Exercises, MAT 4200

Exercise 1

Let $R=\mathbb{Z}[i \sqrt{5}]=\{a+i b \sqrt{5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$.
a) Show that the map

$$
\mathbb{Z}[X] /\left(X^{2}+5\right) \simeq \mathbb{Z}[i \sqrt{5}]
$$

given by $X \mapsto i \sqrt{5}$ is an isomorphism of rings.
b) Show that $2 \cdot 3=(1+i \sqrt{5})(1-i \sqrt{5})$ and that the four numbers involved are irreducible in $\mathbb{Z}[i \sqrt{5}]$. Remember that an element in a ring is irreducible if it cannot be written as a product of two non-units. It follows that the ring $\mathbb{Z}[i \sqrt{5}]$ is not a UFD.
c) Show that $\mathfrak{a}=(2,1+i \sqrt{5}) \subset \mathbb{Z}[i \sqrt{5}]$ is a maximal ideal, and show that $\mathfrak{a}^{2}=(2)$. Compute the radical $r\left(\mathfrak{a}^{2}\right)$.
d) Show that the ring R is normal.

Exercise 2

Recall Nakayamas Lemma: If M is a finitely-generated module over a ring R such that $J \cdot M=M$, where J is the Jcaobson radical of R, then $M=0$.
a) Let K be a field and $A \subset K$ a non-trivial local ring. Show that K can not be a finitely generated A-modul.
b) Let k be a field and $R=k[x, y]$. Let $I=(x, y)^{n}$ for some $n \geq 1$. Let $f: I \rightarrow I$ be a surjective R-linear endomorphism. Show that f is an isomorphism.
c) Let S be a multiplicatively closed subset of the ring R and let M be a finitely generated R-module. Prove that $S^{-1} M=0$ if and only if there exists $s \in S$ such that $s M=0$.
d) Let \mathfrak{a} be an ideal of R, and let $S=1+\mathfrak{a}$. Show that S is multiplicatively closed and that $S^{-1} \mathfrak{a}$ is contained in the Jacobson radical of $S^{-1} R$.
e) Use exercises c) and d) to prove the following statement: If M is a finitely generated R-module and \mathfrak{a} an ideal of R such that $\mathfrak{a} M=M$, then there exists $x \equiv 1(\bmod \mathfrak{a})$ such that $x M=0$.

Exercise 3

Let $n \in \mathbb{Z}$ be an integer and let S be the multiplicatively closed set $S=\{m \in$ $\mathbb{Z} \mid(m, n)=1\}$. We denote the ring $S^{-1} \mathbb{Z}$ by $\mathbb{Z}_{(n)}$. If p is a prime, then $\mathbb{Z}_{(p)}$ is the ring \mathbb{Z} localised at the prime ideal (p). This is a local ring with maximal ideal (p).
a) Let $n=6$, and show that $\mathbb{Z}_{(6)}$ has two maximal ideals, namely $\mathfrak{m}_{1}=(3) \mathbb{Z}_{(6)}$ and $\mathfrak{m}_{2}=(2) \mathbb{Z}_{(6)}$.
b) Show that $\mathbb{Z}_{(6)} / \mathfrak{m}_{1} \simeq \mathbb{F}_{3}$ and that $\mathbb{Z}_{(6)} / \mathfrak{m}_{2} \simeq \mathbb{F}_{2}$. Remember that \mathbb{F}_{p} is the unique field with p elements.
c) What is the Jacobson radical \mathcal{R} of $\mathbb{Z}_{(6)}$? Describe $\mathbb{Z}_{(6)} / \mathcal{R}$.
d) In general, for any $n \in \mathbf{Z}$, show that $\mathbb{Z}_{(n)}$ is a semilocal ring, i.e. a ring with only finitely many ideals. Describe the maximal ideals ant their residue fields.

Exercise 4

a) Show that $\mathbb{Z} /(m) \otimes_{\mathbb{Z}} \mathbb{Z} /(n) \cong \mathbb{Z} /(d)$, where d is the greatest common divisor of m and n. In particular $\mathbb{Z} /(m) \otimes_{\mathbb{Z}} \mathbb{Z} /(n)=0$ if m and n are relative prime.
b) Prove that if M and N are flat R-modules, then $M \otimes_{A} N$ is a flat R-module.
c) Let V be a finite dimensional vector space over a field k. The dual V^{*} of V is the vector space of linear functionals on V with pointwise addition and multiplication. Consider the natural map

$$
\phi: V^{*} \otimes_{k} V \rightarrow \operatorname{End}_{k}(V)
$$

given by $\phi(\alpha \otimes v)(w)=\alpha(v) w$, where $\alpha \in V^{*}$, and $v, w \in V$. Show that ϕ is an isomorphism.
d) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for a vector space V, and $\left\{f_{1}, \ldots, f_{m}\right\}$ a basis for a vector space W. Write up a basis the vector space $V \otimes_{k} W$. What is its dimension over k ?

Exercise 5

a) Let $x \in R$ be a nilpotent element. Show that $1+x$ is a unit in R.
b) Let $R=k[x, y] / \mathfrak{a}$, where k is a field, and $\mathfrak{a}=(x y)$. Describe the set $\operatorname{Spec}(R)$ of prime ideals of R, and give an geometrical interpretation of the set of maximal elements.
c) Let R be as in b) and let $\psi: k[x] \rightarrow R$ be the obvious morphism. Let \mathfrak{p} be a non-trivial prime ideal of $k[x]$. The fiber at \mathfrak{p} of the induced map $\operatorname{Spec}(R) \rightarrow \operatorname{Spec}(k[x])$ is the set of prime ideals $\mathfrak{q} \subset R$ such that $\psi^{-1}(\mathfrak{q})=\mathfrak{p}$. Describe the fiber at $\mathfrak{p}=(x-a)$ in the two cases $a=0$ and $a \neq 0$.
d) Let k be a field, and set $R=k[X, Y] / \mathfrak{b}$, where $\mathfrak{b}=\left(Y^{2}-X^{2}-X^{3}\right)$. Let x, y be the residues of X, Y in R. Prove that R is a domain, but not a field. Set $t=\frac{x}{y} \in \operatorname{Frac}(R)$. Prove that $k[t]$ is the integral closure of R in $\operatorname{Frac}(R)$.

