Exercises, MAT 4200

Exercise 1

Let $R = \mathbb{Z}[i\sqrt{5}] = \{a + ib\sqrt{5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$.

a) Show that the map

$$\mathbb{Z}[X]/(X^2+5) \simeq \mathbb{Z}[i\sqrt{5}]$$

given by $X \mapsto i\sqrt{5}$ is an isomorphism of rings.

- b) Show that $2 \cdot 3 = (1 + i\sqrt{5})(1 i\sqrt{5})$ and that the four numbers involved are irreducible in $\mathbb{Z}[i\sqrt{5}]$. Remember that an element in a ring is irreducible if it cannot be written as a product of two non-units. It follows that the ring $\mathbb{Z}[i\sqrt{5}]$ is not a UFD.
- c) Show that $\mathfrak{a} = (2, 1 + i\sqrt{5}) \subset \mathbb{Z}[i\sqrt{5}]$ is a maximal ideal, and show that $\mathfrak{a}^2 = (2)$. Compute the radical $r(\mathfrak{a}^2)$.
- d) Show that the ring R is normal.

Exercise 2

Recall Nakayamas Lemma: If M is a finitely-generated module over a ring R such that $J \cdot M = M$, where J is the Jcaobson radical of R, then M = 0.

- a) Let K be a field and $A \subset K$ a non-trivial local ring. Show that K can not be a finitely generated A-modul.
- b) Let k be a field and R = k[x, y]. Let $I = (x, y)^n$ for some $n \ge 1$. Let $f: I \to I$ be a surjective R-linear endomorphism. Show that f is an isomorphism.
- c) Let S be a multiplicatively closed subset of the ring R and let M be a finitely generated R-module. Prove that $S^{-1}M=0$ if and only if there exists $s \in S$ such that sM=0.
- d) Let \mathfrak{a} be an ideal of R, and let $S=1+\mathfrak{a}$. Show that S is multiplicatively closed and that $S^{-1}\mathfrak{a}$ is contained in the Jacobson radical of $S^{-1}R$.
- e) Use exercises c) and d) to prove the following statement: If M is a finitely generated R-module and $\mathfrak a$ an ideal of R such that $\mathfrak a M = M$, then there exists $x \equiv 1 \pmod{\mathfrak a}$ such that xM = 0.

Exercise 3

Let $n \in \mathbb{Z}$ be an integer and let S be the multiplicatively closed set $S = \{m \in \mathbb{Z} \mid (m,n)=1\}$. We denote the ring $S^{-1}\mathbb{Z}$ by $\mathbb{Z}_{(n)}$. If p is a prime, then $\mathbb{Z}_{(p)}$ is the ring \mathbb{Z} localised at the prime ideal (p). This is a local ring with maximal ideal (p).

- a) Let n=6, and show that $\mathbb{Z}_{(6)}$ has two maximal ideals, namely $\mathfrak{m}_1=(3)\mathbb{Z}_{(6)}$ and $\mathfrak{m}_2=(2)\mathbb{Z}_{(6)}$.
- b) Show that $\mathbb{Z}_{(6)}/\mathfrak{m}_1 \simeq \mathbb{F}_3$ and that $\mathbb{Z}_{(6)}/\mathfrak{m}_2 \simeq \mathbb{F}_2$. Remember that \mathbb{F}_p is the unique field with p elements.
- c) What is the Jacobson radical \mathcal{R} of $\mathbb{Z}_{(6)}$? Describe $\mathbb{Z}_{(6)}/\mathcal{R}$.
- d) In general, for any $n \in \mathbf{Z}$, show that $\mathbb{Z}_{(n)}$ is a semilocal ring, i.e. a ring with only finitely many ideals. Describe the maximal ideals and their residue fields.

Exercise 4

- a) Show that $\mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n) \cong \mathbb{Z}/(d)$, where d is the greatest common divisor of m and n. In particular $\mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n) = 0$ if m and n are relative prime.
- b) Prove that if M and N are flat R-modules, then $M \otimes_A N$ is a flat R-module.

c) Let V be a finite dimensional vector space over a field k. The dual V^* of V is the vector space of linear functionals on V with pointwise addition and multiplication. Consider the natural map

$$\phi: V^* \otimes_k V \to End_k(V)$$

given by $\phi(\alpha \otimes v)(w) = \alpha(v)w$, where $\alpha \in V^*$, and $v, w \in V$. Show that ϕ is an isomorphism.

d) Let $\{e_1, \ldots, e_n\}$ be a basis for a vector space V, and $\{f_1, \ldots, f_m\}$ a basis for a vector space W. Write up a basis the vector space $V \otimes_k W$. What is its dimension over k?

Exercise 5

- a) Let $x \in R$ be a nilpotent element. Show that 1 + x is a unit in R.
- b) Let $R = k[x, y]/\mathfrak{a}$, where k is a field, and $\mathfrak{a} = (xy)$. Describe the set $\operatorname{Spec}(R)$ of prime ideals of R, and give an geometrical interpretation of the set of maximal elements.
- c) Let R be as in b) and let $\psi: k[x] \to R$ be the obvious morphism. Let \mathfrak{p} be a non-trivial prime ideal of k[x]. The fiber at \mathfrak{p} of the induced map $Spec(R) \to Spec(k[x])$ is the set of prime ideals $\mathfrak{q} \subset R$ such that $\psi^{-1}(\mathfrak{q}) = \mathfrak{p}$. Describe the fiber at $\mathfrak{p} = (x a)$ in the two cases a = 0 and $a \neq 0$.
- d) Let k be a field, and set $R = k[X,Y]/\mathfrak{b}$, where $\mathfrak{b} = (Y^2 X^2 X^3)$. Let x,y be the residues of X,Y in R. Prove that R is a domain, but not a field. Set $t = \frac{x}{y} \in \operatorname{Frac}(R)$. Prove that k[t] is the integral closure of R in $\operatorname{Frac}(R)$.