UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT4200 - Commutative algebra
Day of examination: Monday 5 December 2016
Examination hours: 14:30-18:30
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

If p is a prime number, we denote by $\mathbb{F}_{p}:=\mathbb{Z} /(p)$ the finite field with p elements.

1a

Show that the ring $\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$ is a field, but that $\mathbb{F}_{3}[X] /\left(X^{3}+X+1\right)$ is not.

1b

Consider the ideal $\mathfrak{p}:=\left(X^{3}+X+1\right) \subset \mathbb{F}_{2}[X]$. Explain why the localized ring $\mathbb{F}_{2}[X]_{\mathfrak{p}}$ is a discrete valuation ring. Find an element in the field of rational functions $\mathbb{F}_{2}(X)$ that has valuation equal to -1 .

1c
Write $\mathbb{F}_{3}[X] /\left(X^{3}+X+1\right)$ as a product of local Artinian rings. (Hint: Factor $X^{3}+X+1$ in $\mathbb{F}_{3}[X]$.)

Problem 2

Consider the graded polynomial ring $A:=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ where k is a field. Recall that the Hilbert polynomial of A is equal to $h_{A}(n)=\binom{n+3}{3}$.

2a
Set $M:=A /\left(x_{1} x_{3}-x_{2}^{2}\right)$. Then M is a graded A-module. Explain why its Hilbert polynomial is equal to $h_{M}(n)=\binom{n+3}{3}-\binom{n+1}{3}$. For which n does $\operatorname{dim}_{k} M_{n}=h_{M}(n)$ hold?

2b

Set $N:=A /\left(x_{1} x_{3}-x_{2}^{2}, x_{0} x_{2}-x_{1}^{2}\right)$. Find the Hilbert polynomial of this graded A-module.

Problem 3

Let k be a field and set $A:=k[x, y, z]$. Consider the ideals $\mathfrak{a}:=$ $\left(x z, y z, z^{2}, x^{3}\right)$ and $\mathfrak{b}:=\left(x^{3}, z\right)$.

3a
Show that \mathfrak{b} is a primary ideal, and find its radical.

3b

Show that $\left(x, y, z^{2}\right) \cap \mathfrak{b}$ is a minimal primary decomposition of \mathfrak{a}. Find the prime ideals belonging to \mathfrak{a}. Which is minimal and which is embedded? Can you find a different minimal primary decomposition of \mathfrak{a} ?

Problem 4

Let A be a ring, B an A-algebra, and M a B-module. The A-derivations from B to M is the set

$$
\operatorname{Der}_{A}(B, M):=\left\{D \in \operatorname{Hom}_{A}(B, M) \mid D\left(b b^{\prime}\right)=b D\left(b^{\prime}\right)+b^{\prime} D(b), \forall b, b^{\prime} \in B\right\} .
$$

4a

Let $\varphi: C \rightarrow B$ be a homomorphism of A-algebras. Recall that φ defines, by restriction of scalars, a C-module structure on M; denote this C-module by $M_{[\varphi]}$. Show that there is a natural homomorphism of A-modules

$$
\Phi: \operatorname{Der}_{A}(B, M) \rightarrow \operatorname{Der}_{A}\left(C, M_{[\varphi]}\right) .
$$

4b

Show that Φ is injective if φ is surjective. Explain why $\operatorname{Der}_{A}(B, M)$ is a B-module.

4c
Assume $A=k$ is a field and that $B=M=k[x, y]$ is the polynomial ring in two variables with coefficients in k. Find two elements of $\operatorname{Der}_{k}(k[x, y], k[x, y])$ that generate it as a $k[x, y]$-module.

