiently big integer.

There is of course a similar algorithm for computing the largest zero. If one needs to
compute all zeros of a spline, this can be done sequentially by first computing the smallest
zero, split the spline at that point, compute the second smallest zero and so on. Alternatively,

11.6. IMPLEMENTATION AND NUMERICAL EXAMPLES 225

the computations can be done in parallel by inserting all the zeros of the control polygon in
each iteration. We leave the details to the interested reader.

Before considering some examples and comparing our method with other methods, we
need to have a rough idea of the complexity of the method. To determine the correct segment
of the control polygon requires a search the first time, thereafter choosing the right segment
only involves one comparison. Computing the new estimate for the zero is also very quick as
it only involves one statement. What takes time is computing the new B-spline coefficients
after the new knot has been inserted. This usually requires p convex combinations. As we
saw above, we often have quadratic convergence if we sample the error every p−1 iterations,
and the work involved in p −1 knot insertions is p(p −1) convex combinations.

We have estimated the errors e j = |x j − z| of our algorithm for the four examples shown
in Figure 11.2. The first three have simple roots, while the last has a double root. In Table
11.6 we have compared the errors produced by our method with those produced by Newton’s
method and a Bezier based method suggested by Rockwood. We have compared every p −
1th step in our method with every iteration of the other methods. Quadratic convergence
is confirmed for all the methods for the first three examples, whereas all methods only have
linear convergence for the double zero (as for Newton’s method, we have observed higher
than second order convergence in cases with f ′(z), 0 and f ′′(z) = 0.)

We used the smallest zero of the control polygon as starting value for Newton’s method.
Note that it is not hard to find examples where this starting point will make Newton’s method
diverge. When using Newton’s method to compute zeros of spline functions we have to eval-
uate f (x) and f ′(x) in every step. With careful coding, this requires essentially the same num-
ber of operations as inserting p knots at a single point when f is a spline, or roughly p(p−1)/2
convex combinations. On the other hand, Rockwood’s method is based on inserting p knots
at the zeros of the control polygon, in effect splitting the curve into two pieces by Bézier sub-
division. The complexity of this is the same as for Newton’s method.

Example Method E0 E1 E2 E3 E4 E5

Cubic Bézier
Simple root

Alg.11.3 1.41e-1 1.31e-2 1.46e-4 1.70e-8 2.30e-16 4.22e-32
Rockwood 1.41e-1 2.05e-2 8.71e-4 1.80e-6 7.72e-12 1.42e-22
Newton 1.41e-1 2.05e-2 8.71e-4 1.80e-6 7.72e-12 1.42e-22

Quintic
Simple root

Alg.11.3 1.34e-1 3.06e-3 1.24e-6 1.53e-13 2.21e-27 4.54e-55
Rockwood 1.34e-1 5.47e-3 2.72e-5 6.87e-10 4.39e-19 1.80e-37
Newton 1.34e-1 5.06e-3 2.33e-5 5.04e-10 2.36e-19 5.21e-38

Degree 25
spline
Simple root

Alg.11.3 3.79e-3 2.64e-5 7.72e-11 2.60e-22 1.48e-45 5.10e-71
Rockwood 3.79e-3 3.50e-5 5.49e-9 1.35e-16 8.22e-32 8.22e-32
Newton 3.79e-3 7.64e-5 2.62e-8 3.08e-15 4.25e-29 8.13e-57

Cubic
polynomial
Double root

Alg.11.3 5.19e-1 2.68e-1 1.37e-1 6.95e-2 3.52e-2 1.78e-2
Rockwood 5.19e-1 3.34e-1 2.23e-1 1.49e-1 9.90e-2 6.60e-2
Newton 5.19e-1 3.46e-1 2.31e-1 1.54e-1 1.03e-1 6.84e-2

Table 11.1. The absolute errors |x j −z| for our method (inserting p−1 knots), Rockwoods method and Newtons method for the
three examples. The computations have been performed in extended arithmetic in order to include more iterations.

226 CHAPTER 11. COMPUTING ZEROS OF SPLINES

0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

1 2 3 4 5

-6

-4

-2

2

4

6

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

3

4

0.5 1 1.5 2

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 11.2. Our test examples in reading order: cubic Bézier function, quintic spline, degree 25 spline, cubic polynomial with
a double root.

Appendix A
Some Linear Algebra

A.1 Matrices

The collection of m,n matrices

A =
 a1,1, . . . , a1,n

· · · · · ·
am,1, . . . , am,n

with real elements ai , j is denoted by Rm,n . If n = 1 then A is called a column vector. Similarly,
if m = 1 then A is a row vector. We let Rm denote the collection of all column or row vectors
with m real components.

A.1.1 Nonsingular matrices, and inverses.

Definition A.1. A collection of vectors a1, . . . , an ∈ Rm is linearly independent if x1a1 + ·· ·+
xn an = 0 for some real numbers x1, . . . , xn , implies that x1 = ·· · = xn = 0.

Suppose a1, . . . , an are the columns of a matrix A ∈ Rm,n . For a vector x = (x1, . . . , xn)T

∈ Rn we have Ax =∑n
j=1 x j a j . It follows that the collection a1, . . . , an is linearly independent

if and only if Ax = 0 implies x = 0.

Definition A.2. A square matrix A such that Ax = 0 implies x = 0 is said to be nonsingular.

Definition A.3. A square matrix A ∈Rn,n is said to be invertible if for some B ∈Rn,n

B A = AB = I ,

where I ∈Rn,n is the identity matrix.

An invertible matrix A has a unique inverse B = A−1. If A,B , and C are square matrices,
and A = BC , then A is invertible if and only if both B and C are also invertible. Moreover, the
inverse of A is the product of the inverses of B and C in reverse order, A−1 =C−1B−1.

227

228

A.1.2 Determinants.

The determinant of a square matrix A will be denoted det(A) or∣∣∣∣∣∣∣
a1,1, . . . , a1,n

...
...

an,1, . . . , an,n

∣∣∣∣∣∣∣ .

Recall that the determinant of a 2×2 matrix is∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣= a1,1a2,2 −a1,2a2,1.

A.1.3 Criteria for nonsingularity and singularity.

We state without proof the following criteria for nonsingularity.

Theorem A.4. The following is equivalent for a square matrix A ∈Rn,n .

1. A is nonsingular.

2. A is invertible.

3. Ax = b has a unique solution x = A−1b for any b ∈Rn .

4. A has linearly independent columns.

5. AT is nonsingular.

6. A has linearly independent rows.

7. det(A), 0.

We also have a number of criteria for a matrix to be singular.

Theorem A.5. The following is equivalent for a square matrix A ∈Rn,n .

1. There is a nonzero x ∈Rn so that Ax = 0.

2. A has no inverse.

3. Ax = b has either no solution or an infinite number of solutions.

4. A has linearly dependent columns.

5. There is a nonzero x so that xT A = 0.

6. A has linearly dependent rows.

7. det(A) = 0.

Corollary A.6. A matrix with more columns than rows has linearly dependent columns.

Proof. Suppose A ∈Rm,n with n > m. By adding n −m rows of zeros to A we obtain a square
matrix B ∈ Rn,n . This matrix has linearly dependent rows. By Theorem A.4 the matrix B has
linearly dependent columns. But then the columns of A are also linearly dependent.

A.2. VECTOR NORMS 229

A.2 Vector Norms

Formally, a vector norm || || = ||x ||, is a function ‖ ‖ : Rn → [0,∞) that satisfies for x , y ,∈ Rn ,
and α ∈R the following properties

1. ||x || = 0 implies x = 0.
2. ||αx || = |α|||x ||.
3. ||x + y || ≤ ||x ||+ ||y ||.

(A.1)

Property 3 is known as the Triangle Inequality. For us the most useful class of norms are the
p or `p norms. They are defined for p ≥ 1 and x = (x1, x2, . . . , xn)T ∈Rn by

||x ||p = (|x1|p +|x2|p +·· ·+ |xn |p)1/p .
||x ||∞ = maxi |xi |. (A.2)

Since
||x ||∞ ≤ ||x ||p ≤ n1/p ||x ||∞, p ≥ 1 (A.3)

and limp→∞ n1/p = 1 for any n ∈Nwe see that limp→∞ ||x ||p = ||x ||∞.
The 1,2, and ∞ norms are the most important. We have

||x ||22 = x2
1 +·· ·+x2

n = xT x . (A.4)

Lemma A.7 (The Hölder inequality). We have for 1 ≤ p ≤∞ and x , y ∈R
n∑

i=1
|xi yi | ≤ ||x ||p ||y ||q , wher e

1

p
+ 1

q
= 1. (A.5)

Proof. We base the proof on properties of the exponential function. Recall that the exponen-
tial function is convex, i.e. with f (x) = ex we have the inequality

f (λx + (1−λ)y) ≤λ f (x)+ (1−λ) f (y) (A.6)

for every λ ∈ [0,1] and x, y ∈R.
If x = 0 or y = 0, there is nothing to prove. Suppose x , y , 0. Define u = x/||x ||p and

v = y/||y ||q . Then ||u||p = ||v ||q = 1. If we can prove that
∑

i |ui vi | ≤ 1, we are done because
then

∑
i |xi yi | = ||x ||p ||y ||q ∑

i |ui vi | ≤ ||x ||p ||y ||q . Since |ui vi | = |ui ||vi |, we can assume that
ui ≥ 0 and vi ≥ 0. Moreover, we can assume that ui > 0 and vi > 0 because a zero term
contributes no more to the left hand side than to the right hand side of (A.5). Let si , ti be such
that ui = e si /p , vi = e ti /q . Taking f (x) = ex ,λ = 1/p, 1−λ = 1/q , x = si and y = ti in (A.6) we
find

e si /p+ti /q ≤ 1

p
e si + 1

q
e ti .

But then∑
i
|ui vi | =

∑
i

e si /p+ti /q ≤ 1

p

∑
i

e si + 1

q

∑
i

e ti = 1

p

∑
i

up
i + 1

q

∑
i

v q
i = 1

p
+ 1

q
= 1.

This completes the proof of (A.5).

230

When p = 2 then q = 2 and the Hölder inequality is associated with the names Buniakowski-
Cauchy-Schwarz.

Lemma A.8 (The Minkowski inequality). We have for 1 ≤ p ≤∞ and x , y ∈R

||x + y ||p ≤ ||x ||p +||y ||p . (A.7)

Proof. Let u = (u1, . . . ,un) with ui = |xi + yi |p−1. Since q(p−1) = p and p/q = p−1, we find

||u||q = (
∑

i
|xi + yi |q(p−1))1/q = (

∑
i
|xi + yi |p)1/q = ||x + y ||p/q

p = ||x + y ||p−1
p .

Using this and the Hölder inequality we obtain

||x + y ||pp =∑
i
|xi + yi |p ≤∑

i
|ui ||xi |+

∑
i
|ui ||yi | ≤ (||x ||p +||y ||p)||u||q

≤ (||x ||p +||y ||p)||x + y ||p−1
p .

Dividing by ||x + y ||p−1
p proves Minkowski.

Using the Minkowski inequality it follows that the p norms satisfies the axioms for a vector
norm.

In (A.3) we established the inequality

||x ||∞ ≤ ||x ||p ≤ n1/p ||x ||∞, p ≥ 1.

More generally, we say that two vector norms || || and || ||′ are equivalent if there exists positive
constants µ and M such that

µ||x || ≤ ||x ||′ ≤ M ||x || (A.8)

for all x ∈Rn .

Theorem A.9. All vector norms on Rn are equivalent.

Proof. It is enough to show that a vector norm || || is equivalent to the l∞ norm, || ||∞. Let
x ∈Rn and let e i , i = 1, . . . ,n be the unit vectors in Rn . Writing x = x1e1 +·· ·+xnen we have

||x || ≤∑
i
|xi |||e i || ≤ ||x ||∞M , M =∑

i
||e i ||.

To find µ> 0 such that ||x || ≥ µ||x ||∞ for all x ∈ Rn is less elementary. Consider the func-
tion f given by f (x) = ||x || defined on the l∞ “unit ball”

S = {x ∈Rn : ||x ||∞ = 1}.

S is a closed and bounded set. From the inverse triangle inequality

| ||x ||− ||y || | ≤ ||x − y ||, x , y ∈Rn .

A.3. VECTOR SPACES OF FUNCTIONS 231

it follows that f is continuous on S. But then f attains its maximum and minimum on S, i.e.
there is a point x∗ ∈ S such that

||x∗|| = min
x∈S

||x ||.
Moreover, since x∗ is nonzero we have µ := ||x∗|| > 0. If x ∈Rn is nonzero then x = x/||x ||∞ ∈
S. Thus

µ≤ ||x || = || x

||x ||∞
|| = 1

||x ||∞
||x ||,

and this establishes the lower inequality.

It can be shown that for the p norms we have for any q with 1 ≤ q ≤ p ≤∞
||x ||p ≤ ||x ||q ≤ n1/q−1/p ||x ||p , x ∈Rn . (A.9)

<

A.3 Vector spaces of functions

In Rm we have the operations x + y and ax of vector addition and multiplication by a scalar
a ∈R. Such operations can also be defined for functions. As an example, if f (x) = x, g (x) = 1 ,
and a,b are real numbers then a f (x)+bg (x) = ax+b. In general, if f and g are two functions
defined on the same set I and a ∈ R, then the sum f + g and the product a f are functions
defined on I by

(f + g)(x) = f (x)+ g (x),

(a f (x) = a f (x).

Two functions f and g defined on I are equal if f (x) = g (x) for all x ∈ I . We say that f is the
zero function, i.e. f = 0, if f (x) = 0 for all x ∈ I .

Definition A.10. Suppose S is a collection of real valued or vector valued functions, all de-
fined on the same set I . The collection S is called a vector space if a f +bg ∈ S for all f , g ∈ S
and all a,b ∈R. A subset T of S is called a subspace of S if T itself is a vector space.

Example A.11. Vector spaces

• All polynomials πd of degree at most d .

• All polynomials of all degrees.

• All trigonometric polynomials a0 +
∑d

k=1(ak coskx +bk sinkx of degree at most d .

• The set C (I) of all continuous real valued functions defined on I .

• The set C r (I) of all real valued functions defined on I with continuous j ′th derivative for j = 0,1, . . . ,r .

Definition A.12. A vector space S is said to be finite dimesional if

S = span(φ1, . . . ,φn) = {
n∑

j=1
c jφ j : c j ∈R},

for a finite number of functions φ1, . . . ,φn in S. The functions φ1, . . . ,φn are said to span or
generate S.

232

Of the examples above the space πd = span(1, x, x2, . . . xd) generated by the monomials
1, x, x2, . . . xd is finite dimensional. Also the trigonometric polynomials are finite dimensional.
The space of all polynomials of all degrees is not finite dimensional. To see this we observe
that any finite set cannot generate the monomial xd+1 where d is the maximal degree of the
elements in the spanning set. Finally we observe that C (I) and C r (I) contain the space of
polynomials of all degrees as a subspace. Hence they are not finite dimensional,

If f ∈ S = span(φ1, . . . ,φn) then f =∑n
j=1 c jφ j for some c = (c1, . . . ,cn). Withφ= (φ1, . . . ,φn)T

we will often use the vector notation

f (x) =φ(x)T c (A.10)

for f .

A.3.1 Linear independence and bases

All vector spaces in this section will be finite dimensional.

Definition A.13. A set of functions φ = (φ1, . . . ,φn)T in a vector space S is said to be linearly
independent on a subset J of I ifφ(x)T c = c1φ1(x)+·· ·+cnφn(x) = 0 for all x ∈ J implies that
c = 0. If J = I then we simply say thatφ is linearly independent.

If φ is linearly independent then the representation in (A.10) is unique. For if f =φT c =
φT b for some c ,b ∈ Rn then f = φT (c − b) = 0. Since φ is linearly independent we have
c −b = 0, or c = b.

Definition A.14. A set of functions φT = (φ1, . . . ,φn) in a vector space S is a basis for S if the
following two conditions hold

1. φ is linearly independent.

2. S = span(φ).

Theorem A.15. The monomials 1, x, x2, . . . xd are linearly independent on any set J ⊂ R con-
taining at least d +1 distinct points. In particular these functions form as basis for πd .

Proof. Let x0, . . . , xd be d+1 distinct points in J , and let p(x) = c0+c1x+·· ·+cd xd = 0 for all x ∈
J . Then p(xi) = 0, for i = 0,1, . . . ,d . Since a nonzero polynomial of degree d can have at most
d zeros we conclude that p must be the zero polynomial. But then ck = p(k)(0)/k ! = 0 for k =
0,1, . . . ,d . It follows that the monomial is a basis for πd since they span πd by definition.

To prove some basic results about bases in a vector space of functions it is convenient to
introduce a matrix transforming one basis into another.

Lemma A.16. Suppose S and T are finite dimensional vector spaces with S ⊂ T , and let φ=
(φ1, . . . ,φn)T be a basis for S andψ= (ψ1, . . . ,ψm)T a basis for T . Then

φ= ATψ, (A.11)

for some matrix A ∈Rm,n . If f =φT c ∈ S is given then f =ψT b with

b = Ac . (A.12)

Moreover A has linearly independent columns.

A.3. VECTOR SPACES OF FUNCTIONS 233

Proof. Since φ j ∈ T there are real numbers ai , j such that

φ j =
m∑

i=1
ai , jψi , for j = 1, . . . ,n,

This equation is simply the component version of (A.11). If f ∈ S then f ∈ T and f =ψT b
for some b. By (A.11) we have φT = ψT A and f = φT c = ψT Ac or ψT b = ψT Ac . Since
ψ is linearly independent we get (A.12). Finally, to show that A has linearly independent
columns suppose Ac = 0. Define f ∈ S by f =φT c . By (A.11) we have f =ψT Ac = 0. But then
f =φT c = 0. Sinceφ is linearly independent we conclude that c = 0.

The matrix A in Lemma A.16 is called a change of basis matrix.
A basis for a vector space generated by n functions can have at most n elements.

Lemma A.17. Ifψ= (ψ1 . . . ,ψk)T is a linearly independent set in a vector space S = span(φ1, . . . ,φn),
then k ≤ n.

Proof. Withφ= (φ1, . . . ,φn)T we have

ψ= ATφ, for some A ∈Rn,k .

If k > n then A is a rectangular matrix with more columns than rows. From Corollary A.6
we know that the columns of such a matrix must be linearly dependent; I.e. there is some
nonzero c ∈Rk such that Ac = 0. But thenψT c =φT Ac = 0, for some nonzero c . This implies
thatψ is linearly dependent, a contradiction. We conclude that k ≤ n.

Lemma A.18. Every basis for a vector space must have the same number of elements.

Proof. Suppose φ = (φ1, . . . ,φn)T and ψ = (ψ1, . . . ,ψm)T are two bases for the vector space.
We need to show that m = n. Now

φ= ATψ, for some A ∈Rm,n ,

ψ= B Tφ, for some B ∈Rn,m .

By Lemma A.16 we know that both A and B have linearly independent columns. But then by
Corollary A.6 we see that m = n.

Definition A.19. The number of elements in a basis in a vector space S is called the dimen-
sion of S, and is denoted by dim(S).

The following lemma shows that every set of linearly independent functions in a vector
space S can be extended to a basis for S. In particular every finite dimensional vector space
has a basis.

Lemma A.20. A setφT = (φ1, . . . ,φk) of linearly independent elements in a finite dimensional
vector space S, can be extended to a basisψT = (ψ1, . . . ,ψm) for S.

234

Proof. Let Sk = span(ψ1, . . . ,ψk) where ψ j = φ j for j = 1, . . . ,k. If Sk = S then we set m = k
and stop. Otherwise there must be an element ψk+1 ∈ S such that ψ1, . . . ,ψk+1 are linearly
independent. We define a new vector space Sk+1 by Sk+1 = span(ψ1, . . . ,ψk+1). If Sk+1 = S
then we set m = k +1 and stop the process. Otherwise we continue to generate vector spaces
Sk+2,Sk+3, · · · . Since S is finitely generated we must by Lemma A.17 eventually find some m
such that Sm = S.

The following simple, but useful lemma, shows that a spanning set must be a basis if it
contains the correct number of elements.

Lemma A.21. Suppose S = span(φ). Ifφ contains dim(S) elements thenφ is a basis for S.

Proof. Let n = dim(S) and suppose φ= (φ1, . . . ,φn) is a linearly dependent set. Then there is
one element, say φn which can be written as a linear combination of φ1, . . . ,φn−1. But then
S = span(φ1, . . . ,φn−1) and dim(S) < n by Lemma A.17, a contradiction to the assumption that
φ is linearly dependent.

A.4 Normed Vector Spaces

Suppose S is a vector space of functions. A norm || || = || f ||, is a function ‖ ‖ : S → [0,∞) that
satisfies for f , g ,∈ S, and α ∈R the following properties

1. || f || = 0 implies f = 0.
2. ||α f || = |α||| f ||.
3. || f + g || ≤ || f ||+ ||g ||.

(A.13)

Property 3 is known as the Triangle Inequality. The pair (S, || ||) is called a normed vector
space (of functions).

In the rest of this section we assume that the functions in S are continuous, or at least
piecewise continuous on some interval [a,b].

Analogous to the p or `p norms for vectors inRn we have the p or Lp norms for functions.
They are defined for 1 ≤ p ≤∞ and f ∈ S by

|| f ||p = || f ||Lp [a,b] =
(∫ b

a | f (x)|p d x
)1/p

, p ≥ 1,

|| f ||∞ = || f ||L∞[a,b] = maxa≤x≤b | f (x)|.
(A.14)

The 1,2, and ∞ norms are the most important.
We have for 1 ≤ p ≤∞ and f , g ∈ S the Hölder inequality∫ b

a
| f (x)g (x)|d x ≤ || f ||p ||g ||q , wher e

1

p
+ 1

q
= 1, (A.15)

and the Minkowski inequality

|| f + g ||p ≤ || f ||p +||g ||p . (A.16)

For p = 2 (A.15) is known as the Schwarz inequality, the Cauchy-Schwarz inequality, or the
Buniakowski-Cauchy- Schwarz inequality.

	Why splines and B-splines?
	Convex combinations and convex hulls
	Stable computations
	The convex hull of a set of points
	Parametric curves
	Interpolating polynomial curves
	Quadratic interpolation of three points
	Interpolation by convex combinations?
	Bézier curves
	Quadratic Bézier curves
	Composite Bézier curves

	A geometric construction of spline curves
	Linear spline curves
	Quadratic spline curves
	Smoothness of spline curves
	Representing spline curves in terms of basis functions

	Conclusion
	Exercises
	Basic properties of splines and B-splines
	The recurrence relation for B-splines
	Some simple consequences of the recurrence relation
	Basic properties
	More examples of B-splines

	Linear combinations of B-splines
	Spline functions
	Spline curves

	A matrix representation of B-splines
	Algorithms for evaluating a spline
	High level description

	Exercises

	Further properties of splines
	Linear independence of B-splines and representation of polynomials
	Some properties of the B-spline matrices
	Marsden's identity and representation of polynomials
	Linear independence of B-splines

	Differentiation and smoothness of B-splines
	Piecewise smooth functions
	Derivatives of B-splines
	Computing derivatives of splines and B-splines
	Smoothness of B-splines
	The integral of a B-spline

	B-splines as a basis for piecewise polynomials
	Exercises

	Knot insertion
	The control polygon relative to different knot vectors
	Knot insertion
	Basic idea
	Conversion between B-spline polynomials
	Formulas and algorithms for knot insertion

	B-spline coefficients as functions of the knots
	The blossom
	B-spline coefficients as blossoms

	Inserting one knot at a time
	Bounding the number of sign changes in a spline
	Exercises

	Spline Approximation
	Local Approximation Methods
	Piecewise linear interpolation
	Cubic Hermite interpolation
	Estimating the derivatives

	Cubic Spline Interpolation
	Interpretations of cubic spline interpolation
	Numerical solution and examples

	General Spline Approximation
	Spline interpolation
	Least squares approximation

	The Variation Diminishing Spline Approximation
	Preservation of bounds on a function
	Preservation of monotonicity
	Preservation of convexity

	Parametric Spline Curves
	Definition of Parametric Curves
	Regular parametric representations
	Changes of parameter and parametric curves
	Arc length parametrisation

	Approximation by Parametric Spline Curves
	Definition of parametric spline curves
	The parametric variation diminishing spline approximation
	Parametric spline interpolation
	Assigning parameter values to discrete data
	General parametric spline approximation

	Tensor Product Spline Surfaces
	Explicit tensor product spline surfaces
	Definition of the tensor product spline
	Evaluation of tensor product spline surfaces

	Approximation methods for tensor product splines
	The variation diminishing spline approximation
	Tensor Product Spline Interpolation
	Least Squares for Gridded Data

	General tensor product methods
	Trivariate Tensor Product Methods
	Parametric Surfaces
	Parametric Tensor Product Spline Surfaces

	Quasi-interpolation methods
	A general recipe
	The basic idea
	A more detailed description

	Some quasi-interpolants
	Piecewise linear interpolation
	A 3-point quadratic quasi-interpolant
	A 5-point cubic quasi-interpolant
	Some remarks on the constructions

	Quasi-interpolants are linear operators
	Different kinds of linear functionals and their uses
	Point functionals
	Derivative functionals
	Integral functionals
	Preservation of moments and interpolation of linear functionals
	Least squares approximation
	Computation of integral functionals

	Alternative ways to construct coefficient functionals
	Computation via evaluation of linear functionals
	Computation via explicit representation of the local approximation

	Two quasi-interpolants based on point functionals
	A quasi-interpolant based on the Taylor polynomial
	Quasi-interpolants based on evaluation

	Exercises

	Approximation theory and stability
	The distance to polynomials
	The distance to splines
	The constant and linear cases
	The quadratic case
	The general case

	Stability of the B-spline basis
	A general definition of stability
	Stability of the B-spline basis, p=
	Stability of the B-spline basis, p<

	Convergence of the control polygon for spline functions
	Exercises

	Shape Preserving Properties of B-splines
	Bounding the number of zeros of a spline
	Uniqueness of spline interpolation
	Lagrange Interpolation
	Hermite Interpolation

	Total positivity

	Computing Zeros of Splines
	Counting zeros of the control polygon
	Root finding algorithm
	Convergence
	Rate of convergence
	Stability
	Implementation and numerical examples

	Some Linear Algebra
	Matrices
	Nonsingular matrices, and inverses.
	Determinants.
	Criteria for nonsingularity and singularity.
	Vector Norms
	Vector spaces of functions
	Linear independence and bases
	Normed Vector Spaces

