Solutions Ark2

From the book: Number 10, 11 and 12 on page 32.

Number 10 : Let A be a ring, \mathfrak{a} an ideal contained in the Jacobson radical of A; let M be an A-module and N a finitely generated A-module, and let $u : M \to N$ be homomorphism. If the induced homomorphism $M/\mathfrak{a}M \to N/\mathfrak{a}N$ is surjective, then u is surjective.

Solution: Let \bar{u} denote the induced homomorphism. Then $\text{Im}\, \bar{u} = \text{Im}(u + \mathfrak{a}N)/\mathfrak{a}N$ (since $\bar{u}(\bar{m}) = \bar{n}$ means that $u(m) - n \in \mathfrak{a}$). So if \bar{u} is surjective, $\text{Im}\, u + \mathfrak{a} = N$, and we can apply version 2.7 of *Nakayama’s* lemma and conclude that $\text{Im}\, u = N$, i.e., u is surjective. \blacksquare

Number 11 : Let A be a ring. Show that if $A^m \approx A^n$, then $m = n$. If $A^m \to A^n$ is surjective, then $m \geq n$. If $A^m \to A^n$ is injective, is it always true that $m \leq n$?

Solution: Let $m \subseteq A$ be a maximal ideal, and look at the induced map $(A/m)^m \to (A/m)^n$ which also is an isomorphism. Now A/m is a field, and the isomorphism is an isomorphism of finite dimensional vector spaces which consequently must have the same dimension. Hence $m = n$.

If the map $A^m \to A^n$ is surjective, it follows immediately that $(A/m)^m \to (A/m)^n$ is a surjective map between finite dimensional vector spaces, hence $m \geq n$.

The last one is in fact always true, but I do not know a proof that can be given at this stage of the course. **Warning:** There are several proofs on the web, but the ones I have checked are either flawed or incomplet.\blacksquare

Number 12 : Let M be a finitely generated A module and $\phi : M \to A^n$ a surjective homomorphism. Show that $\text{Ker}\, \phi$ is finitely generated.

Solution: Let e_1, \ldots, e_n be a basis for A^n and let u_i be elements in M with $\phi(u_i) = e_i$. We shall see that M is the direct sum of $\text{Ker}\, \phi$ and the submodule N generated by u_1, \ldots, u_n. This will do, because then there is projection map $M \to \text{Ker}\, \phi$ which is surjective, and images of the generators of M under this map will generate $\text{Ker}\, \phi$.

Now, $\text{Ker}\, \phi \cap N = 0$ for if $\phi(\sum a_iu_i) = \sum a_i e_i = 0$, it follows that each $a_i = 0$ since the e_i’s form a basis for A^n. On the other hand if $u \in M$ we may write $\phi(u) = \sum a_i e_i.$ Then $u - \sum a_iu_i \in \text{Ker}\, \phi$, so $M = N + \text{Ker}\, \phi$. And the two conditions $M = N + \text{Ker}\, \phi$ and $\text{Ker}\, \phi \cap N = 0$ are what we need to ensure M being the direct sum of N and $\text{Ker}\, \phi$. \blacksquare

Oppgave 1. Let A be a ring and let M, M', N and N' be four A-modules.
Show that \(\text{Hom}_A(M \oplus M', N) \cong \text{Hom}_A(M, N) \oplus \text{Hom}_A(M', N) \) and that \(\text{Hom}_A(M, N \oplus N') \cong \text{Hom}_A(M, N) \oplus \text{Hom}_A(M, N') \).

Solution: Let \(i : M \to M \oplus M' \) be the homorphism \(i(m) = (m, 0) \) and \(i' : M' \to M \oplus M' \) the one given by \(i'(m') = (0, m') \). Then we get a homorphism \(\phi \mapsto (\phi i, \phi i') \) from \(\text{Hom}_A(M \oplus M', N) \) to \(\text{Hom}_A(M, N) \oplus \text{Hom}_A(M', N) \).

It is injective since any element of \(M \oplus M' \) is of the form \((m, m') = i(m) + i'(m') \), so if both \(\phi(i) = 0 \) and \(\phi(i') = 0 \), it follows that \(\phi = 0 \).

On the other hand, if \(\phi : M \to N \) and \(\phi' : M' \to N \) are given, the map \(\Phi(m, m') = \phi(m) + \phi'(m') \) maps to the pair \((\phi, \phi') \).

The second part of the exercise is done in a similar manner, but using the projection maps \(\pi : M \oplus M' \to M \) and \(\pi' : M \oplus M' \to M' \) given by \(\pi(m, m') = m \) and \(\pi'(m, m') = m' \). They induce a map \(\phi \mapsto (\pi \phi, \pi' \phi) \) which one checks is an isomorphism.

Oppgave 2. If \(a \) and \(b \) are ideals in the ring \(A \) and \(a + b = A \), then \((b : a) = b \).

Solution: Since \(a + b = A \) there are elements \(a \in a \) and \(b \in b \) such that \(a + b = 1 \). So if \(fb \subseteq b \), then \(f = fa + fb \in b \). Hence \((b : a) \subseteq b \). The other inclusion is obvious (it follows from \(b \) being an ideal).

Oppgave 3. Show that we have \(\text{Hom}_A(A/a, A/b) = (b : a)/b \). Show further that \(\text{Hom}_A(A/(x)A, A) = \text{Ann}(x) \) for an element \(x \in A \).

Solution: An \(A \)-homomorphism \(\phi \) from \(A \) to any \(A \)-module is given by the element \(m = \phi(1) \in M \); indeed \(\phi(a) = a\phi(1) = am \) since \(\phi \) is \(A \)-linear. There is no restriction on \(m \), any element in \(M \) gives a homomorphism.

An \(A \)-homomorphism \(\phi \) from \(A/a \) to \(M \) is also given by \(m = \phi(\bar{1}) \), because \(\phi(a) = a\phi(1) \). But now there are conditions on \(m \). Since \(\bar{a} = 0 \) whenever \(a \in a \), we must have \(a\phi(\bar{1}) = 0 \) for all \(a \in a \). From the fundamental theorem on quotients, it follows that this is the only condition. Hence \(\text{Hom}_A(A/a, M) \approx \{ m \in M \mid am = 0 \} \).

Putting \(M = A/b \), we we have \(\text{Hom}_A(A/a, A/b) \approx \{ y \in A/b \mid ay = 0 \} = \{ x \mid x \in A \text{ and } a\bar{x} \in b \} = (b : a)/b \).

Oppgave 4. If \(a \) and \(b \) are two comaximal ideals, then \(\text{Hom}_A(A/a, A/b) = 0 \).

Solution: This follows directly from the two previous exercises: We have \((b, a) = b \) and therefore \(\text{Hom}_A(A/a, A/b) = (b : a)/b = 0 \).

Oppgave 5. Determine \(\text{Hom}_\mathbb{Z}(\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \), \(\text{Hom}_\mathbb{Z}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/8\mathbb{Z}) \) and \(\text{Hom}_\mathbb{Z}(\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/8\mathbb{Z}) \).
SOLUTION: We use the previous exercise:

Hom\(_{\mathbb{Z}}(\mathbb{Z}/8\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \approx \mathbb{Z}/2\mathbb{Z}\) because any element in \(\mathbb{Z}/2\mathbb{Z}\) is killed by 8. Furthermore, Hom\(_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/8\mathbb{Z}) \approx 4\mathbb{Z}/8\mathbb{Z}\), i.e., the ideal generated by 4 in \(\mathbb{Z}/8\mathbb{Z}\), this because any integer \(x\) such that \(2x\) is divisible by 8 must be divisible by 4.

Finally, Hom\(_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/8\mathbb{Z}) \approx 2\mathbb{Z}/8\mathbb{Z}\), i.e., the ideal generated by 2 in \(\mathbb{Z}/8\mathbb{Z}\), again because if \(4x\) is divisible by 8 for an integer \(x\), then \(x\) is divisible by 2. □

OPPGAVE 6. What is Hom\(_{\mathbb{Z}}(\mathbb{Z}/55\mathbb{Z},\mathbb{Z}/121\mathbb{Z})\)? What about Hom\(_{\mathbb{Z}}(\mathbb{Z}/55\mathbb{Z},\mathbb{Z}/565\mathbb{Z})\)?

SOLUTION: We have \(55 = 5 \times 11\) and \(121 = 11^2\). Hence \(\mathbb{Z}/55\mathbb{Z} = \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/11\mathbb{Z}\), We get Hom\(_{\mathbb{Z}}(\mathbb{Z}/55\mathbb{Z},\mathbb{Z}/121\mathbb{Z}) = \text{Hom}_{\mathbb{Z}}(\mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/11\mathbb{Z},\mathbb{Z}/121\mathbb{Z}) = \text{Hom}_{\mathbb{Z}}(\mathbb{Z}/5\mathbb{Z},\mathbb{Z}/121\mathbb{Z}) \oplus \text{Hom}_{\mathbb{Z}}(\mathbb{Z}/11\mathbb{Z},\mathbb{Z}/121\mathbb{Z})\) since 5 and 11 are relatively prime.

Now Hom\(_{\mathbb{Z}}(\mathbb{Z}/11\mathbb{Z},\mathbb{Z}/121\mathbb{Z}) \approx 11\mathbb{Z}/121\mathbb{Z} \approx \mathbb{Z}/11\mathbb{Z}\) since an integer \(x\) with \(11x\) divisible by 121 must be divisible by 11. □

OPPGAVE 7. If \(k\) is a field, then Hom\(_k(k^n, k^m) \approx M_{n,m}(k)\) where \(M_{n,m}(k)\) stands for the vectorspace of \(m \times n\)-matrices with entries in \(k\).

SOLUTION: This is just linear algebra! □

OPPGAVE 8. Determine Hom\(_{\mathbb{Z}}(\mathbb{Z}[i],\mathbb{Z}[i])\) and Hom\(_{\mathbb{Z}[i]}(\mathbb{Z}[i],\mathbb{Z}[i])\).

SOLUTION: In general it is true that for a ring \(A\) and an \(A\)-module \(M\) we have Hom\(_{A}(A, M) \approx M\). The isomorphism is given by sending \(\phi\) to \(\phi(1)\) (this is certainly a very natural isomorphism and merits to be called "canonical"). That the homomorphism \(\phi\) is determined by \(\phi(1)\) follows since \(\phi\) being \(A\)-linear gives \(\phi(a) = a\phi(1)\). On the other hand, posing \(\phi(a) = am\) gives a homomorphism, for any choice of \(m\) from \(M\). Hence Hom\(_{\mathbb{Z}[i]}(\mathbb{Z}[i],\mathbb{Z}[i]) \approx \mathbb{Z}[i]\).

For the other homomorphism group — Hom\(_{\mathbb{Z}}(\mathbb{Z}[i],\mathbb{Z}[i]) — we are looking at \(\mathbb{Z}\)-module homomorphisms, i.e., group homomorphism (so we are ignoring the multiplicative structure on \(\mathbb{Z}[i]\)). As an abelian group \(\mathbb{Z}[i]\) is free of rank two, i.e., \(\mathbb{Z}[i] \approx \mathbb{Z}^2\). Hence Hom\(_{\mathbb{Z}}(\mathbb{Z}[i],\mathbb{Z}[i]) \approx \mathbb{Z}^4\). (By oppgave 1 above and the remark at the beginning of this exercise.)

One may identify Hom\(_{\mathbb{Z}[i]}(\mathbb{Z}[i],\mathbb{Z}[i])\) with the subgroup of Hom\(_{\mathbb{Z}}(\mathbb{Z}[i],\mathbb{Z}[i])\) consisting of those additive (i.e., \(\mathbb{Z}\)-linear) maps which also respects the multiplication. It is easy to see that an additive map \(\phi\) is among the multiplicative ones if and only if \(\phi(i) = i\phi(1)\).

One may identify Hom\(_{\mathbb{Z}}(\mathbb{Z}[i],\mathbb{Z}[i])\) with the additive group of \(2 \times 2\) matrices with entries in \(\mathbb{Z}\) (which is also a ring, with multiplication corresponding to composition of
maps), i.e., with the set of matrices
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
with \(a, b, c\) and \(d\) in \(\mathbb{Z}\).

The subgroup (or even subring) of matrices corresponding to maps in \(\text{Hom}_{\mathbb{Z}[i]}(\mathbb{Z}[i], \mathbb{Z}[i])\) are the ones of the form
\[
\begin{pmatrix}
a & b \\
-b & a
\end{pmatrix}
\]
with \(a\) and \(b\) \(\in\) \(\mathbb{Z}\).

Oppgave 9. Let \(K\) be a field and let \(A \subset K\) be a local ring which is not a field. Show that \(K\) can not be a finitely generated \(A\)-module.

Let \(B \subset K\) be a ring which is not a field. Show that \(K\) is not finitely generated as an \(B\)-module (HINT: If \(m \subset B\) is a maximal ideal, let \(A = \{a/b \mid b \not\in m\}\). Show that \(A\) is a local ring with maximal ideal \(mA\). This is a special case of a general construction we shall do later on).

Solution: This is an application of Nakayama’s lemma. If \(A\) is a local ring which is not a field, it has a non-zero maximal ideal \(m\). And clearly \(mK = K\) since non-zero elements in \(K\) are invertible. If \(K\) were finitely generated over \(A\), Nakayama would tell us that \(K = 0\) which is not the case.

In the second part, let \(m\) be a maximal ideal in \(A\) and replace \(A\) by the localisation \(A_m\).

Oppgave 10. Let \(M\) be a finitely generated \(A\)-module and \(\phi : M \rightarrow M\) a \(A\)-homomorphism. If \(\phi\) is surjective, then \(\phi\) is an isomorphism. (HINT: Regard \(M\) as a module over the polynomial ring \(A[X]\) by letting \(X\) act on \(M\) as \(\phi\), i.e., \(Xm = \phi(m)\) for \(m \in M\). Then use Corollary 2.5 with \(a = (X)A[X]\).)

Solution: As hinted, we regard \(M\) as a module over the ring of polynomials \(A[X]\), by letting \(Xm := \phi(m)\). (Hence a polynomial \(\sum a_iX^i\) acts as \((\sum a_iX^i).m = \sum a_i\phi^i(m)\).) Certainly \(M\) is finitely generated over \(A[X]\) — generators over \(A\) are also generators over the bigger ring.

Furthermore let \(a = (X)A[X]\). Since \(\phi\) is surjective, \(XM = M\) and thence \(aM = M\). By version 2.5 of Nakayama, we can find an element \(x\) killing \(M\) with \(x \equiv 1 \mod a\), that is \(x = 1 + P(X)X\) for some polynomial \(P(X)\). But as \(xM = 0\), it follows that \(id_M = -P(\phi)\phi\), and consequently \(-P(\phi)\) is an inverse map to \(\phi\).

Oppgave 11. Use Zorn’s lemma to show that any finitely generated module has a maximal, proper submodule. Use this to give another proof of Nakayama’s lemma.
Give an example of a module — necessarily not finitely generated — without maximal, proper submodules.

Solution: Let \(\{ M_i \}_{i \in I} \) be an ascending chain of proper submodules (which are not necessarily finitely generated). We shall see that the union \(\bigcup_{i \in I} M_i \) is a proper submodule.

Indeed, assume \(M = \bigcup_{i \in I} M_i \) and let \(m_1, \ldots, m_r \) be generators for \(M \). Then each \(m_i \) lies in \(M_{\rho(i)} \) for some \(i \in I \), and hence in \(M_j \) for \(j \geq \rho(i) \) as the chain is ascending. One of the \(M_i \)'s therefore contains all of the generators \(m_i \). This is not the case since all the \(M_i \)'s were supposed to be proper submodules, and the union is a proper submodule.

By Zorn’s lemma we conclude that there exists a maximal, proper submodule.

To derive Nakayama from this, let \(N \) be such a maximal, proper submodule. Pick an \(e \in M \) but \(e \notin N \). Now the module \(<e> = Ae \) generated by \(e \), contains \(e \) and hence is not contained in \(N \). Since \(N \) is maximal, proper, it follows that \(M = Ae + N \). If now \(aM = M \), we get \(e = ae + n \) for some \(a \in \mathfrak{a} \) and some \(n \in N \). Thus \((1-a)e \in N \), and as \(a \) is contained in the Jacobson-radical, \((1-a) \) is invertible, and \(e \in N \). Contradiction. \(\square \)

Oppgave 12. The aim of this exercise is to investigate the behavior of a prime ideal \((p)\mathbb{Z}\) when extend to the ring of Gaussian integers \(\mathbb{Z}[i] \). Throughout the exercise \(p \) will be a prime.

Recall that \(\mathbb{Z}[X]/(X^2 + 1) \cong \mathbb{Z}[i] \) with \(X \) corresponding to \(i \).

a) Show that \(\mathbb{Z}[i]/(p)\mathbb{Z}[i] \cong \mathbb{F}_p[X]/(X^2 + 1) \) with \(X \) corresponding to \(i \). (Hint: Both are isomorphic to \(\mathbb{Z}[X]/(p, X^2 + 1) \).)

Solution: The map \(\phi : \mathbb{Z}[X] \to \mathbb{Z}[i] \) given by \(X \mapsto i \), identifies \(\mathbb{Z}[i] \) with the quotient \(\mathbb{Z}[X]/(x^2 + 1) \). Now \(\phi^{-1}(p\mathbb{Z}[i]) = (p, X^2 + 1) \). Hence \(\mathbb{Z}[i]/p\mathbb{Z}[i] \cong \mathbb{Z}[X]/(p, X^2 + 1) \). On the other hand \(\mathbb{Z}[X]/(p, X^2 + 1) \approx \mathbb{F}_p[X]/(x^2 + 1) \) as \(\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \). \(\square \)

There are three cases:

i) **The case \(p = 2 \).**

In this case show that \(X^2 + 1 = (X + 1)^2 \) in \(\mathbb{F}_2[X] \) and hence the equality \((2) = (i + 1)^2 \) of ideals in \(\mathbb{Z}[i] \). (Which one of course also can see directly).

Solution: Over \(\mathbb{F}_2 \) we have \((X + 1)^2 = X^2 + 2X + 1 = X^2 = 1 \) since \(2 = 0 \) in \(\mathbb{F}_2 \). The map \(\mathbb{Z}[i]/2\mathbb{Z}[i] \to \mathbb{F}_2[X]/((X+1)^2) \mathbb{F}_2[X] \) where \(i \mapsto X \) shows that \((2)\mathbb{Z}[i] = (i+1)^2\mathbb{Z}[i] \). (Or directly, using that \((1+i)^2 = 2i \); \((i+1)^2\mathbb{Z}[i] = (2i)\mathbb{Z}[i] = (2)\mathbb{Z}[i] \) since \(i \) is invertible in \(\mathbb{Z}[i] \). \(\square \)

ii) **The case when \(-1\) is square mod \(p \).**

— 5 —
Then the polynomial \(X^2 + 1 \) has a root in \(\mathbb{F}_p \), say the residue class \(\bar{n} \) of an integer \(n \). Hence \(X^2 + 1 = (X - \bar{n})(X + \bar{n}) \). Show that \((p)[i] = (i - n, p) \cap (i + n, p) \) and that those two ideals both are prime.

Solution: In this case we have the equality \((X^2 + 1)\mathbb{F}_p[X] = (X - \bar{n})\mathbb{F}_p[X] \cap (X + \bar{n})\mathbb{F}_p[X]\) of ideals in \(\mathbb{F}_p[X] \), so the \((p, X^2 + 1)\mathbb{Z}[X] = (p, X - n)\mathbb{Z}[X] \cap (p, X + n)\mathbb{Z}[X]\) and thus \((p)[i] = (p, X - n)\mathbb{Z}[i] \cap (p, X + n)\mathbb{Z}[i]\).

The ideal \((p, X - n)\) is prime, because

\[\mathbb{Z}[i]/(p, X - n) \approx \mathbb{Z}[X]/(p, X^2 + 1, X - n) \approx \mathbb{F}_p[X]/(X^2 + 1, X - \bar{n}) \approx \mathbb{F}_p \]

since \(X^2 + 1 = (X - \bar{n})(X + \bar{n}) \) in \(\mathbb{F}_p[X] \). Now \(\mathbb{F}_p \) is a field and hence \((p, X - n)\) is a maximal ideal.

iii) **The case \(-1\) is not a square mod \(p\).**

In this case \(X^2 + 1 \) is irreducible in \(\mathbb{F}_p[X] \) and \((X^2 + 1)\) is a prime ideal. Use this to show that \((p)[i] X \) is prime.

Solution: Since \(\mathbb{Z}[X]/(p)[i] \approx \mathbb{F}_p[X]/(X^2 + 1), \) and the latter is an integral domain since \(X^2 + 1 \) is irreducible in \(\mathbb{F}_p[X] \), it follows that \((p)[i] \) is prime. (In fact both ideals are maximal).

iv) Here we go further and analyse when cases ii) and iii) occure, i.e., we shall give a criterion for a prime, which we assume different from 2, to have the property that \(-1\) is a square mod \(p\). Recall that \(\mathbb{F}_p^* \) denotes the multiplicative group of non zero elements in the finite field \(\mathbb{F}_p \), and that this group is cyclic of order \(p - 1 \). (Every finite subgroup of the group of units in field is cyclic. This is a theorem).

Let \(\sigma : \mathbb{F}_p^* \to \mathbb{F}_p^* \) be the map sending \(x \) to \(x^\frac{p-1}{2} \), and let \(\tau \) be the one sending \(x \) to \(x^\frac{p-1}{2} \). Show that there is an exact sequence

\[
\begin{array}{c}
1 \longrightarrow \{\pm 1\} \longrightarrow \mathbb{F}_p^* \xrightarrow{\sigma} \mathbb{F}_p^* \xrightarrow{\tau} \mathbb{F}_p^* \xrightarrow{\tau} \mathbb{F}_p^* \\
\end{array}
\]

meaning that the kernel \(\text{Ker} \sigma = \{\pm 1\} \) and that \(\text{Ker} \tau = \text{Im} \sigma \). Conclude that \(-1\) is a square mod \(p\) if and only if \((p - 1)/2\) is even, i.e., \(p \equiv 1 \mod 4\).

Solution: One has \(\tau \sigma = 1 \) (we are working with multiplicative, abelian groups, and the constant homomorphism \(x \mapsto 1 \) plays the role as the “zero” map), since

\[
(x^2)^\frac{p-1}{2} = x^{p-1} = 1 \quad \text{— taken into account that} \quad \mathbb{F}_p^* \quad \text{is cyclic of order} \quad p - 1.
\]

In a field the equation \(X^2 - 1 = 0 \) has only \(\pm 1 \) solutions, hence \(\text{Ker} \sigma = \{\pm 1\} \).

Now \(\tau(t) \neq 1 \) since the order of \(\mathbb{F}_p^* \) is \(p - 1 \) and \(\not= \frac{p-1}{2} \). Clearly it takes values in \(\{\pm 1\} \), so the kernel has order \(\frac{p-1}{2} \). But this is exactly the order of \(\text{Im} \sigma \), since \(|\text{Im} \sigma| = |\mathbb{F}_p^*|/|\text{Ker} \sigma| = (p - 1)/2 \). Consequently, \(\text{Im} \sigma = \text{Ker} \tau \).