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Notation

N “ t1, 2, 3, . . . u is the set of positive integers.

Ă means ‘is subset of’, i.e., the same thing as Ď

All rings are commutative with 1.

Ring maps are required to send 1 to 1.

The zero ring is not an integral domain (and therefore not a field).

For a ring A, we write Ap and Ax for the localizations in the multiplicative sets S “ A´ p
and S “ t1, x, x2, . . . u respectively. Thus Zp “ Zr 1

p
s and Zppq “ ta

b
| p ∤ bu.

A ’map’ is a morphism in the relevant category, e.g., a ’map of rings’ is ring homomorphism.

We will occasionally write A “ B if there is a canonical isomorphism A » B. So for
instance, Z bZ Z “ Z.

2
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1

Varieties

We begin by discussing varieties, which will serve as the main motivating example in
the theory of schemes. We will contend ourselves to presenting the basic definitions and
fundamental properties of the two most important classes of varieties, namely the affine
varieties and the projective varieties. As we move forward in the book, we will develop the
theory of varieties in greater depth.

Varieties are defined over a fixed ground field k, and in this chapter we shall assume that
k is algebraically closed. It is useful to keep some specific fields in mind, e.g. the field of
complex numbers C, the field of algebraic numbers sQ or perhaps the algebraic closure sFp of
a finite field.

For reasons that will become clear when the notion of ‘ring-valued points’ is introduced,
we shall write Anpkq for the set kn, and refer to it as the affine n-space. The change in
notation from kn to Anpkq is meant to underline that there is more to Anpkq than just the set
of its elements; it will soon be equipped with a topology, and ultimately, it will be a scheme,
denoted by Ank .

1.1 Algebraic sets

We begin by introducing the algebraic sets. These are the subsets of the affine space Anpkq

whose points are the common solutions of a set of polynomial equations:

Definition 1.1. If S is a subset of polynomials in krx1, . . . , xns, we define their zero
set as

ZpSq “ tx P Anpkq | fpxq “ 0 for all f P S u.

An algebraic set is a subset of Anpkq of this form.

If f1, . . . , fr are elements of S, each expression
řr

i“1 bifi with the bi’s being polynomials,
also vanishes at the points of ZpSq. This means that the zero set of the ideal a generated
by the elements of S is the same as ZpSq; that is, ZpSq “ Zpaq. We will therefore almost
exclusively work with ideals and tacitly replace a set of polynomials by the ideal they generate.
Hilbert’s basis theorem tells us that any ideal in krx1, . . . , xns is finitely generated, so that an
algebraic subset is always described as the set of common zeros of finitely many polynomials.
Note the two special cases Zp1q “ H and Zp0q “ Anpkq.

The more constraints imposed, the smaller the solution set will be, so if a and b are two
ideals with a Ă b, one has Zpbq Ă Zpaq. Sending a to Zpaq therefore gives an inclusion-

3
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4 Varieties

reversing map from the partially ordered set of ideals in krx1, . . . , xns to the partially ordered
set of subsets of Anpkq.

The map sending a to Zpaq is not surjective. A polynomial can only have finitely many
zeros, so any proper infinite subset of A1pkq is not algebraic. To give an example in Anpkq

for any n, just take an infinite proper subset of one of the coordinate axes.
Neither is the map injective. Different ideals can define the same algebraic set. For instance,

the ideals ptq and pt2q in krts, both have the origin in the affine line A1pkq as their zero set.
More generally, any power ar of an ideal a will have the same zeros as a; indeed, since ar Ă a,
it holds that Zpaq Ă Zparq, and the other inclusion holds as well because a polynomial f
vanishes at the same points as the power f r. To deal with this ambiguity, we resort to the
radical

?
a of a, which we recall is defined as

?
a “ t f | f r P a for some r ą 0 u.

Then the argument above yields that Zpaq “ Zp
?
aq. Indeed, the radical is finitely generated,

so some power p
?
aqm is contained in a. Two ideals with the same radical thus have coinciding

zero sets, and Hilbert’s Nullstellensatz, which we shortly shall see, tells us that the converse
is true as well.

The product of two ideals a and b is generated by the products f ¨ g with f P a and
g P b, and hence Zpa ¨ bq “ Zpaq Y Zpbq. For the sum a ` b one checks that Zpa ` bq “

Zpaq X Zpbq, and in fact, this holds for sums of any cardinality (For a proof, see Lemma
2.2).

Proposition 1.2 (Properties of algebraic sets). Let a and b be two ideals and taiuiPI
a family of ideals in the polynomial ring krx1, . . . , xns. Then:

(i) If a Ă b, then Zpbq Ă Zpaq;
(ii) Zp

ř

iPI aiq “
Ş

iPI Zpaiq;
(iii) Zpabq “ Zpa X bq “ Zpaq Y Zpbq;
(iv) Zpaq “ Zp

?
aq.

The identities (ii) and (iii) tell us that finite unions and arbitrary intersections of algebraic
sets are again algebraic. Furthermore, as Anpkq “ Zp0q and H “ Zp1q, the algebraic sets
constitute the closed sets of a topology on the affine space Anpkq. It is called the Zariski
topology.

If X Ă Anpkq is any subset, we get an induced Zariski topology on X , by declaring that
the open sets of X are of the form X X U , where U is an open set in Anpkq.

Example 1.3 (The Zariski topology on the affine line A1pkq). Each non-zero and proper
ideal a in the polynomial ring krts is generated by a single element, say a “ pfq. As
the ground field k is algebraically closed, f factors as a product of linear terms f “

pt ´ a1qn1 ¨ ¨ ¨ pt ´ arq
nr with ai P k. Hence Zpfq “ ta1, ¨ ¨ ¨ , aru, and apart from the

entire line A1pkq, the closed sets are just the finite sets.
In other words, the Zariski topology on A1pkq is the finite complement topology, in which

the proper open sets are those whose complement is finite. In particular, note that the Zariski
topology on A1pCq behaves very differently than the usual topology on C; there are much
fewer open sets.
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1.1 Algebraic sets 5

There is a partial converse to the construction of the zero locus Zpaq of an ideal. One may
consider the set of polynomials vanishing on a given subset of Anpkq, which actually is an
ideal.

Definition 1.4. For a subset X of Anpkq, we let IpXq denote the ideal consisting of
polynomials in krx1, . . . , xns that vanish along X; that is,

IpXq “ t f P krx1, . . . , xns | fpxq “ 0 for all x P X u.

This gives an inclusion-reversing map X ÞÑ IpXq from the set of subsets of Anpkq to the
set of ideals in the polynomial ring krx1, . . . , xns.

Examples

Example 1.5. The linear polynomial x1 ` 2x2 ` 5x3 defines an algebraic set in A3pkq

which can be identified with a 2-dimensional plane. More generally, any linear subspace of
Anpkq is defined by linear equations and is therefore an algebraic set.

Example 1.6. Another classical examples are the conic sections. They are the closed algebraic
sets in the affine plane A2pkq given by quadratic equations. Three familiar examples include
the circle x2 ` y2 “ 1, the parabola y “ x2 and the hyperbola xy “ 1. If k is algebraically
closed of characteristic ‰ 2, any conic section can be reduced via a linear change of
coordinates to one of these types.

Example 1.7. A more interesting example is the so-called Clebsch cubic surface; a surface
in A3pCq defined by the equation

x3 ` y3 ` z3 ` 1 “ px` y ` z ` 1q3.

The real points of the surface, i.e. the points in A3pRq satisfying the equation, is depicted
below. This surface contains 27 lines, all defined over the real numbers.

The Clebsch cubic surface

Example 1.8. Algebraic sets can show a high degree of complexity. The Barth sextic in
A3pCq is the zero locus of the degree 6 polynomial

4pϕ2x2 ´ y2qpϕ2y2 ´ z2qpϕ2z2 ´ x2q ´ p1 ` 2ϕqpx2 ` y2 ` z2 ´ 1q2

where ϕ “ p1`
?
5q{2. This remarkable surface has 65 singular points, which is the maximal

number for a degree 6 surface. A plot of the real points of the surface is depicted below.
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6 Varieties

The Barth Sextic with 65 singular points

Hilbert’s Nullstellensatz

For an algebraic subset X it holds true that ZpIpXqq “ X . Hilbert’s Nullstellensatz is about
the composition of I and Z the other way around, namely about IpZpaqq. Polynomials in the
radical

?
a vanish along Zpaq (if a power of f vanishes on a set, f vanishes there as well),

and therefore
?
a Ă IpZpaqq. The Nullstellensatz tells us that this inclusion is an equality.

Theorem 1.9 (Hilbert’s Nullstellensatz). Assume that k is an algebraically closed
field and that a is an ideal in krx1, . . . , xns. Then one has

IpZpaqq “
?
a.

A proof will be given in Section 12.2.
The Nullstellensatz has the following fundamental consequences.

Theorem 1.10 (Weak Nullstellensatz). Let k be an algebraically closed field and a
an ideal in the polynomial ring krx1, . . . , xns.

(i) Zpaq is non-empty if and only if a is not the unit ideal;
(ii) The maximal ideals in krx1, . . . , xns are precisely those of the form

px1 ´ a1, . . . , xn ´ anq for pa1, . . . , anq P Anpkq.

Proof It is clear that Zp1q “ H. If Zpaq “ H, requiring a polynomial to vanish along
Zpaq imposes no constraint, so 1 P IpZpaqq, and the Nullstellensatz gives that 1 P a. This
shows (i).

As to (ii), note that the ideal px1 ´ a1, . . . , xn ´ anq is maximal being the kernel of the
evaluation map krx1, . . . , xns Ñ k (which sends f to its value at pa1, . . . , anq). If m is
a maximal ideal, the Nullstellensatz yields that Zpmq ‰ H. So take a point pa1, . . . , anq

in Zpmq. Then px1 ´ a1, . . . , xn ´ anq Ă m, and as the ideal px1 ´ a1, . . . , xn ´ anq is
maximal, we must have equality.

Example 1.11. It is important to note that Hilbert’s Nullstellensatz only holds when the
ground field is algebraically closed. A simple example of a proper ideal with empty zero
locus is the ideal px2 ` 1q in Rrxs.

Exercise 1.1.1. In any ring, the radical of an ideal a equals the intersection of the prime ideals
containing it. Using the Nullstellensatz, show that in the polynomial ring krx1, . . . , xns, the
radical

?
a equals the intersection of all the maximal ideals containing a.
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1.1 Algebraic sets 7

Exercise 1.1.2. Show that the Zariski topology on A2pkq is not the product topology on
A2pkq “ A1pkq ˆ A1pkq.

Irreducible sets and varieties

Irreducibility is a notion from point set topology which plays a fundamental role in algebraic
geometry.

Definition 1.12. A topological space X is said to be irreducible if it can not be
written as the union of two proper closed subsets; that is, if X “ Z Y Z 1 with Z and
Z 1 closed, then either Z “ X or Z 1 “ X .

Equivalently, the space X is irreducible if and only if the intersections of any two non-
empty open subsets is non-empty. Indeed, to say that U X V “ H with U and V open, is
to say that U c Y V c “ X . And so if X is irreducible, either U c “ X or V c “ X; that is,
either U “ H or V “ H. A third way of expressing that X is irreducible, is to say that
every non-empty open subset is dense.

For an algebraic set X , being irreducible means that the ideal IpXq is prime:

Proposition 1.13. An algebraic set X “ Zpaq Ă Anpkq is irreducible if and only if
the ideal IpZpXqq “

?
a is prime.

Proof Because Zp
?
aq “ Zpaq, it suffices to treat the case when a is radical. Assume

that Zpaq “ Zpbq Y Zpb1q with radical ideals b and b1 both containing a. By (iii) of
Proposition 1.2, it holds that Zpbq Y Zpb1q “ Zpb X b1q, and since the intersection of two
radical ideals is radical, we get that b X b1 “ a by the Nullstellensatz. So if a is prime, then
either b Ă a or b1 Ă a. That is, either b “ a or b1 “ a.

The implication the other way is easier: if a is not prime, it is the intersection of several
different prime ideals. Dividing these into two groups and letting b and b1 be the corresponding
intersections, one obtains a decomposition Zpaq “ ZpbqYZpb1q of Zpaq into distinct closed
subsets.

Let us give the following preliminary definition of a variety:

Definition 1.14. An affine variety is an irreducible algebraic set in Anpkq.

The mappings X ÞÑ IpXq and a ÞÑ Zpaq give mutually inverse one-to-one inclusion
reversing correspondences between the objects in columns of the following table, where
A “ krx1, . . . , xns.
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8 Varieties

ALGEBRA GEOMETRY

maximal ideals of A points of Anpkq

prime ideals of A irreducible algebraic sets in Anpkq

radical ideals of A closed subsets of Anpkq

maximal ideals of A{a points of Zpaq

An irreducible component of a topological space X is a maximal closed irreducible subset.
Every algebraic set can be written as a finite union of its irreducible components; this follows
from the Lasker–Noether theorem, which implies that any radical ideal is the intersection
of finitely many prime ideals. The affine varieties therefore constitute the building blocks of
all algebraic sets in affine space. We will give a general treatment of decompositions into
irreducibles in Chapter ??. For now, let us give two examples illustrating how to find these
components.

Example 1.15. Consider the algebraic set X “ ZpIq in A3pkq, where I is the ideal

I “ pxz ´ y2, x2 ´ yq.

Let us find the irreducible components of X . Let p “ pa, b, cq P X be a point. Then the
second equation implies that b “ a2. Plugging this into the first equation, we get ac´a4 “ 0,
which implies that either a “ 0 or c “ a3. Thus p lies in one of the irreducible subsets
X1 “ Zpx, yq or X2 “ Zpy´ x2, z ´ x3q. Conversely, a point in X1 clearly lies in X , and
if p “ pa, b, cq P X2, it holds that b “ a2 and c “ a3 so that ac´ b2 “ a4 ´ a4 “ 0, and p
lies in X . Hence we find that

X “ Zpx, yq Y Zpy ´ x2, z ´ x3q.

In geometric terms, X is the union of the z-axis and a curve called ‘the twisted cubic’ (which
we shall meet at several later occasions).

Example 1.16. Consider the algebraic set ZpIq Ă A2pkq, where I is the ideal

I “ py ´ x2, x2 ` py ´ 1q2 ´ 1q.

Over the real numbers, we recognise the points of ZpIq as the intersection points of the
parabola y “ x2 and the circle of radius 1 with centre in p0, 1q. To find these intersection
points, we compute a primary decomposition of the ideal:

I “ py ´ x2, x2 ` px2 ´ 1q2 ´ 1q

“ py ´ x2, x2px´ 1qpx` 1qq

“ py ´ x2, x2q X py ´ x2, x´ 1q X py ´ x2, x` 1q

“ py, x2q X py ´ 1, x´ 1q X py ´ 1, x` 1q.

Thus ZpIq consists of the three points p0, 0q, p1, 1q, and p´1, 1q.
The primary decomposition of an ideal I gives important information about the algebraic

set ZpIq. In particular, it describes ZpIq as the union of its irreducible components. Even in
the present example, the decomposition gives more refined information than just the set of
points of ZpIq; it reflects that p0, 0q is different to the two others (the primary component
being py, x2q shows that it has ‘multiplicity 2’).
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Exercises

Exercise 1.1.3. Show that the algebraic set Zpy2 ´ x3 ´ 1q Ă A2pkq is irreducible.

Exercise 1.1.4. For each of the following ideals a find a decomposition of Zpaq into irre-
ducible components.

a) px3, x2y, xy3q;
b) pyz, xz, y3, x2yq;
c) px2 ´ y, xz ´ y2, x3 ´ xzq.

Exercise 1.1.5. Identify Anmpkq with the space of mˆ n-matrices over the field k. Show
that the set of matrices of rank less than a given number is an algebraic set.

Exercise 1.1.6. Let us continue the previous exercise with m “ n.
a) Show that the set of symmetric matrices, i.e. matrices such that AT “ A, is an

algebraic set in An2

pkq;
b) Show that the set GLnpkq of invertible matrices is Zariski open in An2

pkq;
c) Show that the set SLnpkq of matrices with determinant one is an algebraic set

in An2

pkq;
d) Show that the set X of matrices A such that Ar “ 0 for a given natural number
r, form an algebraic set in the affine space An2

pkq. Compute the ideal IpXq

for n “ 2 and r “ 2.

1.2 Polynomial functions and polynomial maps

A polynomial function on algebraic subset X Ă Anpkq is simply the restriction of a poly-
nomial in krx1, . . . , xns to X . Two polynomials f and g restrict to the same function on X
precisely when their difference f ´ g vanishes on X , so the set of polynomial functions on
X can be identified with the quotient ring

ApXq “ krx1, . . . , xns{IpXq.

This ring is called the affine coordinate ring of X , and carries essentially all information
about the set X . It has no nilpotent elements since IpXq is a radical ideal and it is an integral
domain if and only if X is irreducible.

The correspondence between prime ideals and irreducible closed subsets shows that the
Krull dimension ofApXq equals the dimension of the topological spaceX ; that is, the length
of the longest chain X0 Ă X1 Ă ¨ ¨ ¨ Ă Xr “ X of distinct irreducible closed sets in X .

Example 1.17. The square root
?
x is not per se a polynomial function on A1pCq (it is not

even a well-defined function), but it defines a polynomial function on the parabola

X “ Zpx´ y2q

in A2pCq. Indeed, there the sign ambiguity is resolved, and the square root is simply given by
px, yq ÞÑ y. Note that the coordinate ring of X is

ApXq “ Crx, ys{px´ y2q » Crys,

which is an integral domain of Krull dimension one, in accordance with the intuition that X
is irreducible and of dimension one.
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10 Varieties

The notion of a ‘polynomial function’ can be extended to the notion of ‘polynomial maps’
between algebraic sets; these are maps that under composition carry polynomial functions to
polynomial functions.

Definition 1.18 (Polynomial maps). Let X and Y be two algebraic sets. A map
f : X Ñ Y is called a polynomial map if the composition g ˝ f is a polynomial
function whenever g is a polynomial function on Y .

The composition of two polynomial maps is again a polynomial map, so the algebraic sets
form a category AlgSets with the polynomial maps as morphisms. We say that a polynomial
map is an isomorphism when it has an inverse map that is also a polynomial map.

When f : X Ñ Y is a polynomial map and g P ApY q, the composition g ˝ f is again a
polynomial map X Ñ A1pkq, which we denote by f 7pgq “ g ˝ f . This gives us a map

f 7 : ApY q ÝÝÑ ApXq (1.1)

g ÞÑ g ˝ f.

The map f 7 is a map of k-algebras since sums and products of polynomial functions on Y
are computed pointwise, and constants clearly map to constants. It is a fundamental property
of affine algebraic sets that all morphisms of k-algebras are realized in this way.

It also follows from the definitions that Zpf 7pgqq “ f´1Zpgq. In particular, this shows
that polynomial maps are continuous in the Zariski topology.

Theorem 1.19 (Main theorem of affine algebraic sets). Let X and Y be two
algebraic sets. The map

HomAlgSetspX,Y q ÝÝÑ HomAlg{kpApY q, ApXqq

that sends f to f 7, is a bijection from the set of polynomial maps to the set of maps
of k-algebras.

Proof The map in the theorem is injective: assume that f1 and f2 are two different polyno-
mial maps from X to Y . Then there is is a point x P X with f1pxq ‰ f2pxq, and so there is
a polynomial function g on Y with gpf1pxqq ‰ gpf2pxqq; that is, f 7

1pgq ‰ f 7

2pgq.
To prove that the map is surjective, we begin with treating the case that Y “ Anpkq.

In this case, giving a map f : X Ñ Y amounts to giving n functions f1, . . . , fn on X
so that fpxq “ pf1pxq, . . . , fnpxqq, and f is a polynomial map precisely when the fi’s
are polynomial functions. Indeed, if u1, . . . , un are coordinates on Anpkq, a polynomial
function g on Y is just a polynomial in the ui. Hence the composition g ˝ f becomes a
polynomial in the fi’s, which clearly is a polynomial function on X when the fi’s are. Now,
if ϕ : ApY q “ kru1, . . . , uns Ñ ApXq is a map of k-algebras, we may use the images
fi “ ϕpuiq as components for a function f as above. Then f 7 “ ϕ because the two maps
agree on the generators ui.

In the general case, we assume that Y Ă Anpkq. Note that a map f : X Ñ Anpkq takes
values in Y precisely when f 7pgq “ g ˝ f “ 0 for all g P IpY q. So if ϕ : ApY q Ñ ApXq

is given, the composition kru1, . . . , uns Ñ ApY q Ñ ApXq of ϕ with the restriction map
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1.2 Polynomial functions and polynomial maps 11

is a ring map that vanishes IpY q. Hence by the first case, it yields a map X Ñ Anpkq

with components fi “ ϕpuiq, and this map factors through Y because g ˝ f “ ϕpgq “ 0
whenever g P IpY q.

From a categorical angle, the theorem says that the category of algebraic sets is equivalent
to the the category of finitely generated, reduced k-algebras (with arrows reversed). The
subcategory of varieties; that is, the full subcategory with irreducible algebraic sets as objects,
is then equivalent to the category of integral domains finitely generated over k (with arrows
reversed).

Examples

Example 1.20. Any linear map f : Anpkq Ñ Ampkq is a polynomial map. Indeed, the
components fi of f are linear polynomials fipxq “

ř

j aijxj .

Example 1.21. Consider the algebraic set X “ Zpy2 ´ x3q in A2pkq. The affine coordinate
ring of X is given as

ApXq “ krx, ys{py2 ´ x3q,

which is an integral domain because the polynomial y2 ´ x3 is irreducible.
Consider the polynomial map f : A1pkq Ñ A2pkq given by t ÞÑ pt2, t3q. The image

of f is contained in X Ă A2pkq, and, in fact, f is a bijection between A1pkq and X .
Indeed, observe that fptq “ p0, 0q only for t “ 0, and if px, yq ‰ p0, 0q lies in X , the
assignment t “ y{x defines the inverse. However, f is not an isomorphism. As f 7pxq “ t2

and f 7pyq “ t3, the induced map

f 7 : krx, ys{py2 ´ x3q ÝÝÑ krts

has image krt2, t3s and so is not surjective.
Note that the ‘same’ X can be embedded into different Anpkq’s. For instance, the above

X can be embedded in A3pkq as the zero set Zpy2 ´ x3, zq or as Zpy2 ´ x3, z ´ xyq.

Example 1.22 (The Frobenius map). In this example, we assume that k is of positive
characteristic p. The map ϕ : krts Ñ krts given by t ÞÑ tp, is a map of k-algebras, and the
corresponding polynomial map F : A1pkq Ñ A1pkq acts on points by sending a point a to
ap. The map F is bijective because every a P k has a unique p-th root. However it is not an
isomorphism, because the ring map F 7 “ ϕ : krts Ñ krts is not surjective.

Regular and rational functions

The coordinate ring ApXq of an affine variety X being an integral domain has a fraction
field kpXq, which is called the function field or field of rational functions on X . Elements of
kpXq can be interpreted as functions on open sets in X; indeed, a fraction f “ a{b yields a
well defined function on the open set where b does not vanish.

One says that a rational function f P kpXq is regular at a point x P X if it can be
expressed as a fraction f “ a{b with bpxq ‰ 0. Such a function will automatically be regular
in a neighbourhood of x: it is regular in the complement of the proper closed set Zpbq. Such
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12 Varieties

complements are called distinguished open sets, and the standard notation is Dpbq; that is,
Dpbq “ tx P X | bpxq ‰ 0 u.

It is easy to check that sums and products of rational functions regular at x, are again
regular at x. Thus the functions regular at x form a subring of kpXq. This ring is called the
local ring of X at the point x and is denoted by OX,x.

Proposition 1.23. The set OX,x of rational functions which are regular at x is a local
ring whose maximal ideal mx consists of the functions vanishing at x.

Proof Recall that a ring is local if it has just one maximal ideal m, or equivalently, it has
a maximal ideal m such that elements not in m are invertible. In our case, the ideal mx is
precisely the kernel of the evaluation map OX,x Ñ k, and so mx is maximal since k is a field.
An element f P OX,x which does not vanish at x, can be expressed as f “ a{b with both
apxq ‰ 0 and bpxq ‰ 0. Hence the rational function 1{f “ b{a is regular at x and belongs
to OX,x. Thus elements not in mx are invertible in OX,x, and we conclude that OX,x is a
local ring.

Note that a rational function a{b may be regular in a larger set than the distinguished open
set Dpbq. The standard example is as follows.

Example 1.24. Consider the variety X Ă A4pkq whose equation is xy ´ zw “ 0. In the
function field kpXq the equality x{w “ z{y holds, and the corresponding rational function
is thus regular in the open set U “ Dpwq YDpyq. Now, the point is that U is strictly larger
than both Dpwq and Dpyq, just consider the points p0, 1, 0, 0q and p0, 0, 0, 1q.

Exercise 1.2.1. With notation as in the example above:
a) Verify that xy ´ zw is an irreducible polynomial;
b) Verify that the rational function x{w is not regular in any open set containing

the locus where y “ w “ 0.

Proposition 1.25. Let X be an affine variety. If a rational function f P kpXq is
regular at all points of X , then f is a polynomial function. In other words,

ApXq “
č

xPX

OX,x.

Proof Consider the ideal af “ t b P ApXq | bf P ApXq u. It has the property that a
rational function f is regular at x if and only if x R Zpaf q; indeed, x R Zpaf q if and only if
some b P af does not vanish at x, which in turn is equivalent to f being on the form f “ a{b
for some b with bpxq ‰ 0. So when f is regular everywhere, it follows that Zpaf q “ H, and
the Nullstellensatz yields that 1 P af ; that is, f P ApXq.

We shall need the following result later on.

Proposition 1.26. When n ě 2, a rational function which is regular on the open set
Anpkq ´ t0u is the restriction of a polynomial function.
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1.3 Projective varieties 13

Proof Let f be regular in Anpkq ´ t0u. Viewing f as an element of the function field of
Anpkq, we may express it as f “ a{b with a and b polynomials. As polynomial rings are
UFD’s, we may chose a and b without common factors, and then they are unique (up to units).
Hence a{b is not regular along Zpbq. By Krull’s Principal Ideal Theorem , Zpbq is either
empty (and b is constant), or it has dimension n ´ 1; that is, if not empty, Zpbq will be a
larger set than t0u when n ě 2. Thus b is either constant, in which case f is a polynomial,
or f is not regular along Zpbq.

Example 1.27. Let X “ Zpxy ´ 1q Ă A2pkq and consider the first projection

f : X Ñ A1pkq ´ t0u.

The map f is actually an isomorphism; an inverse is given by gpxq “ px, x´1q (note that
x´1 is indeed a regular function on A1pkq ´ t0u). This means that regular functions on
A1pkq ´ t0u are given by polynomials in x and x´1.

Exercises

Exercise 1.2.2. Let x0, . . . , xn be coordintes on the affine pn` 1q-space An`1pkq and let
f “ fpx1, . . . , xnq be a polynomial in x1, . . . , xn.

a) Show that the algebraic set X “ Zpx0 ´ fq is isomorphic to Anpkq;
b) For which f ’s is the algebraic set X “ Zpx2

0 ´ fq irreducible?
c) Find a bijection between the open set Anpkq´Zpfq in Anpkq and the algebraic

set Zpx0f ´ 1q in An`1pkq.

Exercise 1.2.3.
a) Let ϕ : A Ñ B be a map of rings. Show that ϕ´1p is a prime ideal if p Ă B is

one;
b) Assume further thatA andB are finitely generated k-algebras. Show that ϕ´1m

is a maximal ideal if m Ă B is one. HINT: Use the Nullstellensatz to see that
A{ϕ´1m “ k (remember that k is assumed to be algebraically closed in this
chapter).

Exercise 1.2.4. Let X “ Zpfq and Y “ Zpgq be two algebraic sets in A2pkq with X
irreducible. Show that either X X Y is a finite set, or X Ă Y .

1.3 Projective varieties

Having defined affine varieties, we move on to introducing projective space and projective
varieties, and we continue working over an algebraically closed ground field k.

Definition 1.28. The projective n-space Pnpkq is the quotient of An`1pkq ´ t0u by
the equivalence relation

pa0, . . . , anq „ pta0, . . . , tanq,

where t P k is non-zero.
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14 Varieties

Two points in An`1pkq are equivalent precisely when they lie on the same line through the
origin, so one may think about Pnpkq as the set of lines in An`1pkq through the origin; or if
you want, the set of one-dimensional linear subspaces of kn`1.

The equivalence class of a point a “ pa0, . . . , anq in An`1pkq ´ t0u will be denoted by
pa0 : ¨ ¨ ¨ : anq. The ai’s are called the homogeneous coordinates of a. Note that they are
not coordinates in the usual strict sense of the word; they are not even functions on Pnpkq,
only their ratios are well defined. Note also that no point in Pnpkq has all homogeneous
coordinates equal to 0; the tuple p0 : ¨ ¨ ¨ : 0q is forbidden.

The Zariski topology on Pnpkq

Just like the affine spaces, the projective space Pnpkq comes equipped with a natural Zariski
topology. It is best described by the quotient map

π : An`1pkq ´ t0u Pnpkq,

which sends pa0, . . . , anq to pa0 : ¨ ¨ ¨ : anq. This allows us to define the topology by
declaring a subset V Ă Pnpkq to be closed if and only if the inverse image π´1pV q is closed.

There is a construction, similar to Zpaq in the affine case, that describes all closed sets in
Pnpkq in terms of certain ideals in a polynomial ring. However, it is slightly more delicate as
polynomials are not functions on the projective spaces. They are not invariant under scaling of
the arguments and so not constant on equivalence classes. The solution is to use homogeneous
polynomials; that is, polynomials such that for some natural number d one has

fptx0, . . . , txnq “ tdfpx0, . . . , xnq

for all t. The values of f still depend on t, but the point is that whether the value of f is zero
or not, is independent of t. So we may define the zero set of f in Pnpkq as

Z`pfq “ tx P Pnpkq | fpxq “ 0 u.

More generally, for each set S of homogeneous polynomials, one may put

Z`pSq “ tx P Pnpkq | fpxq “ 0 for all f P S u.

These sets are Zariski closed; indeed, a homogeneous polynomial f vanishes at a point
x P Pnpkq precisely when it vanishes along the whole line π´1pxq in Anpkq; in other words,
π´1Z`pSq “ ZpSq X An`1pkq ´ t0u.

Ideals a whose zero-set equals a Zariski closed inverse image, are characterised by the
property that if a P Zpaq, then the entire fibre π´1πpaq lies in Zpaq, in other words, the
inclusion π´1πpaq Ă Zpaq holds. These ideals are precisely the homogenous ideals.

Recall that an ideal is said to be homogeneous if for each element f P a all homogeneous
components of f lie in a. In other words, if f “

ř

i fi is the decomposition of f into a
sum of homogeneous polynomials, then f P a if and only if fi P a for all i. An ideal is
homogeneous if and only if it is generated by homogeneous polynomials.

Being a homogeneous ideal is equivalent to Zpaq containing the line through the origin
and each point x P Zpaq; indeed, if a is homogeneous, x P Zpaq implies that t ¨ x P Zpaq

for every t P k. The following lemma shows that the converse holds as well.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

1.3 Projective varieties 15

Lemma 1.29. Let a P An`1pkq ´ t0u be a point. A polynomial f vanishes at
all points on the line through a and the origin if and only if all the homogeneous
components of f do.

Proof Developing f in terms of the homogeneous components fi, we find

fptxq “ tdfdpxq ` ¨ ¨ ¨ ` tf1pxq ` f0pxq.

For x “ a fixed, this is a polynomial in t. Since f is assumed to be zero on the entire line
through a, it has infinitely many zeroes and hence must be the zero polynomial in t. It follows
that fipaq “ 0 for all i.

We have thus established the desired description of the closed sets in projective space:

Proposition 1.30. The Zariski closed sets of Pnpkq are precisely those of the form
Z`paq where a is a homogeneous ideal.

Example 1.31 (The irrelevant ideal). The ideal m` “ px0, . . . , xnq is called the irrelevant
ideal. It is certainly homogeneous, but its zero locus is empty (no point has all homogeneous
coordinates equal to zero). Similarly, any m`-primary ideal q has empty zero set because
Zpqq “ Zpm`q, so that Zpqq X pAn`1pkq ´ t0uq “ H.

Example 1.32 (The complex projective spaces). The complex projective spaces PnpCq

(which topologists usually write as CPn) are also equipped with a Euclidean topology. It is
just the quotient topology inherited from the standard Euclidean topology on Cn`1. With
this topology they are compact manifolds. Every one-dimensional subspace of Cn`1 meets
the unit sphere S2n`1 along a unit circle, so the restriction π|S2n`1 is a continuous surjection
π|S2n`1 : S2n`1 Ñ PnpCq. Since the unit sphere S2n`1 is compact, if follows that PnpCq is
compact as well. It is noteworthy that π|S2n`1 is a fibre bundle with unit circles as fibres.

The projective Nullstellensatz

The usual operations on ideals, like sums, products, intersections and the formation of radicals,
yield homogeneous ideals when applied to homogeneous ideals. Moreover, the equalities
between the associated closed sets, as stated in Proposition 1.2 in the affine cases, are still
valid.

Proposition 1.33. Let a and b be two homogeneous ideals and let taiuiPI be a family
of homogeneous ideals in the polynomial ring krx0, . . . , xns.

(i) If a Ă b, then Z`pbq Ă Z`paq;
(ii) Z`p

ř

iPI aiq “
Ş

iPI Z`paiq;
(iii) Z`pabq “ Z`pa X bq “ Z`paq Y Z`pbq;
(iv) Z`paq “ Z`p

?
aq.

Proof The proposition follows directly from the affine case (Proposition 1.2) by intersecting
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with An`1pkq ´ t0u and pushing down by π. For instance, the last equality in (iii) follows
by the following equalities:

Z`paq Y Z`pbq “ π
``

Zpa
˘

Y Zpbqq X An`1pkq ´ t0u
˘

“

“ π
`

Zpa X b
˘

X An`1pkq ´ t0u
˘

“ Z`pa X bq.

There is also a projective version of the Nullstellensatz. The statement is very similar to
the one in the affine case, but there are two notable differences. First of all, the irrelevant
ideal m` “ px0, . . . , xnq and all primary ideals with radical equal to m` have empty zero
locus. Secondly, one must be careful when defining the vanishing ideal IpSq for a subset
S Ă Pnpkq and let it be the ideal generated by the homogeneous polynomials which vanish
along S. Note that this ideal is only generated by homogeneous polynomials, not every
element is homogeneous.

Theorem 1.34 (Projective Nullstellensatz). Let a be a homogeneous ideal in the
polynomial ring krx0, . . . , xns.

(i) The zero locus Z`paq is empty if and only if either 1 P a or
?
a “ m`;

(ii) If Z`paq ‰ H, it holds true that IpZ`paqq “
?
a.

Proof To prove (i), note that the setZ`paq is non-empty if and only ifZpaqXAn`1pkq´t0u

is non-empty. There are two ways in which the inrtersection can be empty: either Zpaq “ H,
and 1 P a, or Zpaq “ t0u, and

?
a “ m`.

To prove (ii), we observe as in Lemma 1.29 that IpZpaqq equals the ideal generated by
all homogeneous polynomials in a, which by definition is equal to IpZ`paqq. By the affine
Nullstellensatz, IpZpaqq “

?
a, and we are done.

As in the affine case, the maps I and Z` give a way to translate between algebra and
geometry.

Proposition 1.35. The maps a ÞÑ Z`paq and S ÞÑ IpSq are mutually inverse
inclusion reversing bijections between the set of proper radical homogenous ideals in
krx0, . . . , xns and the set of closed subsets of Pnpkq.

Again one should note that the irrelevant ideal is special: a proper homogeneous ideal
corresponds to the empty set if and only if its radical equals the irrelevant ideal.

Example 1.36 (The ideal of a point in Pnpkq). In the affine case the maximal ideals in
krx1, . . . , xns correspond exactly to the points of Anpkq. In projective space the points
correspond to lines in An`1pkq, so their ideals are homogeneous, but they are not maximal.
A convenient set of generators (certainly not minimal) for the ideal of a point pa0 : ¨ ¨ ¨ : anq,
are the 2 ˆ 2-minors of the matrix

ˆ

a0 a1 . . . an
x0 x1 . . . xn

˙

(1.2)

Indeed, a variable point px0 : ¨ ¨ ¨ : xnq lies in in the same one-dimensional linear subspace
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1.3 Projective varieties 17

as pa0 : ¨ ¨ ¨ : anq precisely when the two corresponding vectors are dependent, i.e. precisely
when the matrix in (1.2) has rank one.

There is also a projective analogue of Proposition 1.13, and the proof is essentially the
same as in the affine case; it relies on (iii) in Proposition 1.33.

Proposition 1.37. A closed subset Z`paq is irreducible if and only if the radical
?
a

is prime.

This leads us to give the following definition.

Definition 1.38. A projective variety is a closed irreducible subset of a projective
space Pnpkq.

Exercise 1.3.1. Write out the details of the proof of Proposition 1.33.

Distinguished open sets

On the affine spaces Anpkq one has coordinates x1, . . . , xn so that any regular function is a
polynomial in the xi. A projective space Pnpkq do not have such global coordinates, but there
is a class of standard open subsets where we have good coordinates. These are the so-called
distinguished open sets. A point a “ pa0 : ¨ ¨ ¨ : anq in Pnpkq has at least one non-zero
homogeneous coordinate, say ai ‰ 0, and then a belongs to the set

D`pxiq “ t px0 : ¨ ¨ ¨ : xnq | xi ‰ 0 u Ă Pnpkq.

On this set the ratios xj{xi are well defined functions and can be used as coordinates.
There are two standard ways of transition between the homogenous coordinates and the

coordinates in a distinguished open setD`pxiq, homogenization and dehomogenization. With
any homogenous polynomial F one associates a dehomogenized polynomial F d simply by
setting xi “ 1; that is, F d “ F px0, . . . , 1, . . . , xnq, and for any homogeneous ideal a one
lets ad be the ideal ad “ tF d | F P a u.

With any polynomial f of degree d in the n variables t0, . . . , ti´1, ti`1, . . . , tn, one
associates the homogeneous polynomial fh “ xdi fpx0{xi, . . . , xn{xiq. And for an ideal a,
we let ah denote the homogeneous ideal generated by the fh for f P a.

Example 1.39. The practical recipe to find fh is as follows. Fill up each term of f with a
power of xi whose exponent makes the degree become d. For instance, when homogenizing
f “ x3 ` x1x2 ` x4

3 with respect to x0, one obtains fh “ x3x
3
0 ` x2

0x1x2 ` x4
3.

One has a pair of maps Φ: D`pxiq Ñ Anpkq and Ψ: Anpkq Ñ D`pxiq given by

Φ: px0 : ¨ ¨ ¨ : xnq ÞÑ px0{xi, . . . , 1, . . . , xn{xiq

Ψ: pt0, . . . , 1, . . . , tnq ÞÑ pt0 : ¨ ¨ ¨ : 1 : ¨ ¨ ¨ : tnq,

where the 1 appears in the i-th slot. (To avoid tortuous notation, we here consider Anpkq as
being the linear subspace Zpxi ´ 1q of An`1pkq where the i-th coordinate equals one.)
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18 Varieties

Lemma 1.40. The maps Φ and Ψ is a pair of mutually inverse homeomorphisms
between Anpkq and D`pxiq equipped with the subspace topology.

Proof It is easy to check that the two maps are mutually inverse, so the main claim is that
they are continuous, and this follows from the two identities

Ψ´1pZ`paq XD`pxiqq “ Zpadq

Φ´1Zpaq “ Z`pahq XD`pxiq.
(1.3)

Exercise 1.3.2. Verify the identities in (1.3) above.

Examples

Example 1.41 (The Quadratic surface). Consider two copies of P1pkq, one with homoge-
neous coordinates pu0 : u1q and the other with pt0 : t1q. There is a map P1pkq ˆ P1pkq Ñ

P3pkq defined by the assignment

pt0 : t1q ˆ pu0 : u1q ÞÑ pt0u0 : t0u1 : t1u0 : t1u1q.

This is well defined, because scaling pt0 : t1q and pu0 : u1q by respectively λ and µ, scales
pt0u0 : t0u1 : t1u0 : t1u1q by λµ, and since at least one of the ti’s and one of ui’s are
non-zero, at least one of the products tiuj’s is non-zero as well.

The image is closed in P3pkq, being equal to the zero locus of w0w3 ´ w1w2 with wi’s
being homogeneous coordinates on P3pkq. For instance, in the open affine piece D`pw0q it
holds that t0u0 “ w0 ‰ 0, so the inverse image equals D`pu0q ˆ D`pu1q. Normalizing,
i.e. setting w0 “ t0 “ u0 “ 1, the map takes the form p1 : tq ˆ p1 : uq ÞÑ p1 : t : u : tuq,
and it becomes clear that the image equals w3 “ w1w2.

Example 1.42 (Rational normal curves). Consider the map

ρ : P1pkq Ñ Pnpkq (1.4)

pt0 : t1q ÞÑ ptn0 : tn´1
0 t1 : ¨ ¨ ¨ : t0t

n´1
1 : tn1 q.

This is well defined because when t0 and t1 are scaled by λ, the products tn´i
0 ti1 are all scaled

by λn, and of course, these products are never all zero. The image Cn is called a rational
normal curve of degree n.

The map ρ is injective. Indeed, observe first that the image of ρ is contained in the
union D`px0q Y D`pxnq. For points in the image lying in the distinguished open subset
D`pxnq, one recovers the ratio t0{t1 as xn´1{xn, and for image points in D`px0q one finds
t1{t0 “ x1{x0.

The image Cn is a closed subset of Pnpkq. It equals the common vanishing locus of the
2 ˆ 2-minors of the matrix

ˆ

x0 x1 . . . xn´2 xn´1

x1 x2 . . . xn´1 xn

˙

. (1.5)

When n “ 2, we just get the conic section x0x2 ´ x2
1 “ 0 in the projective plane P2pkq. The
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1.4 Regular functions on projective spaces 19

curve C3 is called the twisted cubic curve, ‘twisted’ because it does not lie in any plane in
P3pkq.

Example 1.43 (The Veronese surface). The projective plane P2pkq can be embedded in a
natural way in the projective space P5pkq using all the quadratic monomials as coordinate
functions:

P2pkq Ñ P5pkq (1.6)

pt0 : t1 : t2q ÞÑ pt20 : t0t1 : t0t2 : t
2
1 : t1t2 : t

2
2q.

The image is called the Veronese surface. Note that the definition makes sense, because a
simultaneous scaling of the ti’s by λ simultaneously scales the monomials by λ2, and they
do not all vanish at the same time. In homogeneous coordinates px0 : ¨ ¨ ¨ : x5q on P5pkq, the
homogeneous ideal of the the surface is given by the 2 ˆ 2-minors of the matrix

¨

˝

x0 x1 x2

x1 x3 x4

x2 x4 x5

˛

‚

Exercise 1.3.3. With reference to Example 1.41:
a) Show that closed sets in P1pkq ˆ P1pkq induced by the Zariski closed sets

in P3pkq are given by the vanishing of bihomogeneous polynomial. Here a
polynomial F px0, x1, y0, y1q is said to be bihomogeneous of bidegree pa, bq if
F psx, tyq “ satbF px, yq for all s, t P k.

b) Show that the subspace topology on P1pkq ˆ P1pkq is not the product topology.

Exercise 1.3.4. Show that the rational normal curve Cn equals the zero locus of the minors
of the matrix (1.5). Hint: Consider distinguished open sets.

1.4 Regular functions on projective spaces

As we already observed, homogeneous polynomials do not define functions on the projective
spaces. However, some quotients of homogeneous polynomials do give rational functions.
These quotients must be invariant under scaling of the variables, and are consequently of the
form g{h where g and h are homogeneous polynomials of the same degree, and then the
quotient g{h is a well-defined function on the distinguished open set D`phq.

As in the affine case, a function f is said to be regular throughout an open set U Ă Pnpkq

if each point x in U has a neighbourhood over which f “ g{h with hpxq ‰ 0, and where g
and h are homogeneous polynomials of the same degree. The functions regular at a point
x form a ring OPnpkq,x, which is a local ring whose maximal ideal consists of the regular
functions vanishing at x.

However, contrary to the affine case, there are not many global regular functions on Pnpkq.
In fact, they are all constant. This statement is true for any projective variety, but for the sake
of brevity we contend ourselves to proving it only for projective space itself.

Theorem 1.44. The only global regular functions on the projective space Pnpkq are
the constants.
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20 Varieties

Proof Let f be a global regular function on Pnpkq, and consider the composition f ˝ π of
f with the canonical projection π : An`1pkq ´ t0u Ñ Pnpkq. It is a global regular function
on An`1 ´ t0u, so by Proposition 1.26 on page 12, it is given by a polynomial. However,
since this polynomial comes from a function on Pnpkq, it must be constant on lines through
the origin. This means that it must have degree 0, that is, it is constant everywhere.

The fact that there are so few global regular functions basically forces us to instead work
with regular functions f : U Ñ k that are defined on open sets U Ă X . This is one of the
reasons to introduce sheaves in the next few chapters.
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2

The Prime Spectrum

In this chapter we make the first step towards the notion of a scheme, by defining the
spectrum of a ring. The spectrum of a ring A is a topological space, denoted by SpecA, with
a Zariski-like topology whose closed sets are formed from the ideals of A.

To motivate the definition, assume for a moment that A “ ApXq is the coordinate ring
of an affine variety X . By Hilbert’s Nullstellensatz the points of X are in bijection with
the set of maximal ideals in A: a point x “ pa1, . . . , anq corresponds to the maximal
ideal mx “ px1 ´ a1, . . . , xn ´ anq of regular functions on X vanishing at x, and every
maximal ideal is of this form. Thus there is no loss of information in replacing X with the
set tm | m Ă A is a maximal ideal u. Note that a point x P X lies in Zpaq if and only
if a Ă mx. Therefore, under this identification, the closed sets Zpaq from Chapter 1 now
take the form Zpaq “ tm | m Ą a u. Thus the ring A determines the topological space X .
Moreover, maps from X to other affine varieties are determined by A as well: according to
Theorem 1.19, polynomial maps f : X Ñ Y correspond bijectively to maps of k-algebras
ϕ : ApY q Ñ ApXq.

The rings that appear in the setting of varieties are rather special. They are integral domains
and finitely generated k-algebras over an algebraically closed field k, and the assumption
that k be algebraically closed, is essential in order to have the above correspondence between
points and maximal ideals.

There is a natural way of generalizing this to all rings, which involves including all prime
ideals, instead of just the maximal ideals. Given a ringA, the spectrum SpecA ofA is simply
the set of prime ideals of A. This set is then equipped with a topology, called the Zariski
topology, whose closed sets are the sets of the form V paq “ t p P SpecA | a Ă p u where a
is any ideal in A.

The idea of replacing maximal ideals by prime ideals is fundamental in scheme theory.
From a categorical perspective this is a good choice, since inverse images of prime ideals under
ring maps are prime ideals, and thus a ring map A Ñ B induces a map SpecB Ñ SpecA.
When X and Y were affine varieties, we were lucky that the induced map ApY q Ñ ApXq,
in fact, pulls maximal ideals back to maximal ideals, but this is no more true for general ring
maps (a simple example is the inclusion Z Ñ Q).

2.1 The spectrum of a ring

Let A be a ring. As usual we assume that A is commutative with 1.

21
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22 The Prime Spectrum

Definition 2.1. The prime spectrum of a ring A, or simply the spectrum is defined as
the set of prime ideals in A.

SpecA “ t p | p Ă A is a prime ideal u.

There is a topology on SpecA which generalizes the Zariski topology on a variety and
which is also called the Zariski topology. The definitions are very similar; the closed sets in
SpecA are those of the form

V paq “ t p P SpecA | p Ě a u,

where a is any ideal in A. Of course, one has to verify that the axioms for a topology are
satisfied. These require that the union of two closed sets, and the intersection of any number
(finite or infinite) of closed sets, is closed. And of course, both the whole space and the empty
set must be closed. The following lemma tell us that the closed subsets V paq indeed satisfy
these axioms:

Lemma 2.2. Let A be a ring and assume that taiuiPI is a family of ideals in A. Let a
and b be two ideals in A. Then the following three statements hold true:

(i) V pa X bq “ V paq Y V pbq “ V pabq;
(ii) V p

ř

i aiq “
Ş

i V paiq;
(iii) V pAq “ H and V p0q “ SpecA.

Proof Prime ideals are by definition proper ideals, so V pAq “ H. Also, the zero ideal p0q

is contained in every ideal, so V p0q “ SpecA. This proves (iii), and (ii) follows just as
easily, because the sum of a family of ideals is contained in an ideal if and only if each of the
ideals in the family is.

For statement (i): the inclusion V paq Y V pbq Ă V pa X bq is clear, so we need only to
show that V pa X bq Ă V paq Y V pbq. Let p be a prime ideal such that a X b Ă p. If b Ę p,
there is an element b P b with b R p. If a P a, then ab P a X b Ă p, and so a P p because p
is prime. Consequently, one has the inclusion a Ă p.

Corollary 2.3. The collection of sets of the form V paq constitute the closed sets a
topology on SpecA.

The next lemma is about inclusions between the closed sets of SpecA, and we recognise
them as analogues of some of the statements about subset of varieties in Proposition 1.2.

Lemma 2.4. For two ideals a, b Ă A we have
(i) V paq “ V p

?
aq;

(ii) V paq Ă V pb) if and only if
?
b Ă

?
a;

(iii) V paq “ H if and only if a “ A;
(iv) V paq “ SpecA if and only if a Ă

a

p0q.
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2.1 The spectrum of a ring 23

Proof Recall the following identity for the radical of an ideal:
?
a “

č

aĂp

p. (2.1)

From this, we see that a and
?
a are contained in the same prime ideals, and we infer that

V paq “ V p
?
aq. To show (ii), let us assume that V paq Ă V pbq. From (2.1) we then obtain

?
b “

č

pPV pbq

p Ă
č

pPV paq

p “
?
a.

Conversely, assume that
?
b Ă

?
a. If p P V paq, then

?
a Ă p, and we deduce from the

chain of inclusions b Ă
?
b Ă

?
a Ă p that p P V pbq. This proves (ii).

Statement (iii) follows from Lemma 2.2 because V paq “ V p1q “ SpecA if and only if
?
a “ p1q, which happens if and only if a “ p1q. Similarly, (iv) holds because V paq “ V p0q

if and only if a Ă
a

p0q.

Corollary 2.5. The assignment a ÞÑ V paq gives a one-to-one correspondence be-
tween radical ideals of A and closed subsets of SpecA.

Residue fields

Contrary to elements in the coordinate ring of a variety, elements in a general ring A cannot
be interpreted as functions on SpecA into some fixed field. However, there still is an analogy
between elements f of A and some sort of functions on SpecA. If x is a point in SpecA
which corresponds to p, the localization Ap is a local ring with maximal ideal pAp, and
one has the field kppq “ Ap{pAp, which will also be denoted by kpxq. It is canonically
isomorphic to the fraction field of the domain A{pA. The residue class of an element f
modulo p gives an element fpxq P kppq, which may be considered as the ‘value’ of f at x. It
is important to note that these values lie in different fields which might vary with the point.

Definition 2.6. The field kppq is called the residue field of SpecA at p.

For each f P A, we may also speak of its ‘zero set’, i.e. the points x P X such that
fpxq “ 0 in kpxq. By definition fpxq “ 0 if and only if f P p, so the ‘zero set’ is exactly
the closed set

V pfq “ t p P SpecA | f P p u.

Furthermore, a closed set V paq may be written as

V paq “ tx P SpecA | fpxq “ 0 for all f P a u.

First examples

Example 2.7 (Fields). If K is a field, the prime spectrum SpecK has only one point, which
corresponds to the only prime ideal in K, the zero ideal.
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24 The Prime Spectrum

Example 2.8 (Artinian rings). The ring A “ Crts{pt2q is not a field, but has only one prime
ideal, namely the ideal ptq. Note that the ideal p0q is not prime as t2 “ 0, but t R p0q.

The ringA “ Crts{ptpt´1qq has a spectrum which consists of two points. By the Chinese
Remainder theorem,

A » Crts{tˆ Crts{pt´ 1q » C ˆ C,

which has exactly two prime ideals, namely 0 ˆ C and C ˆ 0.
More generally, an Artinian ring A has only finitely many prime ideals which are all

maximal, so SpecA is a finite set, and the topology is the discrete topology.

Example 2.9 (The spectrum of the integers). In the ring of integers Z, there are two types of
prime ideals: the zero-ideal p0q and the maximal ideals ppq, one for each prime number p.
The latter correspond to closed points in SpecZ, and one has V p0q “ SpecZ.

. . .p2q p3q p5q p7q p11q p13q p17q p19q p23q p0q

The spectrum of the integers

As Z is a principal ideal domain, any ideal is of the form pnq for some integer n. It follows
that the closed subsets are of the form V pnq “ V pp1q X ¨ ¨ ¨ X V pprq where the pi are the
prime factos of n. In other words, the closed sets are either finite sets of closed points or the
whole space. Dually, the non-empty open sets are the complements of finite sets of closed
points. In particular, this means that SpecZ is not Hausdorff, as any open set must contain
p0q.

The residue field at a closed point ppq is equal to kppq “ Zp{pZp “ Fp, whereas the
residue field at p0q is equal to Zp0q “ Q. Each element f of the ring Z gives rise to a function
on SpecZ with values in the various residue fields. For instance, the integer f “ 17 takes
the values fpp0qq “ 17, fpp2qq “ 1̄, fpp3qq “ 2̄, fpp5qq “ 2̄, fpp7qq “ 3̄, . . . , in the
fields Q,F2, F3, F5, F7, . . . , respectively, where the bar indicates the residue class modulo
the relevant prime.

Example 2.10 (Discrete valuation rings). Consider a discrete valuation ring A, such as the
series ring Cvtw, or one of the localizations krtsptq or Zppq. (See Appendix A for background
on discrete valuation rings). The ring A has exactly two prime ideals, the maximal ideal
m and the zero ideal p0q, and SpecA consists of just two points: SpecA “ tη, xu with x
corresponding to the maximal ideal m and tηu to p0q. The closed sets are H, txu and tx, ηu.
Therefore tηu “ SpecA´ txu is open; so η is an open point!

The open sets are H, SpecA and tηu. Again SpecA is not Hausdorff, as there is too few
open sets to separate x and η.

x
η

The spectrum of a DVR
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2.2 Generic points 25

Exercises

Exercise 2.1.1. Describe SpecZp210q.

Exercise 2.1.2. Let p be a prime ideal in a ring A. Show that there is a canonical inclusion
A{p ãÑ Ap{pAp and that this yields an identification of Ap{pAp with the fraction field of
A{p.

Exercise 2.1.3. Let a Ă A be an ideal. Show that
?
a “

Ş

aĂp p. HINT: If f R
?
a the

ideal aAf is a proper ideal in the localization Af , hence contained in a maximal ideal.

2.2 Generic points

The Zariski topology on SpecA is very different from the Euclidean topology on manifolds
that we are used to. In fact, the topology can exhibit surprising behaviour, even compared to
the usual Zariski topology on varieties. For instance, points can fail to be closed. In fact, the
next proposition implies that a point x P SpecA is closed if and only if the corresponding
ideal is maximal.

Proposition 2.11. The closure of a set S Ă SpecA is equal to sS “ V paq where
a “

Ş

pPS p. In particular, the closure tpu of the one-point set tpu equals the closed
set V ppq.

Proof Let b be the radical ideal with V pbq “ sS. Then every p P S contains b, and hence
b Ă a. On the other hand, V paq is closed, and S Ă V paq, so it follows that S Ă V paq.
Hence V pbq Ă V paq, and a Ă b by Lemma 2.4. We conclude that a “ b.

This leads to the following definition:

Definition 2.12 (Genric points). A point x in a closed subset Z of a topological space
X is called a generic point for Z if txu “ Z,

In our context, each point p P SpecA is the generic point of the closed set V ppq.

p

V ppq

Example 2.13. When A is an integral domain A, the zero ideal p0q is prime, and as V p0q “

SpecA, it is the generic point of all of SpecA. This explains the ‘fat’ points in the pictures
in Examples 2.9 and 2.10, their closures are the whole space.
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26 The Prime Spectrum

2.3 Affine spaces

The most important examples of prime spectra are the affine spaces.

Definition 2.14. For each natural number n, we define the affine n-space as

An “ SpecZrt1, . . . , tns.

More generally, for a ring A, we define the affine n-space over A by

AnA “ SpecArt1, . . . , tns.

When k is an algebraically closed field, then Ank is the scheme analogue of the affine
n-space Anpkq (as defined in Chapter 1). In this setting, Hilbert’s Nullstellensatz tells
us that the points of Anpkq are in one-to-one correspondence with the maximal ideals in
A “ krt1, . . . , tns (which all are of the form pt1 ´ a1, . . . , tn ´ anq with ai P k). Thus
Anpkq occurs naturally as a subset of the spectrum Ank , and moreover, the old Zariski topology
on the variety Anpkq is the one induced from the Zariski topology on Ank . However, there
are other prime ideals in A than just the maximal ideals; the zero ideal for instance. So Ank
is strictly larger than Anpkq. The differences between Ank and Anpkq become even more
apparent if k is not algebraically closed.

Example 2.15 (The affine line). The prime spectrum A1
k “ Spec krts is called the affine line

over k. The polynomial ring krts is a principal ideal domain, so the prime ideals are either of
the form pfptqq where fptq is an irreducible polynomial, or the zero ideal p0q. In the first
case the ideals are automatically maximal, so it follows that A1

k has two types of points: the
closed points and the generic point η.

If we assume that k is algebraically closed, then the maximal ideals are all of the form
pt´ aq for a P k. The residue fields at the corresponding points are of the form

kpaq “ krtspt´aq{pt´ aqkrtspt´aq » k.

Thus for instance, A1
C consists of the generic point η and one point for each complex number.

When k is not algebraically closed, there can be other closed points than the ones of the
form pt´ aq. An interesting special case is when k “ R. Then A1

R is called the real affine
line. By the Fundamental Theorem of Algebra, a non-zero prime ideal p of Rrts is of the
form p “ pfptqq where either fptq is linear; that is, fptq “ t ´ a for an a P R, or f is
quadratic with two conjugate complex non-real roots; that is, fptq “ pt ´ aqpt ´ āq with
a P C but a R R. This shows that the closed points in SpecRrts may be identified with the
set of pairs ta, āu with a P C.

In the non-algebraically closed case, the residue fields of the ‘extra’ non-closed points can
be more interesting. For instance, the maximal ideal pt2 ` 1q defines a closed point in A1

R
with residue field C. In general, if a maximal ideal m in krts is generated by the irreducible
polynomial fptq, the residue field at the corresponding point in A1

k is the extension of k
obtained by adjoining a root of f .

Example 2.16 (The affine plane). When k is algebraically closed, the maximal ideals of
krt1, t2s are all of the form pt1 ´ a1, t2 ´ a2q, and these constitute all the closed points of
A2
k. There are also the prime ideals of the form p “ pfq where f is an irreducible polynomial
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2.4 Irreducibility and connectedness 27

from krt1, t2s. The prime ideal p is the generic point of the closed subset V pfq. In addition to
the point p, the points of V pfq are the closed points corresponding to ideals pt1 ´a1, t2 ´a2q

containing f . This condition is equivalent to fpa1, a2q “ 0, so the closed points of V pfq

correspond to what one in a variety setting would call the curve given by the equation
fpt1, t2q “ 0.

Closed points Generic points of curves Generic point of X

2.4 Irreducibility and connectedness

Recall from Chapter 1 that a topological space X is irreducible if it cannot be written as the
union of two proper closed subsets. From Proposition 1.13, we know that the coordinate ring
of an affine variety is an integral domain, and very simple examples indicate that reducibility
of SpecA is closely linked to zero divisors in A (see Example 2.21 below). In general, we
have the following:

Proposition 2.17. Let A be a ring. Then the following statements hold:
(i) If p Ă A is a prime ideal, it holds that Ďtpu “ V ppq, and p is the only

generic point of V ppq;
(ii) A closed subset Z Ă SpecA is irreducible if and only if Z is of the

form Z “ V ppq for some prime ideal p;
(iii) The space SpecA itself is irreducible if and only if A has just one

minimal prime ideal; in other words, if and only if the nilradical
a

p0q is
prime.

Proof Statement (i) is just Proposition 2.11 on page 25. For the uniqueness part, when
V ppq “ V pqq, it holds by Lemma 2.4 on page 22 that both p Ă q and q Ă p.

Proof of (ii): As the closure of any singleton is irreducible, and since we just showed that
V ppq “ Ďtpu, we conclude that V ppq irreducible. For the reverse implication, let V paq Ă

SpecA be a closed subset. Recall that
?
a “

Ş

aĂp p. If
?
a is not prime, there are more

than one prime involved in the intersection. We may divide them into two different groups
thus representing

?
a as an intersection

?
a “ b X b1 where b and b1 are the intersections

of the primes in the two groups, and hence are different radical ideals. One concludes that
V paq “ V pbq Y V pb1q, and V paq is not irreducible.

The third statement follows from the second, because SpecA “ V
`
a

p0q
˘

(again by
Lemma 2.4).

A consequence of the proposition is that SpecA is irreducible whenever A is an integral
domain, as in that case p0q is a minimal prime ideal. However, SpecAmay well be irreducible
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28 The Prime Spectrum

for other rings as well. The ring A “ Crts{pt2q is a simple example: it is not an integral
domain, and has only one prime ideal, namely the principal ideal ptq. Statement (iii) above
tells us that this example is typical for such rings: every zerodivisor in the ring is nilpotent. Or,
in the spirit of the analogy with functions, there are non-zero functions vanishing everywhere.

Example 2.18. Let R “ Crx, ys{py2 ´ x3 ´ x2q and X “ SpecR. Then X is irreducible
and is called the nodal cubic curve over C. There are two types of points in X:

(i) Closed points p P X . These correspond to maximal ideals m “ px´ a, y ´ bq
where a, b satisfy b2 “ a3 ` a2. The residue fields equal kppq “ R{m » C.

(ii) The generic point η. This corresponds to the zero ideal. The residue field equals
the fraction field of R, which is isomorphic to Cptq (via the substitution x “

t2 ´ 1, y “ t3 ´ t).

Recall that a topological space is connected if it cannot be written as a disjoint union of
two proper open subsets. All of the examples we have seen until now, with the exception of
Example 2.8, are connected.

Example 2.19 (A disconnected spectrum). Suppose that A “ A1 ˆA2 is the direct product
of two non-trivial ringsA1 andA2. InA we have the two orthogonal idempotents e1 “ p1, 0q

and e2 “ p0, 1q; they satisfy the relations e21 “ e1, e1e2 “ 0, e22 “ e2 and e1 ` e2 “ 1.
The spectrum SpecA decomposes as the disjoint union SpecA “ V pe1q Y V pe2q of

the two closed sets V peiq; indeed, since e1 ` e2 “ 1, it holds that V pe1q X V pe2q “

V pe1, e2q “ H. And since e1e2 “ 0, either e1 P p or e2 P p for each prime p P SpecA, so
the V peiq’s cover SpecA.

In fact, there is a converse to this example.

Proposition 2.20. A spectrum SpecA is disconnected if and only if A is isomorphic
to a direct product A “ A1 ˆA2 of non-trivial rings A1 and A2.

While it would certainly be possible to give a direct proof of this proposition at the present
stage, we wait until the next chapter; there is a much more conceptual proof using the
structure sheaf (see Example 4.9 on page 57). For reduced rings however, the argument is
straightforward (see Exercise 2.4.1)

Connectedness is a weaker topological condition than irreducibility in the sense that an
irreducible space is also connected. However, it is possible to be connected yet reducible, as
the following example shows:
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2.5 Distinguished open sets 29

Example 2.21. The prime spectrum X “ Spec krx, ys{pxyq is a good example of a space
which is connected but not irreducible. The coordinate functions x and y are zero-divisors in
the ring krx, ys{pxyq, and their zero-sets V pxq and V pyq show that X has two components.
Since these two components intersect at the origin, X is connected.

Exercise 2.4.1. Let A be a reduced ring. Show that SpecA is not connected if and only if
A “ A1 ˆA2 for two non-trivial rings A1 and A2. HINT: If SpecA is the disjoint union
V paq Y V pbq, it holds true that a ` b “ A. Use this to find two non-trivial idempotents.

Exercise 2.4.2. Assume that X is a topological space that is not connected. Exhibit two non-
constant orthogonal idempotents with sum unity in the ring of continuous functions on X .
HINT: The characteristic functions of two disjoint open sets whose union equals X , will do.

2.5 Distinguished open sets

There is no way to describe the open sets in SpecA as simply and elegantly as the closed
sets can be. However there is a natural basis for the topology on SpecA whose sets are easily
defined, and which turns out to be very useful. For an element f P A, we let Dpfq be the
complement of the closed set V pfq; that is, we set

Dpfq “ t p P SpecA | f R p u “ V pfqc.

These are clearly open sets; we call them distinguished open sets.

Lemma 2.22. For a ring A and elements f, g P A, we have
(i) Dpfq XDpgq “ Dpfgq;

(ii) Dpgq Ă Dpfq if and only if gn P pfq for some natural number n. In
particular, one has Dpfq “ Dpfnq for all n.

Proof Statement (i): if p is a prime ideal, then f R p and g R p hold true if and only if
fg R p.

Proof of (ii): the inclusion Dpgq Ă Dpfq holds if and only if V pfq Ă V pgq, and by
Lemma 2.4 on page 22 this is true if and only if pgq Ă

a

pfq; in other words, if and only if
gn P pfq for a suitable n.

Lemma 2.23.
(i) The collection of distinguished open sets form a basis for the topology

of SpecA;
(ii) A family tDpfiquiPI forms an open covering of SpecA if and only if

the fi generate the unit ideal, i.e. if and only if there is a relation

1 “ a1fi1 ` ¨ ¨ ¨ ` anfin (2.2)

where i1, . . . , in P I .

Proof Statement (i): we need to show that each open subset U of SpecA can be written as
the union of distinguished open sets. Observe that, by definition, the complement U c of U is
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of the form U c “ V paq with a Ă A an ideal, and choose a set tfiu of generators for a (not
necessarily a finite set). Then we have

U “ V paqc “ V
`

ÿ

i

pfiq
˘c

“
`

č

i

V pfiq
˘c

“
ď

i

Dpfiq. (2.3)

Statement(ii): from the identity (2.3) with U “ SpecA, it follows that the open setsDpfiq
constitute a covering of SpecA if and only if V p

ř

ipfiqq “ H, which happens if and only
if
ř

ipfiq “ p1q. But this is the case if and only if 1 is a combination of finitely many of the
fi’s.

The lemma tells us that theDpfq’s form a basis for the topology: any open setU Ă SpecA
can be written as a union ofDpfq’s. Moreover, we deduce that any open cover may be refined
to one whose members all are distinguished, and hence it can be reduced to a finite covering.
A topological space with this property is said to be quasi-compact. 1.

Example 2.24. In the affine line A1
k over a field, every closed set is of the form V pfq for some

polynomial f , so every open set is a distinguished open set Dpfq. In A2
k “ Spec kru, vs, the

set U “ A2
k ´V pu, vq is open, but not of the form Dpfq. Still, we have U “ Dpuq YDpvq.

Example 2.25 (The circle). Consider the unit circle X “ SpecRrx, ys{px2 ` y2 ´ 1q.
The maximal ideal m “ px, y ´ 1q defines the point p0, 1q on X . Note that this ideal is not
a principal ideal. Nevertheless, the complement X ´ tp0, 1qu is a distinguished open set.
Indeed, it coincides with Dpy´ 1q because modulo the ideal px2 ` y2 ´ 1q, it holds true that

px, y ´ 1q2 “ px2, xpy ´ 1q, py ´ 1q2q “ py ´ 1q.

With the subspace topology inherited from SpecA, the distinguished open sets are them-
selves prime spectra:

Lemma 2.26. A distinguished open subset Dpfq is homeomorphic to SpecAf .

Proof Recall that for a multiplicative set S Ă A, the map p ÞÑ pS´1A gives an inclusion-
preserving bijection between the prime ideals of S´1A and the prime ideals p of A satisfying
p X S “ H. Applying this to S “ t1, f, f2, . . . u, we get the lemma.

For two open sets Dpfq and Dpgq, we have the following implications:

Dpfq Ą Dpgq ùñ V pfq Ă V pgq

ùñ
a

pfq Ą
a

pgq

ùñ g P
a

pfq

ùñ gr “ cf for some r P N, c P A

1 The terminology is a little bit unfortunate; spaces in which every open cover has a finite subcover are usually
called ‘compact’. However, some authors reserve the term ’compact’ for quasi-compact and Hausdorff, and this
jargon has caught on in the algebraic geometry literature.
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2.6 Maps between prime spectra 31

If follows that there is a canonical localization map

ρfg : Af ÝÝÑ Ag
a

fn
ÞÝÑ

acr

grn
, (2.4)

which is a ring map factoring A Ñ Ag. From this we deduce that Dpgq may be identified
with a distinguished open subset in SpecpAf q.

Exercises

Exercise 2.5.1. Show that the ideal m “ px, y ´ 1q in A “ Rrx, ys{px2 ` y2 ´ 1q is not
principal.

Exercise 2.5.2. Show that Dpfq “ H if and only if f is nilpotent. HINT: Use that
a

p0q “
Ş

pPSpecA p.

Exercise 2.5.3. Show that Dpfq “ Dpgq if and only if there are integers m,n such that
gm “ u ¨ fn for some unit u P A.

Exercise 2.5.4. Check that for a nested inclusion Dphq Ă Dpgq Ă Dpfq, we have ρfh “

ρgh ˝ ρfg.

Exercise 2.5.5. Let A be a ring, let a be an ideal in A and let tfiuiPI be elements from a.
Show that the open distinguished sets Dpfiq cover SpecA´V paq if and only if some power
of each element f P a lies in the ideal generated by the fi’s.

Exercise 2.5.6. Let k be a field and let A “ krt0, t1, . . . s be a polynomial ring in countably
many variables. Let m be the maximal ideal m “ pt0, t1, . . . q. Show that U “ SpecA´ m
is not quasi-compact. Conclude that U is not the spectrum of a ring. HINT: Consider the
open covering tDptiquiě0.

2.6 Maps between prime spectra

Let A and B be two rings and let ϕ : A Ñ B be a map of rings. The inverse image ϕ´1p of
a prime ideal p Ă B is a prime ideal: that ab P ϕ´1p means that ϕpabq “ ϕpaqϕpbq P p, so
at least one of ϕpaq or ϕpbq has to lie in p. Hence sending p to ϕ´1p gives us a well-defined
map

f “ Specpϕq : SpecB SpecA. (2.5)

This map is continuous in the Zariski topology, because preimages of closed sets are closed
by item (i) in the next proposition.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

32 The Prime Spectrum

Proposition 2.27. Let f : SpecB Ñ SpecA be induced by the ring map ϕ : A Ñ

B.
(i) f´1V paq “ V pϕpaqBq for each ideal a Ă A.

(ii) f´1Dpgq “ Dpϕpgqq for each g P A;
(iii) fpV pbqq “ V pϕ´1bq for each ideal b of B.

Proof To prove (i), let a Ă A be an ideal. Then we have

f´1V paq “ t p Ă B | a Ă ϕ´1p u “ t p Ă B | ϕpaq Ă p u “ V pϕpaqBq.

Indeed, as a Ă ϕ´1ϕpaq, the inclusion ϕpaq Ă p holds if and only if a Ă ϕ´1p. In particular,
the inverse image of any closed subset is again closed, so f is continuous.

For (ii), note that for each element g P A we have the following equalities:

f´1Dpgq “ t p Ă B | g R ϕ´1p u “ t p Ă B | ϕpgq R p u “ Dpϕpgqq.

Finally we prove (iii): according to Corollary 2.11 on page 25, the closure fpV pbqq equals
V paq with a the ideal given by

a “
č

pPfpV pbqq

p “
č

bĂq

ϕ´1q.

The equality holds because p P fpV pbqq implies that p “ ϕ´1q for some q, with b Ă q. So
we get that

a “
č

bĂq

ϕ´1q “ ϕ´1
`

č

bĂq

q
˘

“ ϕ´1p
?
bq “

a

ϕ´1b.

Hence V paq “ V pϕ´1bq, which gives the desired identity.

p

q “ ϕ´1ppq

SpecB

SpecA

Proposition 2.28. With notation as in Proposition 2.27, if ϕ is surjective, then f
induces a homeomorphism from SpecB onto the closed subset V pKerϕq Ă SpecA.
In particular, if a Ă A is an ideal, the quotient map A Ñ A{a induces a homeomor-
phism

f : SpecpA{aAq
»

ÝÝÝÝÑ V paq Ă SpecA

Proof If ϕ : A Ñ B is surjective, we may assume B “ A{a, where a “ Kerϕ. The map
p ÞÑ ϕ´1p gives is an inclusion preserving one-to-one correspondence between prime ideals
in A{a and prime ideals in A containing a (with inverse given by q ÞÑ q{a). This shows that
f is a continuous bijection onto the closed subset V paq. To show that f is a homeomorphism,

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

2.6 Maps between prime spectra 33

it suffices to show that it is closed; this follows from the equalities

fpV pb{aqq “ tp P SpecA|b{a Ă p{a P SpecpA{aqu “ V pbq.

The map SpecpA{aq Ñ SpecA is the standard example of a closed embedding. We will
discuss these in more detail later.

Proposition 2.29. With notation as in Proposition 2.27, if ϕ is injective, then
fpSpecBq is dense in SpecA. In fact, the image fpSpecBq is dense in SpecA if
and only if Kerϕ Ă

a

p0q.

Proof Again, by (iii) of Proposition 2.27, the closure of fpSpecBq “ fpV p0qq equals
V pϕ´1p0qq “ V pKerϕq. So fpSpecBq is dense if and only if V pKerϕq “ SpecA. But
this happens exactly when Kerϕ Ă p for all p, or equivalently when Kerϕ Ă

a

p0q.

Examples

Example 2.30 (Reduction modulo a prime p). The reduction mod p-map Z Ñ Fp induces a
map SpecFp Ñ SpecZ. The one and only point in SpecFp is sent to the point in SpecZ
corresponding to the maximal ideal ppq. The inclusion Z Ă Q of the integers in the field of
rational numbers induces likewise a map SpecQ Ñ SpecZ, that sends the unique point in
SpecQ to the generic point η of SpecZ.

Example 2.31 (The circle). Consider X “ SpecRrx, ys{px2 ` y2 ´ 1q. The ring map

ϕ : Rrx, ys{pu2 ` v2 ´ 1q Ñ Rrx, ys{px2 ` y2 ´ 1q (2.6)

u ÞÑ x2 ´ y2 (2.7)

v ÞÑ 2xy

(originating from the ‘squaring map’ z ÞÑ z2) induces a map of spectra f : X Ñ X .

Example 2.32 (The twisted cubic). Let k be a field. The ring map ϕ : krx, y, zs Ñ krts
given by x ÞÑ t, y ÞÑ t2, z ÞÑ t3 defines a map of prime spectra

f : A1
k ÝÝÑ A3

k.

The image of f is the twisted cubic curve V paq Ă A3
k defined by the ideal a “ Kerϕ “

py ´ x2, z ´ x3q.

Example 2.33. Let k be a field. The ring map ϕ : krxs Ñ krx, ys{pxy ´ 1q induces a
morphism

Spec krx, ys{pxy ´ 1q A1
k.

On the level of closed points, when k is algebraically closed, this maps pa, a´1q to a. Since
krx, ys{pxy´ 1q is an integral domain, it has a unique generic point η, and this is mapped to
the generic point of A1

k. Note that Spec krx, ys{pxy ´ 1q » Dpxq Ă A1
k via this morphism.

In particular, the image is not closed in A1
k.

Exercise 2.6.1. Let ϕ : A Ñ B and ψ : B Ñ C be two ring maps. Show that, with the
notation of (2.5), Specpψ ˝ ϕq “ Specpϕq ˝ Specpψq.
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y “ x2

z “ x3

Figure 2.1 The twisted cubic curve

2.7 Scheme-theoretic fibres I

To understand a map of spectra f : SpecB Ñ SpecA, it is often useful to understand the
inverse images of points, the fibres of f .

Let ϕ : A Ñ B be the ring map that induces f and let y P SpecA be a point, correspond-
ing to a prime ideal p in A. We would like to understand the fibee f´1pyq, i.e., the set of
prime ideals q in B such that p “ ϕ´1pqq.

If y P Y is a closed point, that is, p is a maximal ideal, then we saw in Proposition 2.27
that the inverse image f´1V pmq is equal to the closed set V pmBq. In other words, the fibre
f´1pyq is homeomorphic to Spec pB{mBq.

In general, the fibre f´1pyq may or may not be closed in SpecB. The inverse image of
the closure V ppq of y still equals V ppBq, but this set may contain other primes than the ones
mapping to y. For instance, in the sitation when p “ p0q is prime, then V ppBq “ SpecB.

To remedy this, we consider the localization pB{pBqp of the A-module B{pB in the
multiplicative set S “ A´ p. Note the general equality pB{pBqp “ Bp{pBp, and that we
have canonical ring maps B Ñ B{pB Ñ pB{pBqp. These induce maps of spectra:

ι : SpecBp{pBp SpecB{pB SpecB. (2.8)

Proposition 2.34. The map (2.8) induces a homeomorphism between SpecBp{pBp

and the fibre f´1ppq Ă SpecB. In particular, if p P SpecA is a closed point, then
f´1ppq is homeomorphic to Spec pB{pBq.

Proof Note the equalities

t q P SpecB | p Ă ϕ´1q u “ t q P SpecB | pB Ă q u “ V ppBq.

In the particular case that p is a maximal ideal, the inclusion p Ă ϕ´1q must be an equality,
and the sets above describe the fibre

f´1ppq “ t q P SpecB | pB Ă q u “ V ppBq.

The closed subset V ppBq of SpecB with induced topology from SpecB is canonically
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homeomorphic to SpecpB{pBq. Thus we have a homeomorphism between Spec pB{pBq

and the fibre f´1ppq.
If p is not a maximal ideal, the set Spec pB{pBq might, as we observed above, be bigger

than the fibre. The extra prime ideals are those q for which the inclusion p Ă ϕ´1q is strict.
That means that there exist elements s P S “ A´ p so that ϕpsq P q. It follows that if we
localize with respect to S, these extra prime ideals will cease being proper, because they
contain invertible elements. It follows that the points in the fibre f´1ppq correspond exactly
to the primes in the localized ring Bp{pBp. Since this correspondence respects inclusions,
the Zariski topology on the spectrum SpecpBp{pBpq coincides with the one induced from
the Zariski topology of SpecpB{pBq, and hence we get the statement in general.

Example 2.35. Consider the map

f : SpecCrx, y, zs{pxy ´ zq SpecCrzs,

induced by the canonical map ϕ : Crzs Ñ Crx, y, zs{pxy ´ zq “ B. Let us compute the
fibres f´1ppq over the maximal ideals p “ pz ´ aq. Note that

B{pB “ Crx, y, zs{pxy ´ z, z ´ aq » Crx, ys{pxy ´ aq.

There are two cases. If a ‰ 0, then xy ´ a is an irreducible polynomial, and so SpecB{pB
is irreducible. This is intuitive, as it corresponds to the hyperbola V pxy´ aq in A2

C. If a “ 0,
we are left with SpecCrx, ys{pxyq, which is not irreducible; it has two components, the two
coordinate axes V pxq and V pyq.

Let us also consider the fibre over the generic point η of SpecCrzs, which corresponds
to p “ p0q. In this case, the ring pB{pBqp is the localization of B with respect to the
multiplicative set S “ Crzs ´ t0u; that is, the ring

Cpzqrx, ys{pxy ´ zq.

This is again an integral domain, so the fibre f´1pηq is irreducible. This fibre may be regarded
as a hyperbola in the affine plane A2

Cpzq
over the field Cpzq.

Example 2.36. Let k be a field and consider the map

f : X “ Spec krx, ys{px´ y2q Spec krxs

induced by the injection krxs Ñ krx, ys{px´ y2q. Geometrically one would say this is just
the projection of the ‘horizontal’ parabola onto the x-axis.

If a P k, the fibre f´1ppq over the maximal ideal p “ px´ aq is the spectrum of the ring

B{pB “ krx, ys{px´ y2, x´ aq » krys{py2 ´ aq.

Let us first assume that k has characteristic different from 2. Several cases can occur:
(i) If a ‰ 0 and has a square root in k, say b2 “ a, the polynomial y2 ´ a factors

as py ´ bqpy ` bq, and by the Chinese Remainder theorem, the fibre becomes
the product

Spec
`

krys{py ´ bq ˆ krys{py ` bq
˘

,

which is the disjoint union of two copies of Spec k.
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(ii) If a ‰ 0, but does not have a square root in k, then the fibre equals Spec kp
?
aq,

where kp
?
aq is a quadratic field extension of k. The fibre is a single point,

but with ‘multiplicity two’ (in the sense that the degree of the field extension
k Ă kp

?
aq is 2).

(iii) The final case is when a “ 0. The fibre then equals Spec krys{py2q, which
is just a single point, but again there is a ‘multiplicity two’, accounted for by
the presence of nilpotent elements in the ring (as vector space over k the ring
krysppy2q has dimension two).

Example 2.37 (The Möbius Strip). Consider the R-algebra A “ Rrx, ys{px2 ` y2 ´ 1q and
the circle S “ SpecA. There is a map

f : SpecAru, vs{pvx´ uyq S.

Let us compute the scheme theoretic fibres of f . Note that S is covered by the two affine
subsets Dpxq and Dpyq. If p P Dpxq, then x is invertible in Ap, and so, writing B “

Aru, vs{pvx´ uyq, we find

Bp{pBp “ pAp{pqru, vs{pv ´ x´1uyq » kppqrus.

Hence the scheme theoretic fibre is isomorphic to A1
kppq

. A similar argument works when
p P Dpyq. Hence all fibres are isomorphic to affine lines.

Example 2.38. Consider the map

π : SpecCrts ÝÝÑ SpecRrts

induced by the inclusion Rrts Ă Crts. By Example 2.15 there are three cases to consider for
the fiber π´1pyq of a point y P A1

R.
i) y corresponds to the maximal ideal pt´ aq where a P R. Then the fiber is given

by

π´1pyq “ Spec pCrts{pt´ aqq » SpecC.

Therefore the fibre is a single closed point with residue field C.
ii) y corresponds a closed point corresponding to p “ pfptqq where f P Rrts has

two conjugate complex roots a, ā. Then

π´1pyq “ Spec pCrts{pfptqqq » Spec pCrts{pt´ aq ˆ Crts{pt` aqq

Thus the fibre consists of two closed points, with residue fields C.
iii) y “ η is the generic point. Then f´1pηq is given by the spectrum of the localiza-

tion S´1Crts “ Cptq where S “ Crts´p0q. In other words, π´1pCptqq “ A1
Cptq

is the affine line over Cptq.
The Galois group G “ GalpC{Rq » Z{2Z acts on the fibres of this example. More precisely,
consider the conjugation map on the polynomial ring Crts given by conjugating the coeffi-
cients of the polynomials; that is, sending a polynomial

ř

i ait
i to

ř

i āit
i. This defines an

automorphism

ι : SpecCrts ÝÝÑ SpecCrts
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2.7 Scheme-theoretic fibres I 37

Note that the sub-ring Rrts Ă Crts is unaltered by the conjugation map, so the following
diagram commutes:

SpecCrts SpecCrts

SpecRrts

ι

π π

Thus G “ xid, ιy » Z{2Z acts by automorphisms on the fibres of π. From this we see
that SpecRrts can be viewed as the quotient space of SpecCrts by G, i.e., the space that
parameterizes G-orbits. Indeed, by Example 2.15, the closed points of SpecRrts correspond
exactly to the orbits of G and the generic point of SpecCrts is invariant and corresponds to
the generic point of SpecRrts.

Example 2.39 (The Gaussian integers). The inclusion Z Ă Zris induces a morphism

f : SpecZris SpecZ.

We will study SpecpZrisq by studying the fibres of this map. If p P Z is a prime, the fibre
over ppqZ consists of those primes that contain ppqZris. There are three cases:

(i) p stays prime in Zris, and the fibre over ppqZ has one element, namely the prime
ideal ppqZris. This happens if and only if p ” 3 mod 4; 2

(ii) p splits into a product of two different primes, and the fibre consists of the
corresponding two prime ideals. This happens if and only if p ” 1 mod 4;

(iii) p factors into a product of repeated primes (such a prime is said to ‘ramify’).
This happens only at the prime p2q:

p2qZris “ p2iqZris “ p1 ` iq2Zris.

This is not radical, and the fibre consists of the single prime p1 ` iqZris.
The following picture shows SpecZris:

. . .
p2q p3q p5q p7q p11q p13q p17q p0q

p0q
. . .

p1 ` iq
p2 ` iq

p2 ´ iq

p3 ` 2iq

p3 ´ 2iq

p3q
p7q p11q

SpecZris

SpecZ

p4 ` iq

p4 ´ iq

The spectrum SpecZris

The Galois group G “ GalpQris{Qq » Z{2Z acts on SpecZris. This group is generated
by the complex conjugation map, which permutes the prime ideals in SpecpZrisq sitting over
any ppq in SpecpZq. So for instance, if you look at the primes sitting over say p5q, namely

2 This is related to being able to write p as a sum of squares; if p “ x2 ` y2, then p “ px ` iyqpx ´ iyq, so it is
not prime in Zris.
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p2 ` iq and p2 ´ iq, you see that complex conjugation maps one into the other. Thus we
picture SpecpZrisq as some curve lying above SpecpZq, withG permuting the points in each
fibre (though some are fixed by G).

Example 2.40 (The affine line A1
Z). Consider the affine line A1

Z “ SpecZrts and the
morphism f : SpecZrts Ñ SpecZ induced by the inclusion Z Ă Zrts.

There are two cases for a fibre f´1pyq of a point y P SpecZ. If y corresponds to the closed
point ppq P SpecZ, the fibre f´1pyq consists of all primes p Ă Zrts such that p X Z “ ppq.
According to Proposition 2.34, it is given by

V pppqZrtsq “ Spec pZrts{pZrtsq “ A1
Fp
.

Likewise, if y “ η is the generic point of SpecZ, corresponding to p0q, Proposition 2.34
tells us that the fibre f´1pηq is the Spec of the localization S´1Zrts “ Qrts, where S “ Z´0.
In other words,

f´1pηq “ SpecQrts “ A1
Q.

The situation is shown in the figure below:

. . .p2q p3q p5q p7q p0q

p2, x` 1q

px2 ` 3q

p5, x` 1q

p7, 6x` 1q

p3, xq
p5, x2 ` 3q

p7, x` 2q

p7, x` 5q

V px2 ` 3qV p6x` 1q

p6x` 1q

p0q

A1
F2

A1
F3

A1
F5

A1
F7

A1
Q

In the figure, we have depicted the two closed sets V p6x` 1q and V px2 ` 3q. Note that
V p6x ` 1q is disjoint from the fibres above the primes 2 and 3 (why?). The closed subset
V px2 ` 3q should be compared to Example 2.39).

Example 2.41 (The polynomial ring over a DVR). Let A be a discrete valuation ring, such as
the localization Zppq. As in Example 2.10, we have SpecA “ tx, ηu with x a closed point
(corresponding to a maximal ideal m) and η an open point (corresponding to p0q).

Consider the map f : SpecArts Ñ SpecA corresponding to the inclusion A Ă Arts.
There are two fibres to consider, a closed fibre f´1pxq and an open fibre f´1pηq.

The closed fibre consists of the primes p Ă Arts such that p XA “ m. Writing k “ A{m
for the residue field at x, we find using Proposition 2.34, that f´1pxq equals

V pmArtsq “ Spec pArts{mArtsq » Spec krts.

Hence the fibre f´1pxq is homeomorphic to the affine line A1
k “ Spec krts.

Using Proposition 2.34 again, we find that the open fibre is equal to SpecS´1Arts where
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2.7 Scheme-theoretic fibres I 39

S “ A´ p0q. If we write K “ S´1A for the fraction field of A, we have S´1Arts “ Krts
and so f´1pηq is isomorphic to the affine line A1

K .

Exercises

Exercise 2.7.1. In the same vein as Example 2.30, show that a ring A is a Q-algebra (that is,
it contains a copy of Q) if and only if the canonical map SpecA Ñ SpecZ factors through
the generic point SpecQ Ñ SpecZ.

Exercise 2.7.2. Show that the Zariski topology on SpecA is Hausdorff if and only if every
prime ideal p is maximal.

Exercise 2.7.3. Show that the closed points in SpecA form a dense set if and only if
?
0

equals the intersection
Ş

mĂAm of all maximal ideals in A. HINT: Corollary 2.11 on
page 25.

Exercise 2.7.4. Let A be an integral domain and U Ă SpecA an open non-empty subset.
Show that there is no closed point in U if and only if there is an f P A such thatAf is a field.
HINT: Consider distinguished open subsets Dpfq Ă U .

Exercise 2.7.5. Let tAiuiPI be an infinite sequence of non-trivial rings, and let X be the
disjoint union of the spectra SpecAi. Show that X is not homeomorphic to a spectrum of a
ring.

Exercise 2.7.6 (Local rings). Recall that a local ring is a ring A with only one maximal ideal.
a) Show that A is local if and only if SpecA has a unique closed point.
b) Give examples of local rings A so that SpecA consists of (i) one point; (ii) two

points; (iii) infinitely many points.
c) A map of rings ϕ : A Ñ B is said to be local if ϕpmAq Ă mB . Show that ϕ is

local if and only if the induced map f : SpecB Ñ SpecA maps the unique
closed point of SpecB to that of SpecA.

d) Give an example of a map of rings f : A Ñ B which is not local. Describe
your example in terms of the corresponding map on spectra.

Exercise 2.7.7. Show that SpecA has just one element if and only if A is a local ring
all whose non-units are nilpotent, i.e. the radical

a

p0q of the ring is a maximal ideal. For
Noetherian rings this is equivalent to the ring being an Artinian local ring.

Exercise 2.7.8. Perform the analysis of the fibres of the map in Example 2.36 on page 35
when the field k has characteristic two.

Exercise 2.7.9.
a) Let A be a Noetherian ring such that SpecA is a finite set. Show that A is

Artinian.
b) Show that the ring A “ Crt1, t2, . . . s{m

2 where m “ pt1, t2, . . . q is not
Noetherian, but that SpecA is a single point.

Exercise 2.7.10. With reference to Example 2.39 on page 37:
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a) Show that the fibre of ϕ over a prime ideal ppq is homeomorphic to

SpecFprxs{px2 ` 1q

and that dimFp
Fprxs{px2 ` 1q =2. HINT: Use that Zris “ Zrxs{px2 ` 1q.

b) Show that Fprxs{px2 ` 1q is a field if and only if x2 ` 1 does not have a root
in Fp.

c) Show that Fprxs{px2 ` 1q is a field if and only if ppqZris is a prime ideal.

Exercise 2.7.11. Consider the ring map

ϕ : Crx, ys ÝÝÑ Crx, y, zs{pxz ´ yq

which induces f : SpecCrx, y, zs{pxz ´ yq Ñ A2
C. Show that the map f on the level of

closed points sends pa, ab, bq to pa, abq, and the generic point to the generic point. Show that
in this example, the image is neither open nor closed: it equals Dpxq Y V px, yq.

Exercise 2.7.12. Let p and q be two different prime numbers and consider the morphism
ϕ : A1

k Ñ A2
k induced from the map krx, ys Ñ krts which is defined by the assignments

x ÞÑ tp and y ÞÑ tq. Determine all scheme theoretic fibres of ϕ.

Exercise 2.7.13. Let k an algebraically closed field. Consider the k-algebraA “ krx, y, zs{pxy, xz, yzq

and let X “ SpecA. Consider the map f : X Ñ A1 dual to the k-algebra homomor-
phism krts Ñ A that sends t to x ` y ` z. Determine all scheme theoretic fibres of f .
HINT: Heuristics: XpCq is the union of the three coordinate axes in C3, and the map sends
points in XpCq to the sum of their coordinates.

Exercise 2.7.14. Describe the scheme theoretic fibres in all points of the following mor-
phisms.

a) f : SpecCrx, ys{pxy ´ 1q Ñ SpecCrxs;
b) f : SpecCrx, ys{px2 ´ y2q Ñ SpecCrxs;
c) f : SpecCrx, ys{pxyq Ñ SpecCrxs;
d) f : SpecZrx, ys{pxy2 ´mq Ñ SpecZ, where m is a non-zero integer.

Exercise 2.7.15. Determine all the scheme theoretic fibres of the morphism

SpecZrp1 `
?
5q{2s SpecZr

?
5s

induced by the natural inclusion Zr
?
5s Ă Zrp1 `

?
5q{2s.

Exercise 2.7.16. LetR “ Zrx, ys{px2 ´y2 ´5q and consider the morphism f : SpecR Ñ

SpecZ. Compute the fibres over p0q, p2q, p3q and p5q. What happens if you replace R with
the ring Zrx, ys{p3x2 ´ 3y2 ´ 15q?

Exercise 2.7.17. For every ring A, there is a canonical map Z Ñ A which sends 1 to 1.
Hence there is a canonical map SpecA Ñ SpecZ. Show that map factors through the
canonical map SpecFp Ñ SpecZ if and only if A is of characteristic p,

Exercise 2.7.18. Describe the following prime spectra
a) SpecCrxs{px3 ` x2q

b) SpecRrxs{px3 ` x2q
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2.7 Scheme-theoretic fibres I 41

Exercise 2.7.19. Study the fibres of the morphisms
a) SpecZrts{pt2 ` t` 1q Ñ SpecZ
b) SpecQptqrxs{px3 ` 3x` 1q Ñ SpecQptq.
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3

Sheaves

The concept of a sheaf was conceived in the German camp for prisoners of war called Oflag
XVII, where French officers taken captive during the fighting in France in the spring 1940
were detained. Among them was the mathematician and lieutenant Jean Leray. In the camp he
gave a series of lectures on algebraic topology(!!) during which he introduced some version
of the theory of sheaves. In modern terms, Leray was aiming to compute the cohomology of a
total space of a fibration in terms of invariants of the base and the fibres and the fibration itself.
To achieve this, in addition to the concept of sheaves, he also invented ‘spectral sequences’.

After the war, the theory of sheaves was developed further by Henri Cartan and Jean-Pierre
Serre, and finally the theory was brought to the state as we know it today by Alexander
Grothendieck.

3.1 Sheaves and presheaves

A common theme in mathematics is to study spaces by describing them in terms of their
local properties. A manifold is a space which looks locally like Euclidean space; a complex
manifold is a space which looks locally like open sets in Cn; an algebraic variety is a space
that looks locally like the zero set of a set of polynomials. Here it is clear that point set
topology alone is not enough to fully capture the essence of these three notions. However, in
each case, the spaces come equipped with a distinguished set of functions that adequately
define them, respectively the C8-functions, the holomorphic functions, and the polynomials.

Sheaves provide a general framework for discussing such functions; they are objects that
satisfy basic axioms valid in each of the examples above. To explain what these axioms are,
let us consider the primary example of a sheaf: the sheaf of continuous maps on a topological
space X . By definition, X comes with a collection of ‘open sets’, and these encode what
it means for a map f : X Ñ Y to another topological space Y to be continuous: for every
open U Ă Y , the set f´1pUq should be open in X . For two topological spaces X and Y ,
we can define, for each open U Ă X , a set of continuous maps

CpU, Y q “ t f : U Ñ Y | f is continuous u.

Note that if V Ă U is another open set, then the restriction f |V to V of a continuous function
f is again continuous, so we obtain a map

ρUV : CpU, Y q ÝÝÑ CpV, Y q (3.1)

f ÞÑ f |V .

Moreover, note that if W Ă V Ă U , we can restrict to W by first restricting to V , and so

42
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ρUW “ ρVW ˝ ρUV . The collection of the sets CpU, Y q together with their restriction maps
ρUV constitutes the sheaf of continuous maps from X to Y .

An essential feature of continuity is that it is a local property; f is continuous if and only if
it is continuous in a neighbourhood of every point, and of course, two continuous maps that
are equal in a neighbourhood of every point, are (tautologically) equal everywhere. A second
property is that continuous functions can be glued together: given an open covering tUiuiPI
of an open set U , and continuous functions fi P CpUi, Y q that agree on the intersections
Ui X Uj (formally: fipxq “ fjpxq for all i and j and all x P Ui X Uj), we can patch the
maps fi together to form a continuous map f : U Ñ Y , which satisfies f |Ui

“ fi for each i;
we simply define fpxq “ fipxq for any i such that x P Ui.

Essentially, a sheaf on a topological space is a structure that encodes these properties. In
each of the examples above, there is a corresponding sheaf of C8-functions, respectively
holomorphic functions, and regular functions .

One may think of a sheaf as a collection of distinguished sets of functions, but they can
also be much more general mathematical objects, which in a certain sense behave as sets of
functions. The main aspect is that we want the distinguished properties to be preserved under
restrictions to open sets, that the objects are determined from their local properties, and that
‘gluing’ is allowed.

Presheaves

The concept of a sheaf may be defined for any topological space, and the theory is best
studied at this level of generality. We begin with the definition of a presheaf.

Definition 3.1 (Presheaf). LetX be a topological space. A presheaf of abelian groups
F on X consists of the following two sets of data:

(i) For each open U Ă X , an abelian group FpUq;
(ii) For each pair of nested opens V Ă U , a map of groups

ρUV : FpUq ÝÝÑ FpV q;

These are called restriction maps and must satisfy the following two conditions:
(iii) For any open U Ă X , we have ρUU “ idFpUq;
(iv) For any three nested open subsets W Ă V Ă U , one has ρUW “

ρVW ˝ ρUV .

We will usually write s|V for ρUV psq when s P FpUq. The elements of FpUq are usually
called sections (or sections over U ). The notation ΓpU,Fq for the group FpUq is also
common usage; here Γ is the ‘global sections’-functor (it is functorial in both U and Fq.

The notion of a presheaf is not confined to presheaves of abelian groups. One may speak
about presheaves of sets, rings, vector spaces etc. Indeed, for any category C one may define
presheaves with values in C. The definition is essentially the same as for presheaves of abelian
groups, the only difference being that one requires that the FpUq are objects from C, and of
course, that restriction maps are all morphisms in C. We are certainly going to meet sheaves
with more structure than the mere structure of abelian groups, e.g. sheaves of rings, but they
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will usually have an underlying structure of abelian group, so we start with these. We will
also encounter sheaves of sets. Most of the results we establish for sheaves of abelian groups
can be proved for sheaves of sets as well, as long as they can be formulated in terms of sets,
and the proofs are essentially the same.

Sheaves

We are now ready to give the main definition of this chapter:

Definition 3.2 (Sheaf). A presheaf F is a sheaf if it satisfies the two conditions:
(i) (Locality axiom) Suppose U Ă X is an open set with an open covering

U “ tUiuiPI . If s, t P FpUq are sections such that

s|Ui
“ t|Ui

for all i, then s “ t;
(ii) (Gluing axiom) If U and U are as in (i), and if si P FpUiq is a collection

of sections that satisfy

si|UiXUj
“ sj|UiXUj

for all i, j P I , then there exists a section s P FpUq so that s|Ui
“ si

for all i.

These two axioms mirror the properties of continuous functions mentioned in the introduction.
The Locality axiom says that sections are uniquely determined from their restrictions to
smaller open sets. The Gluing axiom says that you are allowed to patch together local sections
to a global one, provided they agree on overlaps.

A presheaf G is a subpresheaf of a presheaf F if GpUq Ă FpUq for every open U Ă X ,
and such that the restriction maps of G are the restrictons of those of F . If F and G are
sheaves, G is naturally called a subsheaf.

There is a convenient way of formulating the two sheaf axioms at once. For each open
cover U “ tUiu of an open set U Ă X , there is a sequence

0 FpUq
ś

iFpUiq
ś

i,j FpUi X Ujq,
α β

(3.2)

where the maps α and β are defined by the two assignments αpsq “ ps|Ui
qi, and βpsiq “

psi|UiXUj
´ sj|UiXUj

qi,j . Then F is a sheaf if and only if these sequences are exact. Indeed,
exactness at FpUq means that α is injective, i.e. that s|Ui

“ 0 for all i implies that s “ 0
(this is equivalent to the Locality axiom). Exactness in the middle means that Kerβ “ Imα;
that is, elements si satisfying si|UiXUj

´ sj|UiXUj
come from an element s P FpUq (the

Gluing axiom).
This reformulation is sometimes handy when proving that a given presheaf is a sheaf.

Moreover, since FpUq “ Kerβ, we can often use it to compute FpUq if the FpUiq’s and
the FpUi X Ujq’s are known.

Example 3.3 (The empty set). There is a subtle point about taking U to be the empty set
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in the definition of a sheaf. If F is a sheaf, we are forced to define FpHq “ 0. Indeed, the
empty set is covered by the empty open covering, and since the empty product equals 0, the
sheaf sequence (3.2) takes the form 0 Ñ FpHq Ñ 0 Ñ 0.

Morphisms between (pre)sheaves

A morphism (or simply a map) of (pre)sheaves ϕ : F Ñ G is a collection of maps of abelian
groups ϕU : FpUq Ñ GpUq, one for each open set inX , which are required to be compatible
with the restriction maps. In other words, the following diagram commutes for each inclusion
V Ă U of open sets:

FpUq GpUq

FpV q GpV q.

ϕU

ρUV ρUV

ϕV

(3.3)

In this way, the sheaves of abelian groups on X form a category, AbShX , whose objects
are the sheaves and whose are morphisms the maps between them. The composition of two
maps of sheaves is defined in the obvious way, as the composition of the maps on sections.
Likewise, we have the category AbPrShX with the presheaves of abelian groups as objects
and morphisms the maps between them.

As usual, a map ϕ between two (pre)sheaves F and G is an isomorphism if it has a
two-sided inverse, i.e. a map ψ : G Ñ F such that ϕ ˝ ψ “ idG and ψ ˝ ϕ “ idF .

Examples

Example 3.4 (Continuous functions). Take X “ Rn and let CpX,Rq be the sheaf whose
sections over an open set U is the ring of continuous real valued functions on U , and whose
restriction maps ρUV are just the good old restriction of functions. Then CpX,Rq is a sheaf
of rings (functions can be added and multiplied), and both sheaf axioms are satisfied. Indeed,
any function f : X Ñ R which restricts to zero on an open covering ofX is the zero function.
Also, given continuous functions fi : Ui Ñ R that agree on the overlaps Ui X Uj , we can
form the continuous function f : U Ñ R by setting fpxq “ fipxq for any i such that x P Ui.

In fact, the argument from the beginning of this chapter shows that for any two topological
spaces X and Y , the presheaf FpUq “ CpU, Y q of continuous maps f : U Ñ Y forms a
sheaf (they are sheaves of sets, because we cannot in general add or multiply maps).

Example 3.5 (Differential operators). Let X “ R and let CrpX,Rq be the sheaf of func-
tions f : U Ñ R which are r times continuously differentiable (note that this is a sub-
sheaf of CpX,Rq). The differential operator D “ d{dx defines a morphism of sheaves
D : CrpX,Rq Ñ Cr´1pX,Rq.

Example 3.6 (Holomorphic functions). For a second familiar example, letX Ă C be an open
set. On X one has the sheaf AX of holomorphic functions. That is, for any open U Ă X ,
the sections AXpUq is the ring of complex differentiable functions on U . Just like in the
example above, one checks that AX forms a sheaf. In fact, AX is a subsheaf of the sheaf of
continuous functions U Ñ C.
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46 Sheaves

One can relax the condition to get a larger sheaf KX of meromorphic functions on X
(these are functions holomorphic on all of U except for a set of isolated points, where they
have poles). This sheaf contains AX as a subsheaf, and the sections over an open U are the
meromorphic functions on U .

In a similar way, one can get smaller sheaves contained in AX by imposing vanishing
conditions on the functions. For example if x P X is any point, one has the sheaf denoted mx

of holomorphic functions vanishing at x. This is an example of an ideal sheaf: for each open
U Ă X , mxpUq is an ideal of the ring AXpUq.

One of our main interests in this book will be the following:

Example 3.7 (Algebraic varieties). LetX be an algebraic variety (e.g. an irreducible algebraic
set in Anpkq or Pnpkq) with the Zariski topology. For each open U Ă X , define the presheaf

OXpUq “ t f : U Ñ k | f is regular u

where f is said to be regular if for each point x P U there is an affine neighbourhood in
which f can be represented as a quotient of polynomials g{h with hpxq ‰ 0.

This is a sheaf: locality holds, because if f : U Ñ k restricts to the zero function on an
open covering, it is the zero function. If we are given regular functions fi : Ui Ñ k on the
members of an open overing tUiu of U that agree on the overlaps, they certainly glue to a
continuous function f : U Ñ k; just define f : U Ñ k by fpxq “ fipxq whenever x P Ui.
This function f is also regular because it restricts to fi on Ui, and fi is locally expressible as
g{h there.

?
z can be

defined locally

..but the square roots do not glue

Example 3.8 (A presheaf which is not a sheaf). Let us continue the set-up in Example 3.6 to
exhibit an example of a presheaf which is not a sheaf. Let X “ C ´ t0u, and let AX denote
the sheaf of holomorphic functions. Inside AX we find a subpresheaf given by

FpUq “ t f P AXpUq | f “ g2 for some g P AXpUq u.

This is not a sheaf, because the Gluing axiom fails: the function fpzq “ z is holomorphic,
and has a holomorphic square root near any point x P X , but it is not possible to glue these
together to a global square root function

?
z on all of X . Note however, that the Locality

axiom holds, because F is a subpresheaf of the sheaf AX (which does satisfy Locality).
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Example 3.9 (Constant presheaves). For any space X and any abelian group A, one has the
constant presheaf defined by ApUq “ A for any nonempty open set U (and ApHq “ 0).

This is not a sheaf in general. For instance, if X “ U1 Y U2 is a disjoint union, and
A “ Z, then any choice of integers a1, a2 P Z will give sections of ApU1q and ApU2q, and
they automatically agree over the intersection, which is empty. But if a1 ‰ a2, they cannot
be glued to an element in ApXq “ Z. In fact, the constant presheaf is a sheaf if and only if
any two non-empty open subsets of X have non-empty intersection. Algebraic varieties with
the Zariski topology are examples of such spaces.

There is a quick fix for this. We can define the following sheaf AX by letting

AXpUq “ t f : U Ñ A | f is continuous u

where we give A the discrete topology. As before, we also must put AXpHq “ 0. For a
connected open set U , we then have AXpUq “ A. More generally, since f must be constant
on each connected component of U , it holds true that

AXpUq »
ź

π0pUq

A, (3.4)

where π0pUq denotes the set of connected components of U .
The new presheaf AX is called the constant sheaf on X with value A. It is a sheaf (e.g. by

the final paragraph of Example 3.4). That being said, the sheaf AX is not quite worthy of its
name, as it is not quite constant.

Example 3.10 (Skyscraper sheaves). Let A be a group. For x P X , we can define a presheaf
Apxq by

ApxqpUq “

#

A if x P U,

0 otherwise.

It is straightforward to check that this is a sheaf. It is called the skyscraper sheaf of A at x.

Exercises

Exercise 3.1.1. LetX be the set with two elements with the discrete topology. Find a presheaf
on X which is not a sheaf.

Exercise 3.1.2. In the notation of Example 3.6, the differential operator gives a map of sheaves
D : AX Ñ AX , where as previously X Ă C is an open set. Show that the assignment

A pUq “ t f P AXpUq | Df “ 0 u

defines a subsheaf A of AX . Show that if U is a connected open subset of X , one has
A pUq “ C. In general for a not necessarily connected set U , show that A pUq “

ś

π0pUq
C

where the product is taken over the set π0pUq of connected components of U . So, in fact, A
is the constant sheaf with value C.

Exercise 3.1.3. Let X Ă C be an open set, and assume that a1, . . . , ar are distinct points
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48 Sheaves

in X and n1, . . . , nr natural numbers. Define FpUq to be the set of those functions mero-
morphic in U , holomorphic away from the ai’s and having a pole order bounded by ni at ai.
Show that F is a sheaf of abelian groups. Is it a sheaf of rings?

Exercise 3.1.4 (The sheaf of homomorphisms). Given two presheaves F and G, we may
form a presheaf HomXpF ,Gq by letting the sections over an open U be given by

HompF ,GqpUq “ HompF |U ,G|Uq, (3.5)

and letting the restriction maps be the restrictions: if V Ă U is another open set and
ϕ : F |U Ñ G|U is a map, the restriction of ϕ to V is simply the restriction ϕ|V : F |V Ñ G|V .
Show that Hom pF ,Gq is a sheaf whenever G is a sheaf.

3.2 Stalks

Suppose we are given a presheaf F of abelian groups on a topological space X . With every
point x P X there is an associated abelian group Fx called the stalk of F at x. The stalk
can be thought of as a way of keeping track of the behaviour of the sections of F in small
neighbourhoods around x (regardless of how they may differ on different open sets of X .)
The elements of Fx are called germs of sections or just germs, near x; they are essentially
the sections of F defined in some sufficiently small neighbourhood of x. The group Fx is
formally defined as the direct limit of the groups FpUq as U runs through the directed set of
open neighbourhoods U of x (ordered by inclusion)1:

Fx “ lim
ÝÑ
xPU

FpUq.

More concretely, the group Fx can be defined as follows. We begin with the disjoint union
š

xPU FpUq whose elements we index as pairs ps, Uq where U is an open neighbourhood
of x and s is a section in FpUq. We want to identify sections that coincide near x; that is, we
declare ps, Uq and ps1, U 1q to be equivalent, and write ps, Uq „ ps1, U 1q, if there is an open
V Ă U X U 1 with x P V such that s and s1 coincide on V ; that is, if one has

s|V “ s1|V .

This is clearly a reflexive and symmetric relation, and it is transitive as well: if ps, Uq „

ps1, U 1q and ps1, U 1q „ ps2, U2q, one may find open neighbourhoods V Ă U X U 1 and
V 1 Ă U 1 X U2 of x over which s and s1, respectively s1 and s2, coincide. Clearly s and
s2 then coincide over the intersection V 1 X V . The relation „ is therefore an equivalence
relation.

Definition 3.11. The stalk Fx at x P X is defined as the set of equivalence classes

Fx “
ž

xPU

FpUq{ „ .

In case F is a sheaf of abelian groups, the stalks Fx are all abelian groups. This is not

1 For background on direct limits, see Appendix A
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3.2 Stalks 49

a priori obvious, because sections over different open sets can not be added. However, if
ps, Uq and ps1, U 1q are given, the restrictions s|V and s1|V to any open V Ă U X U 1 can be
added, and this suffices to define an abelian group structure on the stalks.

The germ of a section

For any neighbourhood U of x P X , there is a natural map FpUq Ñ Fx sending a section
s to the equivalence class where the pair ps, Uq belongs. This class is called the germ of s
at x, and a common notation for it is sx. The map is a homomorphism of abelian groups
(rings, modules, or whatever) as one easily verifies. One has sx “ ps|V qx for any other open
neighbourhood V of x contained in U , or in other words, the following diagram commutes:

FpUq Fx

FpV q.

ρUV (3.6)

When working with sheaves and stalks, it is important to remember the three following
working principles. The two first follow right away from the definition, and the third is easily
deduced from the two first.

‚ The germ sx of a section s vanishes if and only if s vanishes on some neighbourhood of x,
i.e. there is an open neighbourhood U of x with s|U “ 0.

‚ All elements of the stalk Fx are germs, i.e. they are all of the form sx for some section s
over some open neighbourhood of x.

‚ The sheaf F is the zero sheaf if and only if all stalks are zero, i.e. Fx “ 0 for all x P X .

Example 3.12. Let X “ C, and let AX be the sheaf of holomorphic functions in X . What
is the stalk AX,x at a point x? Let f and g be two sections of AX over a neighbourhood U of
the point x having the same germ at x; that is, two functions holomorphic in neighbourhoods
of x. The fact that f and g both admit Taylor series expansions around x, implies that f “ g
in the connected component containing x of the set where they both are defined. The stalk
AX,x is therefore identified with the ring of power series that converge in a neighbourhood
of x.

A map ϕ : F Ñ G of presheaves induces for every point x P X a map between the stalks

ϕx : Fx ÝÝÑ Gx.

Indeed, one may send a pair ps, Uq to the pair pϕUpsq, Uq, and since ϕ behaves well with
respect to restrictions, this assignment is compatible with the equivalence relations; if ps, Uq

and ps1, U 1q are equivalent and s and s1 coincide on an open set V Ă U X U 1, the diagram
(3.3) gives

ϕUpsq|V “ ϕV ps|V q “ ϕV ps1|V q “ ϕU 1 ps1q|V .

One checks that pϕ ˝ ψqx “ ϕx ˝ ψx and pidFqx “ idFx
, so the assignments F ÞÑ Fx and

ϕ ÞÑ ϕx define a functor from the category of sheaves to the category of abelian groups.
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U

f´1
pUq

X

Y

Exercise 3.2.1. Let F be a sheaf and let s, t P FpUq be two sections. Show that s “ t if
and only if sx “ tx for every x P U .

Exercise 3.2.2. Let ϕ, ψ : F Ñ G be maps of presheaves and assume that G is a sheaf. Prove
that ϕ “ ψ if and only if ϕ and ψ induce the same maps on all stalks, i.e. ϕx “ ψx for every
x P X . HINT: : Use Exercise 3.2.2.

3.3 The pushforward of a sheaf

If F is a sheaf on a topological space X , and f : X Ñ Y is a continuous map, we can define
a sheaf f˚F on Y by defining

pf˚FqpUq “ Fpf´1Uq,

and the restriction maps Fpf´1Uq Ñ Fpf´1V q to be those coming from F .

Definition 3.13. The sheaf f˚F is called the pushforward or the direct image of F .

It is straightforward to verify that f˚F is a sheaf and not merely a presheaf. Indeed, if
tUiu is an open covering of U , then tf´1Uiu is an open covering of f´1U . A set of gluing
data for f˚F and the given covering consists of sections si P ΓpUi, f˚Fq “ Γpf´1Ui,Fq

that agree on the intersections. This means that they coincide in ΓpUi X Uj, f˚Fq, which
equals Γpf´1Ui X f´1Uj,Fq, and they may therefore be glued together to a section in
Γpf´1U,Fq “ ΓpU, f˚Fq, as F is a sheaf. The Locality axiom follows for f˚F , because it
holds for F .

Example 3.14. Let ι : txu Ñ X be the inclusion of a closed point in X . If A is the constant
sheaf of a group A on txu, then ι˚A is the skyscraper sheaf Apxq from Example 3.10 on
page 47.

The pushforward also depends functorially on the map f :

Lemma 3.15. If g : X Ñ Y and f : Y Ñ Z are continuous maps between topologi-
cal spaces, and F is a sheaf on X , one has

pf ˝ gq˚F “ f˚pg˚Fq.

(This is indeed an equality, not merely an isomorphism.)
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Exercise 3.3.1. Prove Lemma 3.15.

Exercise 3.3.2. Denote by t˚u a one point set. LetX be a topological space and f : X Ñ t˚u

be the one and only map. Show that f˚F “ ΓpX,Fq (where strictly speaking ΓpX,Fq

stands for the constant sheaf on t˚u with value ΓpX,Fq).

Exercise 3.3.3. LetX be a topological space and x P X a point that is not necessarily closed.
Let ι : txu Ñ X be the inclusion. Let A be the constant sheaf on txu with value the group
A. Show that the stalks of ι˚A are

pι˚Aqy “

#

A if y P txu;

0 otherwise.

3.4 Sheaves defined on a basis

Recall that a basis for the topology on X is a collection of open subsets B such that any
open set of X can be written as a union of members of B. In many situations, it turns out to
be convenient to define a sheaf by saying what it should be over the open sets in a specific
basis for the topology on X . The following definition makes this more precise.

Definition 3.16. A B-presheaf F consists of the following data:
(i) For each U P B, an abelian group FpUq;

(ii) For all pairs U Ą V with U and V from B, a restriction map
ρUV : FpUq ÝÝÑ FpV q.

As before, these are required to satisfy the relations ρUU “ idFpUq and ρUW “

ρVW ˝ ρUV for each sequence W Ă V Ă U of opens of B. A B-sheaf is a
B-presheaf satisfying the Locality and Gluing axioms for open sets in B.

Since the intersections V X V 1 of two sets V, V 1 P B need not lie in B, we need to
clarify what we mean in the Gluing axiom. Given a cover of U P B by subsets Ui P B. If
si P FpUiq are sections such that si|V “ sj|V for every i, j and every V Ă Ui X Uj such
that V P B, then the si should glue together to an element in s P FpUq.

The whole point with the notion of B-sheaves is expressed in the following proposition.
This construction will be used when we define the structure sheaf in Chapter 5.

Proposition 3.17. Let X be a topological space and let B be a basis for the topology
on X . Then:

(i) Every B-sheaf F extends to a sheaf F on X , which is unique up to
unique isomorphism (which is the identity on F0);

(ii) If ϕ0 : F Ñ G is a morphism of B-sheaves, then ϕ0 extends uniquely
to a morphism ϕ : F Ñ G between the corresponding sheaves;

(iii) The stalk of the extended sheaf F at a point x can be computed as

Fx “ lim
ÝÑ

UPB, xPU

F pUq.
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Proof Let U Ă X be an open set. The basic idea is to write U as a union of opens
U “

Ť

iPI Vi, where Vi P B, and consider the set of ‘compatible sections’ psiqiPI , that is,
sections si P F pViq such that si|W “ sj|W whenever W is contained in Vi X Vj .

To define the group FpUq without reference to a choice of covering Vi, we consider all
possible coverings at once, and define FpUq as the inverse limit of the F pV q, when V runs
through the ordered set BU of members of B contained in U ,

FpUq “ lim
ÐÝ
BU

F pV q,

Concretely, an element of FpUq is given by a collection psV qV , one for each V P BU , such
that whenever W Ă V , we have sV |W “ sW .

The claimed properties follow from general functorial properties of the inverse limit. We
begin with establishing (i). Observe that if the open set U is in B, it will be a largest element
in BU , and consequently we have the first equality in

F pUq “ lim
ÐÝ
BU

F pV q “ FpUq.

Hence F coincides with F on open sets in B.
Secondly, if U 1 Ă U , clearly BU 1 Ă BU , and because inverse limits are functorial in the

indexing set, we obtain maps FpUq Ñ FpU 1q, which serve as restriction maps.
Let us check that F is a sheaf. Locality: Suppose s “ psV q P lim

ÐÝBU
F pV q is a collection

of compatible elements and tUiuiPI is a covering of U such that s|Ui
“ 0 for every i. Let

V P BU be any subset. Since B is a basis, we can find a covering V of V consisting of open
sets B P B such that each B is contained in some Uj . Now, s|Ui

“ 0 means that sB “ 0
for every B Ă Ui and so sV |B “ sB “ 0 for every B P V . In particular, by Locality for F ,
we get that sV “ 0. Since this happens for any V , we get that s “ 0 as well.

Gluing: Let tUiuiPI be a cover of U and let si P FpUiq be a collection of compatible
elements so that si|UiXUj

“ sj|UiXUj
for all i, j. This means that siB “ sjB for every

B Ă Ui X Uj in B. Fix V P B contained in U and let V be a cover of V by open sets
B P B so that B Ă Ui for some i. First we claim that the elements siB P F pBq for B P V
glue to an element sV P F pV q. So let B P V , and suppose B is contained in Ui X B, and
let sV “ siV . We note that this is independent of i, because if V is also contained in Uj , then
V Ă Ui XUj and sjV “ siV , by the above. Now for the gluing: If W Ă V XV 1 and V Ă Ui
V 1 Ă Uj , then

sV |W “ siW “ sjW “ sV 1 |W .

Hence, since F is a B-sheaf, the elements sV glue to an element sB P F pBq.
These elements are compatible, so it makes sense to define s “ psBq P lim

ÐÝ
F pBq “

FpUq. It is clear that s|Ui
“ si for every i. The presheaf F therefore satisfies the Gluing

axiom.
The claim (iii) follow because we may use open sets from B when computing stalks.
Proof of (ii): saying ϕ0 : F Ñ G is a map of B-sheaves amounts to saying that the
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following diagram commutes for each pair V 1 Ă V of opens in B:

FpV q GpV q

FpV 1q GpV 1q

pϕ0qV

pϕ0qV 1

Taking the inverse limit over all open subsets V from B contained in U , we obtain a natural
map FpUq Ñ GpUq which extends ϕ0. These maps are moreover compatible with the
restriction maps, so we get a map of sheaves ϕ : F Ñ G. Once again this must be unique, as
it is completely determined by ϕ0 on stalks.

In the special case when B XB1 P B for every B,B1 P B, a B-presheaf F is a B-sheaf
if and only if the following sequence

0 ÝÝÑ F pUq ÝÝÑ
ź

iPI

F pUiq ÝÝÑ
ź

i,jPI

F pUi X Ujq (3.7)

is exact for every U P B and covering tUiuiPI with Ui P B.

Exercise 3.4.1. Let F and G be two sheaves on a space X and assume there is an open
covering U of X and isomorphisms θU : F |U » G|U that match on intersections; i.e.
θU |UXU 1 “ θU 1 |UXU 1 . Show that there is an isomorphism θ : F » G extending the θU ’s.
HINT: F and G define coinciding B-sheaves.
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4

Affine Schemes

In this chapter, we make one more step towards the general definition of a scheme, by defining
affine schemes. Affine schemes serve as the building blocks for schemes in general, as every
scheme has a open covering of affine schemes, and understanding the mechanics of affine
schemes is essential for understanding schemes in general.

As any scheme, an affine scheme has two components: a topological space and a sheaf of
rings. For the topological part, we use the spectrum of a ring SpecA, and for the sheaf of
rings, we use the structure sheaf, which define in Section 4.1. The definition of the structure
sheaf is inspired by the sheaf of regular functions on an affine variety, so before giving the
main definition, let us revisit the analogous concept in the setting of affine varieties.

Let A “ ApXq be the coordinate ring of an affine variety X , that is, A is the ring of
globally defined regular functions on X . The fraction field K of A is the field of rational
functions on X , i.e. the functions which are regular in some open subset U Ă X . For each
open set U , the set of functions which are regular in each point of U forms subring OXpUq of
K . If V Ă U is an open contained in U , the ring of regular functions OXpV q in V , contains
the ring OXpUq of those regular in the bigger set U . The restriction map OXpUq Ñ OXpV q

is nothing but the inclusion OXpUq Ă OXpV q; it simply considers functions in OXpUq to
lie in OXpV q.

Regular functions on the distinguished open set Dpfq “ tx P X | fpxq ‰ 0 u are
allowed to have powers of f in the denominator, and so they lie in the subring Af Ă K of
elements of the form af´n with a P A and n a non-negative integer. As explained in (2.4),
if Dpgq is another distinguished open set with Dpgq Ă Dpfq, one may write gm “ cf for
some c P A and some suitable m P N, and hence there is an inclusion Af Ă Ag (since
f´1 “ cg´m). Moreover, if U Ă X is any subset, we have

OXpUq “
č

DpfqĎU

OXpDpfqq (4.1)

If one tries to carry out the above construction for a general ring A, one quickly runs
into a few obstacles. For instance, there is no natural field K in which the rings OXpUq lie
as subrings. More critically, the localization maps Af Ñ Ag may fail to be injective. This
happens already in the case X “ SpecA with A “ krx, ys{pxyq, which corresponds to the
union of x-axis and the y-axis in the affine plane. Since xy “ 0, the element x maps to 0 via
the localization map A Ñ Ay. Geometrically, this reflects the fact that the regular function
x becomes zero over the open set Dpyq where y ‰ 0, and similarly, the regular function y
vanishes on Dpxq. So this is by no means a big mystery; it naturally appears once we allow
reducible spaces into the mix.

54
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4.1 The structure sheaf on the spectrum of a ring

Motivated by the above discussion, it makes sense to define the sections of the structure
sheaf over Dpfq to be the localized ring Af . There is a small subtlety here, because different
f ’s might give identical Dpfq’s, and to avoid choices, we prefer to use a more canonical
localization. Still, in the end, OSpecApDpfqq will be isomorphic to Af .

Let B be the collection of distinguished open sets Dpfq. For U P B, we define the
multiplicative system

SU “ t s P A | s R p for all p P U u (4.2)

“ t s P A | sppq ‰ 0 for all p P U u.

If U Ą V are two distinguished opens, then SU Ă SV , so there is a canonical localization
map

ρUV : S´1
U A ÝÝÑ S´1

V A (4.3)

With these ring maps, we have defined a B-presheaf of rings on SpecA. We will show below
that it is in fact a B-sheaf.

Lemma 4.1. For U “ Dpfq, there is a canonical isomorphism

S´1
U A “ Af .

For V “ Dpgq Ă Dpfq, the map ρUV is identified with the localization map
ρfg : Af Ñ Ag.

Proof Note that by assumption, f P SU , so there is a canonical localization map

τ : Af ÝÝÑ S´1
U A.

The main observation is that for an element s P SU , we have s R p for every p P Dpfq, so
Dpfq Ă Dpsq This is equivalent to

a

pfq Ă
a

psq, so one may write fn “ cs for some
c P A and n P N.
τ is injective: Suppose that af´m P Af maps to zero in S´1

Dpfq
A. This means that sa “ 0

for some s P SDpfq. But then fna “ csa “ 0, and therefore a “ 0 in Af .
τ is surjective: take any as´1 in S´1

Dpfq
A and write it as as´1 “ capfnq´1 “ caf´n.

The notation S´1
Dpfq

A will only be present in the definition of O. From now on, we will
write OpDpfqq “ Af , bearing in mind that it is defined in terms of a canonical localization.

Proposition 4.2. O is a B-sheaf of rings.

Proof Let Dpfq P B and let Dpfq “
Ť

iPI Dpfiq be a covering with open sets in B. We
need to show that the B-sheaf sequence (3.7)

0 ÝÝÑ OpDpfqq ÝÝÑ
ź

i

OpDpfiqq ÝÝÑ
ź

i,j

OpDpfifjqq

is exact. By Lemma 2.23, we may reduce this covering to a finite one, so thatDpfq is covered
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by the sets Dpf0q, . . . , Dpfsq. It is then enough to show that the following sequence is exact

0 Af
śs

i“1Afi
śs

i,j“1Afifj
α β

(4.4)

where αp a
fn q “

´

a
fn , . . . ,

a
fn

¯

and

β

ˆ

a1
fn1
1

, . . . ,
as
fns
s

˙

i,j

“
ai
fni

i

´
aj
f
nj

j

(4.5)

We will show that this is exact by a series of reductions. As a sequence of A-modules, (4.4)
is exact if and only if it is exact after being localized at every prime ideal p P SpecA. Using
the isomorphisms pAfiqp “ pApqfi and pAfifj qp “ pApqfifj , the localized sequence takes
the form

0 Ap

śn

i“0pApqfi
śn

i,j“0pApqfifj .
α β

Up to reordering the indexes, we may assume that p P Dpf1q, i.e. that f1 is a unit in Ap.
Replacing A by Ap, we reduce to showing that (4.6) below is exact when f1 is a unit.

0 A
śn

i“1Afi
śn

i,j“1Afifj
α β

(4.6)

Now the injectivity of α is clear, as the first component of α is the localization map ρ1 : A Ñ

Af1 “ A, which is an isomorphism, as f1 is a unit. Moreover, given a sequence paiq P

Kerβ with βpaiq “ 0, it holds that ai “ a1 in Af1fi » Afi for i ě i. We deduce that
a “ ρ´1

1 pa1q P A is an element satisfying αpaq “ paiq. Therefore Kerβ “ Imα, and the
sequence is exact.

Using Proposition 3.17 on page 51 we may now make the following definition:

Definition 4.3. The structure sheaf OSpecA on SpecA is the unique sheaf extending
the B-sheaf O.

The proof above tells us how to compute OSpecApUq for any open set: cover U by finitely
many distinguished opens Dpf1q, . . . , Dpfsq; then the sheaf sequence (3.2) shows that
OSpecApUq can be identified with the group

OSpecApUq “

#

ˆ

ai
fni

i

˙

P

s
ź

i“1

Afi

ˇ

ˇ

ˇ

ai
fni

i

“
aj
f
nj

j

in Afifj for all i, j

+

.

That being said, we will basically never need to know the group OSpecApUq for U other than
a distinguished open set U “ Dpfq. All that matters is that OSpecA is the unique sheaf that
satisfies the two main properties we want:
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Proposition 4.4 (Key properties of the structure sheaf). The sheaf OSpecA on
SpecA as defined above is a sheaf of rings satisfying the following two properties.

(i) Sections over distinguished opens:

ΓpDpfq,OSpecAq “ Af

for every f P A;
(ii) Stalks:

OSpecA,x “ Ap,

where p Ă A is the prime ideal corresponding to x P SpecA.
In particular, it holds that ΓpSpecA,OSpecAq “ A.

Proof We defined OSpecA so that the first property would hold. For the second, we may
compute the stalk using distinguished open sets:

lim
ÝÑ

xPDpfq

OpDpfqq “ lim
ÝÑ
fRp

Af “ Ap.

(See also Example A.6 on page 414.) The last statement follows by taking f “ 1 in (i).

Examples

Example 4.5 (Spectrum of a field). For a field K, the structure sheaf OSpecK is a constant
sheaf with the value K at the single point of SpecK.

Example 4.6. The structure sheaf of SpecZ satisfies OSpecZpDpnqq “ Zr 1
n

s for each
natural number n. The stalks of OSpecZ at the closed point ppq is equal to OSpecZ,p “ Zppq

and at the generic point the stalk equals OSpecZ,p0q “ Zp0q “ Q.

Example 4.7. Let X “ SpecCrts. Then the stalk of OX at the generic point η “ p0q is
equal to OX,η “ Cptq. Each closed point p P X corresponds to a maximal ideal pt´ aq, and
the stalk of OX at p is equal to OX,p “ Crtspt´aq.

Example 4.8. We continue Example 2.10 about spectra of DVR’s. The spectrum X “

SpecA “ tx, ηu of a DVR A has three open sets H, η, and X , and the structure sheaf takes
the following values at these opens:

OXpHq “ 0, OXpXq “ A, OXpηq “ Ax “ K,

where K denotes the fraction field of A. The stalks are given by OX,x “ Apxq “ A and
OX,η “ Ap0q “ K.

Example 4.9 (Disconnected spectra). The structure sheaf may be used to prove that a ring
A whose spectrum SpecA is not connected, decomposes as the direct product of two rings.
Suppose X “ U1 Y U2, where U1 and U2 are open and closed subsets with U1 X U2 “ H.
The sheaf exact sequence takes the form

0 OXpXq “ A OXpU1q ˆ OXpU2q OXpU1 X U2q “ 0,
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and we deduce that A » OXpU1q ˆ OXpU2q.

Example 4.10. It is worthwhile to consider the special case when A is an integral domain.
Then all the localizations Af are subrings of the fraction field K of A, and the localization
maps Af Ñ Ag for Dpgq Ă Dpfq are simply inclusions of subrings of K. The intuitive
picture from varieties is then correct: we may think of elements in OSpecApUq simply as
fractions a{b in K and

OSpecApUq “
č

pPU

Ap Ă K (4.7)

In the general case, the intersection (4.7) is replaced by an inverse limit (Exercise 4.1.1).

Exercise 4.1.1. Show that the sections of OSpecA over an open set U Ă X “ SpecA, are
given by the inverse limit of the localizations

OXpUq “ lim
ÐÝ

DpfqĂU

OpDpfqq “ lim
ÐÝ

DpfqĂU

Af . (4.8)

Exercise 4.1.2 (A-module structure on OSpecApUq). Let a P A, show that there is a map of
sheaves ras : OSpecA Ñ OSpecA, inducing multiplication by a both on OSpecApDpfqq “

Af and on the stalks Ap. HINT: For each distinguished open subset Dpfq of SpecA define
ras : OSpecApDpfqq “ Af Ñ OSpecApDpfqq “ Af as the multiplication by a map; verify
that this is a map of B-sheaves.

4.2 Locally ringed spaces

We would like to define a scheme to be a space which is ‘locally affine’; that is, one that looks
like the spectrum of a ring near each point. To be able to make such a definition precise, we
need a suitable category of spaces to work with. To this end, we use the two pieces of data we
have in the affine case: the topological space SpecA together with its sheaf of rings OSpecA.

Definition 4.11 (Locally ringed spaces). A locally ringed space is a pair pX,OXq

where X is a topological space and OX is a sheaf of rings on X such that all the
stalks OX,x are local rings.

To make this into a category, we need to specify what a morphism between two locally ringed
spaces is. Reflecting the above definition, a morphism betwen pX,OXq and pY,OY q should
have two components, one map between the underlying topological spaces X and Y and one
on the level of sheaves. Note that it does not make sense to talk about morphisms OY Ñ OX ,
as these sheaves are defined on different spaces. Instead, once a continuous map f : X Ñ Y
is specified, the sheaf map should be a map OY Ñ f˚OX of sheaves of rings on Y . This
means that that for all open subsets U Ă Y , one has to specify ring maps

f 7

U : OY pUq ÝÝÑ OXpf´1Uq,
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4.2 Locally ringed spaces 59

compatible with the restriction maps; that is, such that the following diagrams commute:

OY pUq OXpf´1Uq

OY pV q OXpf´1V q.

ρUV

f7
U

ρf´1U f´1V

f7
V

(4.9)

The intuition again comes from the theory of varieties, where we would like to think of f 7 as
a way of ‘pulling back’ functions on Y to X . If X and Y are affine varieties with sheaves of
regular functions OX and OY (as defined in Chapter 1), and f : X Ñ Y is a polynomial
map, there is an induced morphism f 7 : ApY q Ñ ApXq which sends a regular function
h : Y Ñ k to h ˝ f : X Ñ k. If h is only regular on some open set U Ă Y , we may still
define a pullback f 7phq “ h ˝ f , but this is only regular on f´1pUq. In other words, f 7phq

defines a section in f˚OXpUq “ OXpf´1Uq.
If x P X is a point, there is also an induced map between the localizations

f 7
x : ApY qmy

ÝÝÑ ApXqmx
. (4.10)

where y “ fpxq. It sends a rational function g defined at y “ fpxq, to g ˝f , which is regular
at x. Moreover, if h vanishes at y, the corresponding pullback f 7phq “ h ˝ f vanishes at x.
This means that f 7

y maps the maximal ideal my into mx; or in other words, it is a map of local
rings.

For a general locally ringed space, we do not have the luxury of speaking about functions
into some fixed field k, so the ring maps f 7

U have to be specified as part of the data. We do
not allow these to be completely arbitrary ring maps; there is a last condition saying that the
induced map on stalks should have similar properties as the map (4.10).

First of all, for a point x P X and y “ fpxq, the map in question is a map of rings

f 7
x : OY,y ÝÝÑ OX,x, (4.11)

which is defined as follows: pick an element from OY,y and represent it as the germ sy of a
section s P OY pUq over some open set U Ă Y . Then the section t “ f 7psq is a section of
OXpf´1Uq. We define f 7

xpsq to be the germ of this section at x, i.e. f 7psxq “ tx P OX,x.
This makes sense because f´1U contains x. Moreover, by the properties of direct limits, it is
clear that this does not depend on the choice of U containing x.

The requirement we make on f 7 is that the induced maps on stalks (4.11) is a map of local
rings, i.e., f 7 maps the maximal ideal my into the maximal ideal mx. Equivalently, h P OY,y

satisfies gpyq “ 0 in kpyq if and only if f 7
xphqpxq “ 0 in kpxq. This is a natural choice in

light of (4.10), but it is in no way automatic when starting from a general map of sheaves
OY Ñ f˚OX .
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Definition 4.12 (Morphisms of locally ringed spaces). A morphism, or simply map,
of locally ringed spaces, is a pair

pf, f 7q : pX,OXq ÝÝÑ pY,OY q

where
(i) f : X Ñ Y is a continuous map;

(ii) f 7 : OY Ñ f˚OX is a map of sheaves of rings on Y , so that for each
x P X , with y “ fpxq the induced map on stalks

f 7
x : OY,y ÝÝÑ OX,x

is a map of local rings; that is, f 7
xpmyq Ă mx.

A second reason to include the requirement (ii) will appear in the proof of Proposition 4.17
below. Here is an example illustrating what can go wrong without it:

Example 4.13. Let X “ SpecCptq and Y “ A1
C “ SpecCrts. There is a natural map

f : X Ñ Y induced by the inclusion Crts Ă Cptq. Note that on the level of topological
spaces, X consists of a single point ν, and f maps ν to the generic point η of Y . The
corresponding stalk map f 7

η : OY,η Ñ OX,ν is the identity map

OY,η “ Crtsp0q “ Cptq Ñ Cptq “ OX,ν ,

which is certainly a map of local rings.
On the other hand, we could try to define a strange map g : X Ñ Y by sending ν to some

other point y P A1
C corresponding to a maximal ideal pt´ aq Ă Crts. The map g is clearly

continuous, because X consists of a single point. However, the induced map

OY,y “ Crtspt´aq Ñ Cptq “ OX,ν

sends the maximal ideal to the unit ideal in Cptq, so it is not a map of locally ringed spaces.
This is as it should be, as the function t´ a vanishes at y P Y , but its pullback, the image of
t ´ a in OX,ν , does not vanish at ν P X . (In fact, it maps to itself via the evaluation map
OX,ν Ñ kpνq “ Cptq).

Maps between locally ringed spaces can be composed: given pf, f 7q : pX,OXq Ñ

pY,OY q and pg, g7q : pY,OY q Ñ pZ,OZq, the map X Ñ Z given by the composition
g ˝ f on the level of topological spaces, and for the sheaf map we define pg ˝ fq7 over an
open set U Ă Z as the composition

OZpUq OY pg´1Uq OXppg ˝ fq´1Uq “ pg ˝ fq˚OX .
g7 f7

An isomorphism of locally ringed spaces is a morphism f : X Ñ Y which admits an
inverse morphism. In other words, there is a morphism g : Y Ñ X such that g ˝ f “ idX
and f ˝ g “ idY . In more concrete terms, this boils down to f being a homeomorphism such
that f 7

U : OY pUq Ñ OXpf´1Uq is a ring isomorphism for every open U Ă Y .
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Prime spectra are locally ringed spaces

For a ring A, the pair pSpecA,OSpecAq is by design a locally ringed space. Indeed, the
stalks of OSpecA are localizations of A at prime ideals so they are local rings. In this section,
we show that ring maps induce morphisms of locally ringed spaces.

Recall that a map of rings ϕ : A Ñ B induces a continuous map f : SpecB Ñ SpecA
that sends p to ϕ´1ppq. This will be the topological part of the induced map on locally ringed
spaces

Specpϕq “ pf, f 7q : pSpecB,OSpecBq ÝÝÑ pSpecA,OSpecAq (4.12)

To specify the map f 7 between the sheaves OSpecA and f˚OSpecA, we use the B-sheaf
construction.

Consider a distinguished open set Dpgq in SpecA. We have OSpecApDpgqq “ Ag. By
Proposition 2.27 (ii), the inverse image of Dpgq in SpecA equals Dpϕpgqq. Therefore, we
have

f˚OSpecBpDpgqq “ OSpecBpf´1Dpgqq “ OSpecBpDpϕpgqqq “ Bϕpgq.

Now, there is a canonical localization map

Ag ÝÝÑ Bϕpgq

a{gn ÞÑ ϕpaq{ϕpgqn (4.13)

and this will be the desired ring map

f 7

Dpgq
: OSpecApDpgqq ÝÝÑ f˚OSpecBpDpgqq.

In this way, we obtain a map of B-sheaves, which then extends to a map of sheaves by
Proposition 3.17 (ii). To summarize, we have:

Proposition 4.14. Any map of rings ϕ : A Ñ B induces a map of locally ringed
spaces

Specpϕq “ pf, f 7q : pSpecB,OSpecBq ÝÝÑ pSpecA,OSpecAq,

which satisfies the following properties:
(i) (Distinguished open sets) The map f 7

Dpgq
is the natural localization map

OSpecApDpgqq “ Ag Bϕpgq “ OSpecBpDpϕpgqq

given by the assignment (4.13).
(ii) (Stalks) The map induced by f 7 between stalks at p P SpecB and

ϕ´1ppq, is the localization map Aϕ´1ppq Ñ Bp of ϕ.

Proof The first point is just a rephrasing of the definition of f 7, and the second follows from
Proposition 4.4 since we may use distinguished opens to compute stalks. Indeed, the map in
(4.11) is a limit of localization maps of the form

Ag Bϕpgq Bp,
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where g P A runs over elements such that ϕ´1ppq P Dpgq. These maps send a{s P Ag to
ϕpaq{ϕpsq P Bp, and in the limit we get the localization map Aϕ´1ppq Ñ Bp.

The proposition reflects the statements in Proposition 4.4 on page 57 about sections
and stalks of the structure sheaf OSpecA. To summarize, for affine schemes, both OX and
f 7 : OY Ñ f˚OX are determined by the localizations of the rings involved.

Example 4.15 (The cuspidal cubic). Let k be an algebraically closed field, and let A “

kru, vs{pu2 ´ v3q. The assignments u ÞÑ t2, v ÞÑ t3 define a ring map

ϕ : A Ñ krts,

and hence a morphism of locally ringed spaces

f : A1
k Ñ SpecA.

We claim that this is a homeomorphism, but not an isomorphism.
To see this, note that f sends a maximal ideal pt´ aq P Spec krts to the maximal ideal

pu ´ a2, v ´ a3q P SpecA. So f is clearly injective on k-points. By the Nullstellensatz
every maximal ideal of A is of the form pu´ α, v ´ βq, and since v2 ´ u3 vanishes at the
corresponding point, setting a “ βα´1, we find α “ a2 and β “ a3. Therefore, it is also
surjective.

Hence, since f maps the generic point of A1
k to the generic point of SpecA, the map

f is a bijection. Each proper closed subset of A1
k is finite, so f is closed, and hence a

homeomorphism.

v2 “ u3

u

v

To see that f is not an isomorphism, let x P A1
k be the origin corresponding to the ideal ptq.

Then fpxq is given by the ideal pu, vq, and the induced stalk map f 7
x : OX,fpxq Ñ OA1

k,x
is

equal to the map of localizations
`

kru, vs{pu2 ´ v3q
˘

pu,vq
ÝÝÑ krtsptq. (4.14)

This map is not surjective (t is not in the image), and hence f is not an isomorphism. This
moreover confirms our intuition that the cuspidal cubic is not even ’locally isomorphic’ to
A1
k near the origin.

Exercise 4.2.1. Show that if f : X Ñ Y is a morphism of locally ringed spaces, the stalk
maps f 7

x : OY,fpxq Ñ OX,x induce maps between the residue fields kpfpxqq and kpxq. What
happens when X and Y are affine varieties?
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4.3 Affine schemes

We have now come to the definition of an affine scheme.

Definition 4.16. An affine scheme is a locally ringed space pX,OXq which is iso-
morphic to pSpecA,OSpecAq for some ring A.

Affine schemes form a category AffSch, a subcategory of the category of locally ringed
spaces. This category is closely linked to the category of rings, as we will see next.

In (4.12) we defined, for each ring map ϕ : A Ñ B, a map Specpϕq of locally ringed
spaces between SpecB and SpecA. Note that we have Specϕ ˝ Specψ “ Specψ ˝ ϕ,
whenever ϕ and ψ are composable ring maps. This follows by the identity ϕ´1ψ´1p “

pψϕq´1p. And of course it holds that Spec idA “ idSpecA. This shows that the assignment
A ÞÑ SpecpAq defines a contravariant functor from the category of rings Rings to the
category of affine schemes AffSch.

There is also a contravariant functor Γ going the other way: taking global sections of
the structure sheaf OX gives us a ring OXpXq. Furthermore, a map of affine schemes
f : X Ñ Y comes equipped with a map of sheaves f 7 : OY Ñ f˚OX , which on global
sections yields a map

f 7

Y : OY pY q ÝÝÑ ΓpY, f˚OXq “ OXpXq.

We therefore have a canonical ‘global section map’

Γ: HomAffSchpX,Y q ÝÝÑ HomRingspOY pY q,OXpXqq (4.15)

which sends a map pf, f 7q to the ring map f 7

Y : OY pY q Ñ OXpXq. It is functorial in the
sense that pg ˝ fq

7

Z “ f 7

Y ˝ g7

Z whenever f : X Ñ Y and g : Y Ñ Z are two scheme maps.

Proposition 4.17. If X and Y are affine schemes, the map Γ in (4.15) is bijective.

Proof We may assume that X “ SpecB and Y “ SpecA, and then A “ OY pY q and
B “ OXpXq.

If ϕ : A Ñ B is a map of rings, it follows from Proposition 4.14 (i), that ΓpSpecϕq “ ϕ.
To establish the bijection, we just need to show that Spec pΓpfqq “ f for a given a morphism
f : X Ñ Y . We let ϕ “ Γpfq : A Ñ B, that is, ϕ “ f 7

Y .
Let x P X be a point which corresponds to the prime ideal q Ă B, and let p Ă A be the

prime ideal corresponding to fpxq P Y . The sheaf map f 7 gives the following commutative
diagram

OY pY q OXpXq

OY,fpxq OX,x

f7
Y

f7
x

=
A B

Ap Bq

ϕ

f7
x

We claim that ϕpA´ pq Ă B ´ q. Indeed, B ´ q is exactly the subset of elements in B that
become invertible in Bq. By the diagram, this certainly happens to elements from ϕpA´ pq,
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64 Affine Schemes

because elements of A ´ p become invertible in Ap. Hence we have ϕpA ´ pq Ă B ´ q,
and consequently, ϕ´1pqq Ă p.

Next we use the assumption that the stalk map f 7
x is a map of local rings, so that f 7

xppApq Ă

qBq. By the diagram, this implies that ϕppq Ă q. We conclude that ϕ´1pqq “ p, and so
Specϕ induces the same map as f on the underlying topological spaces.

Finally, we have two morphisms of sheaves OY Ñ f˚OX , one induced by f and one
induced by Specϕ. For each x, the induced stalk maps f 7

x and pSpecϕq7
x are both equal to

the map Ap Ñ Bq above, and from this it follows as well that f 7 “ pSpecϕq7, since maps
of sheaves are detemined on stalks (see Exercise 3.2.2 on page 50).

We have established the following important theorem, which is the scheme version of the
Main Theorem of Algebraic Sets (Theorem 1.19 on page 10).

Theorem 4.18 (Main Theorem for Affine Schemes). The two functors Spec and Γ
are up to equivalence mutually inverse and give an equivalence between the categories
Ringsop and AffSch.

Proof Note that there is an equality Γ ˝ Spec “ idRings. Conversely, for each X , there is
unique map SpecOXpXq Ñ X corresponding to the identity inHomRingspOXpXq,OXpXqq.
Therefore Spec ˝ Γ is equivalent to idAffSch.

In summary, affine schemesX are completely characterized by their rings of global sections
OXpXq, and morphisms between affine schemes X Ñ Y are in bijective correspondence
with ring homomorphisms OY pY q Ñ OXpXq. In particular, a map f between two affine
schemes is an isomorphism if and only if the corresponding ring map is an isomorphism.

Example 4.19. Maps between affine schemes can very well have a homeomorphism as
underlying topological map without being isomorphisms. The easiest examples are the
spectra of fields: being sets with one element, they are all homeomorphic, but two are
isomorphic as schemes only when the fields are isomorphic. For another example, closer to
the world of varieties, see Example 4.15.

Example 4.20. There is one and only one morphism of schemes SpecZ Ñ SpecZ. Indeed,
ring maps are required to send 1 to 1, so there is only one ring map Z Ñ Z.

Example 4.21 (Maps to A1 and OXpXq). If A is a ring, then there is a bijection between
ring maps ϕ : Zrts Ñ A and elements of A (ϕ is determined uniquely by the image of t).
Therefore, by Theorem 4.18

HomSchpX,A1q “ OXpXq.

In clear text: an element of OXpXq is the same thing as a map

f : X ÝÝÑ A1.

Thus the global sections the structure sheaf OX do indeed correspond to some sort of
‘regular functions’ on X – not into a field k – but into the affine line over Z. We will see a
generalization of this for general schemes in Example 6.8.
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4.4 The sheaf associated to an A-module

The construction of the structure sheaf OSpecA works more generally. For each A-module
M there is a parallel construction of a sheaf ĂM on SpecA. Over the distinguished open sets
Dpfq, the sections of ĂM are given by

ĂMpDpfqq “ Mf ,

and the restriction maps are the canonical localization maps described as follows: when
Dpgq Ď Dpfq, it holds true that gn “ af for some a P A and some n P N, and the
canonical localization map Mf Ñ Mg sends bf´r to arbg´nr. The same proof as for the
structure sheaf (Proposition 4.2 on page 55), but with obvious modifications, shows that
this is actually a B-sheaf. Hence it gives rise to a unique sheaf on SpecA, which we will
continue to denote by ĂM .

This tilde-construction is functorial in M . For any A-linear map ϕ : M Ñ N , there
is an induced map rϕ : ĂM Ñ rN . Indeed, according to Proposition 3.17 to define rϕ, it
suffices to say what ut should be over each distinguished open set Dpfq. Here we simply
define ϕ̃Dpfq : ĂMpDpfqq Ñ rNpDpfqq to be the induced map between the localizations
ϕf : Mf Ñ Nf , given by mf´r ÞÑ ϕpmqf´r. This is a map of B-sheaves because the
following diagram commutes for each f and g with Dpgq Ă Dpfq:

Mf Nf

Mg Ng

ϕf

ϕg

Indeed, writing gn “ af as above, and denoting the two localization maps respectively by
ιM and ιN , we find:

ϕgιMpmf´rq “ ϕgpa
rmg´nrq “ arϕpmqg´nr “ ιNpϕpmqf´rq “ ιNϕf pmq.

Clearly one has Ćϕ ˝ ψ “ rϕ ˝ rψ, whenever ϕ and ψ are composable A-linear maps and
consequently the ‘tilde-operation’ is a covariant functor from the category ModA of A-
modules to the category AbShSpecA of sheaves on X “ SpecA.

The sheaves ĂM are rather special sheaves, and they play an important role in algebraic
geometry. In particular, they are what one calls OX -modules. For each open set U Ă X , the
group ĂMpUq is an OXpUq-module in a natural way, and the restriction maps are module
homomorphisms in the sense that if V Ă U , it holds that as|V “ a|V ¨s|V , where s P ĂMpUq

and a P OXpUq. This is at least clear for the distinguished open sets U “ Dpfq: then
ĂMpDpfqq “ Mf is a natural module over OSpecApDpfqq “ Af and the restrictions are
just localization maps. For a general U , it follows from the fundamental sequence for ĂMpUq

as described in part (iii) of Proposition 4.22 below.
The three main properties of the sheaf ĂM are listed in the proposition that follows.
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Proposition 4.22. Let A be a ring and M an A-module. The sheaf ĂM on SpecA
has the following properties.

(i) Stalks: let x P SpecA be a point whose corresponding prime ideal is p.
Then the stalk ĂMx of ĂM at x P X is

ĂMx “ Mp;

(ii) Sections over distinguished open sets: if f P A, one has

ΓpDpfq,ĂMq “ Mf .

In particular, ΓpSpecA,ĂMq “ M ;
(iii) Sections over arbitrary open sets: for any open subset U of SpecA

covered by the distinguished open sets tDpfiquiPI , there is an exact
sequence

0 ΓpU,ĂMq
ś

iMfi

ś

i,jMfifj ,
β

where β is given by

β

ˆ

m1

fn1
1

, . . . ,
ms

fns
s

˙

i,j

“
mi

fni

i

´
mj

f
nj

j

(4.16)

Proof The properties in the proposition are completely analogous to the ones in Proposi-
tion 4.4 on page 57 about the structure sheaf OSpecA, and the proofs are very similar.

The first property follows because the stalks ĂMx and the localizations Mp are direct limits
of the same modules over the same directed system; the second follows from the way we
defined ĂM , and the third follows from the sheaf exact sequence (3.2).

Example 4.23. LetA be a ring and let I Ă A be an ideal. Then rI is an ideal sheaf in OSpecA,
i.e. for each U Ă SpecA, the space of sections rIpUq is an ideal of OXpUq. For U “ Dpfq,
it holds that rIpDpfqq simply is the ideal IAf in Af .

Example 4.24. Let A “ kru, vs{pu2 ` v2 ´ 1q and X “ SpecA. Consider the A-module
M given by the quotient

M “ Ae1 ‘Ae2{pue1 ` ve2q.

Let us determine stalk ĂM at the point x P X corresponding to the prime ideal p “ pu, v ´

1q.Since v is invertible in Ap, we can replace the relation ue1 ` ve2 “ vpuv´1e1 ` e2q by
uv´1e1 ` e2, which allows us to eliminate the factor Ape2. We find:

ĂMx “ Mp “ Ape1 ‘Ape2{puv´1e1 ` e2q » Ap “ OX,x.

Similar arguments show that pĂMqp » Ap for every p, indeed, given p, either u R p or v R p.
Therefore ĂM and OX have the same stalks at every point.
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5

Schemes in general

Finally, we can give the definition of a scheme:

Definition 5.1 (Schemes). A scheme is a locally ringed space pX,OXq which is
locally isomorphic to an affine scheme. In other words, there is an open cover tUiuiPI
of open subsets ofX such that each pUi,OX |Ui

q is isomorphic to some affine scheme
pSpecAi,OSpecAi

q.

Note that pUi,OX |Ui
q is naturally a locally ringed space, as OX |Ui

has the same local
rings as OX for points in Ui.
As for affine schemes, a scheme has two layers: a topological space X covered by open
sets of the form SpecAi, and a structure sheaf OX which restricts to the structure sheaves
OSpecAi

.
If x P X is a point, the stalk OX,x is called the the local ring at x. Note that x is contained

in some open subset U “ SpecA, and corresponds to some prime ideal p in A, and then
OX,x “ Ap. As before, we think of elements in OX,x as ‘rational functions defined at x’,
even if this is strictly true only for well-behaved schemes (see Proposition 5.27).

In the local ring OX,x we also have the maximal ideal mx, which in the setting above is
equal to pAp, and the corresponding residue field kpxq “ OX,x{mx, which equals Ap{pAp.

A morphism, or map for short, between two schemes X and Y is simply a map f between
X and Y regarded as locally ringed spaces. This also has two components: a continuous map,
which we shall denote by f as well, and a map of sheaves of rings

f 7 : OY ÝÝÑ f˚OX ,

with the additional requirement that the induced map on stalks f 7 is a map of local rings, i.e.,
takes the maximal ideal my into mx.

In this way the schemes form a category, which we shall denote by Sch. It contains the
category of affine schemes AffSch as a subcategory.

5.1 Relative schemes

There is also the notion of relative schemes where a base scheme S has been chosen. A
scheme over S, or an S-scheme, is a scheme X together with a morphism f : X Ñ S, which
we call the structure map or the structure morphism. A map between two schemes over S,
say X Ñ S and Y Ñ S, is a map X Ñ Y of schemes compatible with the two structure

67
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68 Schemes in general

maps; that is, a map such that the diagram

X Y

S

is commutative. The schemes over S form a category Sch{S, and the set of morphisms, as
defined above, is denoted by HomSpX,Y q.

When the base scheme S is affine, say S “ SpecA, we say that X is a scheme over A,
and we write Sch{A for the category Sch{SpecA. To say that an affine scheme SpecB is a
scheme over SpecA is the same thing as saying that B is an A-algebra: giving the structure
map f : SpecB Ñ SpecA is equivalent to giving the map of rings f 7 : A Ñ B. The Main
Theorem of Affine Schemes (Theroerem 4.18 on page 64) has the following relative version.

Theorem 5.2. Let A be a ring. Then the category AffSch{A of affine schemes over
A is equivalent to the category Alg{A of A-algebras (with the arrows reversed).

Note that each affine scheme X “ SpecA has a canonical map X Ñ SpecZ, induced
by the canonical ring map Z Ñ A. In Example 6.7 we will show that the same holds for any
scheme, so every scheme is a Z-scheme.

The concept of relative schemes can be thought of as a vast generalisation of the concept
‘varieties over k’. However, the extension to more general rings or even schemes turns out to
be conceptually very fruitful, e.g. when discussing properties of morphisms (Chapter ??) or
fibre products (Chapter 10).

Example 5.3. The Möbius strip scheme

X “ SpecRrx, y, u, vs{pvx´ uy, x2 ` y2 ´ 1q

from Example 2.37 can be viewed as a 2-dimensional scheme over R, but one can also view
it as a 1-dimensional scheme over S “ SpecRrx, ys{px2 ` y2 ´ 1q. The latter perspective
offers extra geometric insight, as all the fibres of X Ñ S are affine lines.

5.2 Open embeddings and open subschemes

If X is a scheme and U Ă X is an open subset, the restriction OX |U is a sheaf on U making
pU,OX |Uq into a locally ringed space. This is even a scheme, because if X is covered by
affines Vi “ SpecAi, then each U XVi is open in Vi, hence can be covered by distinguished
open subsets, which are all affine schemes. Therefore there is a canonical scheme structure on
U , and we call pU,OX |Uq an open subscheme of X and say that U has the induced scheme
structure. Moreover, a morphism of schemes ι : V Ñ X is an open embedding if it is an
isomorphism onto an open subscheme of X .

When referring to ‘an open affine’ in X or ‘an open affine covering’ of X , we shall tacitly
assume that the open sets involved are given the canonical scheme structure, and so are open
subschemes. Thus Spec k Ă Spec krxs{px2q is not an open affine of Spec krxs{px2q even
though the subset is open and the scheme is affine.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

5.3 Closed embeddings and closed subschemes 69

Example 5.4. The open set U “ A1
k ´ V pxq is an open subscheme of the affine line

A1
k “ Spec krxs. Note the isomorphism U » Spec krx, x´1s “ Spec krx, ys{pxy ´ 1q of

schemes.

Example 5.5 (Distinguished open subsets). More generally, each distinguished open set
Dpfq in an affine scheme SpecA is an open subscheme. It is affine, isomorphic to SpecAf .
Indeed, by Lemma 2.26 the map ι : SpecAf Ñ SpecA corresponding to the localization
map A Ñ Af is a homeomorphism onto Dpfq, and it follows readily from the definition of
the sheaf OX that the restriction OX |Dpfq coincides with the structure sheaf on SpecAf .

A word of warning: an open subscheme of an affine scheme might not itself be affine.

Example 5.6. The open subset U Ă A2
k ´ V pu, vq of A2

k “ Spec kru, vs is not an affine
scheme. This is a consequence of the restriction map ι7 : OA2

k
pA2

kq Ñ OA2
k
pUq being an

isomorphism: if U were affine, the inclusion ι : U Ñ A2
k would be an isomorphism according

to the Main Theorem of Affine Schemes (Theorem 4.18), but obviously it is not. To see
that the restriction is an isomorphism, we resort to the sheaf sequence (??) on page ?? for
the covering tDpuq, Dpvqu of U . In view of the equalities OA2

k
pDpuqq “ kru, vsu and

OA2
k
pDpvqq “ kru, vsv, the sheaf sequence takes the form

0 OUpUq kru, vsu ‘ kru, vsv, kru, vsuv

kru, vs

α β

ι7

where also the restriction map ι7 is indicated. Note that αpι7pcqq “ pc, cq. The map β sends
an element f “ pau´n, bv´mq to au´n´ bv´m, and f lies in the kernel of β precisely when
au´n “ bv´m; or in other words, when avm “ bum. As the polynomial ring is a UFD, we
conclude that a “ cum and b “ cvm for some c P kru, vs, so that f “ pc, cq. That is, ι7 is
surjective, and since it is clearly injective, it is an isomorphism.

Exercise 5.2.1. Consider the ring R “ Zrts and let X “ SpecR.
a) For a prime number p, show that m “ pt, pq is a maximal ideal of R.
b) Let U “ X ´ tmu. Show that U “ Dppq YDptq and that

OXpUq “ Zrts

c) Deduce that U is not affine.

5.3 Closed embeddings and closed subschemes

In this section, we explain what it should mean to be a closed subscheme of a scheme.
Intuitively, a closed subscheme is given by a scheme Z, which is embedded as a closed
subset Z Ă X . Given that there are many possibilities for choosing the scheme structure on
the same underlying closed set, and this makes the definition slightly more subtle than the
one for open subscheme. The prototypical example to have in mind is SpecpA{aq, which as
we have seen, embeds naturally as the closed subset V paq of SpecA (Proposition 2.27 on
page 32). In general, a closed subscheme is a scheme pZ,OZq with a morphism ι : Z Ñ X ,
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which locally looks like the map SpecpA{aq Ñ SpecA. We formalize this in the next two
definitions.

Definition 5.7 (Closed embeddings and closed subschemes). A morphism ι : Z Ñ X
is called a closed embedding if there is an affine cover tUiuiPI of X such that

(i) ι´1pUiq is affine for every i P I;
(ii) the ring map

ι7 : OXpUiq ÝÑ OZpι´1Uiq

is surjective for every i.
We say that Z is a closed subscheme of X . Two closed subschemes Z,Z 1 are said to
be equal if there is an isomorphism ϕ : Z Ñ Z 1 such that ι “ ι1 ˝ ϕ.

In other words, X and Z are covered by affine schemes Ui “ SpecpAiq, and ι´1pUiq “

SpecBi, so that for each i, the induced ring map Ai Ñ Bi is surjective, which means
that Bi “ Ai{ai for some ideal ai. Moreover, the morphism ι´1Ui Ñ Ui is given by the
canonical morphism SpecpAi{aiq Ñ SpecpAiq.

X

Z

Even if a closed subscheme Z is defined as an abstract scheme which maps into X , we
usually think of it as a closed subset of X . This is reasonable because the image V “ ιpZq is
a closed subset (the Ui’s form an open cover of X , and each subset ιpZq XUi is closed being
equal to V paiq). Moreover, we may put a structure sheaf on V by defining OV to be ι˚OZ .

Example 5.8. The schemes Spec krxs{pxnq with n P N and k a field, give different
subschemes of A1

k. Still, the underlying topological spaces are the same (a single point), and
these spectra are homeomorphic. However, having non-isomorphic structure sheaves, they
are not isomorphic as schemes.

Example 5.9. Consider the affine 4-space A4
k “ SpecA, with k a field andA “ krx, y, z, ws.

Then the three ideals

I1 “ px, yq, I2 “ px2, yq and I3 “ px2, xy, y2, xw ´ yzq,

have the same radical px, yq, and thus give rise to the same closed subset V px, yq Ă A4
k, but

they give different closed subschemes of A4
k.

Classifying closed subschemes according to the above definition is not so easy, even for
affine schemes. Of course, each ideal a Ă A, yields the closed subcheme SpecpA{aq Ñ

SpecA, but because the definition refers to a specific affine covering, it is a priori not obvious
that all closed subschemes arise in this way, or even if every closed subscheme of SpecA
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is an affine scheme. This is nevertheless true, but we will need to postpone the proof until
Chapter ??, where we give a more systematic treatment of closed subschemes in terms of
ideal sheaves.

Proposition 5.10. Let X “ SpecA be an affine scheme. The map a ÞÑ SpecpA{aq

is a one-to-one correspondence between the set of ideals of A and the set of closed
subschemes of X . In particular, each closed subscheme of an affine scheme is also
affine.

For later use, we include the following definition, which combines the two types of
embeddings we have seen:

Definition 5.11 (Locally closed embeddings). A morphism f : Z Ñ X is said to be
a locally closed embedding if it is the composition of an open and a closed imbedding.
That is, if f “ g ˝ h with g : U Ñ X an open embedding and h : Z Ñ X a closed
embedding.

Exercises

Exercise 5.3.1. Show that being a closed embedding is a property which is ‘local on the
target’. In clear text: given a morphism f : Z Ñ X and an open cover tUiu of X . Let
Vi “ f´1Ui and assume that each restriction f |Vi

: Vi Ñ Ui is a closed embedding. Prove
that then also f is a closed embedding.

Exercise 5.3.2. Show that being a locally closed embedding is ‘local on the image’. Assume
that f : Z Ñ X is a morphism and that tUiu is a family of open subsets of X covering
the image fpZq. Assume further that each restriction f |f´1Ui

: f´1Ui Ñ Ui is a closed
embedding, then f is a locally closed embedding.

Exercise 5.3.3. Let f : X Ñ Y and g : Y Ñ Z be two morphisms of schemes. Prove that if
both f and g are closed embeddings, then g ˝ f is one as well.

5.4 R-valued points

A point in an affine variety X over an algebraically closed field k can be viewed as a solution
in k to a finite set of polynomial equations. This perspective is lost when transitioning to
spectra of general rings. Still, given a scheme such as

X “ SpecZrt1, . . . , tns{pf1, . . . , frq, (5.1)

we can still talk about solutions to the defining equations, but there are many choices of
fields where to consider solutions. In fact, since the polynomials have integer coefficients, the
equations f1ptq “ ¨ ¨ ¨ “ frprq “ 0 are meaningful over any ring R. This leads to the notion
of an ‘R-valued point’ of a scheme.

Formally, an R-valued point, or an R-point, of a scheme X is simply a morphism
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SpecR Ñ X . The set of all such morphisms will be denoted by XpRq; that is, we de-
fine

XpRq “ HomSchpSpecR,Xq.

Note that if f : X Ñ Y is a map of schemes, composition gives an induced map of sets
XpRq Ñ Y pRq. The sets XpRq also depend functorially on R. To every ring map R Ñ S
there is a corresponding map of schemes SpecS Ñ SpecR, which induces a map of sets
XpRq Ñ XpSq. Therefore the scheme X determines a functor X : Rings Ñ Sets. We will
explore the link between a scheme and its associated functor in Chapter 10.7.

Example 5.12. The R-points of the affine space over Z, An “ SpecZrt1, . . . , tns, is just
Rn. Indeed, elements f P AnpRq are by definition maps of schemes

SpecR An,

which according to Theorem 4.18 on page 64 correspond bijectively to ring maps

ϕ : Zrt1, . . . , tns ÝÝÑ R. (5.2)

These in turn, are in bijection with the n-tuple pϕpt1q, . . . , ϕptnqq in Rn.
In particular, for fields k it holds that Anpkq “ kn, which explains the notation Anpkq

used in Chapter 1.

Example 5.13. Going one step further, given an ideal a “ pg1, . . . , grq Ă Zrt1, . . . , tns, con-
sider the corresponding affine scheme X “ SpecZrt1, . . . , tns{a. Scheme maps SpecR Ñ

X are in a one-to-one correspondence with ring maps

ϕ : Zrt1, . . . , tns{a R,

again according to Theorem 4.18. Such maps are in turn in bijection with ring maps ϕ as in
(5.2) that vanishes on the ideal a; that is, they are in bijection with n-tuples pa1, . . . , anq P

Rn “ AnpRq such that gipajq “ 0.

Example 5.14. For a specific example, consider the scheme

X “ SpecZru, vs{pu2 ` v2 ´ 1q.

Then the set XpRq of R-points consists of the points of the unit circle in R2; the Z-points
XpZq consists of the four points p˘1, 0q and p0,˘1q, while one may verify that the rational
points; that is, the Q-points, are given by

XpQq “

"ˆ

2t

1 ` t2
,
1 ´ t2

1 ` t2

˙

ˇ

ˇ t P Q
*

Ytp0,´1qu.

In Exercise ?? you are asked to verify this.

Example 5.15 (A conic with no real points). Let X “ SpecA, where A is the algebra
A “ Rru, vs{pu2 ` v2 ` 1q. The equation u2 ` v2 ` 1 “ 0 has no real solutions, so
XpRq “ H. However, the set XpCq is infinite because the equation has infinitely many
complex solutions (two for each choice of v P C). Note also that A has infinitely many
maximal ideals, so that the underlying topological space of X is infinite.
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The sets XpRq of R-points are clearly important in number theory. A rather extreme
example of this is Fermat’s Last Theorem, which asks about the set XpQq where X “

SpecZrx, y, zs{pxn ` yn ´ znq. This example shows that even when R is a field, it can
be very difficult to describe the set XpRq of R-valued points, or even determining whether
XpRq ‰ H. However, sometimes scheme theory can shed light on this problem, e.g. showing
that XpKq ‰ H provided, say XpLq ‰ H for some suitable field extension K Ă L.

Example 5.16 (Non-existence of Z-points). The equation 3x2 ´ 7y2 “ 1 has no solution in
integers x and y. Indeed, modulo 3, the equation reduces to 2y2 “ 1 mod 3, but 2y2 must
be 0 or 2 modulo 3. In geometric terms, the scheme

X “ SpecZrx, ys{p3x2 ´ 7y2 ` 1q

has no Z-points; any Z-point of X would survive via the map XpZq Ñ XpF3q induced by
the reduction mod 3 map Z Ñ F3.

Likewise, XpRq ‰ H is a necessary condition for the existence of Z-points.
One says that a schemeX satisfies the Hasse principle if these conditions are also sufficent,

that is, ifXpRq ‰ 0 andXpFpq ‰ 0 for all primes p impliesXpZq ‰ 0. The Hasse principle
holds in some cases, e.g., when X is defined by a quadratic polynomial, but it fails in general.
The Selmer curve

X “ SpecZrx, ys{p3x3 ` 4y3 ` 5q

has points over R and every Fp, but none over Z.

In the examples above, the sets XpRq are rather manageable. However, the sets XpRq can
in fact be enormous even when K is a field. For instance, the next example shows that the set
XpCq is uncountable, even for X “ SpecC.

For this reason it is important to consider the relative situation. When X is a scheme over
some base ring A, and R is an A-algebra, one has the sets

XApRq “ HomSch{ApSpecR,Xq

of relative morphisms over A. These satisfy the same functorial properties as the sets XpRq

above, but in many cases they will be more manageable.

Example 5.17. We have
(i) HomSch{CpSpecC, SpecCq “ tidSpecCu;

(ii) HomSch{RpSpecC, SpecCq “ tidSpecC, ιu, where ι : C Ñ C is complex con-
jugation map;

(iii) HomSchpSpecC,SpecCq is the set of all field automorphisms of C, or in other
words, the Galois group of C over Q. This is an uncountable group.

Points in schemes

A single scheme X gives rise to many sets of R-valued points XpRq. For instance, An
simultaneously gives rise to all the possible Anpkq’s from Chapter 1, by varying the field k.

For a scheme X , looking at maps from spectra of fields into X help us understand the
points of X . Every point of X is a K-point for some field K.
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The residue fields play an important role here. If x P X is a point, there is a canonical map

ιx : Spec kpxq Ñ X

which maps the only point of Spec kpxq to x. To see this, suppose x is contained in an open
affine subset U “ SpecA and corresponds to a prime ideal p Ă A. Then the residue field
is given by kpxq “ Ap{pAp, and there is a morphism ιx : Spec kpxq Ñ X defined by the
composition

Spec kpxq Ñ SpecpApq Ñ U Ñ X.

It is not hard to see that this is independent of the choice of U (see Exercise 5.4.6).
Thus this is a way to organize the points of X according to their residue fields.
The residue field kpxq and the morphism ιx : Spec kpxq Ñ X satisfy a certain universal

property for K-points in general:

Lemma 5.18. Let X be a scheme and let x P X be a point. For a field K, there are
natural bijections between:

(i) K-valued points f : SpecK Ñ X with image x;
(ii) Maps of local rings OX,x Ñ K;

(iii) Maps of fields kpxq Ñ K;

Proof (i)ñ (ii). If f : SpecK Ñ X is a morphism which maps the point y P SpecK to
x, the sheaf part of the morphism gives a map of local rings f 7

y : OX,x Ñ OSpecK,y “ K.
(ii)ñ (iii). If OX,x Ñ K is a map of local rings, it maps the maximal ideal of OX,x to the

maximal ideal of K, namely p0q, and hence it induces a map between the fields kpxq Ñ K.
(iii)ñ (i) Let kpxq Ñ K be a map of fields. Let U “ SpecA be an affine open set

containing x, so that x corresponds to a prime ideal p in A. Then composing kpxq Ñ K
with the map ιx, we get a map of schemes SpecK Ñ X , i.e., a K-point with image x.

Corollary 5.19. Let X be a scheme and let K be a field. Then there is a bijection

XpKq “

"

px, αq

ˇ

ˇ

ˇ

ˇ

x P X is a point;
α : kpxq Ñ K is a field embedding

*

.

Exercises

Exercise 5.4.1. Let X “ SpecZ. Compute XpFpq, XpQq and XpCq.

Exercise 5.4.2. Verify the claim about XpQq in Example 5.14. HINT: Compute the second
intersection point a general line trough p0, 1q has with the unit circle.

Exercise 5.4.3. With reference to Example 5.14, show that one may interpret XpQq as the
set of Pythagorean triples:

XpQq “ t pa, b, cq P Z3 | a2 ` b2 “ c2 and a, b, c relatively prime u.

Exercise 5.4.4. With reference to Example 5.14, let p be a prime such that p fl 1 mod 4.
Show that the description in Example 5.14 also is valid for XpFpq.
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Exercise 5.4.5. With reference to Example 5.15, consider the natural inclusion

A “ Rru, vsppu2 ` v2 ` 1q Ă Cru, vs{pu2 ` v2 ` 1q “ AC.

For each point z “ pa, bq P XpCq consider the ideal nz “ mz XA. Show that nx is maximal
and that nz “ nw if and only if w “ pā, b̄q with z “ pa, bq. Conclude that A has infinitely
many maximal ideals.

Exercise 5.4.6. Let X be a scheme and let x P X be a point.
a) Show that there is a canonical morphism

f : SpecOX,x ÝÝÑ X

b) Show that the map ιx : Spec kpxq Ñ X definied in the text factors via f .
c) Show that on the level of topological spaces, the image of f is the intersection

of all open neighbourhoods containing x.
d) Compute the image of f when:

(i) x is the generic point of an irreducible scheme;
(ii) x is a closed point of A2

C.

5.5 Basic geometric properties of schemes

There are a few basic properties of schemes that only concern the underlying topological
space. We have seen some of these already:

‚ X is irreducible if it cannot be decomposed as X “ Y Y Z where Y, Z are proper closed
subsets.

‚ X is connected if it cannot be decomposed as X “ U Y V where U, V are disjoint open
sets.

‚ X is quasi-compact if any open cover has a finite subcover.

We have already studied these notions for affine schemes. Here SpecA is irreducible if and
only if A has a unique minimal prime, i.e., if

a

p0q is prime (Proposition 2.17). SpecA
is connected if and only if A ‰ B ˆ C for two non-trivial rings B,C (Proposition 2.20).
SpecA is always quasi-compact (see page 30). (See Exercise 2.5.6 for a scheme which is
not quasi-compact.)

Exercise 5.5.1. Find an example of a connected scheme X with a disconnected open subset
U Ă X .

Reduced schemes and integral schemes

Recall that a ring A is said to be reduced if it has no non-zero nilpotent elements. We define
a scheme pX,OXq to be reduced if for every x P X , the local ring OX,x is reduced.

Lemma 5.20. A scheme X is reduced if and only if for every open U Ď X , the ring
OXpUq has no non-zero nilpotents.
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Proof Assume first that X is reduced. Any non-zero nilpotent element in one of the rings
OXpUq would have a non-zero germ in at least one local ring OX,x, which would then not be
reduced. For the reverse implication, let x P X be a point and let s P OX,x be any element.
We may write s as the germ of some section t P OXpUq, which can not be nilpotent; hence
s is not nilpotent either.

Example 5.21. An affine scheme X “ SpecA is reduced precisely when A is a reduced
ring. Thus Ank is reduced, but Spec krxs{pxnq for n ě 2, is not.

One says that a scheme is integral if it is both irreducible and reduced. An affine scheme
SpecA is integral if and only if A is an integral domain. Indeed, SpecA is reduced if
and only if A has no nilpotents; that is, if and only if the nilradical vanishes, and SpecA
is irreducible if and only if the nilradical is prime. These two statements imply that the
zero-ideal is prime, and so A is an integral domain.

Moreover, it is not hard to prove the following:

Proposition 5.22. A schemeX is integral if and only if OXpUq is an integral domain
for each open U Ă X .

One important fact about integral schemes is that they have a function field, kpXq, which
contains all the rings OXpUq as subrings.

To define kpXq, recall that any integral scheme has a unique generic point η. The generic
point is the only point which is dense, i.e., belongs to every open non-empty subset of X . If
U “ SpecA is an open affine, η corresponds to the zero ideal p0q of A, and the local ring
OX,η is equal to the field of fractions KpAq of A. We define the function field kpXq of X to
be KpAq. That is, kpXq is the local ring OX,η at the generic point.

Example 5.23. The function field of SpecZ equals OSpecZ,p0q “ Zp0q “ Q.

Example 5.24. The function field of Ank “ Spec krx1, . . . , xns equals the field kpx1, . . . , xnq

of rational functions in x1, . . . , xn.

Example 5.25 (The quadratic cone). The quadratic cone Q “ Spec krx, y, zs{px2 ´ yzq is
integral being the spectrum of an integral domain (x2 ´ yz is irreducible), and the function
field of Q is equal to

Kpkrx, y, zs{px2 ´ yzqq » kpx, yq

since we can eliminate z using that z “ y´1x2 (note that y is invertible in kpQq).

We showed in Example 4.10 that each OXpUq is a subring of kpXq when X was an
integral affine scheme. The same argument as in the example works more generally. For any
non-empty open U the ring OXpUq is an integral domain with fraction field pOXpUqq0 “

OX,η “ kpXq, and the canonical germ map OXpUq Ñ OX,η is identified with the inclusion
OXpUq Ă kpXq. These inclusions are moreover compatible with restrictions, i.e., all
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diagrams

OXpUq kpXq

OXpV q

ρUV

where V Ă U are two open subsets, commute. This shows that we may view OXpUq as a
subsheaf of the constant sheaf kpXq on X .

Taking direct limits, we see that also all the local rings OX,x lie as subrings of kpXq. We
say that an element f P kpXq is defined at the point x if f P OX,x.

Lemma 5.26. Let X be an integral scheme and let f P kpXq. The set

Uf “ tx P X | f P OX,x u

is open.

Proof Let x P Uf and let SpecA be an affine neighbourhood of x. Consider the ideal
af “ t b P A | bf P A u. If p is a prime in A, then f P Ap if and only if af Ę p; that is,
V paf q is the complement of Uf X SpecA in SpecA.

Proposition 5.27. Let X be an integral scheme with function field kpXq and let
U Ă X be open. Then

OXpUq “
č

xPU

OX,x “

"

f P kpXq

ˇ

ˇ

ˇ

ˇ

for each point x P U , f can be
represented as g{h where hpxq ‰ 0

*

Ă kpXq.

Proof There are two equalities to prove here. To prove the first, assume first that U is affine,
say U “ SpecA. Then the first equality amounts to the equality A “

Ş

Ap where the
intersection extends over all prime ideals in A. The inclusion A Ă

Ş

Ap is trivial. To verify
the other, assume that the ideal af is proper. It will then be contained in a maximal ideal
m, and consequently f R Am. If U is a general open subset, the equality follows from the
equality OXpUq “

Ş

OXpV q, where the intersection extends over all non-empty open affine
subsets V Ă U . This holds because OXpUq equals the inverse limit OXpUq “ lim

ÐÝ
OXpV q,

and this inverse limit becomes the intersection when all the rings are identified with subrings
of kpXq.

To prove the second equality, let x P X be a point, and let SpecA be an open affine
subset containing x. Then kpXq equals the fraction field K of A. An element f P K lies in
OX,x “ Ap Ă K if and only if it can be expressed as a quotient f “ a{s where s R p.

Example 5.28. Non-reduced schemes appear frequently when two schemes X and Y
intersect. For instance, consider the parabola X “ Spec krx, ys{py ´ x2q and the line Y “

Spec krx, ys{pyq. The intersection of these is given by the ideal I “ py ´ x2, yq “ px2, yq,
which is not a radical ideal. The nilpotent elements of krx, ys{px2, yq “ krxs{px2q in some
sense account for the ‘tangency’ of the intersection X X Y .
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y “ x2

x

y

Example 5.29. Here is a similar example in A3
k. Consider

X “ Spec krx, y, zs{pz ´ xy2q

which is a closed subscheme of A3 (a cubic surface). The intersection of X with the plane of
equation x “ 0 is given by the ideal I “ pz, xy2q, whose primary decomposition is

pz, xy2q “ pz, y2q X px, zq.

The intersection Spec krx, y, zs{I therefore is the union of the lines y “ z “ 0 and
x “ z “ 0. Being defined by the non-radical ideal pz, y2q, the component along the former
has ‘multiplicity 2’, which reflects the fact that the plane is tangent to X along that line. So
the intersection is neither irreducible nor reduced.

Example 5.30 (Schemes of matrices). Consider the scheme

Mnˆn “ An
2

“ SpecZrxij|1 ď i, j ď ns

As the notation suggests, the k-points of this scheme parameterize n ˆ n-matrices with
entries in k. The scheme Mn contains several interesting subschemes:

The general linear group GLn is the subset of Mn consisting of invertible matrices. It is
an open subscheme, in fact, it equals the the distinguished open setDpdetMq, where detM
is the determinant of the matrix of variables M “ pxijqij .

There is also the the special linear group SLn consisting of matrices of determinant one,
is the set of closed points in V pdetM ´ 1q Ă Mnˆn.

The orthogonal group Opnq corresponds to the matrices such that M tM is the identity
matrix. It a closed subscheme, defined by the ideal I generated by the entries in n ˆ n
matrix M tM ´ I (which are polynomials in the xij’s). If we further impose the condition
detM “ 1, we obtain the special orthogonal group SOpnq.

Example 5.31 (Nilpotent matrices). Particularly interesting examples of subschemes of Mn

are the set of nilpotent matrices, i.e. matrices A such that Ak “ 0 for some k ą 0.
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We continue working with the matrix M of variables from the prevous example. The
equation Mn “ 0 gives n2 degree n polynomial relations in the variables xij , and the ideal
J they generate define a closed subscheme N “ SpecpZrxijs{Jq of Mn. Bearing in mind
that an n ˆ n-matrix A is nilpotent if and only if An “ 0, the k-points of N is the set of
nilpotent matrices in k.

Interestingly, the subscheme N is typically non-reduced. Indeed, recall that the characteris-
tic polynomial detptIn ´Aq of a matrix A equals tn if and only if A is nilpotent (equivalent
to all eigenvalues being zero), so in particular the trace TrA (the sum of the eigenvalues
or the subleading coefficient) of A vanishes. This means that TrM “

ř

xii vanishes in
all closed points of N . So TrM induces a nilpotent element in krxijs{J , but being linear,
TrM does not lie in J .

One may put a different scheme structure on the set of nilpotent matrices, using the fact
that a matrix A is nilpotent if and only if it has characteristic polynomial equal to tn. Note
that the coefficients of the characteristic polynomial

detptI ´Mq “ tn ´ c1pMqtn´1 ` ¨ ¨ ¨ ` p´1qncnpMq

are polynomials in the entries of M , so we see that we get n equations c1pMq “ ¨ ¨ ¨ “

cnpMq “ 0, that define a subscheme in Mn with the same underlying topological space as
N . In fact, it is not too hard to check that the ideal I generated by the cipMq’s is radical, so
that Spec pkrxijs{Iq is reduced.

Exercise 5.5.2. Describe X “ SpecZrxs{p5x´ 15q. Is X irreducible? Reduced? What are
the fibres of the canonical map X Ñ SpecZ?

Exercise 5.5.3. Let X be an integral scheme and U Ă X an open subset. Show that x P U
if and only if OXpUq Ă OX,x inside kpXq.

5.6 Affine varieties and integral schemes

We have mentioned a few times that schemes are generalizations of algebraic varieties. On
the other hand, we have also seen that even the simplest schemes, e.g. A2

k “ Spec krx, ys,
behave differently than varieties in the sense that they have many non-closed points. Thus for
this statement to make sense, we should expect there to be a natural way to ‘add non-closed
points’ to an algebraic variety so that the resulting topological space has the structure of a
scheme. Let us explain what this means more precisely.

Let k be an algebraically closed field and letX be an affine variety over k. LetA “ ApXq

denote its affine coordinate ring; it is canonically attached to X , being the ring of regular
functions on X . From A, we can build the affine scheme Xs “ SpecA. Note that the closed
points ofXs are in bijection with the points ofX (that is,Xspkq “ X) by the Nullstellensatz.
In particular, there is a natural injection X Ă Xs. Thus as a set, Xs is obtained by adding to
X the non-maximal prime ideals p in A; there is one for each subvariety of X of positive
dimension. Note that V pIq XX “ ZpIq, so the classical Zariski topology on X is simply
the induced topology from Xs “ SpecA.

The ring A is a finitely generated k-algebra with no zerodivisors. This means that Xs is
an integral scheme over k.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

80 Schemes in general

The structure sheaf OXs on Xs is also constructed via the ring A via the various localiza-
tions. Proposition 5.27 tells us that the elements of OXspUq over an open set U Ă Xs can
be identified with the ring of regular functions f : Upkq Ñ k

Associating X with Xs also behaves well with regard to morphisms. The fundamental
theorem of affine varieties tells us that maps ϕ : X Ñ Y between two affine varieties
are in one-one-correspondence with k-algebra homomorphisms ϕ7 : ApY q Ñ ApXq. This
exactly parallels our Theorem ?? for schemes. Hence putting ϕs “ Specϕ7, we obtain a
morphism ϕs : Xs Ñ Y s which extends ϕ. As ϕ7 is a map of k-algebras, the morphism ϕs

is a morphism of schemes over Spec k. Moreover, any morphism of schemes Xs Ñ Y s

arises in this way. This means that there is a functorial bijection

HomAlgSets{kpX,Y q “ HomSch{kpXs, Y sq.

In particular, the assignment X ÞÑ Y s gives a fully faithful functor from affine varieties to
affine schemes over k. In particular, two varieties give rise to isomorphic schemes over k
if and only if they are isomorphic as varieties, and each scheme isomorphism is uniquely
determined by the variety isomorphism. In particular, this tells us that the category of varieties
Var{k is equivalent to a full subcategory of Sch{k. We have already seen that this is a strict
subcategory, e.g. Spec krxs{px2q does not come from a variety.

5.7 Exercises

Exercise 5.7.1. Which of the topologies on a set with three points is the underlying topology
of a scheme?

Exercise 5.7.2. Let X be a scheme.
a) Show that any irreducible and closed subsetZ Ă X has a unique generic point.

HINT: Reduce to the affine case.
b) Show that in general schemes are not Hausdorff. What are the possible underly-

ing topologies of affine schemes that are Hausdorff?
c) Show that X satisfies the zeroth separation axiom (they are T0); that is, given

two points x and y in X , there is an open subset of X containing one of them
but not the other.

Exercise 5.7.3 (The sheaf of units). Let X be a scheme with structure sheaf OX . We say
that s P OXpUq is a unit if there exists a multiplicative inverse s´1 P OXpUq.

a) Show that s P OXpUq is a unit if and only if for all x P U , the germ sx is a
unit in the ring OX,x; that is, if and only if sx does not lie in the maximal ideal
of OX,x.

b) We let Oˆ
XpUq denote the subgroup of units in OXpUq. Show that Oˆ

XpUq is a
subsheaf of OX .

Exercise 5.7.4 (The Frobenius morphism). Let p be a prime number and let A be a ring of
characteristic p. The ring map FA : A Ñ A given by a ÞÑ ap is called the Frobenius map on
A.

a) Show that FA induces the identity map on SpecA;
b) Show that if A is local, then FA is a map of local rings;
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c) For a scheme X over Fp, define the Frobenius morphism FX : X Ñ X by the
identity on the underlying topological space and with F 7

X : OX Ñ OX given
by g ÞÑ gp. Show that FX is a morphism of schemes;

d) Show that FX is natural in the sense that if f : X Ñ Y is a morphism of
schemes over Fp, we have f ˝ FX “ FY ˝ f .

In particular, this exercise shows that for a morphism of schemes f : X Ñ Y , in order to
check that f is an isomorphism, is not enough to check that f is a homeomorphism; also the
map f 7 must be an isomorphism.

Exercise 5.7.5. Let X an integral scheme over a ring A, and let f P kpXq. Show that there
is a morphism ϕ : Uf Ñ A1

A such that ϕ7 : Arts Ñ ΓpUf ,OXq is given by t ÞÑ f .

Exercise 5.7.6. Prove Proposition ??. That is, prove that a scheme X is integral if and only
if OXpUq is an integral domain for each open U Ď X .

Exercise 5.7.7. Let X be a scheme and let x P X be a point. Show that x is a closed point if
and only if the corresponding morphism Spec kpxq Ñ X is finite.

Exercise 5.7.8. Let X “ Spec krx, y, z, ws{pxw ´ yzq and consider the open set U “

X ´ V px, yq. Use the above strategy as in Example 5.6 to compute OXpUq. Conclude that
U is not affine.

Exercise 5.7.9. Prove Corollary 5.22.

Exercise 5.7.10. Prove that a composition of two closed embeddings is a closed embedding.
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6

Gluing

It is sometimes said that ‘algebraic geometry is the study of the geometry of zero sets of
polynomials’. After Grothendieck, perhaps a more precise slogan would be that ‘algebraic
geometry is the geometry of rings’.

While this certainly has an amount of truth to it, the theory of schemes is much richer than
just the spectra of rings. This is essentially due to the enormous flexibility gluing gives: we
are allowed to glue together new schemes out of old ones, as well as sheaves on them, and
also morphisms between these. The aim of this chapter is to explain the conditions under
which this can be done. We begin with gluing together sheaves and maps between them
(which is the easiest case and which works for any topological space), and then move on to
schemes and morphisms. In the final part of the chapter we outline some applications of these
constructions to the study of schemes.

6.1 Gluing of sheaves

In this section,X will be a topological space and tUiuiPI will be an open cover ofX . We will
writeUij andUijk, respectively, for the intersectionsUij “ UiXUj andUijk “ UiXUjXUk,
where i, j, k P I .

Gluing maps of sheaves

Gluing maps of sheaves is the simplest gluing situation we will encounter. The following
proposition gives the precise conditions under which this can be done:

Proposition 6.1 (Gluing conditions for maps for sheaves). Let F and G be two
sheaves on X . Let tUiuiPI be an open cover of X and assume that we are given a
map of sheaves ϕi : F |Ui

Ñ G|Ui
, so that for all i, j P I

ϕi|Uij
“ ϕj|Uij

(6.1)

Then there exists a unique map of sheaves ϕ : F Ñ G such that ϕ|Ui
“ ϕi.

Proof Take a section s P FpV q where V Ă X is open. Then over Vi “ Ui X V , the
section ϕips|Vi

q is a well defined element in GpViq, and we have ϕips|Vij
q “ ϕjps|Vij

q by
the compatability assumption (6.1). Hence the sections ϕips|Vi

q’s of the G|Vi
’s glue together

to a section of G over V , which we define to be ϕpsq. It is clear that this association is
additive, and compatible with restrictions, so we have the desired map of sheaves.

82
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6.1 Gluing of sheaves 83

The uniqueness also follows: if ϕ and ψ are two morphisms of sheaves so that ϕpsq|Ui
“

ψpsq|Ui
for all i P I , then ϕpsq “ ψpsq by the Locality axiom for G, and consequently

ϕ “ ψ.

Gluing Sheaves

For gluing sheaves, the setting is as follows: for each open set Ui in the covering, we have a
sheaf Fi onUi, and our goal is to construct a global sheaf F onX that restricts to Fi for every
Ui. A necessary condition for such an F to exist is that the Fi’s should be isomorphic over
the intersections Uij . In fact, by specifying the precise conditions that these isomorphisms
must satisfy (the ’gluing data’), we get not just a necessary but also a sufficient condition.

U0

U1

U2

F0 F1

F2

Proposition 6.2 (Gluing conditions for sheaves). Let tUiuiPI be a covering of X
and suppose we have, for each i, a sheaf Fi onUi. Suppose we are given isomorphisms

τji : Fi|Uij
Ñ Fj|Uij

,

satisfying the three conditions
(i) τii “ idFi

(ii) τji “ τ´1
ij

(iii) τki “ τkj ˝ τji
(where (iii) takes place over the triple intersection Uijk). Then there exists a sheaf F
on X , unique up to isomorphism, such that there are isomorphisms νi : F |Ui

Ñ Fi
satisfying νj “ τji ˝ νi over each intersection Uij .

Observe that the three conditions (i)–(iii) parallel the three requirements for a relation to
be an equivalence relation; the first reflects reflectivity, the second symmetry and the third
transitivity.

To motivate these a bit further, note that if we have managed to construct F and νi, the
isomorphisms τji “ νj ˝ ν´1

i appear as the composition

Fj|Uij
» F |Uij

» Fi|Uij

But isomorphisms of this form naturally satisfy (i)–(iii). For instance, to verify (iii):

τkj ˝ τji “ pνk ˝ ν´1
j q ˝ pνj ˝ ν´1

i q “ νk ˝ ν´1
i “ τki.

In terms of diagrams, the requirement νj “ τji ˝ νi means that each of the small triangles
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84 Gluing

in the figure below commute, and therefore the outer triangle commutes as well, which is
exactly the condition (iii).

Fk|V

F |V

Fi|V Fj|V

νk

νi νj
τji

τki τkj

Proof If W Ă X is an open set, we will write Wi “ Ui XW and Wij “ Uij XW .
The construction of F is conceptually straightforward: the sections over an open set V

is given by the collection of sections si P FipViq, chosen so that for each i and j, si and sj
agree over Vij , meaning that τji maps si|Vij

to sj|Vij
. In other words, we define

FpV q “

"

psiqiPI

ˇ

ˇ

ˇ

ˇ

τjipsi|Vij
q “ sj|Vij

*

Ă
ź

iPI

FipViq. (6.2)

The τji are maps of sheaves and are therefore compatible with all restriction maps. Therefore,
if W Ă V is another open set, we have τjipsi|Wij

q “ sj|Wij
if τjipsi|Vij

q “ sj|Vij
.

The defining condition (6.2) is compatible with componentwise restrictions, and these can
therefore be used as the restriction maps FpV q Ñ FpW q. We have thus defined a presheaf
on X and proceed to check the two sheaf axioms.

Locality: let s “ psiq P FpV q be a section, and let tVαuαPΛ be an open cover of V . If
s|Vα

“ 0 in FpVαq for every α, we must have that si|UiXVα
“ 0 in FipVα X Uiq for all α

and i. But as Vα X Ui forms a cover of V X Ui, and Fi is a sheaf on Ui, this means that
si “ 0 in FpV X Uiq. And since this holds for every i, we get s “ 0.

Gluing: Let sα P FpVαq be compatible sections over the opens of a covering tVαuαPΛ

of V . This means that sα and sβ are equal when restricted to Vαβ “ Wα X Wβ . For i P I
fixed, we then have a compatible family of sections sαi P FpUi X Vαq, which, since Fi is a
sheaf, glue to an element si P FpUiq. We have τijpsjq “ si in FpV X Ui X Ujq because
this holds when restricted to Vα X Uij , since sα P FpVαq. The section s “ psiq therefore
defines an element of FpV q, which by construction restricts to sj on each Wj .

Note that we haven’t used the third condition yet. It will be neeed in order to construct the
isomorphisms νi : F |Ui

Ñ Fi. To avoid getting confused by the names of the indices, we
shall work with a fixed index α P I . Suppose V Ă Uα is an open set. Then naturally one has
V “ Vα, and projecting from the product

ś

iFipViq onto the component FαpV q “ FαpVαq

gives us a map

να : F |Uα
Ñ Fα.

We proceed to show that the να’s give the desired isomorphisms.
To begin with, we note that on the intersections Vαβ the requirement in the proposition,

that νβ “ τβα ˝ να, is fulfilled. This follows directly from the definition in (6.2) that
sβ|Vαβ

“ τβαpsα|Vαβ
q.
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6.2 Gluing schemes 85

να is injective: this is clear, since if s “ psiq P FpV q is a section such that sα “ 0 P

FαpV q, it follows that si “ si|Viα
“ τiαpsαq “ 0 for all i P I , and hence s “ 0.

να is surjective: take any section σ P FαpV q over some V Ă Uα and define s “

pτiαpσ|Viα
qqiPI . Note that

τjipτiαpσ|Vjiα
qq “ τjαpσ|Vjiα

q

for every i, j P I . Therefore, we see that s satisfies the condition in (6.2), and defines an
element of FpV q. As τααpσ|Vαα

q “ σ by the first gluing condition, the element s projects
to the section σ of Fα.

6.2 Gluing schemes

The ability to glue different schemes together along open subschemes is a fundamental
property in the theory of schemes. As we will see in Chapter 7, this gives a plethora of
new examples of schemes. The gluing of schemes is also an important part in many general
existence proofs, such as the construction of the fibre product.

When we talk about gluing schemes, we are given a family tXiuiPI of schemes indexed
by a set I . In each of the schemes Xi we are given a collection of open subschemes Xij ,
one for each j P I . The goal is to produce a new scheme X by gluing together all the
Xi’s along these open subschemes. This is done by identifying the open sets Xij Ă Xi

and Xji Ă Xj using scheme isomorphisms τji : Xij Ñ Xji. If we let Xijk “ Xik X Xij

(these are the various triple intersections before the gluing has been done), we require that
τjipXijkq “ Xjik. Notice that Xijk is an open subscheme of Xi.

X1

X3X2

X12

X123

X13

X231

X21

X23 X32

X31

X312

τ12
τ31

τ23

X

There are three gluing conditions, similar to the ones we saw for sheaves, which must be
satisfied for the gluing to be possible.
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86 Gluing

Proposition 6.3 (Gluing conditions for schemes). Suppose that we are given: a
collection of schemes tXiuiPI ; for each i, j an open subschemes Xij Ă Xi and
scheme isomorphisms τji : Xij Ñ Xji satisfying

(i) τii “ idXi

(ii) τij “ τ´1
ji

(iii) τij takes Xijk into Xjik and τki “ τkj ˝ τji over Xijk.
Then there exists a scheme X with open embeddings gi : Xi Ñ X onto an open
subscheme Ui “ gipXiq Ă X such that

‚ tUiuiPI forms an open cover of X .
‚ For each i, j P I , gipXijq “ Ui X Uj and the following diagram commutes:

Xij Xji

Ui X Uj

τij

gi gj

The scheme X is uniquely characterized by these properties up to a unique isomor-
phism.

Proof To construct the scheme X , we first build the underlying topological space X and
then equip it with a sheaf of rings. For the latter, we rely on the gluing technique for sheaves
explained in Proposition ??. The fact that X is locally affine will follow immediately once
the embeddings gi are in place, because the Xi’s are schemes and therefore locally affine.

To constructing the underlying topological space, we introduce an equivalence relation
on the disjoint union

š

iXi by declaring two points x P Xij and x1 P Xji to be equivalent
when x1 “ τjipxq. Note that if the point x does not lie in any Xij with i ‰ j, we leave it
alone; it will not be declared equivalent to any other point.

The three gluing conditions imply readily that this is an equivalence relation. The first
requirement means that the relation is reflexive, the second that it is symmetric, and the third
ensures it is transitive. The topological space X is then defined to be the quotient of

š

iXi

by this relation equipped with the quotient topology. That is, if π :
š

iXi Ñ X denotes the
quotient map, a subset U of X is open if and only if π´1pUq is open.

Topologically, the maps gi : Xi Ñ X are just the maps induced by the open inclusions

Xi

š

ÝÑi Xi. They are clearly injective, because a point x P Xi is never equivalent to another
point in Xi. Now, with the quotient topology on X , a subset U of X is open if and only if
g´1
i pUq “ Xi X π´1pUq is open for all i. In view of the formula

π´1pgipUqq “
ď

j

τjipU XXijq,

we conclude that each gi is an open map, hence a homeomorphism onto its image.
We write Ui for gipXiq so that Uij “ gpXiq X gpXjq and Uijk “ Ui X Uj X Uk. On

Xij , we have the isomorphisms τ 7

ji : OXj
|Xij

Ñ OXi
|Xij

; the sheaf maps of the scheme
isomorphisms τji : Xij Ñ Xji. In view of the third gluing condition τki “ τkj ˝ τji, valid
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6.2 Gluing schemes 87

on Xijk, we obviously have τ 7

ki “ τ 7

ji ˝ τ 7

kj . The two first gluing conditions translate into
τ 7

ii “ id and τ 7

ji “ pτ 7

ijq
´1. Consequently, the gluing properties required to apply Proposition

?? are satisfied, and we are allowed to glue the different OXi
’s together and thus to equip

X with a sheaf of rings. This sheaf of rings restricts to OXi
on each of the open subsets Xi,

and therefore its stalks are local rings. So pX,OXq is a locally ringed space which is locally
affine, hence a scheme.

We leave it to the reader to prove the uniqueness statement in the proposition.

Exercise 6.2.1. Prove the uniqueness part in the above proposition.

Gluing morphisms of schemes

Finally, we consider conditions under which we can glue morphisms of schemes

Proposition 6.4 (Gluing conditions for morphisms of schemes). Let X and Y be
a schemes and let tUiuiPI be an open cover of X . Suppose we are given scheme
morphisms

fi : Ui ÝÝÑ Y

satisfying fi|UiXj “ fj|UiXUj
for each i and j. Then there is a unique map of schemes

f : X ÝÝÑ Y

such that f |Ui
“ fi for every i.

Proof On the level of topolofical spaces, we define fpxq “ fipxq if x P Ui. This is
well-defined because fipxq “ fjpxq for x P Ui X Uj , and it is clear that it is continuous.

Next, we define the sheaf map f 7. If V Ă Y is an open set, we need to define a ring map
f 7 : OY pV q Ñ OXpf´1V q. To do this, take any section s P OY pV q. Using the sheaf maps
f 7

i over Ui, we get sections ti “ f 7

i psq in OXpf´1V X Uiq. But since f 7

i and f 7

j restrict to
the same map on Uij , it holds that ti|f´1VXUij

“ tj|f´1VXUij
in OXpf´1V X Uijq. The ti

therefore patch together to a section t P OXpf´1V q, and we can define f 7psq to be t. It is
clear that f 7 is a ring map, and that f 7 “ f 7

i psq when V Ă Ui. The pair pf, f 7q is therefore
a map of locally ringed spaces because it is locally given by the fi.

Proving the uniqueness statement is left to the reader.

U0

U1

U2

f0

f1

f2 Y

Exercise 6.2.2. Let X and Y be schemes and let B be a basis for the topology on X .
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88 Gluing

Suppose that there is a collection of morphisms fU : U Ñ Y , one for each U P B, such that
if V P B satisfies V Ă U , we have

fU |V “ fV .

Show that there exists a unique morphism of schemes f : X Ñ Y such that f |U “ fU .

6.3 Maps into affine schemes

As a first application of the gluing theorems in this chapter, we prove the following important
theorem about morphisms of schemes into affine schemes, which generalizes The Main
Theorem for Affine Schemes (Theorem 4.18).

Theorem 6.5 (Maps into affine schemes). For any scheme X , the canonical map

ΦX : HomSchpX,SpecAq ÝÝÑ HomRingspA,OXpXqq

given by pf, f 7q ÞÑ f 7

X is bijective.

Proof Let tUiuiPI be an open affine cover of X . By the affine case, (Theorem 4.18), we
know that each ΦUi

is bijective. We first claim that ΦX is injective. Given two morphisms
f, g : X Ñ SpecA that induce the same ring map β : A Ñ OXpXq, their restrictions are
morphisms fi : Ui Ñ SpecA and gi : Ui Ñ SpecA. For each i these both correspond to
the ring map A Ñ OXpXq Ñ OXpUiq obtained by composing β with the restriction; thus
gi “ fi, because ΦUi

is bijective. It follows that f “ g by the uniqueness part of Proposition
6.4, so ΦX is injective.

Next we show that ΦX is surjective. Let β : A Ñ OXpXq be a ring map. Composing β
with the appropriate restriction maps, one obtains ring maps

βi : A Ñ OXpXq Ñ OXpUiq,

and these induce morphisms fi : Ui Ñ SpecA. We claim that the fi’s may be glued together
to a map f : X Ñ SpecA. For this, we need to show that they agree over the overlaps
Ui X Uj . The latter intersection might not be affine, however, it is enough to show that
fi|V “ fj|V for every affine V Ă Ui X Uj . For this, consider the diagram

OXpUiq

A OXpXq OXpUi X Ujq OXpV q.

OXpUjq

βi

βj

β

The diagram tells us that the restrictions fi|V and fj|V induce the same ring map A Ñ

OXpV q and we conclude that they are equal by The Main Theorem for Affine Schemes
(Theorem 4.18). As this is true for any V , the fi’s are equal on all of Ui X Uj . Hence the
fi can be glued together to a morphism f : X Ñ SpecA. It must hold that ΦXpfq “ β,
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6.3 Maps into affine schemes 89

because ΦX is injective (which we just proved) and since f |Ui
maps to βi via ΦUi

for each i.
This completes the proof.

For a general scheme X , it is natural to consider the affine scheme SpecpOXpXqq. This
is in general very different from X , as the examples of Chapter 7 will show. There is however
always a canonically defined morphism X Ñ SpecpOXpXqq, which satisfies a universal
property with respect to morphisms into affine schemes:

Corollary 6.6. Let X be any scheme. Then there is a canonical map of schemes

f : X ÝÝÑ SpecpOXpXqq

so that f 7 induces identity on global sections. It is universal among morphism from
X to affine schemes, that is, given a morphism g : X Ñ SpecA, it holds that
g “ Spec pg7q ˝ f .

Proof The first part follows by applying the theorem to A “ OXpXq, and the second
follows, again from the theorem, in view of the equality

pSpecpg7q ˝ fq7 “ f 7 ˝ g7 “ idOXpXq ˝ g7 “ g7.

Example 6.7. As a special case, we note that there is a canonical bijection

HomSchpX,SpecZq “ HomRingspZ,OXpXqq.

Since ring maps always preserve the unit element, the set on the right is clearly a one-point
set. This means that there exist one and only one morphism of schemes X Ñ SpecZ. In
categorical terms this means that SpecZ is a final object in the category of schemes Sch.

The category Sch also has an initial object, the empty scheme; it equals the spectrum of
the zero ring, Spec 0, which has the empty set as underlying topological space. Given any
scheme X there is clearly a unique morphism Spec 0 Ñ X , which on the level of sheaves
sends every section of OX to zero.

Example 6.8 (Maps to A1 and OXpXq). In the special case when A “ Zrts, any morphism
of rings Zrts Ñ OXpXq is determined uniquely by the image of t. Thus by Theorem 6.5,
we have

HomSchpX,A1q “ OXpXq

Hence for any scheme, there is a bijection between the elements f P OXpXq and scheme
maps

f : X ÝÝÑ A1
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7

Examples constructed by gluing

7.1 Gluing two schemes together

To make the gluing techniques introduced in Chapter 6 a bit more concrete, we will study in
detail the simple case of schemes obtained by gluing together just two schemes.

We start out with two schemes X1 and X2 with respective open subsets X12 Ă X1

and X21 Ă X2; these are open subschemes equipped with their canonical induced scheme
structures obtained by restricting the structure sheaves. Furthermore, we assume we are
given an isomorphism τ : X21 Ñ X12. For just two schemes, the gluing conditions are
automatically fulfilled, and these data allow us to glue together X1 and X2 along X12 and
X21 to construct a new scheme X .

X12

X21

X

X1

X2

On the level of topological spaces, X is obtained from the disjoint union X1

š

X2 by
forming the quotient modulo the equivalence relation with x „ τpxq for x P X21 Ď X2 and
giving X the quotient topology.

Each of the open embeddings gi : Xi Ñ Ui Ă X (where i “ 1 or 2) allows us to view
each Xi as an open subset of X , providing an open cover of X . For an open subset V Ă X ,
we may identify the sheaf sequence

0 Ñ OXpV q ÝÑ OXpV X U1q ˆ OXpV X U2q ÝÑ OXpV X U1 X U2q

with the following sequence

0 Ñ OXpg´1V q
α

ÝÝÑ OX1
pg´1

1 V q ˆ OX2
pg´1

2 V q
β

ÝÑ OX12
pg´1

1 V XX12q

where αpsq “ pg7

1ps|VXU1
q, g7

2ps|VXU1
qq and βps1, s2q “ s1|X12

´ τ 7ps2|X21
q.

90
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7.2 The projective line 91

The main example to keep in mind is when X1 and X2 are both affine, say X1 “ SpecR
and X2 “ SpecS, and they are glued together along two distinguished open subsets Dpuq

and Dpvq for some u P R and v P S. The gluing map τ is induced from a ring isomorphism
between the localizations

ϕ : Ru ÝÝÑ Sv.

We picture this by the following diagram of schemes

SpecR Ą SpecRu “ Dpuq Dpvq “ SpecSv Ă SpecSτ
»

To compute OXpXq, the sheaf exact sequence takes the form

0 ΓpX,OXq R ˆ S Sv.
ρ

(7.1)

Here ρpr, sq “ s{1 ´ ϕpr{1q with s{1 and r{1 denoting the images of s and r respectively
in Sv and Ru. In other words, elements in OXpXq correspond to pairs pr, sq P R ˆ S such
that s{1 “ ϕpr{1q in the localized ring Sv.

We can also study sheaves on the glued scheme X . Proposition ?? tells us that giving a
sheaf F on X is equivalent to specifying (i) a sheaf F1 on X1; (ii) a sheaf F2 on X2; (iii) a
sheaf isomorphism

ν12 : F2|Dpvq ÝÝÑ F1|Dpuq,

where we use the isomorphism τ to identifyDpuq andDpvq. In the special case that F1 “ ĂM

and F2 “ rN for modules M and N over S and R respectively, it is equivalent to specify an
isomorphism of Ru-modules

v12 : Nu ÝÝÑ Mv.

(See Section 4.4 for the construction of ĂM ). Many important examples arise from this basic
construction. We will now survey a few of these.

7.2 The projective line

The Riemann sphere CP1 is the complex plane C with one point added, the point at infinity.
As a complex manifold, it is covered by two charts, both isomorphic to C. There is a complex
coordinate z centred at the origin, and its inverse w “ z´1 serves as the coordinate centred
at infinity.

The construction of CP1 can be vastly generalized to work over any ring A. Let u be
a variable (‘the coordinate at the origin’) and let U0 “ SpecArus. The inverse u´1 is a
variable as good as u (‘the coordinate at infinity’), and we let U1 “ SpecAru´1s. Both are
copies of the affine line A1

A over A.
Inside U0, we have the distinguished open set U01 “ Dpuq, which is canonically iso-

morphic to SpecAru, u´1s, and the open embedding U01 Ñ U0 comes from the inclusion
Arus Ă Aru, u´1s. Similarly, inside U1 there is the distinguished open set U10 “ Dpu´1q,
which is also identified with SpecAru´1, us by the inclusion Aru´1s Ă Aru´1, us. Hence
U01 and U10 are isomorphic schemes, and we may glue U0 to U1 along U01. The result is
called the projective line over A and is denoted by P1

A.
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The projective line over A indeed is a scheme over A. Indeed, there are canonical maps
π0 : U0 Ñ SpecA and π1 : U1 Ñ SpecA, which are induced by the inclusions A Ă Arus

and A Ď Aru´1s, respectively. Over the intersection U0 X U1, these morphisms agree, since
both are induced by the inclusion A Ă Aru, u´1s. Therefore, they can be glued to define a
morphism π : P1

A Ñ SpecA.

U0 “ SpecArus
U0

U1

p1 : 0q

p0 : 1q

U1 “ SpecAru´1s

P1
A

Gluing two affine lines to get P1
A

If SpecA is irreducible, then so is P1
A. This is because P1

A contains U0 » A1
A as a dense

open subset and Arus is an integral domain if A is. Likewise, P1
A is reduced if A is, because

it has the same local rings as U0 and U1, which are reduced. Hence P1
A is integral if SpecA

is.
Note that the complement of U1 equals V puq Ă U0 “ SpecArus, which is isomorphic

to SpecA. So when A “ k is a field, P1
k is A1

k with a single point added. In particular, when
k is algebraically closed, the set of k-points P1pkq coicides with the projective line defined
in Chapter 1.

The following computation is very important.

Proposition 7.1. We have ΓpP1
A,OP1

A
q “ A.

Proof The projective line P1
A is covered by the two open affines U0 and U1, and the standard

exact sequence (7.1) above takes the form

0 ÝÝÑ ΓpP1
A,OP1

A
q ΓpU0,OP1

A
q ˆ ΓpU1,OP1

A
q ΓpU01,OP1

A
q

Arus ˆAru´1s Aru, u´1s,

» »

ρ

where the map ρ sends a pair pfpuq, gpu´1qq of polynomials with coefficients in A, one in
the variable u and one in u´1, to the difference gpu´1q ´ fpuq.

The group ΓpP1
A,OP1

A
q is therefore identified with the kernel of ρ. But this kernel consists

of elements pa, aq where a P A: if fpuq ´ gpu´1q “ 0 in Aru, u´1s, then both f and g
must have degree 0 as polynomials in u.

In particular, for a field k, the group of global sections of OP1
k
pP1

kq is just the ‘constants’,
k, as in Theorem 1.44 on page 19. Over the complex numbers, this can be seen as a special
case of Liouville’s theorem, that the only global holomorphic functions are the constants.
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We note that we also have got yet another example of a scheme which is not affine: if P1
C

were affine, it would have to be isomorphic to SpecC according to Theorem 4.18 on page 64.
But this is clearly not the case, as P1

C contains infinitely many closed points. Another morale
to extract is that the group OXpXq does not give much information about X for general
schemes.

The projective line P1
A as a quotient

P1
A is in fact related to the first example of a non-affine scheme of Example ?? on page ??,

namely the affine plane A2
A “ SpecAru, vs with the ‘origin’ V pu, vq removed. In fact, there

is a natural morphism between them:

π : A2
A ´ V pu, vq ÝÝÑ P1

A.

On the level of closed points, when A “ k is an algebraically closed field, the morphism π
is exactly the morphism used in the construction of the projective line as a quotient space
in Chapter 1. V pu, vq is the origin, and π collapses each line through the origin to its
corresponding point in P1pkq.

The map π is constructed by gluing together the two morphisms

f1 : Dpuq “ SpecAru, u´1, vs ÝÝÑ SpecArvu´1s

f2 : Dpvq “ SpecAru, v, v´1s ÝÝÑ SpecAruv´1s

which are induced from the inclusionsArvu´1s Ă Aru, u´1, vs andAruv´1s Ă Aru, v, v´1s.
Note that the two targets, SpecArvu´1s and SpecAruv´1s, are two copies of A1

A which
glue to the projective line P1

A (using uv´1 as the variable).
The union of the sources equals Dpuq Y Dpvq “ A2

A ´ V pu, vq and Dpuq X Dpvq “

Dpuvq “ SpecAru, u´1, v, v´1s. Applying Spec to the following commutative diagram
then shows that f1 and f2 satisfy the gluing condition:

Aru, u´1, vs Aru´1vs

Aru, u´1, v, v´1s Aru´1v, uv´1s

Aru, v, v´1s Aruv´1s.

Exercise 7.2.1. Let K be a field. Show that the K-points of the projective line P1 are in
bijection with the set of lines in K2 passing through the origin p0, 0q HINT: Any map
SpecK Ñ P1 must factor via either U0 or U1.

Exercise 7.2.2. Let X “ SpecA be an affine scheme over a field k. Show that every
morphism P1

k Ñ X is constant, i.e. it factors through some k-valued point of X .

Exercise 7.2.3. Show that P1
A is not affine for any ring A. HINT: The canonical map

P1
A Ñ SpecA is never an isomorphism (restrict to U1).
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94 Examples constructed by gluing

A family of sheaves on P1
A

The projective spaces, in particular the projective line P1
A, carry a family of sheaves, which

play an important role in algebraic geometry. There is one for each integerm, and the sheaves
will be denoted by OP1

A
pmq. We shall construct these sheaves using the gluing theorems for

sheaves.
Let U0 “ SpecArus and U1 “ SpecAru´1s be the usual cover of P1

A, and consider the
intersection U0 X U1 “ SpecAru, u´1s. Multiplication by um gives an isomorphism

Aru, u´1s Aru, u´1.um

and by Exercise 4.1.2 on page 58, this induces an isomorphism of sheaves

τ : OU1
|U0XU1

ÝÝÑ OU0
|U0XU1

.

Now we define a sheaf OP1
A

pmq by gluing OU1
to OU0

alongU0XU1 using this isomorphism.
Note that the direction of τ matters; we could of course have used the multiplication map in
the reverse direction, but this would have yielded a different sheaf, namely OP1

A
p´mq.

By construction, the sheaf OP1
A

pmq restricts to the structure sheaf on both open subsets
U0 and U1; that is, OP1

A
pmq|U0

» OU0
and OpmqP1

A
|U1

» OU1
(in the jargon of Chapter ??

it is a locally free sheaf ). However, when m ‰ 0, the sheaf OP1
A

pmq is not isomorphic to the
structure sheaf OP1

A
. As we shall see, their global sections are different. In particular, this

gives another illustration that a sheaf is not determined by its stalks alone.
To compute the global sections of OP1

A
pmq, we use the the standard sheaf sequence applied

to U0, U1. With OXpU0q “ Arus, OXpU1q “ Aru´1s, and OXpU01q “ Aru, u´1s, the
sequence takes the form

0 ΓpOP1
A
,OP1

A
pmqq Arus ‘Aru´1s Aru, u´1s,

ρ

where ρpppuq, qpu´1qq “ umqpu´1q ´ ppuq. If m ă 0, then there are no non-trivial
polynomials p and q such that umqpu´1q “ ppuq, and we infer that ΓpP1

A,OP1
A

pmqq “

Ker ρ “ 0. Form ě 0 however there are solutions. Indeed, every polynomial ppuq of degree
at most m is of the form umqpu´1q, and where q is uniquely determined by p. We have
shown the following:

Proposition 7.2. The global sections of OP1
A

pmq are given by

ΓpP1
A,OP1

A
pmqq “

#

A‘Au‘ ¨ ¨ ¨ ‘Aum when m ě 0;

0 when m ă 0.

Closed subschemes of P1
A

Let us have a closer look at the sheaf OP1
A

p´1q on P1
A. We claim that there is a sheaf map

ϕ : OP1
A

p´1q Ñ OP1
A
,

which makes OP1
A

p´1q into a subsheaf of OP1 . We construct ϕ by defining it on each of the
open sets U0 and U1 and then make sure that the maps glue using Lemma ??. On the open set
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7.3 The affine line with a doubled origin 95

U0 “ SpecArus we define ϕ0 : OU0
Ñ OU0

by multiplying sections by u. On U1, we let
ϕ1 : OU1

Ñ OU1
be the identity map. To see that the two maps glue, we need to check that

they agree on the intersection U0 X U1 “ SpecAru, u´1s. But this follows directly from
the commutativity of the following diagram:

OU0
|U0XU1

OU0
|U0XU1

OU1
|U0XU1

OU1
|U0XU1

.

u

“

u´1 “

The four sheaves are all equal to OU0XU1
. The right vertical map is the gluing map for the

sheaf OP1
A

and the left one that for OP1
A

p´1q. The horizontal maps are the restrictions of the
local maps to ϕ0|U0XU1

and ϕ1|U0XU1
. Thus we have the desired map ϕ : OP1

A
p´1q Ñ OP1 .

More generally, any non-zero section of ϕ : OP1
A

pmq gives rise to a map OP1
A

p´mq Ñ

OP1
A

. In the previous section, we showed that such a section is determined by a pair of
polynomials ppuq and qpu´1q satisfying ppuq “ umqpu´1q.The map is obtained by gluing
together maps defined over U0 and U1, and the key point is the commutative diagram

OU0
|U0XU1

OU0
|U0XU1

OU1
|U0XU1

OU1
|U0XU1

,

ppuq

qpu´1
q

u´m “

where the left vertical arrow is gluing map for OP1
A

p´mq and the horizontal ones are
restrictions of the multiplication maps to U0 X U1. As above, the right vertical map is just
the gluing map for OP1

A
.

Exercise 7.2.4. This exercise indicates how a non-zero section σ gives rise to a closed
subscheme V pσq of P1

A. (This is part of a more general story, explored in Chapter 18.)
a) Show that the image of the map ϕ : OP1

A
p´mq ÝÝÑ OP1

A
associated with a

section σ of OP1
k
pmq is a principal ideal in each ring OP1

A
pUq, and thus defines

closed subscheme Zi Ă Ui.
b) Show that the two ideals become equal in the ring OP1

A
pU0 X U1q, and that the

Zi’s can be glued together to a closed subscheme V pσq Ă P1
A.

Exercise 7.2.5. Suppose A “ k is a field and let σ be a non-zero section of OP1
A

pmq. Show
that V pσq, as defined in the previous exercise, consists of m points counted with multiplicity,
that is,m “

ř

xPV pσq
dimkOV psq,x. HINT: Show that deg ppuq “ m´deg qpu´1q, where

deg qpu´1q is the degree of qpu´1q as a polynomial in u´1.

7.3 The affine line with a doubled origin

The next example is obtained by gluing together two copies X1 and X2 of the affine line
A1
k “ Spec krus over a field k along their common open subsetX12 “ Spec kru, u´1s with

the identity morphism ϕ : kru, u´1s Ñ kru, u´1s on the open set. The resulting scheme X
is covered by two A1

k’s which overlap outside the origin. However, as the gluing process does
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96 Examples constructed by gluing

nothing over the origins of each A1
k, there are now two points in X that replace the origin. X

is called the affine line with two origins.

A1

A1

X

0

0

01

02

This scheme is not affine. Indeed, the sheaf sequence from before takes the form

0 ΓpX,OXq ΓpA1
k,OA1

k
q ‘ ΓpA1

k,OA1
k
q ΓpX12,OX12

q

krus ‘ krus kru, u´1s

“ “

ρ

where now ρpppuq, qpuqq “ ppuq ´ qpuq, and it follows that either open inclusion ι : A1
k Ñ

X induces an isomorphism ΓpX,OXq » ΓpA1
k,OA1

k
q “ krus. However, the open inclusion

ι : A1
k “ Spec krus Ñ X is not an isomorphism (it is not surjective, since the image misses

one of the two origins).
Note that the scheme X is both irreducible and reduced, with function field equal to

K “ kpuq. The two local rings OX,01 and OX,02 both lie as subrings of K; they are both
equal to kruspuq. This is somewhat unsetteling: any rational function which is regular at 01 is
automatically regular at 02 and it takes the same value there. This is related to the property of
‘separatedness’, which we will discuss in Chapter 11.

Exercise 7.3.1. Let X be the affine line with two origins, as defined above.
a) Imitate the construction of the sheaves OP1

k
pnq on P1

k to form a family of
sheaves OXpmq on X , one for each integer m.

b) Show that OXpmq and OXpnq are not isomorphic unless m “ n. HINT:
Consider the behaviour of sections at the two origins.

7.4 Semi-local rings

Semi-local rings are rings with finitely many maximal ideals. In the next two examples we
give a few examples of such rings and how they can be described as local rings glued together.

Example 7.3 (Semi-local rings). Consider the two rings Zp2q and Zp3q. These are both
discrete valuation rings with with a common fraction field Q and maximal ideals p2q and
p3q respectively. Their prime spectra X1 “ SpecZp2q and X2 “ SpecZp3q consist each of
two points; the maximal ideal and a generic point ηi “ p0q which are open. (as described in
Example 2.10 on page 24). The generic points given the open embeddings SpecQ Ñ Xi

for i “ 1, 2. Hence we can glue together X1 and X2 along the two generic points and thus
obtain a scheme X with one open point η and two closed points. Let us compute the global
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7.5 The blow-up of the affine plane 97

sections of OX using the sheaf sequence for the open cover tX1, X2u:

0 Ñ ΓpX,OXq ΓpX1,OXq ˆ ΓpX2,OXq ΓpX1 XX2,OXq

Zp2q ˆ Zp3q Q.

“ “

ρ

The map ρ sends a pair pan´1, bm´1q to the difference an´1´bm´1, hence the kernel equals
the the set pa, aq with a P Zp2q X Zp3q. This is a semi-local ring with the two maximalideals
p2q and p3q. By the Main Theorem of Maps into Affine schemes (Theorem 4.18) there is a
map X Ñ SpecZp2q X Zp3q, and it is left as an exercise to show that this is an isomorphism.

p2q p3qη
p2q

p3q

p5q
η

Example 7.4 (More semi-local rings). More generally, if P “ tp1, . . . , pru is a finite set
of distinct prime numbers, one may let Xp “ SpecZppq for p P P . There is, as in the
previous case, a canonical open embedding SpecQ Ñ Xp for each p. Let the images be
tηpu. Obviously, the conditions for gluing the ηp’s together are all satisfied (the transition
maps are all equal to idSpecQ, and Xpq “ tηpu for all p), and we may glue the Xi together
to a scheme X . Again, the global sections of the structure sheaf are found using the sheaf
sequence

0 Ñ ΓpX,OXq
ś

pPP ΓpXp,OXq
ś

p,qPP ΓpXp XXq,OXq

ś

pPP Zppq

ś

p,qPP Q.

“ “

ρ

The map ρ sends a sequence papqpPP to the sequence pap ´ aqqp,qPP , and it follows that
the kernel of ρ equals the intersection AP “

Ş

pPP Zppq. This is a semi-local ring whose
maximal ideals are the ppqAP ’s for p P P . There is a canonical morphism X Ñ SpecAP ,
and again we leave it to the reader to verify that this is an isomorphism.

Exercise 7.4.1. Verify the claims in Examples 7.3 and 7.4 above that X is isomorphic
respectively to SpecZ2 X Z3 and to SpecAP . HINT: Use the uniqueness statement in
Proposition 6.3 on page 86.

Exercise 7.4.2. Glue SpecZp2q to itself along the generic point to obtain a scheme X . Show
that X is not affine. HINT: Show that OXpXq “ Zp2q.

7.5 The blow-up of the affine plane

In this section we will construct the blow-up of A2
k at the origin, by gluing together two affine

schemes. We begin by recalling the classical construction for varieties. As in Chapter 1, we
write A2pkq for the variety, and A2

k for the scheme, etc.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

98 Examples constructed by gluing

The blow-up as a variety

Let k be an algebraically closed field, and consider the affine plane A2pkq. There is a
morphism f : A2pkq ´ tp0, 0qu ÝÝÑ P1pkq that sends a point px, yq to the point px : yq (in
homogeneous coordinates on P1pkq). This map is not defined at the origin p0, 0q, but we can
still consider the closure of the graph tpx, fpxqqu which is a subset of A2pkq ˆ P1pkq.

To describe the graph in more detail, we write ps : tq for homogenous coordinates on
P1pkq. Points in the product are then of the form px, yq ˆ ps : tq, and those in the graph
satisfy px : yq “ ps : tq. This means that x “ αs and y “ αt for some non-zero scalar α,
and by eliminating α, we find the relation xt´ys “ 0. HenceX is defined in A2pkqˆP1pkq

by that single equation, and we have:

X “ Zpxt´ ysq Ă A2pkq ˆ P1pkq.

We also have two projection maps p : X Ñ A2pkq and q : X Ñ P1pkq. Let us analyze the

Figure 7.1 The blow-up of the plane at a point

fibres of the two maps. The fibres of p are easy to describe. If px, yq P A2pkq is not the
origin, then p´1px, yq consists of a single point: the equation xt “ ys allows us to determine
the point ps : tq uniquely since either x ‰ 0 or y ‰ 0. However, when px, yq “ p0, 0q, any
choices of s and t satisfy the equation, so p´1p0, 0q “ p0, 0q ˆ P1pkq. In particular, this
inverse image is one-dimensional; it is called the exceptional divisor of X , and is frequently
denoted by E.

Similarly, if ps : tq P P1pkq is a point, the fibre

q´1ps : tq “ tpx, yq ˆ ps : tq |xt “ ysu Ă Apkq2 ˆ ps : tq

is the line in A2pkq with sx´ ty “ 0 as equation, s and t being the coefficients. The map q
is an example of a line bundle; all of its fibres are affine lines; that is, A1pkq’s. We will see
these again later on in the chapter.

Using the standard cover of P1pkq as a union of two A1pkq, we can give a a cover of X
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7.5 The blow-up of the affine plane 99

consisting of two affine planes. For points in the open set U Ă P1pkq where s ‰ 0, we
can normalize the coordinates by setting s “ 1, and the equation xt “ sy then becomes
y “ tx. Hence x and t may serve as affine coordinates on q´1pUq, and it follows that
q´1pUq » A2pkq. In these normalized coordinates, the morphism p : X Ñ A2

k restricts to
the map A2pkq Ñ A2pkq given by px, tq ÞÑ px, xtq. Similarly, if V denotes the open set
where t ‰ 0, it holds that q´1pV q “ A2pkq with affine coordinates y and s, and the map p
is given there as py, sq ÞÑ psy, yq.

The blow-up as a scheme

Inspired by the above discussion, we proceed to define the scheme-analogue of the blow-up
of A2

k at a point. It will be defined as a scheme over Z rather than over a field k (we get a
blow-up of A2

A for any ring A by replacing Z in everything below by A). Also, in addition to
the scheme X , we want two morphisms of schemes p : X Ñ A2 and q : X Ñ P1 having
similar properties to the morphisms in the example above.

Consider the affine plane A2 “ SpecZrx, ys. The prime ideal p “ px, yq Ă Zrx, ys

corresponds to the origin of A2pkq in the analogy with varitities. Consider the diagram

Zrx, ys

Zrx, ts Zry, ss

R “ Zrx, y, s, ts{pxt´ ys, st´ 1q,

where the two skew maps in the upper part are given by x ÞÑ x, y ÞÑ xt and y ÞÑ y, x ÞÑ ys
respectively, and the two others are induced by obvious inclusions.

Note that the ring R is isomorphic to Zrx, s, ts{pst ´ 1q “ Zrx, t, t´1s as well as to
Zry, s, ts{pst ´ 1q “ Zry, s, s´1s. Since this ring is a localization of both Zrx, ts and
Zry, ss, we can identify its spectrum both as an open subscheme of SpecZrx, ts and as an
open subscheme of SpecZry, ss. From this we get a diagram

SpecZrx, ys

U “ SpecZrx, ts SpecZry, ss “ V

SpecR,

where the bottom skew maps are open embeddings. Hence we can glue the two affine
schemes U and V together along SpecR to obtain a new scheme X . By construction, the
restrictions of the maps SpecZrx, ts Ñ SpecZrx, ys and SpecZry, ss Ñ SpecZrx, ys to
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100 Examples constructed by gluing

SpecR coincide with the map SpecR Ñ SpecZrx, ys, which is induced by Zrx, ys Ñ R.
Therefore they may be glued together to a morphism (the ‘blow-up morphism’)

p : X Ñ A2 “ SpecZrx, ys.

To complete the discussion, we should define the corresponding morphism q : X Ñ P1.
Again we work locally. On the affine open U “ SpecZrx, ts we have a map U Ñ A1 “

SpecZrts induced by the inclusion Zrts Ă Zrx, ts. Similarly, on V “ SpecZry, ss we have
a map V Ñ A1 “ SpecZrss. Checking if they can be glued together, amounts to seeing
what happens on the overlap U X V “ SpecR. However, on SpecR it holds that t “ s´1,
so using the standard description of P1 as being glued together of two affine lines, we see
that the maps Zrts Ñ R and Zrss Ñ R induce the desired morphism q : X Ñ P1.

Exercise 7.5.1. Compute the space OXpXq of global sections of the blow-upX and describe
the canonical map X Ñ SpecOXpXq.

Exercise 7.5.2. Imitate the construction above to define the blow-up of An along a codimen-
sion 2 linear space V px, yq.

7.6 Projective spaces

In Chapter 1, we defined the projective spaces Pnpkq as varieties. In this section, we will
construct the projective spaces as schemes over any ring A. In contrast to what we did before,
when Pnpkq was constructed as a quotient space, we will construct PnA by gluing together
n ` 1 copies of the affine space AnA. The gluing process resembles the one used for the
projective line in Section 7.2.

Fix a ground ring A and variables x0, . . . , xn. For each i “ 0, . . . , n, define the ring

Ri “ A
”

x0

xi
, . . . ,

xn

xi

ı

.

This is a polynomial ring over A in n variables, so each Ui “ SpecRi is isomorphic to AnA.
Note that each Ri is a subring of the ring

Arx0, x
´1
0 , . . . , xn, x

´1
n s.

For each pair of indices i and j, there are equalities of subrings

Ri

”

xi

xj

ı

“ Rj

”

xj

xi

ı

(7.2)

which follows from the identities xl{xi “ xl{xj ¨ xj{xi, valid for all i, j and l. The ring
Rirxi{xjs is a localization of Ri in xj{xi, so we may identify Uij “ SpecRirxi{xjs with
distinguished open subscheme Dpxj{xiq Ă Ui. Then, using the equality (7.2), and the
identity maps τij : Uij Ñ Uji as gluing maps, the gluing conditions are clearly satisfied. The
resulting scheme, is called the projective n-space over A, and is denoted by PnA.

Note that all rings Ri are A-algebras, so each Ui is a scheme over A and comes with a
structure map Ui Ñ SpecA. These structure maps agree on Uij and glue together to a map
PnA Ñ SpecA, making PnA an A-scheme.

In analogy with Theorem 1.44 for Pnpkq, and Proposition 7.1 for P1
A, we have the following

result about global sections of the structure sheaf.
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7.6 Projective spaces 101

Proposition 7.5. Let A be a ring. Then

ΓpPnA,OPn
A

q “ A.

Hypersurfaces in Pn
A

Let G P Arx0, . . . , xns be a nonzero homogeneous polynomial of degree d. G determines a
closed subscheme of PnA as follows. In the affine space Ui “ SpecRi, we can consider the
’dehomogenization’ of G with respect to the variable xi, given by

gi “ G
´

x0

xi
,
x1

xi
, . . . ,

xn

xi

¯

P Ri “ A
”

x0

xi
, . . . ,

xn

xi

ı

.

We can consider the affine subscheme of Ui given by

Xi “ Spec pRi{pgiqq .

Note that if gi and gj denote the dehomogenizations of a polynomial g with respect to xi and
xj , it holds that gi “ pxj{xiq

dgj . The ideals pgiq and pgjq therefore become equal in the
localization Rij “ Rirxi{xjs “ Rjrxj{xis. This means that the subschemes Xi coincide in
the intersections Uij , and consequently they may be glued together to a closed subscheme
X Ă PnA. We call this the projective hypersurface defined by G.

More generally, any homogeneous ideal I Ă Arx0, . . . , xns determines a closed sub-
scheme of PnA. We will explore this in greater detail in Chapter 9.

The projective plane

The projective plane P2
A deserves special attention. It is constructed by gluing together the

three affine planes Ui “ D`pxiq “ SpecRi for i “ 0, 1, 2.
It is sometimes helpful to rewrite these charts using the ‘U0-coordinates’, i.e., writing

x “ x1{x0 and y “ x2{x0. We can then express the other ratios in terms of x and y. For
instance x2{x1 “ x´1. With this convention, the three affine opens become

U0 “ Spec krx, ys, U1 “ Spec krx´1, yx´1s, U2 “ Spec kry´1, xy´1s.

Consider the hypersurface given by the homogeneous polynomial G “ x2. In the open set
U0 “ SpecR0 the the ideal px2q becomes the ideal pyq Ă Arx, ys, and so

SpecR0{pg0q » SpecArxs » A1
A.

In U1, the ideal px2q dehomogenizes to px2{x´1
1 “ x´1y, so that

SpecR1{pg1q “ SpecArx´1s » A1
A.

In R2 “ Ary´1, xy´1s, x2 dehomogenizes to x2{x2 “ 1, and so it defines the empty
subscheme of U2.

The hypersurface given by x2 is therefore obtained by gluing two copies of A1
A using the

gluing map x ÞÑ x´1 over the overlaps, and so it is isomorphic to the projective line P1
A. As

the subscheme is locally defined by a linear equation, and is isomorphic to P1
A it deserves the
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102 Examples constructed by gluing

name ‘a line’. In a completely symmetric way we find two other lines in P2
A given by x0 and

x1. Thus we picture P2
A as U0 with the ‘line at infinity’ given by the subscheme x2.

If we choose a polynomial of higher degree, say G “ xd0 ` xd1 ` xd2, we obtain more
complicated subschemes X of P2

A. We think of them as ‘plane curves of degree d’, although
the geometry as a scheme might be quite intricate if A is a general ring.

A2

P2

A2

A2

p1 : 0 : 0q p0 : 0 : 1q

p0 : 1 : 0q

Exercises

Exercise 7.6.1. Prove Proposition 7.5. (A more general result will be proved in Chapter ??).

7.7 Line bundles on P1

The sheaf OP1
k
pmq on the projective line P1

k, which we constructed in Example 7.2, has a
geometric alter ego, the so-called line bundle Lm, which is a scheme with a morphism

π : Lm P1
k,

Each fibre of π is an affine line; hence the name ‘line bundle’. In this section we shall
construct these schemes explicitly and study some of them in detail.

For simplicity, we will work over a field k and will keep the convention that U0 “

Spec krus and U1 “ Spec kru´1s denote the standard affine cover of P1
k. Their intersection

is equal to U0 X U1 “ Spec kru, u´1s.
Recall that the sheaves OP1

k
pmq are obtained by gluing OU0

and OU1
together by means

of the multiplication by um map on OU0XU1
. The new schemes Lm will be constructed

essentially by the same gluing process, but schemes and not sheaves, will be glued together.
Two copies of A2

k, V0 “ Spec kru, ss and V1 “ Spec kru´1, ts, will be glued together using
the isomorphism

Dpuq “ Spec kru, u´1, ts Spec kru, u´1, ss “ Dpu´1q,»

which is induced by the isomorphism of k-algebras ρ : kru, u´1, ss Ñ kru, u´1, ts that
sends s to umt and u to u. (The attentive reader will observe a change of sign in the exponent
compared to the sheaf case.)
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7.7 Line bundles on P1 103

The situation is described with the following commutative diagram of ring maps:

kru, ss kru, u´1, ss kru, u´1, ts kru´1, ts

krus kru, u´1s kru´1s,

ρ

»

where the maps other than ρ are the inclusions. Applying Spec, we get the following diagram
of affine schemes:

A2 “ V0 Dpuq » Dpu´1q V1 “ A2
k

U0 U0 X U1 U1.

The gluing conditions are trivially fulfilled (only a single morphism is involved), and hence
we obtain a scheme Lm. It admits a morphism π : Lm Ñ P1 since the lower row gives the
gluing data for P1

k. Note that if x P P1 is a closed point, say x P U0, then the fibre π´1pxq is
isomorphic to the affine line A1

kpxq
. As noted at the top, this is the reason for the term ‘line

bundle’: intuitively Lm is a family of affine lines parameterized by the base space P1
k.

Ln

P1

C

π

There is a copy of P1
k embedded in Lm which is called the zero section of Lm; that is, there

is a closed embedding ι : P1
k Ñ Lm whose image is a closed subscheme C Ă Lm that meets

each fibre π´1pxq “ A1
kpxq

in the origin. Intuitively, this subscheme is defined by one of
the equations s “ 0 or t “ 0 in each fibre. More precisely, C is given by C X V0 “ V psq
and C X V1 “ V ptq. In the ring ΓpV0 X V1,OLm

q, the relation s “ umt holds, and as u is
invertible in ΓpV0 X V1,OLm

q, the principal ideals psq and ptq are equal. The two closed
subschemes V psq X V0 X V1 and V ptq X V0 X V1 coincide, and V psq and V ptq can be
patched together to a subscheme C.

We claim that C is a section of the morphism π; that is, it holds that π ˝ ι “ idP1
k
. As

V psq “ Spec kru, ss{psq “ Spec krus as a subscheme of V0, and V ptq “ Spec kru´1, ts{ptq “

Spec kru´1s inside V1, we infer that C » P1
k. Consider the composition of the maps

krus kru, ss kru, ss{psq “ krus,

where the first map is the canonical inclusion andcorresponds geometrically to π|V0
, and the
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104 Examples constructed by gluing

second is the canonical quotient map and corresponds to the inclusion ι0 : V psq “ CXV0 Ñ

V0. Clearly, it holds that π ˝ ι0 “ idU0
. In a similar manner, it follows that π|V1

˝ ι1 “ idU1
,

hence π ˝ ι “ idP1
k

and C is a section.

A few particular cases

The schemes Lm give a rich source of examples in algebraic geometry, and we will come
back to them several times in the book. For now let us study some of them in more detail.

Example 7.6 (The line-bundle L0). The scheme L0 is glued together of two copies of A2
k

with the help of the inclusions

kru, ts kru, u´1, ts kru´1, ts.

In addition to π, the bundle L0 admits a morphism L0 Ñ A1
k obtained by gluing together the

two maps Spec kru, ts Ñ Spec krts and Spec kru´1, ts Ñ Spec krts. The scheme L0 is
identified with the ‘fibre product’ P1 ˆk A1

k (fibre products will be study in detail in Chapter
10), and is the scheme associated with the product variety P1pkq ˆ A1pkq.

Example 7.7 (The line-bundle L1). The scheme L1 is isomorphic to the complement of
a closed point P in the projective plane, i.e. Y “ P2

k ´ tP u. Indeed, choose coordinates
x0, x1 and x2 in the projective plane and consider the two distinguished open subschemes
V0 “ Spec krx1{x0, x2{x0s and V1 “ Spec krx0{x1, x2{x1s. Their union in P2

k equals
the complement of the closed point P “ p0 : 0 : 1q. Renaming the variables u “ x0{x1,
s “ x2{x1 and t “ x2{x0, we find that V0 “ Spec kru, ss and V1 “ kru´1, ts, and the
identity x2{x1 “ x0{x1 ¨ x2{x0 turns into the equality s “ ut, which is precisely the gluing
data for L1.

Geometrically the morphism P2
k ´ tP u Ñ P1

k is given by ‘projection from the point P ’.
The fibres are the lines in P2

k through P (with the point P removed), and the zero section
equals the line ‘at infinity’; i.e. the line V px2q.

Example 7.8 (The line-bundle L´1). We have in fact seen the scheme L´1 before: it is
isomorphic to the blow-up of A2

k at the origin. Recall that the blow-up X comes equipped
with a map q : X Ñ P1

k, which is described in detail at the end of Section 7.5. One checks
without much difficulties that the gluing maps used for forming q are the same as for making
L´1. The zero-section C corresponds to the exceptional divisor E in the blow-up. See also
Exercise 7.7.1 below.

Example 7.9 (The line-bundle L´2). The scheme L´2 is quite interesting. It is the so-called
desingularization of a quadratic cone. The quadratic cone is the subschemeQ “ V py2 ´xzq

of A3
k, which is equal to SpecR with R “ krx, y, zs{py2 ´ xzq. We claim that there is a

surjective morphism σ : L´2 Ñ SpecR, which is an isomorphism outside the curve C . (The
morphism σ is helpful for understanding the quadratic cone. In the terminology of Chapter
13, Q has a ‘singularity’ at the origin, whereas L´2 is ‘non-singular’.)

We shall construct σ by giving the restrictions σi to each of the two opens V0 and V1 that
make up L´2. Recall that V0 “ Spec kru, ss and V1 “ Spec kru´1, ts with gluing map
Spec kru, u´1, ss » Spec kru, u´1, ts given by the assignment s ÞÑ u´2t. The maps σi
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7.7 Line bundles on P1 105

are Spec’s of the ring maps ϕ0 : R Ñ kru, ss and ϕ1 : R Ñ kru´1, ts coming from the
assignments

ϕ0 : x ÞÑ s, y ÞÑ us, z ÞÑ u2s;

ϕ1 : x ÞÑ u´2t, y ÞÑ u´1t, z ÞÑ t.

It holds that ϕ0py2´xzq “ pusq2´upusq “ 0 and ϕ1py2´xzq “ pu´1tq2´u´1pu´1tq “

0, so the ϕi’s are well defined. The σi’s are compatible with the transitions function and
can be glued together to the desired map σ : L´2 Ñ P1

k; indeed, one easily verifies that the
diagram

R

kru, u´1, ss kru, u´1, ts

ϕ0 ϕ1

ρ

commutes; for instance, ρpϕ0pxqq “ ρpsq “ u´2t “ ϕ1pxq.

C L´2

σ

y2 “ xz

o

Let us analyse the fibres of the morphism σ. We begin by figuring out what happens over the
open set V0 “ Spec kru, ss, where σ restricts to the map

σ0 : Spec kru, ss Ñ Q

corresponding to ϕ0. Consider the maximal ideal m “ px, y, zq Ă R of the origin. The fibre
over m corresponds to prime ideals in p Ă kru, ss containing mkru, ss “ ps, su, su2q “

psq; that is, the fibre equals the closed set σ´1pV pmqq “ V psq. This means that the whole
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106 Examples constructed by gluing

’u-axis’ V psq in A2 “ Spec kru, ss is collapsed onto the origin in Q. Likewise, the ’u´1-
axis’ in A2 “ Spec kru´1, ts is collapsed to the origin; in oher words, the whole zero-section
C in L´2 is mapped to the origin. In fact, the C is the only subscheme of L´2 which is
contracted; σ is an isomorphism outside C:

Proposition 7.10. The map σ restricts to an isomorphism L´2 ´ C
»
Ñ Q ´ tpu,

where p is the origin in Q.

Proof The complement Q ´ tpu of the origin is covered by the two distinguished open
sets Dpxq and Dpzq (note that Dpyq “ Dpy2q “ Dpxzq by the quadratic relation defining
R).Likewise, the complement L´2 ´ C of the zero-section is covered by the distinguished
open subsets Dpsq Ă V0 “ Spec kru, ss and Dptq Ă V1 “ Spec kru´1, ts. It holds
that σ´1

0 pV pxqq “ V psq Ă Spec kru, ss, and this means that the restriction σ|V0
“ σ0

maps Dpsq onto Dpxq. In fact, using the identification Dpxq “ SpecRx, and the identity
Rx “ pkrx, y, zs{py2 ´ xzqqx » krx, ysx,we see that σ0 is the map

Spec kru, sss Ñ Spec krx, ysx

induced by the ring map such that x ÞÑ s and y ÞÑ us. This is an isomorphism because we
have inverted s. Hence σ|V0

is an isomorphism over Dpxq. A symmetric argument shows
that σ|V1

is an isomorphism over Dpzq; all together, σ is an isomorphism outside C.

Exercises

Exercise 7.7.1. Check that L´1 is indeed the blow-up constructed in Section 7.5.

Exercise 7.7.2. Show that for m ě 0, the scheme L´m admits a morphism σ : L´m Ñ Y
contracting the zero-section C to a point.

Exercise 7.7.3. For the canonical morphism π : Lm Ñ P1
k, show that

π˚OLm
“
à

iě0

OP1
k
p´imq.

Exercise 7.7.4 (A variety perspective). When k is an algebraically closed field the k-points
of Lm are described by expressions resembling homogeneous coordinates.

a) Show that the k-points of Lm are precisely the equivalence classes of triples

px0 : x1 | tq,

where x0, x1, t P k, with px0, x1q ‰ p0, 0q under the relation

px0 : x1 | tq “ pαx0 : αx1 | αmtq,

for α P k a non-zero scalar.
b) Show that the zero section is the the set of points of the form px0 : x1 | 0q, and

that if m ě 0 and ppx0, x1q is a homogeneous polynomial of degree m, then
the map P1pkq Ñ Lmpkq given by the assignment

px0 : x1q ÞÑ px0 : x1 | qpx0, x1qtq
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7.8 Double covers of projective space 107

is a well defined section of Lmpkq Ñ P1pkq (at least in a set-theoretic sense).

Exercise 7.7.5 (A variety perspective). Define f : L´mpkq Ñ Am`1pkq by

px0 : x1 | tq ÞÑ ptxm0 , tx
m´1
0 x1, . . . , tx0x

m´1
1 t, xm1 q

Show that this map is well defined and collapses the zero-section to the origin. Define and
describe a scheme version of this map.

7.8 Double covers of projective space

Consider a polynomial in n variables over a base ring A, f P R “ Arx1, . . . , xns. This
defines a closed subscheme X of the affine space An`1

A “ SpecRrys given by

X “ SpecRrys{py2 ´ fq

There is a morphism σ : X Ñ AnA induced by the ring map R Ñ Rrys{py2 ´ fq. We call
X , with the map σ, the double cover of AnA “ SpecR associated to f . The name comes
from the following example:

Example 7.11. Let A “ k be an algebraically closed field, and let p P Ank be the closed
point corresponding to the maximal ideal m “ px1 ´ a1, . . . , xn ´ anq in R. By Proposition
2.34, the fibre σ´1ppq is given by

SpecpRrys{ppy2 ´ fq ` mqq » SpecCrys{py2 ´ fpa1, . . . , anqq.

If fpa1, . . . , anq ‰ 0, the fibre consists of two points, and if fpa1, . . . , anq “ 0, the fibre
has one (it is given by SpecCrys{y2).

We will also consider double covers of projective spaces by gluing together the double
coverings we just constructed. We begin with the case of P1.

Hyperelliptic curves

Let k be a field and consider a polynomial

ppxq “ a2g`1x
2g`1 ` ¨ ¨ ¨ ` a1x

of degree 2g ` 1 in krxs.
Consider the two affine schemes X1 “ SpecA and X2 “ SpecB, where

A “ krx, ys{py2 ´ ppxqq and B “ kru, vs{pv2 ´ u2g`2ppu´1qq.

Note that u2g`2ppu´1q “ a2g`1u ` ¨ ¨ ¨ ` a1u
2g`1 indeed is a polynomial in u. The

two distinguished open sets Dpxq “ SpecAx and Dpuq “ SpecBu are isomorphic: the
assignments ϕpuq “ x´1 and ϕpvq “ x´g´1y define an isomorphism ϕ : Bu Ñ Ax. The
map is well defined, as the little calculation

ϕpv2 ´ u2g`2ppu´1qq “ x´2pg`1qy2 ´ x´p2g`2qppxq “ x´p2g`2qpy2 ´ ppxqq

shows that the defining ideal for Bu maps into the one defining Ax, and one verifies easily
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108 Examples constructed by gluing

that the maps x ÞÑ u´1 and y ÞÑ vu´g´1 define the inverse. We can therefore glue X1 and
X2 together along the open subsets Dpxq and Dpuq.

The resulting scheme X is called a hyperelliptic curve, and it is a double covering of P1
k.

In the case g “ 1, the curve X is an example of an elliptic curve. Below is an illustration of
the real points of one ofthe distinguished opensfor g “ 2:

y2 “ ppxq

The scheme X admits a morphism π to P1
k: consider the two inclusions krxs Ă A and

krus Ă B. Under the identification map ϕ : Bu Ñ Ax above, krus is mapped into krxs and
u maps to x´1, as in the commutative diagram:

krus krxs

Bu Ax.

uÞÑx´1

ϕ

The two inclusions yield mapsX1 Ñ U0 “ Spec krxs Ă P1
k andX2 Ñ U1 “ Spec krus Ă

P1
k, where U0 and U1 are joined together to a P1

k according to the rule x Ø u´1. By the
observation above, this is compatible with the way X1 and X2 are joined together, and so we
get the desired morphism.

Observe that π is a double cover. Consider for instance the open set X1. If z P U0 Ă

Spec krxs is a closed point with maximal ideal m Ă krxs, the fibre over z is equal to

π´1ppq “ SpecA{mA “ SpecKrys{py2 ´ aq,

where K “ krxs{m and a is the residue of p in K “ krxs{m. If the characteristic of k
is not two and a P k with a square root b P k, then Krys{py2 ´ aq “ krys{py ´ bq ˆ

krys{py ` bq » kˆ k, and the fibre has two points. In the other cases, there is just one point
in the fibre, but the vector space dimension of Krys{py2 ´ aq over K is still two, and the
moniker ’double cover’ persists being meaningful.

Notice that the construction of X is very similar to how the schemes Lm from Section 7.7
were made. In fact, X is a closed subscheme of L´g´1 in a natural way. Indeed, L´g´1 is
the union of of U “ Spec krx, ys and V “ Specru, vs and they are glued together with the
maps defined by the same assignments as ϕ and ψ, and as these pass to the quotients Ax and
Bu, we infer that X1 and X2 patch together to a closed subscheme of L´g´1.

Higher-dimensional double coverings

The above construction generalizes in a straightforward manner to higher-dimensional pro-
jective spaces. We will even consider projective spaces over any ring A.
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7.9 Hirzebruch surfaces 109

Let A be a ring and let R “ Arx0, . . . , xns with the usual grading. Let f P R be a
homogeneous polynomial of degree 2d, and for each 0 ď i ď n let

Si “ Ar
x0

xi
, . . . ,

xn

xi
,

y

xd
i

s{
`

p
y

xd
i

q2 ´ fp
x0

xi
, . . . ,

xn

xi
q
˘

For each pair i, j letting Sij “ Sirxix
´1
j s, one checks that Sij “ Sji; indeed, this reduces

to the identity

ˆ

xi
xj

˙2d
˜

ˆ

y

xdi

˙2

´ f

ˆ

x0

xi
, . . . ,

xn
xi

˙

¸

“

ˆ

y

xdj

˙2

´ f

ˆ

x0

xj
, . . . ,

xn
xj

˙

.

It is then straightforward to verify that the SpecSi’s glue together along the open subschemes
SpecSij’s to a scheme X . Moreover, keeping the notation Ri from the previous section,
the morphisms SpecSi Ñ SpecRi, induced by the inclusions Ri Ñ Si, glue together to a
morphism π : X Ñ PnA.

V pfq

X

P2

Exercise 7.8.1. Assume that k is algebraically closed. Let a2g`1 “ 1 and a1 “ ´1 and
ai “ 0 for the other indices. Determine the image of Dpxq and Dpuq in P1

k. Find all points
in P1

k where the fibre of the double covering f does not consist of exactly two points. How
many are there?

7.9 Hirzebruch surfaces

The Hirzebruch surfaces form a family of schemes showing several similarities with the line
bundles in Section 7.7. There is one Hirzebruch surface Fm for each natural number m, and
like the Lm’s, they are fibrations over a P1; that is, they come equipped with morphisms

π : Fm ÝÝÑ P1.

The fibres, however, are not affine lines A1’s, but projective lines P1.
The construction of the Hirzebruch surfaces is very similar to how the Lm’s were made,

the difference being that the fibres of π are projective lines instead of affine lines. It works
over Z as base ring, but to aid the intuition and ease notation, we shall work over a field k.

We begin with describing what kind of isomorphisms will constitute the gluing data.
Consider two copies of the projective line P1

A where A is a ring. The standard cover of one of
the copies will be U0 “ SpecArss and U1 “ SpecArs´1s, and the other has standard cover
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110 Examples constructed by gluing

formed by V0 “ SpecArts and V1 “ SpecArt´1s. Now, each invertible element a P A
gives rise to two ring maps

Arss Ñ Arts s ÞÑ at;

Ars´1s Ñ Art´1s s´1 ÞÑ a´1t,

which clearly agree on the overlap (that is, they induce the same map on Ars, s´1s), and so
we can patch them together to get a morphism fa : P1

A Ñ P1
A. The map fa is an isomorphism

because a is invertible. Since the maps above do not affect elements from A, the map fa is
compatible with the structure maps of the P1

A’s:

P1
A P1

A

SpecA.

fa

We are now ready to construct the Hirzebruch surfaces. We view the base P1
k as the union

of the two affine pieces U “ Spec krus and V “ Spec kru´1s, whose intersection equals
SpecA with A “ kru, u´1s. We work with two copies P1

U and P1
V of projective lines, the

first one over U “ Spec krus and the second over V “ Spec kru´1s. The structure maps
are p and q respectively. Coordinates will be u, s and v, t on P1

U and P1
V respectively, so they

come with covers tU0, U1u and tV0, V1u as described above.
Inside the base P1

k we have the intersection U X V “ SpecA, and the idea is to glue
together P1

U |UXV “ p´1pU X V q and P1
V |UXV “ q´1pU X V q. Note that both of these are

copies of P1
A as above, and the gluing map ρ will be of the form fa given there with a “ um.

The following diagram gives the situation map:

P1
U P1

U |UXV P1
V |UXV P1

V

U U X V U X V V

p

ρ

»

q

“

The gluing conditions are trivially fulfilled, and the result is the Hirzebruch surface Fm . The
maps p and q are joined together to yield π : Fm Ñ P1.

The gluing data is given by the maps:

kru, u´1, ss Ñ kru, u´1, ts s ÞÑ unt

kru, u´1, s´1s Ñ kru, u´1, t´1s s´1 ÞÑ u´nt´1

Relation with the line bundles Lm

The similarities between the construction of the line bundles Lm and the Hirzebruch surface
suggest a close relationship, and indeed there is one. The map ρ : P1

A Ñ P1
A respects

the standard covers; it takes Spec kru, ss into Spec kru, ts where it acts like u ÞÑ u and
s ÞÑ unt. This is exactly the gluing for the line bundle Lm, and we recognize Lm an open
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7.9 Hirzebruch surfaces 111

subset of Fm respecting the morphisms to P1
l :

Lm F

P1
k

In the same vein, ρ maps Spec kru, u´1, s´1s into Spec kru, u´1, t´1s by the assignments
u ÞÑ u and s´1 ÞÑ u´mt´1 which is the transition function for the line bundle L´m (note
that here the ’fibre coordinates’ are s´1 and t´1).

Note further that the complement of Lm is the zero-section C´m in L´m and the comple-
ment of L´m is the zero-section Cm in Lm.

Example 7.12. In Example 7.7, we explained that L1 is isomorphic to P2
k ´P with P “ p0 :

0 : 1q. In this continuation we shall see that the isomorphism in fact extends to a morphism
F1 Ñ P2 and that this map collapses the zero section C´m to the point P ; it is the blow-up
of P2

k in P .
We choose homogeneous coordinates x0, x1 and x2 on P2

k and write

V0 “ Spec k
”

x1

x0
,
x2

x0

ı

» Spec kru, ss

V1 “ Spec k
”

x0

x1
,
x2

x1

ı

» Spec kru, ts

by setting u “ x0{x1, s “ x2{x1 and t “ x2{x0. Together they give an open embedding
L1 Ñ P2

k with image V0 Y V1.
We want to extend this over the open subscheme W “ Spec kru´1, t´1s in F1. This is

done using the map ring map krx0{x2, x1{x2s Ñ kru´1, t´1s given by the assignments
x0{x2 ÞÑ t´1 and x1{x2 ÞÑ u´1t´1. These are compatible with the above settings, and so
the corresponding map Spec kru´1, t´1s Ñ Spec krx0{x2, x1{x2s Ă P2

k can be patched to
the one above, to yield a map Lm YW Ñ P2

k

Exercises

Exercise 7.9.1 (Fm as a variety). Let k be an algebraically closed field. Show that the k-points
of Fmpkq are in a one-to-one correspondence with the equivalence classes of quadruples

px0 : x1 | y0 : y1q

where equivalence means

px0 : x1 | y0 : y1q „ pαx0 : αx1 | αmβy0 : βy1q

for non-zero scalars α and β.

Exercise 7.9.2. The different Hirzebruch surfaces are closely related, as this exercise shows.
a) Show that for some point P there is a map Fm ´ P Ñ Fm´1 that induces an

isomorphism on the complement of two fibres.
b) Show that for some point P there is a map Fm´1 ´ P Ñ Fm that induces an

isomorphism on the complement of two fibres.
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112 Examples constructed by gluing

HINT: The ‘variety versions’ are px0 : x1 | y0 : y1q ÞÑ px0 : x1 | y0 : x1y1q with P “ p1 :
0 | 0 : 1q and px0 : x1 | y0 : y1q ÞÑ px0 : x1 | x1y0 : y1q with P “ p1 : 0 | 1 : 0q.

Exercise 7.9.3. Show that the open subschemes Lm ´ C´m and Lm ´ Cm of respectively
Lm and L´m are isomorphic over P1

k. Show that gluing them together gives Fm.

Exercise 7.9.4. The construction of Fm does not require that m is positive. Show that using
´m would yield a scheme isomorphic to Fm.

Exercise 7.9.5. Let X “ P1
k. Show that any element OXpXq corresponding to a map

X Ñ A1 factors via a ”constant map” Spec k Ñ A1.
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8

Finiteness coditions and dimension

8.1 Noetherian schemes

Recall that a ring A is Noetherian if every ideal is finitely generated. This is a strong
requirement for the ring, which has many important consequences. An equivalent condition
is that any ascending chain of ideals eventually stabilizes. Note that an ascending chain of
ideals taiu in A corresponds to a descending chain tV paiqu of closed subsets of SpecA,
which will be eventually constant when A is Noetherian.

This inspires the notion of a Noetherian topological space. These are spaces that satisfy
the descending chain condition on closed subsets: every descending chain

. . . Ă Xi`1 Ă Xi Ă . . . . . . Ă X2 Ă X1 (8.1)

of closed subsets stabilizes. Or in other words, Xi`1 “ Xi for sufficiently large i.
Another aspect of Noetherian rings is that any non-empty collection of ideals has a maximal

element (ordered by inclusion). Noetherian spaces have the analogous property that every
non-empty collection of closed subsets has a minimal element.

Lemma 8.1.
(i) A topological space X is Noetherian if and only if every non-empty

collection of closed subsets has a minimal element.
(ii) A Noetherian space is quasi-compact;

(iii) Every subspace Y of a Noetherian space X is Noetherian.

Proof Proof of (i): assume we have a non-empty set Σ of closed subsets that does not have
a minimal element. Selecting any element V1 P Σ, we find that it must strictly contain an
another element V2 from Σ. This second element V2 must in turn contain yet another element
V3 from Σ as a strict subset, and the process continues indefinitely. In this way, we construct
an infinite strictly descending chain V1 Ą V2 Ą V3 Ą . . . closed subsets of X , contradicting
the assumption that X is Noetherian. The opposite implication follows by the definition of
Noetherian space.

Proof of (ii): Let tUiuiPI be an open cover for X . Start with any Ui1 , and pick Ui2 so
that Ui1 Ĺ Ui1 Y Ui2 . Then pick Ui3 so that Ui1 Y Ui2 Ĺ Ui1 Y Ui2 Y Ui3 and so on. This
produces a strictly increasing chain of open subsets of X , which must stabilize because X is
Noetherian. Since every point of X is contained in some Ui, we find that X is expressed as a
finite union of the subsets Ui1 , . . . , Uin , and hence it is quasi-compact.

Proof of (iii): let Y Ă X be a subspace of X and consider a non-empty collection Σ of

113
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114 Finiteness coditions and dimension

closed subsets of Y . We define a corresponding collection Σ1 in X as follows:

Σ1 “ tW | W is closed in X and W X Y P Σu.

This is also non-empty because in the subspace topology the closed sets in Y are exactly
the intersections with Y of closed sets in X . Since X is Noetherian, there exists a minimal
element W0 in Σ1. We claim that W0 X Y is minimal in Σ. For any closed subset Z 1 in Y
that is contained in W0 X Y , there exists some closed set W 1 in X such that W 1 X Y “ Z 1.
Now W 1 X W0 is also in Σ1 and contains W 1 X W0 X Y “ Z 1. Minimality of W0 in Σ1

implies W 1 XW0 “ W0, and thus Z 1 “ W0 X Y . Therefore, W0 X Y is indeed minimal in
Σ. Therefore Y is Noetherian by (i).

The prototype example of a Noetherian space is SpecA where A is a Noetherian ring.
However, SpecA can be Noetherian even without A being Noetherian; the condition is
equivalent to the weaker condition that ascending chains of radical ideals eventually stabilize,
and there are many rings which satisfy this without being Noetherian. Here is a simple
example:

Example 8.2. Consider the polynomial ring krt1, t2, t3, . . . s and the maximal ideal m “

pt1, t2, . . . q. The ring

A “ krt1, t2, t3, . . . s{m
2

has only one prime ideal, the maximal ideal m. Therefore, SpecA consists of a single point,
and is therefore Noetherian as a topological space. The ring A however is not Noetherian, as
m requires infinitely many generators, namely all the ti’s.

In light of this example, we take a different route to define Noetherian schemes (we want
SpecA to be a Noetherian scheme precisely when A is a Noetherian ring):

Definition 8.3.
(i) A scheme is locally Noetherian if it can be covered by open affine

subschemes SpecAi with each Ai being a Noetherian ring;
(ii) A scheme is Noetherian if it is both locally Noetherian and quasi-

compact.

Note that a scheme is Noetherian if and only if it can be covered by finitely many open
affines SpecAi where each Ai is Noetherian.

Proposition 8.4. The spectrum SpecA is a Noetherian scheme if and only if A is a
Noetherian ring.

Proof The ‘if’-direction is clear, so assume that SpecA is Noetherian, which means that
it may be covered by finitely many open affine subschemes SpecAi with Ai Noetherian.
Refining the cover using distinguished open sets, we may assume that each Ai is of the form
Agi .

We want to show that each ideal a in A is finitely generated. By assumption, the ideals

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

8.1 Noetherian schemes 115

aAgi are all finitely generated, and since gi is a unit in Agi , we can find generators which are
images of elements aij from A.

Consider then theA-linear map ϕ :
À

i,j A Ñ a that sends the standard basis vector eij to
aij . Since the Dpgiq’s cover SpecA, the localization ϕp is surjective for every p P SpecA,
and from this follows that ϕ is surjective as well. Consequently, a is finitely generated.

Proposition 8.5. If X is a Noetherian scheme, its underlying topological space is
Noetherian.

Proof SinceX is quasi-compact, it may be covered by a finite number of open affine subsets.
A descending chain stabilizes if the intersection with each of those open sets stabilizes, so we
reduce the proof to showing the proposition for X “ SpecA with A a Noetherian ring. But
that case is clear by the previous proposition.

Proposition 8.6. Let X be a (locally) Noetherian scheme. Then any open or closed
subscheme of X is also (locally) Noetherian.

Proof It will suffice to treat the case that X is Noetherian. Let tSpecAiuiPI be a finite
affine cover with each Ai Noetherian. It suffices to prove that if Y Ă X is a closed or open
subscheme, then Y X SpecAi is Noetherian. In particular, since Y X SpecAi is closed or
open subscheme of an affine scheme, it suffices to consider the case where X “ SpecA and
A is Noetherian.

When Y is an open open subscheme: then there are elements g1, . . . , gn P A such that we
have Y “

Ťn

i“1 SpecAgi . If A is Noetherian, then so is each of the localizations Agi , and
consequently Y is Noetherian.

When Y is a closed subscheme. Y “ SpecpA{aq for some ideal a Ă A. IfA is Noetherian,
then so is A{a, and again Y “ SpecA{a is Noetherian.

Examples

Example 8.7. All of the examples from Chapter 7 are Noetherian. They are all glued together
by finitely many schemes of the form SpecA where A is a Noetherian ring.

Example 8.8. For a field k, the disjoint union X “
š8

i“1 Spec k is not Noetherian. In fact,
it is not even quasi-compact.

Example 8.9. The scheme X “ Spec
`
ś8

i“1 k
˘

is affine, hence quasi-compact. However it
is not Noetherian, because the ring is not Noetherian.

In fact, the set of prime ideals in infinite products of fields is remarkably complicated: it
is described by the set of so-called ‘ultrafilters’ on N. (See also Exercise 8.1.9 for a related
example).

Example 8.10. In Example 7.4 on page 97 we glued together schemes Xp “ SpecZppq with
p from a finite set of primes P . However, in the gluing conditions for schemes, there are no
restrictions on the number of schemes to be glued together, and we are free to take P infinite;
for example, we can use the set P of all primes.
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116 Finiteness coditions and dimension

The resulting scheme XP is rather peculiar: it is neither affine nor Noetherian, but it is
locally Noetherian. As a scheme over Z, the canonical map π : XP Ñ SpecZ is bijective
and continuous, but it is not a homeomorphism. Moreover, for all open subsets U Ă SpecZ
the map induced on sections π7 : ΓpU,OSpecZq Ñ Γpπ´1U,OXP q is an isomorphism; in
other words, π7 : OSpecZ Ñ π˚pOXP q is an isomorphism of sheaves!

As in Example 7.4 the scheme XP is constructed by gluing the different SpecZppq’s
together along the generic points. However, when computing the global sections, we see
things changing. As in Example 7.4 the global sections are computed with the help of the
sheaf sequence

0 ÝÝÑ ΓpX,OXq
ś

pPP ΓpXp,OXq
ś

p,qPP ΓpXp XXq,OXq

ś

pPP Zppq

ś

p,qPP Q,

“ “

ρ

and the kernel of ρ is still
Ş

pPP Zppq, but now this intersection equals Z; indeed, a rational
number α “ a{b lies in Zppq precisely when the denominator b does not have p as factor, so
lying in all Zppq, means that b has no non-trivial prime-factor. That is, b “ ˘1, and hence
α P Z.

One can understand the canonical map π : XP Ñ SpecZ as follows. Each of the schemes
SpecZppq maps in a natural way into SpecZ, by the map induced by the inclusion Z Ă Zppq.
Here the generic point of SpecZp map to generic point of SpecZ, and the closed point
maps to ppq P SpecZ. As the maps agree on the generic points, they glue to the canonical
map π : XP Ñ SpecZ. This is a continuous bijection by construction, but it is not a
homeomorphism. Indeed, the subsets SpecZppq are open in XP by the gluing construction,
but they are not open in SpecZ, as their complements are infinite.

The underlying topological space of XP is not Noetherian, as the subschemes SpecZppq

form an open cover that obviously cannot be reduced to a finite cover. However, it is locally
Noetherian as the open subschemes SpecZppq are Noetherian. The sets Up “ XP ´ tppqu

map bijectively to Dppq Ă SpecZ and ΓpUp,OXP q “ Zp, but Up and Dppq are not
isomorphic.

Decomposition into irreducibles

A fundamental result about Noetherian rings is the Lasker–Noether theorem stating that every
ideal a in a Noetherian ring A admits an irredudant primary decomposition; in other words, a

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

8.1 Noetherian schemes 117

can be expressed as an intersection

a “ q1 X q2 X ¨ ¨ ¨ X qr, (8.2)

where the qi’s are primary ideals with no inclusion relation among them. Such a decomposi-
tion is not always unique, but there are partial uniqueness results. The associated prime ideals
pi “

?
qi are unique, as are the primary components qi whose associated prime ideals pi are

minimal among the associated primes.
Geometrically, the decomposition (8.2) means that the closed subset V paq Ă SpecA can

be written as a finite union of irreducible closed subsets:

V paq “ V pp1q Y V pp2q Y ¨ ¨ ¨ Y V pprq. (8.3)

Of course, only minimal primes matter. If pi Ă pj , then V ppjq is contained in V ppiq, and
we can disregard it. Since these embedded components do not show up for radical ideals
and since V p

?
aq “ V paq, we get a clear and clean uniqueness statement. The closed sets

appearing in (8.3) are unique up to ordering.
In general, if Y Ă X is a closed subset of a topological space X , a decomposition

Y “ Y1 Y ¨ ¨ ¨ Y Yr (8.4)

into irreducible closed subsets is said to be irredundant if Yi Ć Yj for every i ‰ j. Or
equivalently, no Yi can be dropped without changing the union. The Lasker–Noether theorem
has the following analogue:

Theorem 8.11. Every closed subset Y of a Noetherian topological space X has
an irredundant decomposition into closed and irreducible subsets. Furthermore, the
subsets appearing in the decomposition are unique up to order.

The irreducible closed subsets in the decomposition are the irreducible components of Y .

Proof Consider the family Σ of those closed subsets of X that cannot be decomposed
into a finite union of irreducible closed subsets; or phrased in a different way, the set of
counterexamples to the assertion. If the theorem does not hold, Σ ‰ H. By assumption X is
Noetherian, so Σ has a minimal element Y , which can not be irreducible. Hence Y “ Y1YY2

where both Y1 and Y2 are proper subsets of Y and therefore do not belong to Σ. Either is
thus a finite union of closed irreducible subsets, and the same is then true for their union Y .
We have a contradiction, and Σ must be empty, and the theorem holds.

As to uniqueness, assume there are two irredundant decompositions such that

Y1 Y ¨ ¨ ¨ Y Yr “ Z1 Y ¨ ¨ ¨ Y Zs

and such that one of the Yi’s, say Y1, does not equal any of the Zk’s. Since Y1 is irreducible
and Y1 “

Ť

j

`

Zj XY1

˘

, it follows that Y1 Ă Zj for some index j. A similar argument gives
Zj “

Ť

i

`

Zj X Yi
˘

and Zj being irreducible, it holds that Zj Ă Yi for some i. Therefore
Y1 Ă Zj Ă Yi. Since the union of the Yi’s is irredundant, we infer that Y1 “ Yi, and hence
that Y1 “ Zj . Contradiction.
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118 Finiteness coditions and dimension

Example 8.12. Consider the closed set Y “ V paq Ă A3
k given by the ideal

a “ px2 ´ y, xz ´ y2, x3 ´ xzq.

A primary decomposition of a is given by a “ q1 X q2 X q3, where

q1 “ px, yq, q2 “ px´ 1, y ´ 1, z ´ 1q, q3 “ px2 ´ y, xy, y2, zq.

Taking radicals, we find that the primes associated to a are the following:

p1 “ px, yq, p2 “ px´ 1, y ´ 1, z ´ 1q, p3 “ px, y, zq.

Note that p1 Ă p3, and p3 is thus an embedded component, which does not show up in the
decomposition above. We therefore have V paq “ V px, yq Y V px´ 1, y ´ 1, z ´ 1q.

Exercises

Exercise 8.1.1. Show that in a topological space the closure of a singleton is irreducible.

Exercise 8.1.2 (Properties of irreducible subsets). Let X be a topological space.
a) Show that if a subset Z Ă X is irreducible, then so is the closure Z;
b) Show that X is irreducible if and only if every non-empty open subset is dense;
c) If f : X Ñ Y is a continuous map, show that fpXq is irreducible if X is.

Exercise 8.1.3 (Irreducible components). The maximal closed irreducible subsets of a
topological space X are called the irreducible components of X .

a) Prove that any irreducible subset of a topological space X is contained in an
irreducible component. HINT: Zorn’s lemma;

b) Prove that X is the union of its irreducible components;
c) If X is Noetherian, prove that the irreducible components are precisely the sets

appearing in the Lasker–Noether decomposition of X .

Exercise 8.1.4. Let X be a topological space and let Z Ă X be an irreducible component of
X . Let U be an open subset of X and assume that U X Z is nonempty. Show that Z X U is
an irreducible component of U .

Exercise 8.1.5. Let X be a topological space. Show that the following two conditions are
equivalent.

(i) X is Noetherian;
(ii) Every open subset of X is quasi-compact.

Exercise 8.1.6. Compute a primary decomposition for the following ideals and describe their
corresponding closed subsets.

a) I “ px2y2, x2z, y2zq in krx, y, zs;
b) I “ px2y, y2xq in krx, ys;
c) I “ px3y, y4xq in krx, ys;
d) I “ px, y, x´ yzq in krx, y, zs;
e) I “ px2 ` py ´ 1q2 ´ 1, y ´ x2q in krx, ys.
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8.1 Noetherian schemes 119

Exercise 8.1.7 (A one dimensional non-Noetherian domain). The ring A in this exercise
was originally constructed by Krull as an example of a non-Noetherian domain with just one
non-zero prime ideal. The spectrum SpecA has two points and is a Noetherian topological
space, while A is not a Noetherian ring.
The example is no more exotic than the ring of rational functions fpx, yq in two variables
over C that are defined and constant on the y-axis. The elements of A, when written in
lowest terms, have a denominator not divisible by x, and fp0, yq, which is then meaningful,
is constant.

a) Show that the ideals ar “ px, xy´1, . . . , xy´rq with r P N form an ascending
chain that does not stabilize. Conclude that R is not Noetherian.

b) Show that R is local with the set m of elements f P R that vanish along the
y-axis as the maximal ideal.

c) Prove that there are no other primes than m and p0q in R. HINT: Show first
that any element in R is of the form xiyjα where i ě 0, j P Z and α is a unit
in R.

Exercise 8.1.8 (Perfect rings). This exercise provides an abundance of non-Noetherian
domains with Noetherian spectrum. Let A be a Noetherian reduced ring of characteristic
p which is not a field, and let F : A Ñ A denote the Frobenius homomorphism a ÞÑ ap.
Consider the direct system tAiuiPN with Ai “ A for all i and maps given by the sequence

A A A . . . . . .F F F

Let A8 denote the direct limit lim
ÝÑ

Ai and let ϕi : A “ Ai Ñ A8 denote the canonical
maps.

a) Show that F is not surjective;
b) Let a P A be a non-unit. Show that the principal ideals pϕipaqq in A8 form an

ascending chain which is not stationary. Conclude that A8 not Noetherian;
c) Show that each Specϕi is a homeomorphism SpecA » SpecA8, and con-

clude that SpecA8 is a Noetherian topological space.

Exercise 8.1.9 (The ring of eventually constant sequences). Consider the subring A of
ś8

i“1 Z{2Z consisting of sequences peiqiě1 which are eventually constant, that is, sequences
with ei “ ei`1 for i " 0.

a) Show that all elements of A are idempotents and conclude that every prime
ideal is maximal. HINT: the only idempotents in a domain are 0 and 1.

b) Let mn denote the ideal generated by 1 ´ an where an “ p0, . . . , 0, 1, 0, . . . q
with a ‘1’ in the n-th factor. Show that mn is a maximal ideal.

c) Show that Dpanq “ tmnu and conclude that the one-point set tmnu is both
open and closed in SpecA.

d) Let m8 denote the ideal consisting of sequences which are eventually zero, i.e.,
ei “ 0 for all i " 0. Show that m8 is a maximal ideal. HINT: Consider the
‘limit map’ A Ñ Z{2.

e) Show that A is not Noetherian. HINT: Show that m8 is not finitely generated.
f) Show that these are all the prime ideals of A, i.e., that SpecA “ tmi | i P
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N u Y tm8u. HINT: Consider the cases ai R m for some i and ai P m for all i
separately; use the identity aip1 ´ aiq “ 0.

g) Show that SpecA is homeomorphic to the set t 1
n

| n P N u Y t0u (with the
standard topology).

8.2 Finite morphisms and morphisms of finite type

Let A be a ring and let B be an A-algebra. Recall that one says that B is finitely generated
or of finite type over A if there is a finite set b1, . . . , br of elements from B such that each
b P B can be expressed as a polynomial with coefficient from A in the bi’s. One says that B
is a finite over A if it is finitely generated as an A-module. In other words, there is a finite set
of elements b1, . . . , br so that each b is a linear combination b “

ř

aibi with ai P A.
Even though the names are similar, the two notions are quite different. To say that B is of

finite type, is to say that B is a ring quotient of a polynomial ring Art1, . . . , trs, where as B
being finite means that B is a quotient module of a free module Ar of finite rank. Thus Zrts
is of finite type, but not finite over Z.

Morphisms of finite type

The scheme-theoretic analogue of the notion ‘finitely generated algebra’ is as follows:

Definition 8.13 (Morphisms of finite type). Let X be a scheme over S with structure
morphism f : X Ñ S.

(i) One says that f orX{S is of locally finite type if S has a cover consisting
of affine open subschemes Vi “ SpecAi such that each f´1Vi can be
covered by affine open subschemes SpecBij , where each Bij is finitely
generated as an Ai-algebra;

(ii) One says that f or X{S is of finite type if in (i) one can do with a finite
number of subschemes SpecBij for each i.

In case S “ SpecA, a scheme over A is said to be of finite type (respectively of locally
finite type) over A if the morphism X Ñ SpecA is of finite type (respectively of finite type).
Note that being (locally) of finite type is local on the target; if S can be covered by opens Ui
so that all restrictions f |f´1Ui

are (locally) of finite type, then clearly f is (locally) of finite
type as well.

The prototype example of a morphism of finite type is f : SpecB Ñ SpecA, where B
is a finitely generated A-algebra, and f is induced by the natural map A Ñ B. The converse,
that B is of finite type when f is, holds true as well, though this is slightly tricky to prove
(see Corollary 8.19 below).

Proposition 8.14. A morphism f : X Ñ S is of locally finite type if and only if for
any affine cover Si “ SpecAi of S, f´1pSiq can be covered by affine subschemes
SpecBij with each Bij a finitely generated Ai-algebra.
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Example 8.15. Both the affine spaces AnA and the projective spaces PnA are of finite type over
SpecA. The morphism

š8

i“1 A
1
k Ñ A1

k which is the identity on each component, is locally
of finite type, but not of finite type.

Example 8.16. A closed embedding ι : X Ñ Y is of finite type. Indeed, by definition there
is an open affine cover tSpecAiu of Y so that ι´1Ui » SpecAi{ai, and Ai{ai is of finite
type.

Example 8.17 (Open embeddings). An open embedding ι : U Ñ X is locally of finite type,
but is not of finite type in general. For instance, the open immersion

ď

tPN
Dptiq ÝÝÑ Spec krt1, t2, . . . s

is not of finite type, because the scheme on the left is not quasi-compact (and thus cannot be
covered by finitely many affine subschemes).

However, if U is quasi-compact, then ι is of finite type. In that case, for any open affine
SpecA in X , U X SpecA is open in SpecA, and can be covered by finitely many distin-
guished open sets Dpgiq “ SpecpAgiq, and each Agi is finitely generated over A (being
generated by g´1

i ). In particular, if X is Noetherian, then any open embedding ι : U Ñ X is
of finite type.

Note that Definition 8.13 refers to a specific affine cover tViu of the baseS and tSpecBijuj
of the inverse images f´1Vi. It is an important fact that the conditions will in fact hold for
any open affine cover.

Proposition 8.18. Let f : X Ñ S be a morphism of finite type. Then for any open
affine subscheme SpecA Ă S and each open affine SpecB Ă f´1pSpecAq, the
algebra B is finitely generated over A.

In particular, when both X and S are both affine, we have the following corollary.

Corollary 8.19. A morphism f : SpecB Ñ SpecA is of finite type if and only if
B is an A-algebra of finite type.

We will prove this result in Section 8.5.

Affine and finite morphisms

The other finiteness condition of this is section is that of a finite morphism. In addition to
satisfy a rather strong finiteness requirement, finite morphism are required to be affine.
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Definition 8.20 (Affine and finite morphisms). Let f : X Ñ Y be a morphism. One
says that

(i) f is affine if there is an open covering tViu of Y such that each inverse
image f´1Vi is affine;

(ii) f is finite if there is a cover of Y by open affines Vi “ SpecAi such
that each f´1Vi “ SpecBi, with Bi an Ai-algebra finitely generated as
Ai-module.

One also says that X is finite over Y , and if Y “ SpecA, that X is finite over A.
As in the definition of finite type morphisms, the definitions of affine and finite morphisms

make reference to a specific affine cover of the base. Therefore, it is not a priori clear whether
a scheme which is affine over another affine scheme, is necessarily an affine scheme itself.
This is nevertheless true, and is a particular case of the following more general result.

Proposition 8.21.
(i) If f : X Ñ Y is affine morphism, the inverse image f´1U of each open

affine subset U Ă Y is affine.
(ii) If f : X Ñ Y is a finite morphism and U “ SpecA Ă Y is an open

affine subscheme, then f´1U “ SpecB where B is a finite A-module.

The proof will be postponed until Section 8.5.
To underline the huge difference between the two finiteness conditions of this section, we

observe the following: X is of finite type over a field k simply means it can be covered by
open affine subschemes of the form Spec krt1, . . . , trs{a.

On the other hand, for X is to be finite over a field k means that X “ SpecA is affine,
and A is a k-algebra of finite dimension over k. Such a ring A is Artinian and has only
finitely many prime ideals all being maximal. Hence the spectrum SpecA is a finite set, and
the underlying topology is discrete.

Example 8.22. For n ě 1, the structure morphisms Ank Ñ Spec k and P1
k Ñ Spec k are of

finite type, but not finite.

Example 8.23. The embedding SpecAg ãÑ SpecA of a distinguished open subscheme is
of finite type, but generally not finite.

An important fact about finite morphisms is that they have finite fibres.

Proposition 8.24. If f : X Ñ Y is a finite morphism, then each scheme-theoretic
fiber Xy has an underlying topological space which is finite and discrete.

Proof If y P Y is a point, choose an affine U “ SpecA containing it. As f is finite,
f´1pUq “ SpecB is also affine, so we reduce to the case where X and Y are affine, and f
is induced by a ring map A Ñ B, making B into a finite A-module.

In this situation, y corresponds to a prime ideal p Ă A, and it follows that Bp{pBp “

BbAAp{pAp is a finite vector space over kppq “ Ap{pAp (images of generators persist
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8.2 Finite morphisms and morphisms of finite type 123

being generators). In other words, Bb{pBp is an Artinian ring, and hence its spectrum
Xy “ SpecpBp{pBpq is finite and discrete.

Example 8.25. The converse of Proposition 8.24 does not hold. The open embedding
A1
k ´ t0u ãÑ A1

k has at most one point in the fibre, but it is not a finite morphism.

There is a collection of results, the Cohen–Seidenberg Theorems, about prime ideals in
integral extension with important applications to finite morphisms. We summarize them here
without proofs. They are formulated with the more general hypothesis that the extension is
integral, but finite ring extensions are integral.

Theorem 8.26. Let A Ă B be an integral extension of rings.
(i) (Lying–Over) If p prime ideal in A, there is prime ideal q in B so that

q XA “ B;
(ii) If q Ă q1 are prime ideals in B such that q XA “ q1 XA, then q “ q1;

(iii) (Going–Up) If p Ă p1 are two prime ideals in A and q P SpecB with
q XA “ p, there is a q1 P SpecB with q1 XA “ q;

(iv) (Going–Down) Assume that A is integrally closed and that p1 Ă p are
two prime ideals. If q P SpecB is such that q XA “ p, then there is a
q1 P SpecB such that q1 XA “ p1.

For the moment, we shall only apply the two first parts. Translated into geometric language
they give the following result about finite morphisms. One says that a morphism f : X Ñ Y
is dominant, if the image is a dense subset of Y .

Proposition 8.27 (Lying-Over). Let f : X Ñ Y be a finite morphism between two
schemes.

(i) The fibres of f are finite and discrete;
(ii) If f is dominant, it is surjective;

(iii) f is a closed map.

Proof We may assume that X and Y are affine, say X “ SpecB and Y “ SpecA.
Statement (i) was discussed above. To prove (ii), note that according to Proposition 2.29

on page 33, the mophism f is dominant precisely when the kernel of the correspondig map
f 7 : A Ñ B between algebras is contained in the nilradical

?
0 of A. Hence when f is

dominant, the map Spec pA{Ker f 7q Ñ SpecA is a homeomorphism. We may thua assume
that A Ă B, and Lying-Over applies.

Statement (iii) follows from (ii): by (iii) of Proposition 2.27 on page 32, the closure
fpV pbqq of the image of a closed subset V pbq Ă SpecB equals V pb X Aq. Applying
Lying-Over to the inclusion A{b XA Ă B{b, we see that fpV pbqq “ V pb XAq.

Example 8.28. Let k be an algebraically closed field and consider the closed subset X “

V py2`P pxqq Ă A2
k “ Spec krx, ys where P pxq is a polynomial in krxs. Let π : A2

k Ñ A1
k

denote the projection onto the x-axis; that is, the map induced by the inclusion krxs Ă krx, ys.
Then the restriction π|X will be finite. Indeed, its algebraic counterpart is the inclusion
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krxs Ă krx, ys{py2 ` P pxqq, and the latter ring has a basis as module over krxs consisting
of 1 and y.

On the contrary, if Y “ V ppx ´ aqy2 ` P pxqq where a P k is not root of P pxq, then
π|Y is not a finite morphism. Indeed, the point a P A1pkq does not belong to its image, and
so π|Y is not a closed map.

Exercises

Exercise 8.2.1. For each of the following rings A, decide whether the corresponding mor-
phism SpecA Ñ SpecZ is finite or finite type.

Zris, Zr1{ps, Zppq, Z ˆ Z, Zrxs.

Exercise 8.2.2. Show that the composition of two morphisms (locally) of finite type is
(locally) of finite type. Show that if S is quasi-compact and f : X Ñ S is of finite type, then
X will be quasi-compact.

Exercise 8.2.3. Assume that ι : SpecB ãÑ SpecA is an open embedding. Show that B is
of finite type over A.

Exercise 8.2.4. Assume that S is a Noetherian scheme and that f : X Ñ S is of finite type.
Prove that X is Noetherian. HINT: Hilbert’s Basis Theorem.

Exercise 8.2.5. Let A Ă B an integral extension of domains. Show that A is a field if and
only ifB is a field. If p is a prime inA, show that p lies in the image of SpecB Ñ SpecA if
and only if pAp lies in the image of SpecBp Ñ SpecAp. Conclude that SpecB Ñ SpecA
is surjective.

Exercise 8.2.6. Let f : X Ñ Y be an affine morphism and let V Ă Y be an open set. Show
that f´1pV q Ñ V is affine.

More generally, if V Ñ Y is any morphism, show that the base change morphism
X ˆY V Ñ V is affine. Thus affine morphisms are stable under base change.

Exercise 8.2.7. Show that the composition of two finite morphisms is finite.

8.3 The dimension of a scheme

Recall that the Krull dimension of a ringA is the supremum of the length of strictly ascending
chains of prime ideals in A. For schemes, we make the following similar definition, which in
fact works for any topological space.

Definition 8.29 (Dimension of topological spaces). Let X be a topological space.
The dimension of X is the supremum of all integers n such that there exists a chain

Z0 Ă Z1 Ă ¨ ¨ ¨ Ă Zn

of distinct irreducible closed subsets of X .

This supremum might not be finite, in which case we declare that dimX “ 8. A chain is
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said to be saturated if no new term can be inserted, and it is maximal if it is saturated and
cannot be extended. If X is a scheme, we define the dimension of X as the dimension of the
underlying topological space. In particular, it holds true that dimX “ dimXred.

Lemma 8.30.
(i) If Y Ă X is any subset, then dimY ď dimX;

(ii) Assume that dimX ă 8. If Y Ă X is a closed and irreducible and
dimY “ dimX , then Y is an irreduible component of X;

(iii) If tUiuiPI is an open cover of X , then dimX “ supiPI dimUi.

Proof Statement (i): the closure of irreducible subsets are irreducible, and since any closed
Z Ă Y satisfies Z X Y “ Z, a chain tZiu of distinct irreducible closed subsets of Y will
yield a chain tZiu of distinct irreducible closed subsets of X .

Statement (ii): were Y not a maximal closed irreducible subset of X , any maximal chain
Z0 Ă . . . Ă Zr Ă Y in Y could be augmented to a longer chain in X .

Statement (iii): observe that if Z Ă X is closed an irreducible and Z X U ‰ H,
then Z X U “ Z; indeed, were Z X U a proper subset, Z would be the union Z “

Z X U Y pZ ´ Uq of two proper closed subsets. Hence if Z0 Ă . . . Ă Zn is a chain in X
and U an element of the cover such that U X Z0 ‰ H, then tZi X Uu is a chain in U ; and
consequently n ď dimU . This shows that when dimX “ 8, the supremum supiPI dimUi
will be infinite as well, and when dimX is finite, taking the chain to be maximal, we see that
dimX “ n ď dimU .

In the case where X “ SpecA is affine, the closed irreducible subsets of X are of the
form V ppq where p is a prime ideal. Using this observation we find

Proposition 8.31. The dimension of X “ SpecA equals the Krull dimension of A.

Having finite dimension does not guarantee that a scheme is Noetherian; see Example 8.2
for a ‘trivial counterexample’. More seriously, there are even Noetherian rings whose Krull
dimension is infinite. The first example was constructed by Masayoshi Nagata. Although
each maximal chain of prime ideals in a Noetherian ring will be of finite length (prime ideals
satisfy the descending chain condition) there can be arbitrary long ones.

The following is a consequence of the Going-Up part of the Cohen–Seidenberg theorems:

Proposition 8.32. If f : X Ñ Y is a finite surjective morphism, then dimX “

dimY .

Proof Assume first that Y “ SpecA and X “ SpecB. Since f is dominant, we may
further assume that A Ă B. By (ii) of Theorem A.17, any chain of distinct prime ideals in B
remains a chain of distinct prime ideals when intersected with A. Hence dimX ď dimY .
On the other hand, by succsessive application of Going-Up, any chain of distinct primes may
be extended to a chain of distinct prime ideals in B. Hence dimY ď dimX .

In general, if tUiu is any affine cover of Y the inverse images f´1Ui form an affine cover
of X , and we are through by the affine case and (iii) of Lemma 8.30.
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Example 8.33.
(i) The dimension of SpecZ equals one. The maximal chains of prime ideals have

the form V ppq Ă V p0q “ SpecZ for prime numbers p;
(ii) dimSpec krϵs{pϵ2q “ 0;

(iii) The dimension of AnA “ SpecArx1, . . . , xns is equal to n` dimA when A is
a Noetherian ring (for general rings dimAnA takes values between dimA` n
and dimA ` 2n, and all values are possible). In particular, when A “ k is a
field, Ank has dimension n. An instance of a maximal chain of irreducible closed
subsets is

V px1, . . . , xnq Ă . . . Ă V px1, x2q Ă V px1q Ă Ank .

(iv) The dimension of A1
Z equals two; maximal chains of prime ideals in Zrxs are

shaped like p0q Ă ppq Ă pfpxq, pq, where p is a prime number and fpxq a
polynomial which is irreducible mod p.

Example 8.34 (Zero-dimensional schemes). The schemes

SpecZ{pZ, SpecCrxs{pxnq, SpecCrx, ys{px2, xy, y3q,

have dimension zero. More generally, the spectrum of an Artinian ring has dimension zero
(and whenA is Noetherian, SpecA has dimension zero if and only ifA is Artinian). However,
there are non-Noetherian rings, e.g. the ring

ś8

i“1 Z{2Z, which have dimension zero and
even infinitely many points (see Exercise ??). The ring A “

ś8

n“1 Z{2nZ has infinite Krull
dimension, yet SpecA is still Noetherian as a topological space.

Codimension

For a closed subset Y Ă X the dimensions dimY and dimX are defined in terms of closed
irreducible subsets contained in Y and X respectively. When Y is irreducible, there is also a
relative notion, the codimension of Y in X , denoted by codimpY,Xq, which is defined in
terms of closed irreducible subsets of X containing Y . These three numbers will in some
important cases be related by the equality dimY ` codimpY,Xq “ dimX (which justifies
the name ‘codimension’), although this formula does not hold in general, it is not even true
for all spectra of Noetherian integral domains (see Example 8.37 below).

Definition 8.35 (Codimension). Let Y Ă X be an irreducible closed subset of X .
The codimension of Y is the supremum of all integers n such that there exists a chain

Y “ Y0 Ă Y1 Ă ¨ ¨ ¨ Ă Yn

of distinct irreducible closed subsets of X .

In an affine case there is a bijective correspondence between irreducible closed subsets of
SpecA and prime ideals in A, and the codimension of a closed subset V ppq will be equal to
the height of the prime ideal p; that is, the maximal length of a chain of distinct prime ideals
p0 Ă p1 Ă ¨ ¨ ¨ Ă pr “ p, or equivalently, the Krull dimension dimAp of the localized ring
Ap. In a general scheme one has an analogue result:
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Proposition 8.36. Let X be a scheme and x P X be a point. Set Y “ txu. Then
dimOX,x “ codimpY,Xq.

Proof Given a chain Y Ă Y1 Ă . . . Yn of distinct irreducible closed subsets, the generic
points η1, . . . , ηn of the Yi’s are contained in each open neighbourhood U of x. In particular,
if U “ SpecA is an affine, these generic points correspond to prime ideals pn Ă . . . Ă

p1 Ă px in A. Taking the supremum gives the claim.

A chain of distinct irreducible closed subsets of Y may be spliced with one between Y
and X , to yield a chain in X . Hence, taking suprema we find the inequality

dimY ` codimpY,Xq ď dimX.

As mentioned above, equality does not hold in general. And in fact, there are quite simple
example with the inequality being strict. For integral schemes of finite type over fields
however, the theory is much simpler, and in Chapter xxx we shall study the dimension in
terms of the function field.

Example 8.37. Let A be a DVR with maximal ideal m “ ppq and fraction field K; for
instance, the local ring Zppq with p a prime number. Consider the principal ideal n “ ptp´1q

in the polynomial ringArts. It is a maximal ideal as it equals the kernel of the mapArts Ñ K
that sends P ptq to P p1{pq, and one easily checks that it does not properly contain any non-
zero prime ideal, so it is of height one. Letting Y “ V pnq and X “ SpecArts, we find
dimY “ 0 and codimY “ 1, but it holds that dimX “ 2.

8.4 Distinguished properties

In this section we will describe a small lemma which is very convenient when working with
properties of schemes.

A property P of open affine subschemes of a scheme X is said to be distinguished if the
following two conditions are satisfied:
(D1) If U has P and g P OXpUq, then Dpgq has P ;
(D2) If tDpgiqu is a finite cover of U , and each Dpgiq has P , then U has P .

Lemma 8.38. Let P be a distinguished property of open affine subschemes of X . If
there is one open affine cover tUiuiPI of X so that each Ui has P , then every open
affines in X have P . Moreover, it suffices that (D2) is satisfied for all covers by two
distinguished opens.

Proof The set of distinguished open sets contained in some Ui form a basis B for the
topology on X , and by property (D1), they all have property P . If V is an open affine in X ,
then being quasi-compact, it may be covered by finitely many opens of the basis B, and so
requirement (D2) ensures that V also has P .

For the second statement in the lemma, assume (D2) is fulfilled for covers with two
elements. We shall apply induction of the number r of opens in a given cover tDpgiqu of V .

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

128 Finiteness coditions and dimension

Because the Dpgiq’s cover V , there is a relation a1g1 ` ¨ ¨ ¨ ` argr “ 1 in OV pV q. Let
g “ a2g2 ` ¨ ¨ ¨ ` argr. Each Dpgigq with i ě 2 is distinguished in Dpgiq, and hence has
property P by (D1). On the other hand, they are also distinguished in Dpgq and cover Dpgq,
hence Dpgq has P by induction. Now, V is the union of Dpg1q and Dpgq and thus has P by
the r “ 2 case.

8.5 Independence of the affine cover

Finite type

Proof of Proposition 8.18 The proof has two parts: a separate treatment of the affine case
(i.e. a proof of the Corollary) followed by a reduction to that case (which relies on the notion
of distinguished properties).

We begin with the affine case. Suppose that f : SpecB Ñ SpecA is a morphism of finite
type, so that there is an affine cover tSpecBiu of SpecB with each Bi finitely generated
over A. We need to show that B is finitely generated over A. In the course of the proof we
shall use the following elementary lemma:

Lemma 8.39. Assume there is a relation
ř

1ďiďr aigi “ 1 between elements from a
ring R. Then for each natural number n, one may write

ř

i cig
n
i “ 1 where the ci’s

are polynomials with integer coefficients in the ai’s and the gi’s.

Proof Expand p
ř

i aigiq
2nr and observe that each term contains some power gmi with

m ě n. Then collect appropriate terms.

Shrinking the SpecBi’s we may assume that each SpecBi is a distinguished open subset
Dpgiq in SpecB. As SpecB is quasi-compact, we may further assume that the Dpgiq’s are
finite in number. Since the Dpgiq’s cover SpecB, there is a relation

ř

1ďiďr aigi “ 1 with
ai P B.

Let tij P Bgi be generators for Bgi as an A-algebra, and for each i write gni

i tij “ bij with
bij P B and ni P N. We contend that the bij’s together with the ai’s and the gi’s generate
B as an algebra over A. Indeed, pick an element b P B. In each Bgi there is an equality
b “ Piptijq with Pi a polynomial with coefficients in A, and multiplying up denominators,
one finds relations gnijb “ Qipbijq inB, where theQi’s also are polynomials with coefficients
from A.

Now, by the lemma, there is a relation 1 “
ř

i cig
n
i with the ci’s being integral polynomials

in ai’s and the gi’s. This yields

b “
ÿ

i

bcig
n
i “

ÿ

i

ciQipbijq,

and since the ci’s are polynomials in ai’s and the gi’s, the right hand side is a polynomial in
the bij’s, the ai’s and the gi’s with coefficients from A, and we are done.

Next we reduce to the affine case. Let P be the property of an open affine subscheme
SpecA Ă S that for each open affine SpecB Ă f´1 SpecA, the algebra B is finitely
generated over A. Since f is assumed to be finite, there is one affine cover of S, all of whose
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opens have P . We proceed to check that P is a distinguished property; this will imply the
Proposition.

The first requirement is straightforward, since if B is finitely generated over A, then Bg
will be finitely generated over Ag.

For the second requirement, assume that a family tDpgiqu covers SpecA and that property
P holds for each SpecAgi . If SpecB is a given open affine subscheme of f´1 SpecA, then
the SpecBgi is open in f´1 SpecAgi , and hence each Bgi is finitely generated over Agi .
But then it will be finitely generated over A as well, and we may apply Corollary 8.19 to
conclude that B is finitely generated over A.

Affine morphisms

Proof of Proposition 8.21 (i) We show that the property that f´1pUq is affine, is a dis-
tinguished property of open affine subsets U . Then the proposition follows from Lemma
8.38.

The first requirement, (D1), comes for free since it holds true that f´1Dpgq “ Dpf 7pgqq

(see Proposition 2.27 on page 32).
For (D2), let V “ f´1U , and assume that the distinguished open subsetsDpg1q andDpg2q

form a cover of U with each inverse image Vi “ f´1Dpgiq being affine, say f´1Dpgiq “

SpecBi.
We begin with establishing that Bi » OV pV qgi . To this end, consider the sheaf exact

sequence

0 OV pV q B1 ˆB2 B12.
α β

(8.5)

Here B12 “ OV pf´1pU1 X U2qq, which equals both pB1qg2 and pB2qg1 . As usual, the
components of the map α are the restriction maps, and the map β sends pa, bq to the
difference a{1 ´ b{1 in B12.

Now we localize (8.5) in g1. Note that both B1, and B12 already are Ag1-modules and so
do not change when localized. Thus we obtain the sequence

0 OV pV qg1 B1 ˆ pB2qg1 pB2qg1
β

where now βp0, bq “ b. This sequence is actually split exact; the map B1 Ñ

Either by the Snake Lemma or by a direct reasoning, one infers that the restriction map
induces an isomorphism OV pV qg1 » B1, and of course, by symmetry, OV pV qg2 » B2.

Next, consider the canonical morphism θ : V Ñ SpecOV pV q from Proposition ?? on
page ??. It lives in commutative diagrams

V SpecOV pV q

f´1Dpgiq SpecBi,

θ

»

and since the f´1Dpgiq’s cover V (by hypothesis) and the SpecBi cover SpecOV pV q (by
what we just did), the morphism θ is an isomorphism.
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Finite morphisms

Proof of Proposition 8.21 From Proposition 8.21(i) above we know that f´1V “ SpecB
for some B, and it only remains to prove that B is a finite A-module. Now, the point is that
having the spectrum of a finite algebra as inverse image, is a distinguished property of affine
open subschemes of Y , and when this is established, we will be through.

Clearly f´1 SpecAg “ SpecBg so the first requirement is fulfilled. As to the second,
assume that a finitely many Dpgiq’s cover V and that f´1Dpgiq “ SpecBgi with each Bi a
finite modules over Agi . Let tij be generators of Bgi over Agi , which we may chose to be
images of elements bij in B. We contend that the bij’s generate B over A.

Given an element b P B, it holds that gni b “
ř

j aijbij for some n P N independent of i
and with aij P A. Since the Dpgiq’s cover V , there is relation

1 “ c1g
n
1 ` ¨ ¨ ¨ ` crg

n
r ,

which yields

b “
ÿ

j

cjg
n
j b “

ÿ

cjaijbij.
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9

Projective schemes

The projective varieties are fundamental in the theory of varieties, not just because they are
interesting objects of study, but also because they in many aspects are better behaved than
non-projective ones. In the scheme world, there is a construction extending the notion of
projective varieties; from any positively graded ringR one constructs a scheme ProjR called
the projective spectrum. The construction is somewhat parallel to that of the prime spectrum
of a ring, but there are several key differences between the two. For instance, and perhaps
most strikingly, ProjR does not depend functorially on R in the sense that maps between
graded rings not always give maps between the projective spectra. Moreover, different R’s
may yield isomorphic projective spectra.

9.1 Graded rings

In this book a graded ring will refer to rings R which are graded by the non-negative integers,
i.e. rings admitting a decomposition

R “
à

ně0

“ R0 ‘R1 ‘ ¨ ¨ ¨

as an abelian group such that Rm ¨Rn Ă Rm`n for each m,n ě 0. Occasionally, we will
also discuss Z-graded rings, where we allow negative degrees as well.

A ring map ϕ : R Ñ S between two graded rings R and S is said to be a map of graded
rings if it respects the grading, that is, if ϕpRnq Ă Sn for all n.

Example 9.1. The simplest examples of graded rings are the polynomial rings R “

Art0, . . . , trs. They have a standard grading wherein each variable ti has degree 1 and
elements from A has degree 0. The graded piece Rn is a free module over R0 “ A with the
monomials of degree n as a basis.

Note that R0 is a subring of R and that R is an algebra over R0. Moreover, each Rn
is an R0-module. The elements in Rn are said to be homogeneous of degree n, and one
writes deg x “ n when x P Rn. (Note that 0 has no well-defined degree, but is considered
homogeneous of any degree.) Every non-zero element x P R can be expressed uniquely as
a finite sum x “

ř

n xn with xn P Rn, and the non-zero terms in the sum are called the
homogeneous components of x.

An R-module M is graded if it has a similar decomposition M “
À

nPZMn as an
abelian group and RmMn Ă Mm`n for all n and m. Note that we allow also elements of
negative degrees. A map of graded R-modules is an R-linear map ϕ : M Ñ N satisfying
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132 Projective schemes

ϕpMnq Ă Nn for all n P Z. With this notion of morphisms, the graded R-modules form a
category, denoted GrModR.

As for graded rings, a non-zero element x P M is homogeneous of degree n if it lies in
Mn. Any element x P M may be expressed in a unique way as a finite sum x “

ř

n xn with
each xn in Mn, and the non-zero terms are called the homogeneous components of x.

Most of the familiar definitions for modules carry over to the graded setting. For instance,
the direct sum of a family of graded modules

À

iMi is graded in a natural way such
that canoncal inclusions Mj ãÑ

À

iMi preserve the grading. Likewise, the kernel and the
cokernel of a map of graded modules are also graded in a natural way. One has decompositions
Kerϕ “

À

iě0 Kerϕ|Mn
and Cokerϕ “

À

iě0Nn{ϕpMnq.
A sequence of graded modules

0 M 1 M M2 0,

is exact if it is exact as sequence of ordinary modules. As maps of graded modules preserve
the grading, this is equivalent to saying that each of the sequences

0 M 1
n Mn M2

n 0.

are exact (as a sequence of R0-modules).
An ideal a Ă R is homogeneous if the homogeneous components of each element in a

belongs to a. In other words, we may write a “
À

n an with an “ a X Rn. An ideal a is
homogeneous if and only if it is generated by homogeneous elements (see Exercise 9.1.3). It
is readily verified that radicals, intersections, sums and products of homogeneous ideals are
homogeneous. If a is an homogeneous ideal, the quotient R{a inherits a grading from R and
R{a “

À

nRn{an.
We will write R` for the sum

À

ną0Rn; this is naturally a homogeneous ideal of R,
which we call the irrelevant ideal.

Example 9.2. The irrelevant ideal of a polynomial ring R “ Art0, . . . , trs is equal to
R` “ pt0, . . . , trq.

Example 9.3 (Veronese rings). Common examples of graded rings are the so-called Veronese
rings associated with a graded ring R. For any natural number d, the Veronese ring Rpdq is
the subring of R given by

À

ně0Rnd.

Example 9.4. The ideal a “ py ´ x, x2q in the polynomial ring krx, y, zs is a homogenous
ideal, and the quotient R “ krx, y, zs{a is graded. The surjection krx, y, zs Ñ krx, zs that
sends y to x is a map of graded rings

krx, y, zs{py ´ x, x2q Ñ krx, zs{px2q

since it maps a into the ideal px2q. One verifies without difficulties that this is an isomorphism.

If S Ă R is a multiplicative system consisting of homogeneous elements, and M is a
graded module, the localization S´1M is naturally a graded R-module with degree n part
equal to

pS´1Mqn “ tm{s P S´1M | m P M homogeneous, s P S and degm´ deg s “ n u.
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9.2 The Proj construction 133

In particular, if f is a homogeneous element of positive degree, the localization Rf is a
(Z-graded) ring. As we will see, the degree 0 part pRf q0 will play a crucial role in the
Proj-construction.

Example 9.5. In the polynomial ring R “ Art0, . . . , tns, with the standard grading,
the elements of degree zero in the localization Rtj are polynomials in the monomials
t0t

´1
j , . . . , tnt

´1
j , so the piece of degree zero pRtj q0 is the polynomial ring

pRtj q0 “ A
”

t0

tj
, . . . ,

tn

tj

ı

.

Exercises

Exercise 9.1.1. Let a Ă krx, y, zs be the ideal pxy, xz, yzq. Show that A “ R{a is graded
ring and describe each homogeneous component An.

Exercise 9.1.2. A polynomial ring krt0, . . . , tns can be given a non-standard grading by
declaring the degree of each ti to be any given natural number di. For instance, give R “

krt0, t1s a grading by letting deg t0 “ 2 and deg t1 “ 3.
a) Describe the homogeneous pieces Rn of degree n;
b) Let krus have standard grading and define a map ϕ : R Ñ krus by the assign-

ments t0 ÞÑ u3 and t1 ÞÑ u2. Show that ϕ is a map of graded rings.
c) Describe the kernel and the cokernel of ϕ as graded modules.

Exercise 9.1.3. Show that an ideal a in a graded ring R is homogeneous if and only if it is
generated by homogeneous elements.

Exercise 9.1.4. Let R be a graded ring which is not necessarily positively graded. Assume
that a homogeneous element f of R is expressed as a combination f “

ř

aigi where the
gi’s are homogeneous. Show that f may be expressed as f “

ř

i bigi, where each bi is
homogeneous of degree deg f ´ deg gi. HINT: Homogeneous components are unique.

Exercise 9.1.5. Let R be a graded ring and p a homogeneous prime ideal. Show that pRpq0
is a local ring with maximal ideal equal to m “ t fg´1 | f P p, g P Sppq,deg f “ deg g u.

Exercise 9.1.6. Let R be a graded ring and p a homogeneous ideal in R. Show that p is
prime if and only if xy P p implies x P p or y P p for all homogeneous elements x and y.

Exercise 9.1.7. Let R and S be graded rings and ϕ : R Ñ S a map of graded rings. Show
that the inverse image ϕ´1p of an ideal p Ă S is homogeneous whenever p is.

Exercise 9.1.8. Let R a graded ring. Show R is Noetherian if and only if R0 is Noetherian
and R` is finitely generated.

9.2 The Proj construction

Motivated by the discussion of projective varieties in Chapter 1, where homogeneous ideals
play a fundamental role, we make the following definition:
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134 Projective schemes

Definition 9.6. LetR be a graded ring. We denote by ProjR the set of homogeneous
prime ideals ofR that do not contain the irrelevant idealR`. It is called the projective
spectrum of R.

We can endow ProjR with a topology by letting the closed sets be sets of the form

V paq “ t p P ProjR | a Ă p u

with a a homogeneous ideal. This topology is called the Zariski topology. The three topology
axioms follow from the identities in the next lemma. The proof is exactly the same as Lemma
2.2 for SpecR (the arguments there are not disturbed by the conditions that primes are
homogeneous and do not contain the irrelevant ideal); the key point is that sums, products
and radicals persist being homogeneous when the involved ideals are.

Lemma 9.7. Let a, b and taiuiPI be homogeneous ideals. Then:
(i) If a Ă b, then V pbq Ă V paq;

(ii) V p
ř

aiq “
Ş

V paiq;
(iii) V pabq “ V pa X bq “ V paq Y V pbq;
(iv) V p

?
aq “ V paq.

The reason behind the name ‘the irrelevant ideal’ is that V pR`q “ H, by definition. The
following lemma shows that when constructing the closed sets V paq, it suffices to work with
ideals contained in the irrelevant ideal. In fact, we can take a lying in any prescribed power
of the irrelevant ideal.

Lemma 9.8. Let a and I be homogeneous ideals in the graded ring R.
(i) If

?
I “ R`, it holds that V paq “ V pa X Iq;

(ii) V paq “ H if and only if R` Ă
?
a.

Proof Proof of (i): since V pR`q “ H, condition (iv) of Lemma 9.7 above implies that
V pIq “ H, and condition (iii) of the same lemma then gives that V paXIq “ V paqYV pIq “

V paq.
Proof of (ii): if R` Ă

?
a, it follows from (i) and (iv) of Lemma 9.7 that V paq “ H.

Conversely, assume that V paq “ H; or in other words, that R` Ă p for every homogeneous
prime ideal p with a Ă p. But then R` is contained in the intersection

Ş

p “
?
a, and hence

R` Ă
?
a.

Incidentally, we do not get more closed sets if we allow all ideals a and not just the
homogeneous ones. Any given ideal a has a corresponding ’homogenization’: the ideal
generated by all homogeneous components of the elements in a. This ’homogenization’
defines the exact same closed subset of ProjR as a itself. In fact, a homogenous prime ideal
contains a if and only if all homogenous components of elements in a lie in it. Consequently,
the Zariski topology on ProjR can simply be understood as the induced topology from
SpecR, via the inclusion ProjR Ă SpecR.
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9.2 The Proj construction 135

Distinguished open subsets

As for affine schemes, there are distinguished open sets in ProjR.

Definition 9.9 (Distinguished open sets). For each f P R which is homogeneous of
positive degree, we define the distinguished open set D`pfq as

D`pfq “ tp P ProjR | p S fu

In other words, D`pfq is the set of homogeneous prime ideals in R that do not contain
the irrelevant ideal R`, and do not contain f . It is clear that D`pfq is an open set, as the
complement of D`pfq equals the closed set V pfq.

The next result says that the distinguished open sets form a basis for the topology on
ProjR. This fact will be essential when we define the scheme structure on ProjR.

Lemma 9.10. Let R be a graded ring.
(i) If f and g are two homogeneous elements of positive degree, it holds

that D`pfq XD`pgq “ D`pfgq.
(ii) The D`pfq’s form a basis for the topology on ProjR when f runs

through the homogeneous elements of R of positive degree.

Proof The first part is clear by the definition of a prime ideal. The second follows as in the
affine case: V paq is the intersection of the V pfq’s for the homogeneous f P a X R`, so
ProjR ´ V paq is the union of the corresponding D`pfq’s. Hence every open set is a union
of sets of the form D`pfq.

Exercise 9.2.1. Let R be a graded ring and let f and tfiuiPI be homogenous elements from
R all of positive degree. Show that the distinguished open sets D`pfiq cover D`pfq if and
only if a power of f lies in the ideal generated by the fi’s.

Dehomogenization and homogenization

Recall that for a distinguished open setDpfq of an affine scheme SpecA, there is a canonical
homeomorphism betweenDpfq which associates a prime p P Dpfq with the prime ideal pAf .
In analogy with this, we will show below that the map p ÞÑ ppRf q0 defines a homeomorphism
between D`pfq and Spec pRf q0, where pRf q0 denotes the degree 0 part of the localization
Rf . Before embarking on the proof, let us see an example that illustrates the underlying
approach of the proof.

Example 9.11. As we saw in Chapter 1, the structure of Pnpkq as a variety is based on the
isomorphisms D`ptiq » Anpkq given by

pt0 : ¨ ¨ ¨ : tnq ÞÑ pt0{ti, . . . , 1, . . . , tn{tiq, (9.1)

(defined for ti ‰ 0). Therefore the most natural coordinates on D`ptiq are the n quotients
u1 “ t0{ti, . . . , un “ tn{ti (where we exclude the term ti{ti).

Let us for simplicity consider the case i “ 0. We would like to find a scheme analogue of
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the map (9.1) which works for prime ideals, not just closed points. This will involve passing
from the ring R “ krt0, . . . , tns to the degree 0 part pRt0q0 of the localization of Rt0 , that
is,

pRt0q0 “ krt1{t0, . . . , tn{t0s “ kru1, . . . , uns

If Gpt0, . . . , tnq P R is a homogeneous polynomial of degree d, we can consider its de-
homogenization with respect to ti, namely g “ t´d0 G. Note that g is a polynomial in the
u1, . . . , un and therefore defines a regular function on D`pt0q.

Conversely, given a polynomial g P kru1, . . . , uns, there is a straightforward way to make
it homogeneous, namely to consider G “ td0g where d “ deg g. This will almost always be
an inverse to the dehomogenization process. There is an exception however: any power td0
will dehomogenize to 1, and there is no way of recovering td0 without knowing d.

In any case, the dehomogenization process allow us to understand the homogeneous prime
ideals in R contained in D`pt0q. There is a map

D`pt0q Ñ SpecpRt0q0 (9.2)

which sends a homogeneous prime p to ppRf q0. Note that the latter is a prime ideal in pRf q0.
Concretely, if p “ pG1, . . . , Grq where each Gj is a homogeneous polynomial of degree di,
then in the localized ring Rt0 , we have

pRt0 “ pG1, . . . , Grq “ pt´d10 G1, . . . , t
´dr
0 Grq “ pg1, . . . , grq

where the gj’s are the dehomogenizations of the Gj . Moreover, as each gj has degree
zero, the above equality in fact holds in pRt0q0. Hence the dehomogenizations form the
generators for the ideal ppRt0q0 in pRt0q0. For instance, if p “ pt1 ´ a1t0, . . . , tn ´ ant0q,
the dehomogenization produces the maximal ideal pu1 ´ a1, . . . , tn ´ anq.

We would like to find an inverse to the map (9.2). Given a prime ideal q P kru1, . . . , uns,
say generated by g1, . . . , gr, one can consider the ideal generated by the homogenizations
of the gj’s. For instance, if q “ pu1 ´ a1, . . . , un ´ anq corresponds to a closed point in
Spec kru1, . . . , uns, homogenizing the generators gives pt1 ´ a1t0, . . . , tn ´ ant0q, which
indeed produces a closed point of Pnk contained in D`pt0q.

However, this idea does not quite work in general, as the homogenized ideals may fail
to be prime. For instance, the ideal of the affine twisted cubic curve pu2 ´ u2

1, u3 ´ u3
1q

homogenizes to

pt2t0 ´ t21, t3t
2
0 ´ t31q “ pt20, t0t1, t

2
1 ´ t0t2q X pt21 ´ t0t2, t1t2 ´ t0t3, t

2
2 ´ t1t3q (9.3)

The issue is caused by the first ideal, which is contained in pt0q. The fix is to consider instead
the ideal

a

qRt0 XR, which results in the second ideal in (9.3). In fact, ideals of the form
a

qRf XR are always prime in R, as we will see below. Once this is established, the map
q ÞÑ

a

qRt0 XR gives an inverse to the map (9.2) and we get a one-to-one correspondence
between all points of Ank and those in D`pt0q.

The general set up of the homeomorphism D`pfq » Spec pRf q0 follows the pattern in
the example. Basically one dehomogenizes elements of the ideals with respect to f (and
homogenizes to get them back). It is only slightly more involved for general rings, e.g.,
because f needs not have degree 1.
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9.2 The Proj construction 137

Proposition 9.12. Let R be a graded ring and let f P R be homogeneous of degree
d ě 1. There is a canonical map ϕ : D`pfq Ñ SpecpRf q0 defined by

ϕppq “ ppRf q0

This has the following properties:
(i) ϕ is a homeomorphism;

(ii) Open distinguished sets: for any homogeneous element g P R such that
D`pgq Ă D`pfq, letting u “ gdf´ deg g P pRf q0, we have

ϕpD`pgqq “ Dpuq;

(iii) Closed sets: if a Ă R is a homogeneous ideal, then we have that

ϕpV paq XD`pfqq “ V ppaRf q0q.

Proof Note that ϕ is the restriction of the map SpecRf Ñ SpecpRf q0 induced by the
inclusion pRf q0 Ă Rf . Therefore it is continuous. Once we have proved (iii), we can
conclude that it is also a closed map, hence a homeomorphism.

We begin by proving that ϕ has an inverse map ψ : SpecpRf q0 Ñ D`pfq defined by

q ÞÑ
a

qRf XR.

First of all, we should check that the ideal on the right is a homogeneous prime ideal in R.
The ideal qRf is in any case a Z-graded ideal of Rf . First we claim that pqRf q0 “ q. One
inclusion q Ă pqRf q0 is clear, as q Ă pRf q0. Conversely, pick an element g P pqRf q0 and
express it as a sum

g “ a1g1 ` ¨ ¨ ¨ ` argr

where the gi’s are elements from q and the ai’s are homogeneous elements from Rf whose
degree is deg ai “ deg g ´ deg gi (Exercise 9.1.4). But as both g and gi have degree zero,
we must have deg ai “ 0 as well. Therefore ai P pRf q0, and hence g P q.

Suppose that ab P qRf , with a and b homogeneous. Then

adbd{fdegpaq`degpbq P pqRf q0 “ q,

and since q is prime, either ad{fdegpaq P q or bd{fdegpbq P q. It follows that either ad P qRf
or bd P qRf . This shows that

a

qRf is a Z-graded prime ideal of Rf . Therefore
a

qRf XR
is a homogeneous prime ideal of R, and so ψ is well defined.

It remains to check that ψ is the inverse of ϕ. To prove that ψ ˝ ϕ “ idD`pfq, we first note
that for each homogeneous prime q Ă Rf , it holds that q “

a

q0Rf . Indeed, the inclusion
a

q0Rf Ă q is immediate. Conversely, let a P q be a homogeneous element. Then ad{fdeg a

has degree 0, and belongs to q0. It follows that a P
a

q0Rf . If p P D`pfq, this implies (with
q “ pRf ) that pRf “

a

ppRf q0Rf , and we see that p “
a

ppRf q0Rf XR “ ψpϕppqq.
The argument for why ϕ ˝ ψ “ idSpec pRf q0 is similar and is left to the reader.
Proof of (ii): let g P R be an element with D`pgq Ă D`pfq. Then for p P D`pfq, the
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following series of equivalences hold true because pRf is a prime ideal:

p P D`pgq ô gdf´ deg g R pRf

ô gdf´ deg g R ppRf q0 “ ϕppq.

Hence ϕpD`pgqq “ Dpuq.
Proof of (iii): Let p P V paqXD`pfq, so that a Ă p and f R p. Then paRf q0 Ă ppRf q0 “

ϕppq, which gives one of the inclusions. Conversely, given a prime ideal p Ă pRf q0 such
that paRf q0 Ă p, its preimage p1 “ p X R will be a homogeneous prime ideal in R not
containing f , and so paRf q0 Ă ϕpp1q “ pp1Rf q0. This completes the proof.

Proj as a scheme

We now explain the scheme structure on ProjR. For this, we need to define the structure sheaf
OProjR on ProjR, and check that the resulting locally ringed space is locally affine. The
construction of OProjR parallels that of the structure sheaf on SpecA, using distinguished
open sets in its definition.

Let B be the basis for the topology on ProjR consisting of the distinguished open subsets.
For each D`pfq, we set1

OpD`pfqq “ pRf q0. (9.4)

When f and g are homogeneous and Dpgq Ă Dpfq, the localization map Rf Ñ Rg will
preserve the gradings.2 Hence pRf q0 is mapped into pRgq0, and we may use the degree zero
part of the localization maps as restriction maps OpD`pfqq Ñ OpD`pgqq.

In this way, we obtain a B-presheaf O. We next show that this is a B-sheaf. If tD`pfiqu

is a finite cover of D`pfq, with the fi’s homogeneous, the distinguished open subsets Dpfiq
of SpecR will cover Dpfq, and consequently the standard sequence

0 Rf
ś

iRfi
ś

i,j Rfifj ,
α β

(9.5)

which is an exact sequence of graded R-modules, will be exact simply because OSpecR is a
sheaf. Taking degree zero parts is an exact operation, and applied to (9.5) it yields the exact
sequence

0 pRf q0
ś

ipRfiq0
ś

i,jpRfifj q0,
α0 β0 (9.6)

which exactly says that O is a B-sheaf. The structure sheaf OProjR on ProjR is then defined
to be the unique sheaf extension of O. This is a sheaf such that OProjRpD`pfqq “ pRf q0
over any distinguished open set.

According to Proposition 9.12 on the preceding page, there is a canonical homeomorphism
D`pfq » SpecpRf q0, which sends a distinguished open subset D`pgq Ă D`pfq to the
subset Dpuq Ă SpecpRf q0 where u “ gdeg ff´ deg g. Because u has degree zero, it holds
that pRgq0 »

`

pRf q0
˘

u
, which means that O restricts to the B-sheaf induced by the

1 There is a canonical localization which only depends on the open set D`pfq, see Section XXX.
2 As explained in Lemma 2.22, if Dpgq Ă Dpfq, it holds that gn “ cf for some c P R and some n ą 0, and the

localization map is given by af´r ÞÑ crag´nr , and this preserves degrees.
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9.2 The Proj construction 139

structure sheaf on SpecpRf q0. Hence OProjR restricts to OSpec pRf q0 . The locally ringed
space pProjR,OProjRq is therefore locally affine; in other words, it is a scheme.

Definition 9.13. For a graded ring R, we call the scheme pProjR,OProjRq the
projective spectrum of R.

The projective spectrum ProjR is in a natural way a scheme over SpecR0. The structure
map π : SpecR Ñ SpecR0 restricts to a continuous map on ProjR, which turns out
to be a morphism. To check this, it suffices to show that its restriction to D`pfq is a
morphism for each homogeneous f . Under the identification ϕ : D`pfq » Spec pRf q0 from
Proposition 9.12, this restriction turns into the composition π|D`pfq ˝ ϕ´1, which matches
the structure map Spec pRf q0 Ñ SpecR0. Precisely, we have that

ϕppq XR0 “ ppRf q0 XR0 “ p XR0.

Indeed, one inclusion is obvious, and if for some x P p it holds that y “ f´nx P R0, we
find that y lies in p since x “ fny lies there, but f does not.

Example 9.14 (Projective spaces again). Among the most prominent varieties are the pro-
jective spaces, and in Section 7.6 we constructed analogues PnA over any ring. These were
obtained by gluing together schemes shaped like prime spectra SpecArt0t

´1
i , . . . , tnt

´1
i s.

In the present general setting the PnA’s resurface as Proj’s of standard graded polynomial rings
Art0, . . . , tns.

Proposition 9.15. For each ring A and each non-negative integer n, it holds true that
PnA “ ProjArt0, . . . , tns.

Proof The only remark needed is that if R “ Art0, . . . , tns, it holds that D`ptiq “

pRtiq0 “ SpecRi with Ri “ Art0{ti, . . . , tn{tis; indeed, these are precisely the open
pieces joined together to form PnA, and the gluing data are also the same because the intersec-
tions D`ptiq XD`ptjq are equal to D`ptitjq “ Spec pRtitj q0, and

pRtitj q0 “ Rirti{tjs “ Rjrtj{tis.

Example 9.16. The scheme P0
A “ ProjArt0s merits a comment. In this case the structure

map is an isomorphism ProjArt0s » SpecA (so when A is a field, P0
A is just a point).

Indeed, since the irrelevant ideal Art0s` is generated by t0, it follows that ProjArt0s “

D`pt0q, and on the other hand, it holds that D`pt0q “ Spec pArt0st0q0, and pArt0st0q0 “

Art0, t
´1
0 s0 “ A.

Example 9.17. Consider R “ krx, ys{pxyq with the natural grading. Geometrically,
SpecR´V px, yq represents the union of the x- and y-axes, excluding the origin. Therefore,
we expect ProjR to consist of only two points. Besides the irrelevant ideal R` “ px, yq,
there are only two homogeneous prime ideals, pxq and pyq. Thus, ProjR indeed consists of
just two points.
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Here are some basic properties of ProjR:

Proposition 9.18 (Properties of Proj). Let R be a graded ring.
(i) If R is an integral domain, then ProjR is integral;

(ii) If R is reduced, then ProjR is reduced;
(iii) If R is Noetherian, then ProjR is a Noetherian scheme.
(iv) If R is of finitely generated as an R0-algebra, then ProjR is of finite

type over SpecR0.

Proof The two first properties can both be checked on an open affine cover, and ProjR
is covered by the open affines SpecpRf q0 with f P R`. Provided R is an integral domain
(or a reduced ring), the rings Rf are integral domains (or reduced rings), and pRf q0 being a
subring of Rf , the same holds for pRf q0.

For the third and fourth properties, note that whenR is Noetherian,R` is finitely generated,
say by elements f1, . . . , fr. Each of the the rings pRfiq0 are Noetherian, so ProjR is
covered by finitely many affine schemes SpecpRfiq0, and so it is Noetherian. Finally, if R is
finitely generated over R0, then so is each pRfiq0, as we will prove later in Lemma 9.39 on
page 150.

Example 9.19. When R is not Noetherian, it may very well happen that ProjR is not
quasi-compact. This is in stark contrast with the case of affine schemes; a prime spectrum
SpecA is always quasi-compact whatever the ring A is.

An explicit example is the polynomial ring R “ krt1, t2, . . . s in infinitely many variables.
Then ProjR is covered by the distinguished opens D`pt1q, D`pt2q, . . . , but this cover can
not be reduced to a finite one. (See also Exercise 2.5.6 on page 31.)

This situation is somewhat counterintuitive, given the usual heuristic that complex pro-
jective varieties (i.e. closed subsets of the compact space CPn) are compact, whereas affine
varieties (e.g. An or A1´0) are not. The explanation is that the usual notions of ‘compactness’
do not behave so well in the Zariski topology; there are other notions like ‘properness’ which
better capture the properties we want.

Exercises

Exercise 9.2.2. Let R be a graded ring and let he π : ProjR Ñ SpecR0 be the structure
map. Show that for each f P R0, the inverse image π´1Dpfq is isomorphic to ProjRf .

Exercise 9.2.3. Let R be a one-dimensional graded ring, with R0 “ k a field, and assume
that R is finitely generated as a k-algebra. Show that ProjR is a finite set. HINT: the
maximal ideal R` contains all homogeneous prime ideals.

Exercise 9.2.4. IfR is a graded integral domain, show that the function field ofX “ ProjR
is given by

kpXq “ t
g

h
| g P R, h P R,deg g “ deg h u Ă kpRq (9.7)

Exercise 9.2.5. Show that ProjR is empty if and only if every element in R` is nilpotent.
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Exercise 9.2.6. Give examples of a non-Noetherian graded ring R such that ProjR is
Noetherian, of an R that is not of finite type over a field k, but ProjR is, and an R which
is not an integral domain, but whose projective spectrum ProjR is integral. HINT: The
irrelevant ideal is irrelevant.

9.3 Functoriality

In contrast to the Spec-construction, the Proj-construction is not entirely functorial. A map
of graded rings ϕ : R Ñ S does not always induce a morphism between the projective
spectra ProjS and ProjR, because prime ideals in S might pull back to prime ideals in R
that contain the irrelevant ideal R`. However, discarding the badly behaved primes, we find
an open set where a morphism can be defined.

This is not the only functorial deficiency of the Proj construction. There are maps between
Proj’s that are not induced by maps of the graded rings (see for instance Proposition 9.26).

The base locus

Given a map of graded rings ϕ : R Ñ S, we introduce the base locus of ϕ as the closed set

Bspϕq “ V pϕpR`qq Ă ProjS.

Proposition 9.20. Let ϕ : R Ñ S be a map of graded rings. Then there is a morphism
of schemes

F : ProjS ´ Bspϕq ProjR,

which on the level of topological spaces is given by p ÞÑ ϕ´1p.

Proof As ϕ is a map of graded rings, ϕ´1p is a homogeneous prime ideal whenever p is
one.

Note that the set U “ ProjS ´ Bspϕq is open in ProjS and has a canonical scheme
structure. Moreover, if p P U , it holds by definition that R` ­Ă ϕ´1ppq, and ϕ´1p therefore
is a well-defined point of ProjR. Therefore, on the level of topological spaces, the map F is
well-defined, and continuous.

Next, we need a map of sheaves of rings OProjR Ñ F˚OU . We define this map using B-
sheaves on the open sets D`pfq. That is, we need to specify ring maps OProjRpD`pfqq Ñ

F˚OUpD`pfqq, one for each f P R homogeneous of positive degree, such that they are
compatible with the restrictions to D`pgq’s contained in D`pfq.

Now, there is a sheaf map OSpecR Ñ F˚OSpecS (abusing language, we let F also denote
the map between the Spec’s). In view of the equality F´1Dpfq “ Dpϕpfqq, this map when
restricted to Dpfq, is simply the localization map

OSpecRpDpfqq “ Rf OSpecSpDpϕpfqqq “ Sϕpfq. (9.8)

This is a map of Z-graded rings, and on the homogeneous pieces of degree zero it induces the
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desired map

OProjRpD`pfqq OProjSpD`pϕpfqqq “ OUpF´1D`pfqq. (9.9)

Since OSpecR Ñ F˚OSpecS is a map of sheaves, the maps in (9.8) coincide on intersections,
and the same then holds for those in (9.9). This concludes the proof.

Projections

Example 9.21 (Projection from a point). Consider the polynomial rings R “ Zrt0, t1s and
S “ Zrt0, t1, t2s, both equipped with standard grading, and the natural inclusion ι : R ãÑ S.
Then R` “ pt0, t1q Ă R and ιpR`qS “ pt0, t1qS, so the base locus is V pt0, t1q Ă ProjS.

The counterpart of this example in the world of varieties (that is, on k-points with k a field)
is the projection pa0 : a1 : a2q ÞÑ pa0 : a1q from P2pkq to P1pkq. The base locus consists of
the point p0 : 0 : 1q, where the projection is not defined.

Example 9.22 (Projection from a linear subspace). Generalizing Example 9.21, one may
project from any linear subspace of Pn “ ProjZrt0, . . . , tns; for instance, V pt0, . . . , trq.
The appropriate map of graded rings is then the inclusion Zrt0, . . . , trs ãÑ Zrt0, . . . , tns, and
the base locus equals the subscheme V pt0, . . . , trq Ă Pn. The projection is the corresponding
map

Pn ´ V pt0, . . . , trq Ñ Pt,

which on k-points acts by just keeping the r`1 first homogeneous coordinates and forgetting
the others.

Example 9.23. Consider the map ϕ : Zru, vs Ñ Zrx, ys of graded k-algebras defined
by the two assignments u ÞÑ xn and v ÞÑ yn where n is a natural number (to make
this a map of graded rings, we let u and v have degree n). The base locus Bspϕq equals
V pxn, ynq “ V px, yq, which is the empty subscheme of P1. Hence the map ϕ gives rise to
a morphism P1 Ñ P1. If k is an algebraically closed field, the map on k-points is given by
pa : bq ÞÑ pan : bnq.

Exercise 9.3.1 (Cremona transformation). Let A be a ring and consider the map of graded
rings ϕ : Zru0, u1, u2s Ñ Zrx0, x1, x2s defined by the three assignments ui Ñ xjxk where
the indices satisfy ti, j, ku “ t1, 2, 3u.

Determine the base locus Bspϕq and describe the k-points of V pBspϕqq when k is a field.

Closed embeddings

If a is a homogeneous ideal in the graded ring R, the quotient map ϕ : R Ñ R{a is a map of
graded rings, and it holds that ϕpR`q “ pR{aq`. The base locus Bspϕq is therefore empty,
and the corresponding map of schemes is defined everywhere. Hence we obtain a morphism

ι : ProjR{a Ñ ProjR

whose image is V paq. We contend that ι is a closed embedding. It will suffice to verify
this on an open cover of ProjR, so let f P R be a homogeneous element. It holds that
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ι´1D`pfq “ D`pϕpfqq, and the restriction of ι to ι´1D`pfq may be identified with the
morphism

Spec ppR{aqϕpfqq0 Ñ Spec pRf q0

induced by the degree zero part of the localization Rf Ñ pR{aqf of ϕ. But the latter is
obviously surjective, and we infer that ι|ι´1D`pfq is a closed embedding. In fact, under mild
assumptions on the graded ring R, every closed embedding into ProjR arises in this way, as
we shall prove in Chapter ??.

Example 9.24 (Homogeneous coordinates). In Chapter 1, we saw that over an algebraically
closed field k, the points a P Pnpkq have homogeneous coordinates a “ pa0 : ¨ ¨ ¨ : anq, and
that the homogeneous prime ideal corresponding to a is generated by the 2 ˆ 2-minors of the
matrix

ˆ

t0 t1 . . . tn
a0 a1 . . . an

˙

. (9.10)

There is an analogue of this for projective spaces over any ring A. For an pn ` 1q-tuple
a “ pa0, . . . , anq of elements of A so that the a0, . . . , an generate the unit ideal in A, we
can construct the subscheme ProjpR{aq of PnA defined by the same equations as above, i.e.,
the homogeneous ideal

a “ paitj ´ ajti |0 ď i, j ď nq. (9.11)

in the ring R “ Art0, . . . , tns. We claim that the structure map π : PnA Ñ SpecA restricts
to an isomorphism ProjpR{aq Ñ SpecA. Taking the inverse, we obtain an A-point σa :
SpecA Ñ PnA. This is even an A-point over A, meaning that π ˝ σa “ idSpecA, so in other
words, σa is a ‘section’ of π.

As the ai generate the unit ideal, the distinguished open sets Dpaiq cover SpecA. It
will therefore suffice to see that the restriction π|π´1Dpaiq is an isomorphism for every i. By
Exercise 9.2.2, π´1Dpaiq “ Proj ppR{aqaiq, so replacing A by Aai , we may assume that
one of the ai’s, say a0, is invertible in A. Since a0ti ´ ait0 belongs to a, we deduce that
ti ´ aia

´1
0 t0 P a, and hence Art0, . . . , tns{a “ Art0s. By Example 9.16, it follows that the

structure map restricts to an isomorphism on V paq.
If we multiply all the ai by a unit λ P A, this does not change the ideal a, and hence we

get the same A-point σa : A Ñ PnA. It is therefore natural to use the notation pa0 : ¨ ¨ ¨ : anq

for the A-point σa.
It is not true in general that all A-points of PnA are of the ‘homogeneous coordinate form’

pa0 : ¨ ¨ ¨ : anq. However, locally near each point of SpecA, they are, so in particular if A is
a local ring (e.g. a field) it is true. Later we shall give a general description of morphisms into
projective spaces.

Lemma 9.25. Assume that A is a local ring. Then every section SpecA Ñ PnA of
the structure map is given by pa0 : ¨ ¨ ¨ : anq where at least one ai is a unit. Another
such tuple pa1

0 : ¨ ¨ ¨ : a1
nq gives the same map if and only if a1

i “ λai for a unit
λ P A.

Proof Assume that a section σ : SpecA Ñ PnA of the structure map is given. Then the
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image of the closed point of SpecA lies in D`ptνq for some ν. This means that σ induces
a map σ7 of rings from Art0t

´1
ν , . . . , tnt

´1
ν s to A; the images ai “ σ7ptit

´1
ν q are elements

in A and pa0 : ¨ ¨ ¨ : 1 : ¨ ¨ ¨ : anq, with the ‘one’ in the ν-th slot, will be the homogeneous
coordinates giving the desired section.

Exercise 9.3.2. Let A be ring and σ : SpecA Ñ PnA a section of the structure map PnA Ñ

SpecA. Let x P SpecA be a point. Show that there is an open affine neighbourhood
U “ SpecA1 of x and elements a1

i in A1 such that σ|U “ σa1 with a1 “ pa1
0, . . . , a

1
nq.

The Veronese embedding

As we mentioned in the introduction, a significant difference between the Proj-construction
and the Spec-construction, is that many different graded rings can lead to isomorphic Proj’s.
The Veronese embeddings provide infinitely many examples; for any natural number d, the
schemes ProjR and ProjRpdq are isomorphic, but the rings R and Rpdq are typically not
isomorphic. These also provide examples of morphisms between Proj ’s that are not induced
by graded ring maps.

Let R be a graded ring and let d be a positive integer. In Example 9.3 we introduced the
Veronese ring Rpdq associated with R as the ring

À

nRdn. In this section we aim at showing
that the inclusion ϕ : Rpdq Ñ R induces an isomorphism

vd : ProjR ÝÝÑ ProjRpdq.

First, let us check that vd is a morphism. The irrelevant ideal of Rpdq is generated by all
elements in R whose degree is positive and divisible by d. Note that ϕpR

pdq

` q defines the
empty set, since any prime p Ă R such that R` X Rpdq Ă p must contain all of R`: if
a P R`, it holds that ad P R` X Rpdq, and so a P p as well. The map vd is called the
Veronese embedding, or the d-uple embedding of ProjR.

Proposition 9.26. The Veronese embedding vd is an isomorphism.

Proof The key observation is that for a homogeneous element f P R` the inclusion
Rpdq Ă R induces an equality of the degree 0 parts of the localizations

pR
pdq

fd q0 “ pRf q0. (9.12)

The inclusion pR
pdq

fd q0 Ă pRf q0 is clear. Conversely, let g{f s P pRf q0, and write it as
g{f s “ gf t{f s`t where t ě 0 is such that s` t is divisible by d. From deg g “ sdeg f , it
holds that g{f s P pR

pdq

f q0q, so we have the opposite inclusion as well.
Consequently the morphism vd restricts to an isomorphism over open subschemesD`pfq »

D`pfdq, illustrated with the commutative diagram

ProjR ProjRpdq

D`pfq D`pfdq.

vd

»
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As f runs over the elements ofR`, the distinguished opensD`pfdq cover ProjRpdq. Indeed,
letting I be the ideal in Rpdq generated by all d-powers fd for f P R`, we have R` Ă

?
I ,

and so
Ş

fPR`
V pfdq “ V

`
?
I
˘

“ H by Lemma 9.8.
This means that vd restricts to an isomorphism of schemes over an open covering of

ProjpRpdqq, and hence it is an isomorphism.

Example 9.27 (Veronese varieties). Consider the maps Pnpkq Ñ PNpkq given by a basis
for the space of homogeneous forms of degree d in the polynomial ring R “ krx0, . . . , xns

(so N ` 1 is the dimension of that space). For instance, the map P2pkq Ñ P5pkq that acts on
a point with homogeneous coordinates px0 : x1 : x2q as

px0 : x1 : x2q ÞÑ px2
0 : x0x1 : x0x2 : x

2
1 : x1x2 : x

2
2q,

is one of the sort. Its image is the famous Veronese surface, which we met already in
Example 1.43 in Chapter 1.

v2

P2
V

To describe a Veronese embedding in the Proj-terminology and in an absolute setting, let
tMiu1ďiďN be the set of monomials of degree d in Zrx0, . . . , xns, and define a map of
graded rings

Zrt0, . . . , tN s Ñ Zrx0, . . . , xns “ R

by sending a variable ti to the monomial Mi. The image of this map is precisely the Veronese
ring Rpdq, and therefore it induces, according to Section 9.3, a closed embedding of Pn “

ProjRpdq into ProjR “ PN .

Example 9.28 (Rational normal curves). The rational normal curves from Example 1.42 in
Chapter 1 are other examples of Veronese embeddings. In that case n “ 1, and the absolute
version of the embedding P1 ãÑ Pd is given by the surjection

Zrt0, . . . , tds Ñ Zrx0, x1s

ti ÞÑ xd´i
0 xi1.

This example has appeared several times before. For d “ 2, the map v2 embeds P1 as the
conic V pt21 ´ t0t2q in P2

k.
For d “ 3, the image of v3 is the projective twisted cubic curve V pIq Ă P3 from Example

XXX.

Example 9.29. The rational normal curve of degree d “ 4 is also interesting. The image C
of the map v4 : P1

k Ñ P4
k is defined by the 2 ˆ 2-minors of the matrix

ˆ

t0 t1 t2 t3
t1 t2 t3 t4

˙
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Let us consider the map P1
k Ñ P3 defined by the four monomials u4, u3v, uv3, v4. Writing

t0, t1, t3, t4 for the coordinates on P3
k, the image X is defined by ideal

I “
`

t1t3 ´ t0t4, t
3
3 ´ t1t

2
4, t0t

2
3 ´ t21t4, t

3
1 ´ t20t3

˘

In terms of varieties, one can say that X arises as the projection of the rational normal curve
from the point p0 : 0 : 1 : 0 : 0q.

Exercise 9.3.3. Show that the inverse of νd is not induced by a map of graded rings R Ñ

Rpdq.

Cones

Let R be a graded ring which generated over R0 by finitely many elements t0, . . . , tn. Then
there is a morphism of schemes

π : SpecpRq ´ V pR`q ÝÝÑ ProjR

which generalizes the usual quotient construction of Pn from An`1
k ´ V pt0, . . . , tnq. This

morphism is constructed from the maps of affine schemes SpecpRf q Ñ SpecppRf q0q,
which one can check glue to the morphism π.

The affine scheme SpecpRq is called the affine cone of X “ ProjR, and it is commonly
denoted by CpXq. The origin V pt0, . . . , tnq defines a closed point in CpXq, called the
vertex of the cone.

The schemes X and CpXq share a relationship similar to that of Pnk and An`1
k .

On the level of k-points, the map π sends pa0, . . . , anq to the associated point in X with
homogeneous coordinates pa0 : ¨ ¨ ¨ : anq. (See Exericse 9.4.7 for a discussion on non-closed
points.)

Example 9.30. Consider the ring R “ Zrx0, x1, x2s{px2
0 ` x2

1 ´ x2
2q. The affine cone

SpecR represents a quadric surface in A3
Z defined by the equation x2

0 ` x2
1 “ x2

2. It is
therefore a cone in the usual since, at least on the level of R-points.

To the graded ring R one can also form the projective cone defined by ProjpRrtsq where
we adjoin an extra variable t of degree 1. Note that

Dptq “ Spec
`

Rrt, t´1s
˘

0
» SpecR

This means that the affine cone SpecR embeds as an open subset of the projective cone.
The complement of this open set is given by V ptq. Note that ProjR embeds as the closed
subscheme

ProjpRrts{ptqq Ď ProjRrts.

Example 9.31.

Weighted projective spaces

Our main source of examples will be the weighted projective spaces, which are defined in
terms of polynomial rings with non-standard gradings:
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Definition 9.32. For a ring A and a sequence d0, . . . , dn of natural numbers, we
define the weighted projective spacever A as

PApd0, . . . , dnq “ ProjArt0, . . . , tns

where deg ti “ di for each i.

While this definition resembles that of a traditional projective space (where all di are equal
to 1), the weighted projective spaces give a surpringly diverse and rich class of examples.

One of the benefits of weighted projective spaces is that they provide concrete models
for projective schemes. If R is generated by elements t0, . . . , tn, of degrees d0, . . . , dn
respectively, there is a graded surjection

R0rt0, . . . , tns Ñ R

and henceProjR embeds as a closed subscheme of the weighted projective space Ppd0, . . . , dnq

over R0. See Example 9.35 for a concrete example.

Example 9.33 (The weighted projective spaces Ppp, qq). Let k be a field and p and q two
relatively prime numbers. Consider the polynomial ring R “ krx, ys with grading given by
deg x “ p and deg y “ q. We claim that ProjR » P1

k.
The idea is to consider the Veronese subring Rpdq where d “ pq. Observe that the

homogeneous elements in Rpdq are linear combination of monomials xαyβ with pα ` qβ “

dn. Hence q divides α and p divides β and so α1 ` β1 “ n with α “ qα1 and β “ pβ1.
If we consider the polynomial ring kru, vs where the grading where u and v have degree

d, there is a graded ring map ϕ : kru, vs Ñ Rpdq which sends u Ñ xq and v Ñ yp. ϕ is
clearly injective, because xq and yp are algebraically independent. It is also surjective: we
just saw that pRpdqqdn has a basis consisting of the monomials xqαypβ with α ` β “ n;
these are the images of the monomials uαvβ in A. (See also Exercise 9.4.2.) From this we
conclude that ϕ induces an isomorphism

ProjR » ProjRpdq » Proj kru, vs “ P1
k.

Example 9.34 (The weighted projective space Pp1, 1, dq). We begin with a polynomial ring
R “ krx, y, zs endowed with the grading deg x “ deg y “ 1 and deg z “ d for some
natural number d. We consider the weighted projective space Pp1, 1, dq “ Proj krx, y, zs.

The scheme Pp1, 2, 3q has a cover consisting of the three open affine subschemes D`pxq,
D`pyq and D`pzq. Both D`pxq and D`pyq are isomorphic to the affine plane A2

k: it is
straightforward to verify that pRxq0 “ kryx´1, zx´ds and pRyq0 “ krxy´1, zy´ds, and
that these are isomorphic to polynomial rings.

However, the third distinguished open affineD`pzq is different. The monomials xd´iyiz´1,
for 0 ď i ď d, are clearly homogeneous elements of degree zero in Rz, and it is readily
verified that they generate pRzq0, so that

pRzq0 “ krxd´iyiz´1 | 0 ď i ď ds.

Let us take a closer look at the map induced by the (degree preserving) inclusion S “

krx, ys ãÑ krx, y, zs “ R. Its corresponding base locus is the closed set V px, yq which is
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just a closed point p. Hence we have a map of schemes

f : Pp1, 1, dq ´ tpu ÝÝÑ P1
k.

Note that Pp1, 1, dq ´ tpu is covered by the open sets D`pxq and D`pyq, both isomorphic
to A2

k. One checks that f |D`pxq maps D`pxq Ă Pp1, 1, dq into A1
k “ D`pxq Ă P1

k, and
similarly for D`pyq. Moreover, when restricted to each of the A2

k’s, f is given by the
projection onto the first coordinate axis.

Now, D`pxq “ Spec kryx´1, zx´ds and D`pyq “ Spec krxy´1, zy´ds are two copies
of A2

k glued together over the distinguished open sets Dpyx´1q and Dpxy´1q respectively.
Over the overlaps, the gluing map is given by multiplication by xd{yd. So we recognize
f : X ´ tpu Ñ P1

k as being the line bundle Ld from Section 7.7.

Example 9.35. Recall the hyperelliptic curves from Example XXX. These were defined in
terms of a homogeneous polynomial fpx0, x1q of degree 2d. The equation y2 “ fpx0, x1q

does not define a closed subscheme in P2
k, but it does so in the projective space Pp1, 1, dq “

Proj krx0, x1, ys (where y has degree d). In fact, the curve in Example XXX is isomorphic
to the closed subscheme X defined by y2 ´ fpx0, x1q.

Note that Pp1, 1, dq has an affine covering consisting of three open sets, D`px0q, D`px1q

and D`pyq. For the subscheme X however, only two are needed, because X is contained in
D`px0q XD`px1q “ Pp1, 1, dq ´ V px0, x1q.

Example 9.36. Consider the weighted projective space Pp1, 2, 3q “ ProjpRq, where R “

kru, v, ws with degpuq “ 1, degpvq “ 2, degpwq “ 3. Then

Rp6q “ kru6, v3, w2, u4v, u3w, u2v2, uvws

is generated by its degree six part as an an k-algebra. We therefore get a closed embedding
Pp1, 2, 3q Ñ P6

k. See Exercise 9.4.6 for more on the affine covering of Pp1, 2, 3q.

Two blow-ups

Example 9.37 (The blow-up of the plane as a Proj). Consider the polynomial ring A “

krx, ys and the ideal I “ px, yq. Let R be the graded ring

R “
à

iě0

I iti,

where as indicated, the graded piece of degree i equals I iti. The irrelevant ideal R` is
generated by xt and yt, and consequently ProjR is the union of the two open affine
subschemes SpecpRxtq0 and SpecpRytq0.

Note that there is a map of graded rings ϕ : Aru, vs Ñ R, where both u and v are of degree
one, given by the assignments u ÞÑ xt and v ÞÑ yt. This is surjective since I is generated by
x and y. Note also that the kernel contains the element xv ´ yu, and by Exercise 9.4.4

R » Aru, vs{pxv ´ yuq. (9.13)

From this description we see that ProjR is covered by the two distinguished open sets
D`puq “ SpecpRuq0 and D`pvq “ SpecpRvq0, and it holds that pRuq0 » krx, vu´1s
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and pRvq0 » kry, uv´1s. These are glued together along their intersection, which equals
SpecpRuvq0 » pAru, vsuv{pxv ´ yuqq0, and one finds

pAru, vsuv{pxv ´ yuqq0 “ krx, y, uv´1, vu´1s{pxvu´1 ´ yq » krx, uv´1, vu´1s.

Thereforem ProjR coincides with the previous blow-up construction in Section 7.5 on
page 97.

Example 9.38 (A general blow-up). The previous examples is a specific example of a very
general construction. Let A be a ring and let a be an ideal in A. Consider the graded ring

R “
à

iě0

aiti,

where t is a variable, i.e. R is the subring Arts of polynomials
ř

iě0 ait
i with ai P ai. In the

ring R, t has degree 1 whereas the elements of A have degree 0. As R0 “ A, ProjR is a
scheme over SpecA with structure morphism

π : ProjR SpecA,

(this was introduced just after Definition 9.13 on page 139). We claim that π is an isomorphism
outside the closed subset π´1V paq, and so π merits to be called the ‘blow up’ of V paq. Indeed,
if f P a, it holds that aAf “ Af and consequently aiAf “ Af for all i. Therefore, we have
the equality Rf “ Af rts. By Exercise 9.2.2 and Example 9.16, we then find that π induces
an isomorphism

π´1Dpfq “ ProjRf “ ProjAf rts » SpecAf “ Dpfq.

9.4 Rings generated in degree one

We will often work with the assumption that the graded ring R is generated in degree one;
that is, R is generated as an R0-algebra by the elements from R1. This is the same thing as
saying that there is surjective map of graded rings

R0rt0, . . . , trs ÝÝÑ R,

where R0rt0, . . . , trs is a polynomial ring with standard grading; in other words, that ProjR
admits an embedding as a closed subscheme of PrR0

.
When considering such rings, many arguments become simpler, as the grading more

closely resembles the standard grading. For instance, one can say that ProjR will be covered
by open affine subschemes of the form D`ptq where t is of degree one.

The assumption that R is generated in degree one is in fact not very restrictive. If R is
a finitely generated as an algebra over R0, then its Proj is isomorphic to the Proj of a ring
generated in degree 1. This is because, for finitely generated R, some Veronese subring
Rpdq will have all generators in a single degree. Since ProjRpdq is isomorphic to ProjR,
replacing R with Rpdq doesn’t alter the Proj (see Exercise 9.4.2 below).

Here is a basic lemma which will be useful in Chapter 16. It basically says that, when f
has degree one, going to distinguished open D`pfq is the same thing as ‘setting f equal to
1’.
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Lemma 9.39. Let R be a graded ring and let f P R be homogeneous of degree one.
Then there is a canonical isomorphism pRf q0 » R{pf ´ 1qR.

Proof There is a well defined mapRf Ñ R{pf ´1qR that sends xfn to the class of x, and
our map will be its restriction to pRf q0. It is surjective, because every element inR{pf´1qR
is a sum of homogeneous elements and, when x is homogeneous, the element xf´ deg x maps
to the class of x. Assume then that xf´ deg x maps to zero, which means that x “ pf ´ 1qy
for some y. Letting y “

ř

sďiďt yi be the expansion of y in homogeneous components, with
ys and yt non-zero, we find

x “ ´ys `

t´1
ÿ

i“s

pfyi ´ yi`1q ` fyt.

Since ys ‰ 0, it not only holds that x “ ´ys, but also that fyi “ yi`1 and fyt “ 0. A
straightforward induction yields that 0 “ fyt “ f t´s`1ys “ ´f t´s`1x, and so x is killed
by a power of f and therefore vanishes in Rf .

Exercises

Exercise 9.4.1. Show that Pp1, . . . , 1, dq is isomorphic to the cone over the Veronese variety
Vn,d.

Exercise 9.4.2. Let ttiu be a finite set of generators for the graded ringR and let di “ deg ti.
a) Let D be the least common multiple of the di and set Di “ D{di. Show that

the Veronese ring RpDq is generated by elements of degree D.
b) Show that ProjR embeds as a closed subscheme of the weighted projective

space PR0
pd0, . . . , dnq over R0.

Exercise 9.4.3. Let x and y be two points in Pnk . Prove there is an open affine U Ă Pnk
containing both x and y.

Exercise 9.4.4. Show that equation (9.13) holds.

Exercise 9.4.5 (The weighted projective space Pp1, 1, pq). Let R be as in the Example 9.34
above, and let A “ krx, y, ws with the usual grading. Furthermore, let α : R Ñ A be the
map of graded rings that sends z to wp, while leaving x and y unchanged.

a) Show that α is a map of graded rings and induces a morphism π : P2
k Ñ ProjR.

b) Describe the fibres of π over closed points in case k is algebraically closed.

Exercise 9.4.6. Let R “ krx, y, zs be the polynomial ring with grading given by deg x “ 1,
deg y “ 2 and deg z “ 3, and consider ProjR (which also is denoted Pp1, 2, 3q). The aim
of the exercise is to describe the three covering distinguished subschemes D`pxq, D`pyq

and D`pzq.
a) Show that pRxq0 “ kryx´2, zx´3s and that D`pxq » A2

k.
b) Show that pRyq0 » krx2y´1, z2y´6, xzy´2s. Show that the map of graded

rings kru, v, ws Ñ pRyq0 given by the assignments x ÞÑ yx´2, v ÞÑ z2y´6

and w ÞÑ xzy´2 induces an isomorphism kru, v, ws{pw2 ´ uvq » pRyq0.
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HenceD`pyq is a hypersurface in A3
k; the so-called ‘cone over a quadric’. Show

it is not isomorphic to A2
k (check the local ring at the origin).

c) Show that Rz “ krx3z´1, y3z´2, xyz´1s and that the map kru, v, ws Ñ

pRzq0 defined by the assignments x ÞÑ x3z´1, v ÞÑ y3z´2 and w ÞÑ xyz´1

induces an isomorphism kru, v, ws{pw3 ´ uvq » pRzq0. Show that it is not
isomorphic to A2

k.
d) Show that the map R Ñ krU, V,W s sending x ÞÑ U , y Ñ V 2 and z ÞÑ W 3

induces a map P2
k Ñ ProjR, and describe the fibres over closed points.

Exercise 9.4.7. Let R “ krx0, x1s where k is a field, and consider the morphism

π : SpecR ´ V px0, x1q Ñ P1
k “ ProjR

from page ??
a) Show that π maps a k-point pa, bq to pa : bq
b) Show that π maps each height 1 prime p “ pfpx0, x1qq to the generic point in

P1
k.
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10

Fibre products

10.1 Introduction

The fact that fibre products exist is one of the most important properties of the category of
schemes, and one can argue that it is the definitive reason for transitioning from varieties to
schemes; the fibre product of two varieties is in general not a variety, but it is a scheme.

The general fibre product is moreover extremely useful in many situations and takes on
astonishingly versatile roles. At the end of the chapter we shall explain some of the various
contexts where fibre products appear, including base change and scheme theoretic fibres.

We begin the chapter by recalling the definition of the fibre product of sets, then transition
into a very general situation to discuss fibre products in general categories, and then finally,
return to the context of schemes. We will construct the fibre product first when X , Y and
S are affine schemes, and subsequently, by using several gluing constructions, show that it
exists in general. The majority of the chapter will be devoted to going through the steps of
this gluing procedure. Towards the end, we will treat the main applications and see a series of
examples.

Fibre products of sets.

As a warm-up, we recall the fibre product in the category of sets. Given two maps of sets
fX : X Ñ S and fY : Y Ñ S, their fibre product X ˆS Y is the subset of the Cartesian
product X ˆ Y consisting of the pairs whose components have the same image in S; that is,

X ˆS Y “ t px, yq | fXpxq “ fY pyq u.

Phrased differently, the fibre product is the union of the products f´1
X psq ˆ f´1

Y psq as s
runs through S, and this is the reason for the name ‘fibre product’; the fibres of the map
X ˆS Y Ñ S are the products of the fibres of the two maps fX and fY .

The fibre product fits into the commutative diagram below, where pX and pY denote the
two projections pXpx, yq “ x and pY px, yq “ y:

X ˆS Y Y

X S.

pY

pX fY

fX

(10.1)

One also says that this diagram is a Cartesian diagram or a Cartesian square.
The fibre product enjoys the following universal property. Given two maps gX : Z Ñ X

152
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and gY : Z Ñ Y such that fX ˝ gX “ fY ˝ gY , there is a unique map g : Z Ñ X ˆS Y
satisfying pX ˝ g “ gX and pY ˝ g “ gY . Indeed, just let g have components gX and gY ;
that is, put gpzq “ pgXpzq, gY pzqq. The situation is described with the commutative diagram

Z

X ˆS Y Y

X S,

g

gY

gX

pY

pX fY

fX

(10.2)

where as usual the dashed arrow indicates a map required to exist.

Exercise 10.1.1. With the notation as above, show that:
a) If Y is a subset of S and fY is the inclusion, then X ˆS Y equals the preimage
f´1
X pY q;

b) If also X is a subset of S, more strikingly, the fibre product X ˆS Y will be
equal to the intersection X X Y ;

c) When S has one element, X ˆS Y is just the usual Cartesian product X ˆ Y .

The fibre product in general categories

The notion of a fibre product, formulated as the solution to a universal problem as above, is
meaningful in any category C. Although our main concern will be the category of schemes,
we give the definition in a general setting:

Definition 10.1 (Fibre product). A fibre product of two arrows fX : X Ñ S and
fY : Y Ñ S from a category C, is a triple consisting of an object X ˆS Y and
two arrows pX : X ˆS Y Ñ X and pY : X ˆS Y Ñ Y which have the following
universal property:
For any two arrows gX : Z Ñ X and gY : Z Ñ Y in C such that fX ˝gX “ fY ˝gY ,
there is a unique arrow g : Z Ñ X ˆS Y satisfying pX ˝ g “ gX and pY ˝ g “ gY .

The universal property may naturally be expressed through commutative diagrams, like
we did in (10.2) for sets, and the notions of Cartesian diagrams and Cartesian squares are
carried over to any category.

When the fibre product exists, it is unique up to a unique isomorphism, as is true for
solutions to any universal problem. However, it is a good exercise to check this in detail in
this specific situation. The precise meaning is that if we have two products, say W and W 1,
then there is exactly one isomorphism θ : W Ñ W 1 respecting the projections; that is, one
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that makes the diagram below commutative:

W

X Y.

W 1

pX

θ

pY

p1
Yp1

X

For this reason, we allow ourself to speak about the fibre product.
It is not so hard to come up with examples of categories where fibre products do not

exist. For instance, the fibre product does not exist in the familiar ‘geometric’ category of
differentiable manifolds, neither does it in the category of affine varieties. This is yet another
reason why we need to make the transition from varieties to schemes.

In the addition to the set up above, assume we are given two arrows f : Z Ñ X and
g : W Ñ Y in the category C. Composing f with fX , respectively g with fY , we obtain
arrows Z Ñ S and W Ñ S, and so the fibre product Z ˆS W is meaningful. The
compositions f ˝ pZ and g ˝ pW are arrows from Z ˆS W to respectively X and Y , and
the universal property of the fibre product implies that there is an arrow f ˆ g : Z ˆS W Ñ

X ˆ Y such that pX ˝ pf ˆ gq “ f and pY ˝ pf ˆ gq “ g.

10.2 Fibre products of schemes

A fundamental property of the category of schemes is that fibre products exist. Most of this
chapter is devoted to proving this.

Theorem 10.2 (Existence of fibre products). Let X Ñ S and Y Ñ S be schemes
over a scheme S. Then the fibre product X ˆS Y exists.

The projections from the fibre product to X and Y will frequently be denoted by pX and
pY respectively.

When the base scheme S is affine, say S “ SpecA, the fibre product X ˆS Y will
sometimes be denoted by X ˆA Y .

The proof of the theorem consists of a series of reductions to the affine case, and the affine
case is settled by means of the tensor product. The reductions rely heavily on the gluing
techniques developed in Chapter 6.

One cannot construct the fibre product X ˆS Y by defining a structure sheaf on the fibre
product of the sets. In fact, as several later examples will show, the underlying set of a product
of schemes can be very different from the product of the underlying sets of X and Y . This
may sound counterintuitive at first, but is in fact a typical feature of the fibre products of
schemes (see the examples in Section 10.3).

Products of affine schemes

We start by the constructing fibre products of affine schemes. The main observation is that
the category of affine schemes is equivalent to the category of rings with arrows reversed,
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and that the tensor product of algebras enjoys a universal property dual to the one of the fibre
product.

To be precise, assume that B1 and B2 are A-algebras, i.e. we have maps of rings αi : A Ñ

Bi for i “ 1, 2. There are maps βi : Bi Ñ B1 bAB2 that respectively send b1 P B1 to
b1 b 1 and b2 P B2 to 1b b2. These are both ring maps as bb1 b 1 “ pbb 1qpb1 b 1q and
1b bb1 “ p1b bqp1b b1q. Moreover, they fit into the commutative diagram

B1 bAB2 B2

B1 A

β2

β1

α1

α2 (10.3)

because α1paq b 1 “ 1b α2paq by definition of the tensor product B1 bAB2 (this is the
significance of the tensor product being taken over A; one can move elements coming from
A from one side of the b-glyph to the other).

Moreover, the tensor product is universal among diagrams such as (10.3). More presisely,
assume that γi : Bi Ñ C are maps of A-algebras, i.e. γ1 ˝ α1 “ γ2 ˝ α2; or phrased
differently, they fit into a commutative diagram analogous to (10.3), but with the βi’s replaced
by the γi’s. The association b1 b b2 Ñ γ1pb1qγpb2q is A-bilinear and hence extends to an A-
algebra homomorphism γ : B1 bAB2 Ñ C , which obviously has the property γ ˝ βi “ γi,
as expressed in the following commutative diagram:

C

B1 bA B2 B2

B1 A.

γ

β2

γ2

β1

γ1
α2

α1

(10.4)

Applying the Spec-functor to (10.3), we arrive at the diagram

SpecpB1 bAB2q SpecB2

SpecB1 SpecA,

p2

p1 (10.5)

and SpecpB1 bAB2q enjoys the property of being universal among affine schemes sitting
in a diagram like (10.5). Hence SpecpB1 bAB2q equipped with the two projections p1 and
p2, serves as the fibre product in the category AffSch of affine schemes. One even has the
stronger statement: it is the fibre product in the larger category Sch of schemes.

Proposition 10.3. Given morphisms fi : SpecBi Ñ SpecA for i “ 1, 2. Then the
spectrum SpecpB1 bAB2q with the two projection p1 and p2 defined as above, is a
fibre product of the SpecBi’s in the category Sch.

Unravelled, the conclusion reads: ifZ is any scheme and gi : Z Ñ SpecBi are morphisms
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with f1 ˝ g1 “ f2 ˝ g2, there exists a unique morphism g : Z Ñ SpecpB1 bAB2q such that
pi ˝ g “ gi for i “ 1, 2.

Proof To check the universal property, we rely on Theorem 6.5 about maps into affine
schemes. The morphisms gi give maps of A-algebras Bi Ñ OZpZq. By the universal
property of the tensor product, these induce a map of A-algebras B1 bA B2 Ñ OZpZq,
which in turn gives the desired map g : Z Ñ SpecpB1 bA B2q of schemes over SpecA by
Theorem 6.5. By construction, this map satisfies pi ˝ g “ gi for i “ 1, 2, and it is unique by
the uniqueness part of Theorem 6.5 and the universal property of the tensor product.

Products of general schemes

Recall that any open subset U of a scheme X has a canonically defined scheme structure as
an open subscheme with the structure sheaf being the restriction OX |U . Hence, if f : X Ñ Y
is any morphism and V Ă Y is an open subscheme, the inverse image f´1V is an open
subscheme of X , and any morphism g : Z Ñ X such that f ˝ g factors through V , will
factor through f´1V .

Lemma 10.4. If X ˆS Y exists and U Ă X is an open subscheme, then U ˆS Y
exists and is canonically isomorphic to the open subscheme p´1

X U with the two
restrictions pX |p´1

X U and pY |p´1
X U as projections.

Proof Write ι : U Ñ X for the open embedding. The situation is displayed in the following
diagram

Y

Z p´1
X U X ˆS Y

U X,

gY

gU
pX

pY

ι

and we need to verify that p´1
X U together with the restriction of the two projections satisfies

the universal property. IfZ is a scheme and gU : Z Ñ U and gY : Z Ñ Y are two morphisms
over S, the composition gX “ ι ˝ gU is a map into X , and gX and gY induce a map of
schemes g : Z Ñ X ˆS Y with gX “ pX ˝ g and gY “ pY ˝ g. Clearly pX ˝ g “ ι ˝ gU
takes values in U . Therefore g takes values in p´1

X U , and we get an induced morphism
g : Z Ñ p´1

X U , which is unique (Exercise 10.2.1 below).

Exercise 10.2.1. Assume that U Ă X is an open subscheme and let ι : U Ñ X be the
inclusion map. Let f and g be two maps from a scheme Z to U and assume that ι ˝ f “ ι ˝ g.
Show that f “ g.

The following proposition is the key point in the construction of the fibre product by
gluing.
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10.2 Fibre products of schemes 157

Proposition 10.5. Let fX : X Ñ S and fY : Y Ñ S be two morphisms and assume
that there is an open cover tUiuiPI of X such that Ui ˆS Y exists for all i P I . Then
X ˆS Y exists. The products Ui ˆS Y form an open cover of X ˆS Y . Moreover,
the projections restrict to projections.

Proof The proof involves gluing together the different schemes Ui ˆS Y and verifying
that the result indeed is a product X ˆS Y . We begin with introducing some notation: let
Uij “ Ui X Uj be the intersections of the Ui’s and Uj’s, and let pi : Ui ˆS Y Ñ Ui denote
the projections.

By Lemma 10.4 the inverse images p´1
i pUijq serve as fibre products Uij ˆS Y with the re-

strictions of pi and pY as projections. Hence there are unique isomorphisms θji : p´1
i pUijq Ñ

p´1
j pUijq making the diagrams

p´1
i pUijq p´1

j pUijq

Uij

θji

»

pi pj
(10.6)

commute. To be able to glue together the p´1
i pUiq’s using the θij’s, we need to verify the

conditions of Theorem 6.3 on page 86. The two first follow readily. For the third, note that by
Lemma 10.4 the preimages p´1

i pUijkq serve as products Uijk ˆS Y with the restrictions of
pi and pY as projections. Moreover, the restrictions of the θij’s live in diagrams

p´1
i pUijkq p´1

j pUijkq p´1
k pUijkq

Uijk.

pi

θji

»

pj

θkj

»

pk

The two minor triangles commute, so the big one commutes as well, and it follows by
uniqueness that θki “ θkj ˝ θji. The third gluing condition is thus fulfilled, and we can glue
the p´1

i pUiq’s together to a scheme X ˆS Y . Moreover, in view of the commutative diagram
(10.6) and Proposition 6.4 on page 87, the pi’s patch together to a map pX : X ˆS Y Ñ X .
The projections Ui ˆS Y Ñ Y are essentially unaffected by the gluing process and glue
together to a morphism pY : X ˆS Y Ñ Y . It is straightforward to check that X ˆS Y with
these two projections has the required universal property.

An immediate consequence of Proposition 10.5 is that fibre products exist when the base
S is affine.

Lemma 10.6. Assume that S is affine, then X ˆS Y exists.

Proof First, if Y is affine as well, we are done: cover X by open affine subschemes Ui;
then each Ui ˆS Y exists by the affine case, and we may apply Proposition 10.5 above. In
general, cover Y by affine open subschemes Vi. As we just verified, the products X ˆS Vi
all exist, and applying Proposition 10.5 once more, we conclude that X ˆS Y exists.
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158 Fibre products

Finally, with Lemma 10.6 established, what remains to prove, that fibre products exist in
general, is a reduction to the case with an affine base. To that end, let tSiu be an open affine
cover of S and let Ui “ f´1

X pSiq and Vi “ f´1
Y pSiq. By Lemma 10.6 the products Ui ˆSi

Vi
all exist, and using the following lemma and once more Proposition 10.5, the proof will be
complete.

Lemma 10.7. With the notation just introduced, Ui ˆSi
Vi serves as the product

Ui ˆS Y with projections being pUi
and pY |Vi

.

Proof We contend that Ui ˆSi
Vi satisfies the universal product property of Ui ˆS Y .

Consider the commutative diagram

Z

Ui Y Vi

S,

g g1

fX |Ui
fY

where g and g1 are two given morphisms. If a point follows the left path from Z to S in the
diagram, it ends up in Si, and the same must hold when it follows the right path. But then,
Vi being equal to the inverse image f´1

Y pSiq, it follows that g1 factors through Vi, and by
the universal property of Ui ˆSi

Vi, there is a morphism Z Ñ Ui ˆSi
Vi with the requested

properties.

Here are some of the basic properties of the fibre product. It is possible to deduce them
directly using gluing arguments, but with the so-called ‘functor of points’, which we will
introduce in Section 10.7, the proofs will become simple and natural.

Proposition 10.8 (Basic formulas). Let X , Y , Z and T be schemes over S. There
are unique canonical isomorphisms over S, all compatible with projections:

(i) (Reflectivity) X ˆS S » X;
(ii) (Symmetry) X ˆS Y » Y ˆS X;

(iii) (Associativity) pX ˆS Y q ˆS Z » X ˆS pY ˆS Zq.
(iv) (Transitivity) pX ˆS T q ˆT Y » X ˆS Y .

In the last claim Y is supposed to be a scheme over T , and X ˆS T is considered a
scheme over T via the projection onto T .

10.3 Examples

As noted in the introduction, the fibre product of schemes can exihibt unexpected behaviour
in some situations, differing from what we are used to in set theory or topology. The main
difference is that the underlying set is almost never the product of the underlying sets of the
factors. The next few examples illustrate this.
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Example 10.9. For a ring R and non-negative integers m,n, we have

Rrx1, . . . , xms bR Rry1, . . . , yns » Rrx1, . . . , xm, y1, . . . , yns,

and so

AmR ˆR AnR » Am`n
R .

Even when R “ C, the affine space Am`n
C has an underlying set which is different from

the Cartesian product AmC ˆ AnC, and the topology is not equal to the product topology (see
Example 2.16).

Even fibre products of spectra of fields can exhibit unexpected behaviour, as the next few
examples show.

Example 10.10. A simple but illustrative example is the product SpecC ˆR SpecC. This
scheme has two distinct closed points, even if both factors are singletons. Note also that
the product is not integral, not even connected. So the product of integral schemes is not
necessarily integral.

The tensor product CbR C is in fact isomorphic to the direct product C ˆ C of two copies
of the complex field C. One sees this using that C “ Rrts{pt2 ` 1q, which gives

CbR C “ Rrts{pt2 ` 1q bR C “ Crts{pt2 ` 1q “ Crts{pt´ iqpt` iq “ C ˆ C,

where the last equality follows from the Chinese Remainder Theorem and that the rings
Crts{pt˘ iq both are isomorphic to C.

Example 10.11. The fibre product SpecF2 ˆZ SpecF3 is empty. Indeed, it is the specturm
of the ring

Z{2 bZ Z{3 » Z{pgcdp2, 3qq “ 0

See Exercise 10.3.1 for a generalization.

Example 10.12. The fibre product SpecCpxq ˆC SpecCpyq is even more extreme: it has
infinitely many points! This is because the tensor product A “ Cpxq bC Cpyq is a ring of
Krull dimension one, and it contains infinitely many maximal ideals.

To prove this, we note that the ring A can be written as the localization S´1Crx, ys of the
polynomial ring Crx, ys in the multiplicative set

S “ t ppxqqpyq | ppxqqpyq ‰ 0 u.

Thus if p Ă A is a prime ideal, it is of the form p “ S´1q for some prime ideal q Ă Crx, ys

that does not intersect S. Bearing in mind that the maximal ideals in Crx, ys are of the form
px´ a, y ´ bq with a, b P C, we find that q is not maximal, and hence of height of at most 1.
We must also have that q X Crxs “ 0 and q X Crys “ 0, and we find that either q “ p0q or
q “ pfpx, yqq, where f is an irreducible polynomial neither lying in Crxs nor in Crys.

In conclusion, all non-zero primes in A are therefore maximal, and so A has dimension
one. Moreover, A has infinitely many maximal ideals, in fact, uncountably many.

Example 10.13 (Fibre products of varieties). On a positive note, the fibre product X ˆk Y
is better behaved in the situation when X and Y are integral schemes of finite type over an
algebraically closed field k. This includes the schemes arising from the varieties of Chapter 1.
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160 Fibre products

In this case, X ˆk Y is again integral (see Theorem 12.26 on page 197) and on the level of
k-points, we have

pX ˆk Y qpkq “ Xpkq ˆ Y pkq.

It turns out that in this case the k-points are precisely the closed points (this follows from the
Nulstellensatz) and so the set of closed points in the product equals the Cartesian product of
the sets of closed points of the factors.

Of course, the fibre product may additionally have many non-closed points which do not
come from the closed points in each factor (Example 10.9).

Exercises

Exercise 10.3.1. Let p and q be two different prime numbers. Show the following identities:
a) SpecFp ˆZ SpecFq “ H;
b) SpecZppq ˆZ SpecZppq “ SpecZppq;
c) SpecZppq ˆZ SpecZpqq “ SpecQ.

Exercise 10.3.2. Example 10.10 can be generalized as follows. Let K{k be a finite Galois
extension of fields with Galois group G. Show that the map xb y ÞÑ pxgpyqqgPG defines an
isomorphism

K bkK Ñ
ź

gPG

K.

Hint: Write K “ krxs{pfpxqq for a minimal polynomial fpxq and compute K bk K using
the Chinese Remainder Theorem and the fact that f factors in K.

Deduce that SpecK ˆk SpecK has an underlying set with |G| points.

Exercise 10.3.3. This exercise goes along the same lines as Exercise 10.3.2 and gives an
example that a fibre product X ˆk SpecL may not be reduced even if X is.

Let k “ Fppaq for a prime number p and let L “ krxs{pxp ´ aq. Show that

Lˆk L » Lrts{ptp ´ aq » Lrts{pt´ xqp.

Conclude that SpecLˆSpec k SpecL is not reduced.

Exercise 10.3.4. Let X and Y be schemes over S with open affine covers tUiu and tVju.
Show that Ui ˆS Vj is an open cover of X ˆS Y .

10.4 Scheme theoretic-intersections

If X is a scheme and Y,Z are two closed subschemes we define their scheme-theoretic
intersection as the fibre product

Y ˆX Z

of the closed embeddings i : Y Ñ X and j : Z Ñ X .
In the special case when X “ SpecA and Y and Z are closed subschemes given by

ideals I and J respectively, then

Y ˆX Z “ SpecpA{I bA A{Jq “ SpecpA{pI ` Jqq.
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10.5 Scheme theoretic fibres II 161

Thus Y ˆX Z is the closed subscheme associated to the ideal I ` J .
Using this local model, one can prove that Y ˆX Z is in general naturally a closed

subscheme of X with underlying topological space is homeomorphic to ipY q X jpZq in X
(Exericse 10.4.1).

Note that the ideal I ` J may fail to be a prime ideal even if I and J are prime. Moreover,
the scheme-theoretic intersection fail to be both reduced and irreducible even if both Y and
Z are are. This is very natural and important: the scheme-theoretic intersection Y ˆX Z is
designed to capture the multiplicities of an intersection, e.g. as in Bezout’s theorem. See for
instance Examples 5.28 and 5.29. This important point is yet another reason for transitioning
from varieties to schemes.

Exercise 10.4.1. In the setting above, show that the scheme-theoretic intersection is naturally
a closed subscheme of X , with underlying topological space equal to the intersection ipY q X

jpZq in X .

10.5 Scheme theoretic fibres II

Suppose that f : X Ñ Y is a morphism of schemes and that y P Y is a point. One of the
first applications of the fibre product is to define a scheme structure on the preimage f´1pyq.
Having the fibre product at our disposal, inspired by part a) of Exercise 10.1.1, nothing is
more natural than defining the fibre to be the fibre productXy “ Spec kpyqˆY X . It appears
in the diagram

Xy “ X ˆY Spec kpyq X

Spec kpyq Y,

f

where Spec kpyq Ñ Y is the map corresponding to the point y. Recall that the field kpyq

is given as kpyq “ OY,y{my, and that the ‘point-map’ Spec kpyq Ñ Y is the composition
Spec kpyq Ñ SpecOY,y Ñ Y of the two canonical maps.

Note that the fibre Xy satisfies the following universal property: a morphism g : Z Ñ X
factors through Xy if and only if f ˝ g factors through Spec kpyq Ñ Y (topologically this
means it maps Z to y P Y ).

It is common usage to write Xy for the scheme-theoretic fibre and reserve the notation
f´1pyq for the preimage as a topological space. In any case, the next proposition shows that
the underlying topological space of Xy is equal to f´1pyq.

Proposition 10.14. Let X and Y be schemes and f : X Ñ Y a morphism. Let
y P Y be a point. Then the inclusion Xy Ñ X of the scheme theoretic fibre is a
homeomorphism onto the topological fibre f´1pyq.

Proof We may assume that Y is affine, say Y “ SpecA.
We first treat the case whereX is also affine, sayX “ SpecB and f : X Ñ Y is induced

by a ring map ϕ : A Ñ B. In this situation Proposition 2.34 states that the fibre f´1ppq over
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a point p P SpecA is homeomorphic to the spectrum of the ring pB{pBqp. On the other
hand, standard formulas for tensor products give the equality

pB{pBqp “ BbAAp{pAp “ BbA kppq,

and the Zariski topology on the spectrum SpecpB{pBqp (i.e. the induced topology on
f´1ppq) coincides with the Zariski topology on SpecpBbA kppqq (i.e. the topology on the
scheme Xy), and hence the proposition holds when X is affine.

In the general case let U be open and affine in X . Denote by ι the inclusion ι : Xy Ñ X;
that is, the projection X ˆY Spec kpyq Ñ X . According to Lemma 10.4 on page 156, it
holds that U ˆY Spec kpyq “ ι´1U (equipped with the unique open scheme structure on
the open set ι´1U ), and clearly ι´1U “ U XXy. By the affine case, the two topologies we
examine agree on Xy X U , and as U can be any open affine, the two topologies share a basis
and must be equal.

Example 10.15 (The fibre product is the fibre product). Let f : X Ñ S and g : Y Ñ S be
two morphisms of schemes and let ι : Spec kpsq Ñ S be a point. Denote by h : X ˆS Y Ñ

S the structure map, i.e. h “ f ˝ pX “ g ˝ pY . Then the scheme theoretic fibre of h is the
fibre product of the scheme theoretic fibres of f and g:

pX ˆS Y qs “ Xs ˆkpsq Ys.

This is immediate, applying associativity and transitivity of the fibre product (formulas (iii)
and (iv) of Proposition 10.8 on page 158):

pX ˆS Spec kpsqq ˆkpsq pY ˆS Spec kpsqq “ X ˆS pY ˆS Spec kpsqq

“ pX ˆS Y q ˆS Spec kpsq.

10.6 Base change

Given a set of equations over some ring, it is often fruitful to consider the solutions in some
ring extension. For instance, while x2 ` y2 ` 1 “ 0 has no solutions over R, there are
plenty if we regard the same equation over C. More formally, we can start with the spectrum
X “ SpecA of the ring

A “ Rrx, ys{px2 ` y2 ` 1q

and consider the tensor product AˆR C “ Crx, ys{px2 ` y2 ` 1q. Note that the inclusion
R Ă C induces a morphism SpecpA bR Cq Ñ SpecA. One says that the scheme XC “

SpecpA bR Cq is obtained from SpecA via base change. The scheme X “ SpecA is a
scheme with no R-points, wheras XC has infinitely many C-points.

This idea of ‘changing the base field’ has a vast generalization as follows. Let X be a
scheme over S and let T Ñ S be a morphism. The fibre product X ˆS T is then naturally a
scheme over T . Considering T Ñ S as a change of base schemes, one frequently writes XT

for X ˆS T and says that XT is obtained from X by base change.
Taking a base change is a functorial construction. If f : X Ñ Y is a morphism over S,

there is induced a morphism fT “ f ˆ idT from XT to YT over T , and one easily checks
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10.6 Base change 163

that fT ˝ pT coincides with the natural projection map XT Ñ T (or in other words, the outer
rectangle in the diagram below is Cartesian).

XT YT T

X Y S.

fT pT

pY

f

If P is a property of morphisms, one says that P is stable under base change if for any T
over S, the map fT has the property P whenever f has it. The same convention applies to
properties of schemes.

Examples 10.17 and 10.20 below show that neither being irreducible nor being reduced
are properties stable under base change. On the other hand, one way of phrasing Lemma 10.4
on page 156, is to say that being an open embedding is stable under base change. The same
applies to closed and locally closed embeddings.

Proposition 10.16 (Embeddings and base change). Consider a Cartesian diagram
of schemes

ZY Z

Y X.

fY f

If the morphism f : Z Ñ X is a closed, open or locally closed embedding, then the
morphism fY : ZY Ñ Y is respectively closed, open or locally closed.

Proof The case of open embeddings is already taken care of, and the case of locally
closed embeddings follow directly from the two others, so only the statement about closed
embeddings needs a proof.

Assume first thatX and Y are both affine, sayX “ SpecA and Y “ SpecB. WhenZ Ă

SpecA is a closed subscheme, it holds thatZ “ SpecA{a for some ideal a (Proposition 5.10
on page 71), and therefore ZY “ Z ˆX Y “ SpecA{abAB “ SpecB{aB. Hence ZY
is a closed subscheme of Y .

In general, the statement is local on Y (Exercise 5.3.1 on page 71), so assume that U Ă Y
is an open affine that maps into an open affine V Ă X (one may cover Y by such by first
covering X by affine opens and subsequently cover each of their inverse images in Y by
affine opens). Then by Lemma 10.7 on page 158 one has f´1V ˆX Y “ f´1V ˆV U , and
by the affine case this is a closed subscheme of U .

If one identifies Z with its image in X , the scheme ZY is what one calls the scheme
theoretic inverse image of Z. If k is a field, the k-points in ZY are exactly the k-points that
map into Z.

Example 10.17 (Being irreducible is not stable under base change). Consider the R-algebra
A “ Rrx, ys{px2 ` y2q. Over R, the polynomial x2 ` y2 is irreducible, so X “ SpecA is
an irreducible R-scheme. The base change to C however is not irreducible, because

AbC C » Crx, ys{px´ iyq ˆ Crx, ys{px` iyq
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and so XC is the union of two conjugate lines in SpecCrx, ys

Example 10.18 (Being reduced is not stable under base change). An example was already
given in Exercise 10.3.3. Consider the scheme X “ SpecZrx, ys{px2 ´ 2y2q, viewed as a
scheme over SpecZ. Clearly X is integral, as x2 ´ 2y2 is irreducible. However, if we take
the base change via the morphism SpecF2 Ñ SpecZ, the resulting scheme is non-reduced:

XF2
“ SpecpF2rx, ys{px2qq

Example 10.19. For a related example, consider the polynomial T 4 ´ 10T 2 ` 1, which is
the minimal polynomial of

?
2 `

?
3. This polynomial has the interesting property that it is

irreducible over Q, but its reduction modulo p factors for every prime p. This means that for
the morphism

SpecZrT s{pT 4 ´ 10T 2 ` 1q ÝÝÑ SpecZ,

the fibre over the generic point is irreducible, but all of the closed fibres are reducible.

Example 10.20 (Being reduced is not stable under base change). An example was already
given in Exercise 10.3.3. Consider the scheme X “ SpecZrx, ys{px2 ´ 2y2q, viewed as a
scheme over SpecZ. Clearly X is integral, as x2 ´ 2y2 is irreducible. However, if we take
the base change via the morphism SpecF2 Ñ SpecZ, the resulting scheme is non-reduced:

XF2
“ SpecpF2rx, ys{px2qq

Exercises

Exercise 10.6.1. Prove statements (i) and (iv) in Proposition 10.8.

Exercise 10.6.2. Let A “ Rrx, ys{px2 ` y2 ` 1q and let X “ SpecA. Show that the
base-change XC is isomorphic to A1

C ´ V ptq, but X is not isomorphic to A1
R ´ V ptq.

Exercise 10.6.3. Show that if B is an A-algebra, then AnB » AnA ˆA SpecB and that
PnB » PnA ˆA SpecB.

Exercise 10.6.4. Let Lm Ñ P1
k be the line bundle constructed in Section 7.7 on page 102,

and let fn : P1 Ñ P1 be the map u ÞÑ un. Show that Lm ˆP1
k
P1
k “ Lnm.

Exercise 10.6.5 (Finite type and base change).
a) Show that being of finite type (respectively being finite or being locally of finite

type) is a property stable under base change;
b) Show that the product of two morphisms of finite type (respectively of finite or

locally of finite type) is of finite type (respectively of finite or locally of finite
type).

10.7 Yoneda’s Lemma*

As the examples in Section 10.3 show, the fibre product product X ˆS Y can be somewhat
elusive when it comes to the underlying topological space. In this section, we clarify the
picture using the so-called ‘functor of points’. This is an important concept in algebraic
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geometry, and it is often very useful for proving statements about schemes (e.g., Proposition
10.8).

Recall from Section 5.4, that for a scheme X and a ring R, the set of R-valued points
XpRq is the set of all scheme maps SpecpRq Ñ X . There is a generalization of this, where
we consider the set of all morphisms T Ñ X from a fixed scheme T into X . Formally,
we define the functor of points associated with a scheme X to be the contravariant functor
hX : Sch Ñ Sets defined by

hXpT q “ HomSchpT,Xq.

This functor sends a morphism f : S Ñ T to the map of sets

hXpfq : hXpT q Ñ hXpSq

g ÞÑ g ˝ f.

If f : X Ñ Y is a morphism of schemes, there is for each T an induced map hf pT q : hXpT q Ñ

hY pT q defined by sending g : T Ñ X to f ˝ g. It is readily checked to be a natural transfor-
mation of functors hf : hX Ñ hY . Recall that a natural transformation η : F Ñ G between
two contravariant functors F,G : C Ñ Sets is a collection of morphisms F pT q Ñ GpT q,
one for each object T , such that whenever h : S Ñ T is a morphism in C there should be a
commutative diagram (of sets)

F pT q F pSq

GpT q GpSq

ηpT q

F phq

ηpSq

Gphq

.

A natural question is whether the scheme X is determined by the functor hX . The answer
is ‘yes’, and this is essentially the content of Yoneda’s Lemma. In short, the lemma says that
there is a bijection between the set of scheme morphisms X Ñ Y and the set of natural
transformations of functors hX Ñ hY .

Lemma 10.21 (Yoneda). For each X and Y there is a functorial bijection

HomSchpX,Y q ÝÝÑ Homnat.transf.phX , hY q (10.7)

sending X Ñ Y to the natural transformation hX Ñ hY . Thus every natural
transformation hX Ñ hY is of the form hf for a unique morphism f : X Ñ Y .

Proof Let η : hX Ñ hY be a natural transformation. Applying η to the scheme X , we get
a map

ηpXq : hXpXq “ HomSchpX,Xq Ñ HomSchpX,Y q “ hY pXq.

If there is an f : X Ñ Y such that hf “ η, then we must have

ηpXqpidXq “ hf pXqpidXq “ f ˝ idX “ f.

Therefore f is determined by η, and hence (10.7) is injective.
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166 Fibre products

For surjectivity, we put f “ ηpXqpidXq and will check that hf “ η. This means that for
any scheme Z, the map of sets

ηpZq : hXpZq Ñ hY pZq

is equal to the map of sets that sends g : Z Ñ X to g ˝ f . Since η is a natural transformation,
we have for any g : Z Ñ X , a commutative diagram

hXpXq hXpZq

hY pXq hY pZq

hXpgq

ηpXq ηpZq

hY pgq

Going through the diagram clockwise, we see that idX gets sent to ηpZqpgq, while going
counterclockwise, idX gets sent to g ˝ f . Hence

ηpZqpgq “ g ˝ f “ hf pZqpgq,

and so η “ hf .

In particular, we have the following consequences:

Corollary 10.22. For two schemes X and Y , we have:
(i) hX and hY are isomorphic (as contravariant functors from Sch to Sets),

if and only if X » Y :
(ii) If a functor F is the same as hX for some scheme X , then X is deter-

mined up to isomorphism.

Replacing the scheme X with its associated functor of points hX , may at this point seem
like just yet another jump in abstraction, but the nice thing is that you can work with functors
whose values are good old sets. For instance, by the Yoneda lemma, we see that giving a
morphism f : X Ñ Y of schemes, is the same thing as for each scheme Y giving a map of
sets fpT q : XpT q Ñ Y pT q which is functorial in T (i.e. a natural transformation). In fact,
using that schemes are locally affine, and that morphisms of schemes glue together, it is even
sufficient to test this condition on affine schemes T “ SpecB.

Another important consequence of this is that instead of specifying a scheme explictly, say
by giving a projective embedding and a homogeneous ideal, we can simply specify a functor
equivalent to hX , and this will precisely pin down what scheme we are talking about. Many
schemes are in the first place defined as solutions to universal problems (e.g. fibre products),
and often the functor perspective can clarify and simplify computations.

Example 10.23 (The functor of points of A1). By Theorem 6.5 on page 88 to give a morphism
from T into the affine line A1 “ SpecZrts is the same thing as giving an element of OT pT q.
Therefore, hA1 is isomorphic to the functor

F pT q “ OT pT q

More generally, An represents the functor F pT q “ ΓpT,OT qn; this is just a fancy way of
saying that a morphism X Ñ An is the same thing as an n-tuple of regular functions.
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Example 10.24 (The functor of points of SpecA). More generally, let A be a ring and
consider the functor F : Schop Ñ Sets given by

F pT q “ HomRingspA,ΓpT,OT qq.

From Theorem 6.5, we deduce that F » hSpecA.

Exercise 10.7.1. Show that functor of points of A1 ´ t0u “ SpecZrt, t´1s is isomorphic to

F pT q “ ΓpT,OT qˆ.

Exercise 10.7.2. Show that the functor T ÞÑ GLnpOT pT qq is represented by the scheme
GLn “ SpecZrtij, detptijq

´1s.

The fibre product in terms of the functor of points

There is a nice way to explain the universal property of fibre products of two S-schemes X
and Y in terms of the functors of points hX , hY and hS . For a scheme T , it translates into the
following: the set HomSchpT,X ˆS Y q is the fibre product of the two sets HomSchpT,Xq

and HomSchpT, Y q over HomSchpT, Sq. In other words, there is a natural bijection of sets (!)

hXˆSY pT q Ñ hXpT q ˆhSpT q hY pT q. (10.8)

By uniqueness, these bijections are functorial in T , and we conclude that the functor of points
of the fibre product X ˆS Y is isomorphic to the fibre product functor hX ˆhS

hY , which
assigns the set hXpT q ˆhSpT q hY pT q to a scheme T . Thus the fibre product of schemes is
not so mysterious after all; it is essentially forced upon us by the universal property of fibre
products of sets.

Setting T “ SpecR in (10.8), we get:

Corollary 10.25. For any ring R, there is a natural bijection

pX ˆS Y qpRq “ XpRq ˆSpRq Y pRq, (10.9)

where the right-hand side is the fibre product of sets.

Once we know the functor of points of X ˆS Y , Yoneda’s Lemma implies that many
computations involving fibre products reduce to ones involving sets only. To illustrate this,
we give a proof of Proposition 10.8

Proof of Proposition 10.8 By Yoneda’s lemma, it suffices to verify the corresponding state-
ments for sets, and this is elementary: note that the assignments pb, aq ÞÑ b; pb, cq ÞÑ pc, bq;
and ppb, cq, dq ÞÑ pb, pc, dqq give natural bijections of sets

B ˆA A » B pb, aq ÞÑ b

B ˆA C » C ˆA B pb, cq ÞÑ pc, bq

pB ˆA Cq ˆC D » B ˆA pC ˆC Dq ppb, cq, dq ÞÑ pb, pc, dqq.
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These translate into natural isomorphisms of functors

hXˆSS » hX (10.10)

hXˆSY » hXˆSY (10.11)

hpXˆSY q»SZ » hXˆSpYˆSZq

and by Yoneda’s Lemma, we have the isomorphisms between the corresponding fibre products
as well.

Exercise 10.7.3. Let A, B and C be sets.
a) Suppose fB : B Ñ A, fA1 : A1 Ñ A and fC : C Ñ A are maps with fC “

g ˝ fA1 for g : A1 Ñ A. Show that there is a bijection

B ˆA C » pB ˆA A
1q ˆA1 C

induced by pb, cq ÞÑ ppb, gpcqq, cq.
b) Deduce claim (iv) in Proposition 10.8.

10.8 Proj and products

In this section we will need the tensor product of to graded algebras. If R “
À

ně0Rn and
R1 “

À

ně0R
1
n are two graded rings with the same degree zero piece A, the tensor product

RbAR
1 has a natural grading induced from the gradings of R1 and R; indeed, the tensor

product commutes with arbitrary direct sums, so RbAR
1 decomposes as

RbAR
1 “

à

i,jě0

Ri bAR
1
j.

Grouping together parts with i` j “ n, we find

RbAR
1 “

à

ně0

à

i`j“n

Ri bAR
1
j,

and this defines the induced grading. The homogeneous tensors which are decomposable,
are of the form xb y with x and y homogeneous and deg xb y “ deg x` deg y. General
homogeneous elements are A-linear combinations of such.

Base change

Let R “
À

ně0Rn be a graded ring. Forming tensor products commutes with formimg
direct sums, so ifB is anyR0-algebra, we haveRbR0

B “
À

ně0Rn bR0
B and this gives

RbR0
B a grading. In this setting the Proj-construction behaves well:

Proposition 10.26. Forming Proj commutes with base change. That is, if R is a
graded ring and SpecB Ñ SpecR0 is a morphism, there is a canonical isomorphism

ProjR ˆR0
SpecB » ProjRbR0

B.

Proof The salient point is that for each homogeneous element f P R`, there is a canonical1

1 Characterised by inducing the identity on RbR0
B
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identification Rf bR0
B » pRbR0

Bqf b 1. It relies on the identity f´n b 1 “ pf b 1q´n,
which is valid in Rf bR0

B, but the right side is meaningful in both rings. Clearly homoge-
neous elements of degree zero correspond, and hence we have canonical identifications

pRf bR0
Bq0 »

`

pRbR0
Bqf b 1

˘

0
.

Translated into geometry, these provide canonical isomorphisms

D`pfq ˆR0
SpecB » D`pf b 1q. (10.12)

As f runs through the homogeneous elements of R`, the open subschemes on the left in
(10.12) yield an open cover of the product ProjRˆR0

SpecB. The irrelevant idealRbR0
B

equals R` bR0
B and is therefore generated by the elements f b 1 with f running through

R`. Thus the open subschemes on the right in (10.12) constitute an open affine cover of
ProjRbR0

B. It only remains to observe that the isomorphisms in (10.12) being canonical,
coincide on the intersections D`pfq XD`pf 1q “ D`pff 1q, and hence patch together to a
global isomorphism.

Example 10.27. In Example 9.38 on page 149 we introduced the blow-up of an ideal a in a
ring A as the structure map π : Proj

À

iě0 a
iti Ñ SpecA. In that example we also showed

that π is an isomorphism outside the inverse image π´1V paq. Proposition 10.26 yields a
closer description of the scheme-theoretic inverse image of V paq in that

p
à

iě0

aitiq bAA{a “
à

iě0

ai{ai`1,

and hence π´1V paq “ Proj
À

iě0 a
i{ai`1.

Exercise 10.8.1. Let m “ px1, . . . , xnq the origin in Ank .
(i) Show that the graded k-algebra

À

iě0 m
i{mi`1 is isomorphic to the polynomial

ring krt1, . . . , tns, where ti denotes the class of xi in m{m2.
(ii) Let π : X Ñ An be the blow up of the origin 0 in Ank (that is, of m). Show that

X0 “ Pn´1
k .

The Segre embedding

In the world of varieties, the Segre embedding is an embedding of the product of two projective
spaces PnpkqˆPmpkq into the projective space Pnm`n`mpkq, which is given by all products
of coordinates:

pu0 : ¨ ¨ ¨ : unq ˆ pv0 : ¨ ¨ ¨ : vmq ÞÑ pu0v0 : u1v0 : ¨ ¨ ¨ : uivj : ¨ ¨ ¨ : unvmq,

or in terms of coodinates wij on Pnm`m`npkq, it is given by wij “ uivj .
Note that there are pn ` 1qpm ` 1q different products. Scaling the ui’s simultaneously

and the vj’s simultaneously, will scale the products simultaneously, and obviously, if at least
one of the ui’s and one of the vj’s are non-zero, one of the products will be non-zero as well.
Thus we obtain, at least set-theoretically, a well-defined map

σ : Pnpkq ˆ Pmpkq Pnm`n`mpkq.
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170 Fibre products

The map σ is injective and the image is closed; if urvs ‰ 0, we recover the coordinates of the
points in Pnpkq and Pmpkq where respectively ur ‰ 0 and vs ‰ 0 as vi{vs “ urvi{urvs
and ui{ur “ uivs{urvs. One verifies easily that the image is the vanishing locus of the
quadrics wijwlm ´ wilwjm for all choices of four different indices i, j, l,m. If one organize
the coordinates wij into a matrix M “ pwijq, these quadrics are precisely the 2 ˆ 2-minors
of M ; in other words, the image of σ is the locus where M has rank one.

Finally, note that σ´1D`pwrsq “ D`purq ˆD`pvsq; indeed, urvs ‰ 0 precisely when
both ur ‰ 0 and vs ‰ 0.

There is a scheme analogue of this which works in greater generality, however, we confine
ourselves to the following simpler version.

Proposition 10.28 (The Segre embedding). Given a ring A and natural numbers m
and n, there is a closed embedding

σm,n : PmA ˆA PnA Pmn`m`n
A .

Proof We start by chosing coordinates bt letting

Pn “ ProjArui|0 ď i ď ns

Pm “ ProjArvj|0 ď j ď ms,

and moreover we let

Pnm`n`m “ ProjArwij|0 ď i ď n, 0 ď j ď ms.

All three rings are polynomial rings, and Arui|is and Arvj|js have the natural gradings, but
Arwij|ijs has the grading with each wij of degree two.

As the indices r and s trace the appropriate index sets, the open distinguished setsD`purq,
D`pvsq and D`pwrsq form open covers of the corresponding projective spaces. The strategy
of the proof is, for each choice of r and s, to construct closed embeddings

frs : D`purq ˆD`pvsq Ñ D`pwrsq

that match on the different intersections. According to Exercise 10.3.4 the sets D`purq ˆ

D`pvsq form an open affine cover of Pm ˆ Pn, and we conclude that the frs’s may be
glued together to give a morphism σ : Pm ˆ Pn Ñ Pnm`m`n. It has the property that
σ´1D`pwrsq “ D`purq ˆD`pvsq and hence is closed embedding (Definition ??).

Recall that pArui|isus
q0 “ Aruiu

´1
s |is so that

D`purq “ SpecAruiu
´1
r |is.

Similarily, for the other distinguished open sets we have equalities

D`pvsq “ SpecArvjvs|js

D`pwrsq “ SpecArwijw
´1
rs |i, js.

Note further the equality Aruiu
´1
s |is bAArvjv

´1
r |is “ Aruiu

´1
s , vjv

´1
s |i, js so to have the

morphisms frs, we need surjective algebra maps

ϕrs : Arwijw
´1
rs |i, js Ñ Aruiu

´1
s , vjv

´1
s |i, js
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with the appropriate gluing properties. There is an obvious candidate, namly the one given by
the assignments wijw´1

rs ÞÑ uivju
´1
r v´1

s .
Note that ϕrs arises as the degeree zero part of the localization of in wrs and usvr of the

natural map

S “ Arwij|i, js Ñ Arui, vj|i, js

that sends wij to uivj .
To prove that ϕrs is surjectivity, observe that Aruiu

´1
s , vjv

´1
s |i, js is generated over A by

elements shaped like pu´a
r qv´b

s where p and q are homogeneous monomials with respective
degrees a and b in the ui’s and the vj’s, and so it suffices to see that each of these belongs to
image. Replacing p with pudeg q

r and q by qvdeg ps , we may assume that a “ b. Then p and q
will be homogeneous monomials of the same degree, and we may match each occurrence of
one of the ui’s in p with an occurrence of one of vj’s in q, and in this way form a monomial
P in the wij of degree a so that Pw´a

rs maps to pu´a
r qv´a

s .
For the gluing process to work we need that frs and fr1s1 restrict to the same map

D`purur1 q ˆD`pvsvs1 q Ñ D`pwrswr1s1 q;

or what amounts to the same, that the maps ϕrs and ϕr1s1 localize to the same map

Arwijw
´1
rs , wrsw

´1
r1s1 |i, js Ñ Aruiu

´1
r , uru

´1
r1 , vjv

´1
s , vsv

´1
s1 |i, js.

Both arise from the map (10.8) through sucsessive localizations and takings of degree zero
parts, and the order does not matter in view of the general formula

ppSwq0qw1w´1 “ ppSw1 q0qww1´1 “ pSww1 q0

where S is any graded ring and w and w1 homogeneous elements of the same degree.
It remains to see that

σ´1D`pwrsq “ D`purq ˆD`pvsq.

This will follow from the equalities

f´1
rs D`pwrsq XD`pwr1s1 q “ D`purur1 q ˆD`pvsvs1 q,

which hold true since the inverse images f´1
rs D`pwrsq XD`pwr1s1 q equal Dpϕpwr1s1w´1

rs q

inside D`pusq ˆD`pvrq “ SpecAruiu
´1
s , vjv

´1
s |i, js because of the identity

Aruiu
´1
r , uru

´1
r1 , vjv

´1
s , vsv

´1
s1 |i, js “ Aruiu

´1
r , vjv

´1
s , urvsu

´1
r1 v´1

s1 |i, js.

Example 10.29. Consider the cased that R “ krx0, x1s and R1 “ kry0, y1s where k is a
field. The assignment zij ÞÑ xi b yj yields an isomorphism

krz00, z01, z10, z11s{pz00z11 ´ z01z10q S “
À

ně0pRn bR1
nq,»

and we recover the usual embedding of P1
k ˆk P1

k as a quadric surface in P3
k.
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P1 ˆ P1 Q Ă P3

σ
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Separated schemes

We have seen several examples showing that the topology on schemes behaves very differently
from the usual Euclidean topology. In particular, schemes are essentially never Hausdorff
– the open sets in the Zariski topology are simply too large. Still we would like to find an
analogous property that can serve as a satisfactory substitute, so that we have good properties
such as ‘uniqueness of limits’. This leads to the notion of ‘separatedness’.

The route we take to defining separatedness involves the diagonal morphism. The motiva-
tion comes from the following basic fact from point set topology.

Proposition 11.1. A topological space X is Hausdorff if and only if the diagonal
∆ “ t px, xq | x P X u is a closed subset of X ˆX (in the product topology).

Proof The diagonal ∆ Ă X ˆX is closed if and only if the complement X ˆX ´ ∆ is
open, and with the product topology, this is equivalent to any point px, yq P X ˆ X with
x ‰ y being contained in U ˆ V where U, V Ă X are open and U ˆ V Ă X ˆ X ´ ∆.
But this is equivalent to U X V ‰ ∅.

Even for the affine line X “ A1
k over a field, the usual Hausdorff condition does not

hold; any open set will contain the generic point p0q (or even in the context of varieties, two
non-open subsets intersect). On the other hand, the Zariski topology on a product is typically
much finer than the product topology on the underlying sets. For instance, for A1

k, we have
A1
k ˆk A1

k “ A2
k, and it makes perfect sense to talk about the subset V px ´ yq Ă A2

k of
points on the ‘diagonal’, and this is indeed a Zariski closed subset.

It turns out that the ’diagonal perspective’ gives a completely satisfactory notion of
‘Hausdorffness’ for schemes. In fact, it works for relative schemes X{S as well, and thus we
will speak of a morphism X Ñ S being separated, rather than the scheme itself.

The freedom to glue schemes together leads to many examples of non-separated schemes,
but they are not commonly encountered in practice. For instance, all affine schemes and
all projective schemes are separated. More importantly, some very nice and advantageous
properties hold only for separated schemes, and this legitimates the notion. For instance, in
a separated scheme, the intersection of two affine subsets is again affine (this is a property
which will be important later on).

173
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174 Separated schemes

11.1 Separated schemes

Let X{S be a scheme over S. There is a canonical map ∆X{S : X Ñ X ˆS X of schemes
over S called the diagonal map or the diagonal morphism. The two component maps of
∆X{S are both equal to the identity idX ; in other words, the defining properties of ∆X{S are
pi ˝ ∆X{S “ idX for i “ 1, 2 where the pi’s denote the two projections.

The following little lemma gives intuition for the diagonal morphism. In particular, it says
that if p1, p2 P XpKq are two K-points (K a field), the K-point p1 ˆ p2 : SpecK Ñ

X ˆS X lies in the diagonal precisely exactly whenever p1 “ p2.

Lemma 11.2. A morphism f : Z Ñ X ˆS X factors through the diagonal if and
only if p1 ˝ f “ p2 ˝ f .

Proof If f factors, the equality holds by definition of the diagonal. If the equality hold,
we just put g “ p1 ˝ f : Z Ñ X , and the unicity part of the universal property gives that
∆X{S ˝ g “ f .

In the case that X and S are affine schemes, say X “ SpecB and S “ SpecA, the
diagonal has a simple and natural interpretation in terms of algebras; it corresponds to the
most natural map, namely the multiplication map:

µ : BbAB ÝÝÑ B.

The multiplication map sends bb b1 to the product bb1, and then extends to BbAB by
linearity. The projections correspond to the two algebra homomorphisms βi : B Ñ BbAB
that send B to bb 1 respectively to 1b b. Clearly it holds that µ ˝ βi “ idB , and on the
level of schemes this translates into the defining relations for the diagonal map. Moreover, µ
is clearly surjective, so we have established the following:

Proposition 11.3. If X is an affine scheme over the affine scheme S, then the
diagonal ∆X{S : X Ñ X ˆS X is a closed embedding.

The conclusion here is not generally true for schemes, and shortly we shall give coun-
terexamples. However, from the proposition we just proved, it follows readily that the image
∆X{SpXq is always locally closed, i.e. the diagonal is locally a closed embedding:

Proposition 11.4. The diagonal ∆X{S is locally a closed embedding.

Proof Begin with covering S by open affine subsets and subsequently cover each of their
inverse images in X by open affines as well. In this way one obtains a cover of X by affine
open subsets Ui whose images in S are contained in affine open subsets Si. The products
Ui ˆSi

Ui “ Ui ˆS Ui are open and affine, and their union is an open subset containing the
image of the diagonal. By Proposition 11.3 above the diagonal restricts to a closed embedding
of Ui in Ui ˆSi

Ui.

With this in place, we are ready to give the general definition of separatedness:
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11.1 Separated schemes 175

Definition 11.5. One says that the scheme X{S is separated over S, or that the
structure map X Ñ S is separated, if the diagonal map ∆X{S : X Ñ X ˆS X is
a closed embedding. One says for short that X is separated if it is separated over
SpecZ.

Recall that being a closed embedding is a local property on the target. Translating this to
the case of ∆X{S , a morphism f : X Ñ S is separated if and only if for some open cover
tSiu of S it holds that all the restrictions f |f´1Si

are separated.
In fact, since ∆X{S is a locally closed embedding, it suffices to check that the image

∆X{SpXq is a closed subset of X ˆS X . In particular, this means that being separated is a
condition that only involves the underlying topological part of the map f : X Ñ S.

Example 11.6. Any morphism SpecB Ñ SpecA of affine schemes is separated, by
Proposition 11.3. More generally, any affine morphism f : X Ñ Y is separated.

Example 11.7 (Monomorphisms). Recall that a morphism f : X Ñ Y is called a monomor-
phism if it satisfies the following property: if gi : T Ñ X for i “ 1, are morphisms such that
f ˝ g1 “ f ˝ g2, then g1 “ g2. For monomorphisms, the fibre product X ˆY X is in fact
equal to the diagonal; that is ∆X{Y “ X ˆY X . Indeed, one readily verifies that the square

X X

X Y

idX

idX f

f

is Cartesian. So, monomorphisms are separated.

Uniqueness of limits

A very useful property that separated schemes have, and which we referred to in the introduc-
tion as ‘uniqueness of limits’, is that morphisms into separated schemes are determined on
open dense subschemes, at least when the source is reduced:

Proposition 11.8 (Uniquness of limits). Let X and Y be two schemes over S and
let f, g : X Ñ Y with be two morphisms over S. Assume that

‚ X is reduced
‚ Y is separated over S

Then if there is a dense open subscheme U Ă X such that f |U “ g|U , then f “ g.

Proof We may assume that X is affine, say X “ SpecA. The two maps f and g gives
a morphism H : X Ñ Y ˆS Y . We want to show that H factors through the diagonal
Y Ñ Y ˆS Y ; then f “ g.
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Taking the pullback of the diagonal ∆Y {S , we obtain the square in the following diagram:

E Y

U X Y ˆS Y

j ∆Y {S

ι H

Here E is the ‘equalizer’ of the two morphisms, and informally jpEq is the subscheme of
points in X where the morphisms are equal (see Exercise ??). Now, pullbacks of closed
embeddings are closed embeddings, hence the image jpEq is closed, and by Proposition 5.10
on page 71, it is isomorphic to a subscheme of the form SpecpA{aq for some ideal a. On
the other hand, saying that f |U “ g|U means that there is a lift U Ñ E of ι, and hence the
image jpEq contains the dense set U and therefore is equal to X . Thus a is contained in the
nilradical of A, which is zero as A is reduced. Consequently, j is an isomorphism, H factors
through the diagonal and it follows that f “ g.

As examples shortly will show, the above proposition fails when X is not separated.

Example 11.9. Likewise, it may fail when the scheme Y is not reduced. One example can
be Y “ Spec krx, ys{py2, xyq with the two maps fj : Y Ñ Spec krus, j “ 1, 2 defined by
u ÞÑ x and u ÞÑ x` y respectively. These agree over the distinguished open set Dpxq, but
they are different.

Example 11.10. The affine line X with two origins constructed in Section 7.3 on page 95 is
not separated over Spec k. Recall that X was constructed as the union of two copies of the
affine line A1

k “ Spec krus glued together along their common open subset Spec kru, u´1s.
We let gi : A1

k Ñ X be the two open embeddings that result from the gluing. The scheme X
has two ‘origins’; the images 01 and 02 of the origin 0 P A1

k under respectively g1 and g2.
Already now, Proposition 11.8 tells that X is not separated; we have two different maps

agreeing on an open dense set; but it is instructive to understand the diagonal a bit more.
In the product there are four ‘origins’, the images 0i ˆ 0j of 0 under the four maps

gij : A1
k Ñ X ˆk X with components gi and gj . Over the complement of the origin, these

maps coincide and equal the diagonal map.
According to Lemma 11.2, only 01 ˆ 01 and 02 ˆ 02 lie on the diagonal. But all four lie in

the closure of the diagonal: consider 01 ˆ 02, for instance, which lies in the image of the map
g12. If V is an open subset containing 01 ˆ 02, the inverse image g´1

12 V will be a non-empty
open, and hence meets A1

k ´ t0u. But then V meets g12pA1
k ´ t0uq, which is open in the

diagonal.
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11.2 Properties of separated schemes 177

X

X

X ˆk X

Heuristically, the maps gij are equal on A1 ´ t0u, but they bridge the gap at 0 differently,
namely by passing over different points 0i ˆ 0j ; thus all four lie in the closure. The diagonal
bridges the gap by passing over 01 ˆ 01 and 02 ˆ 02, but avoids the two others.

Example 11.11. An even more basic example of a scheme that is not separated is obtained
by gluing the prime spectrum of a discrete valuation ring to itself along the generic point.

To give more details, let R be a DVR with fraction field K . Then SpecR “ tx, ηu where
x is the closed point and η is the generic and open point. Citing the gluing lemma for schemes
(Proposition 6.3 on page 86), we may glue two copies of SpecR together by identifying the
generic points; that is, the open subschemes SpecK in the two copies.

In this manner we construct a schemeZR together with two open embeddings gi : SpecR Ñ

ZR. They send the generic point η to the same point, which is an open point in ZR, but they
differ on the closed point x. It follows ZR is not separated; the principle of uniqueness of
limits is violated.

The similar-looking examples of Examples 7.3 and 7.4 are separated however, because
they are affine.

x

y

η

η

η

x

y

SpecR

SpecR

ZR

11.2 Properties of separated schemes

We introduce separatedness mostly because they give good formal properties. In some sense
the schemes category is still a little bit ‘too large’, and separated schemes have properties
that make them closer to varieties. In this section we survey a few of these properties.
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178 Separated schemes

Proposition 11.12. The following hold true:
(i) (Embeddings) Locally closed embeddings are separated, in particular

open and closed embeddings are;
(ii) (Composition) Let f : T Ñ S and g : X Ñ T be morphisms. If both f

and g are separated, the composition g ˝ f is separated as well. If X is
separated over S, it is separated over T ;

(iii) (Base change) Being separated is a property stable under base change: if
f : X Ñ S is separated and T Ñ S is any morphism, then fT : X ˆS

T Ñ T is separated;

Proof To prove (i), notice that both open and closed embeddings are monomorphisms,
hence they are separated (Example 11.7). A locally closed embedding is the composition of
an open and and closed embedding, and so (i) follows from (ii).

Proof of (ii): let the two separated morphisms be f : X Ñ T and g : T Ñ S. The point is
that the following diagram is Cartesian:

X ˆT X X ˆS X

T T ˆS T,

h

fˆf

∆T {S

(11.1)

where h is the canonical map being the identity on both components. This is straightforward
and left to the reader (Exercise 11.3.6).

Note that ∆X{S “ h˝∆X{T . Assume first that T Ñ S is separated, then ∆T {S is a closed
embedding, and h will also be one as being a closed embedding and is stable under pullbacks
(Proposition 10.16 on page 163). It follows that ∆X{S “ h ˝ ∆X{T is a closed embedding
(composition of closed embeddings are closed embeddings), and so X is separated over S.
For the second part of the statement, assume thatX is separated over S. Then the composition
h ˝ ∆X{T , being equal to ∆X{S , is a closed embedding, hence ∆X{T is a closed embedding
as well, according to Exercise 11.3.10.

When proving statement (iii), it suffices to cite Exercise 11.3.7 on page 182, that diagonals
pull back to diagonals, and again Proposition 10.16, that pullbacks of closed embeddings are
closed embeddings.

Intersection of affines

Proposition 11.13. Assume that X is a separated scheme over an affine scheme
S “ SpecA, and assume that U and V are two affine open subscheme of X . Then
the intersection U X V is also affine, and the natural multiplication map

OXpUq bA OXpV q ÝÝÑ OXpU X V q

is surjective.
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Proof The product U ˆS V is an open and affine subset of X ˆS X , and U X V “

∆X{SpXq X pU ˆS V q. So if the diagonal is closed, U X V is a closed subscheme of the
affine scheme U ˆS V , hence affine (Proposition 5.10). By the construction of the fibre
product of affine schemes one has

ΓpU ˆS V,OUˆSV q “ ΓpU,OUq bA ΓpV,OV q,

and as U X V is a closed subscheme of U ˆS V , the restriction map

ΓpU ˆS V,OUˆSV q Ñ ΓpU X V,OUXV q

is surjective, as we wanted to show.

Conversely, we have

Proposition 11.14. Let X be a scheme over SpecA, and let tUiuiPI be an open
affine cover of X such that

(i) all intersections Ui X Uj are affine;
(ii) OXpUiq bAOXpUjq ÝÝÑ OXpUi XUjq is surjective for each i, j P I .

Then X is separated over S.

Proof Let p1, p2 : X ˆS X Ñ X be the two projections and let ∆: X Ñ X ˆS X
denote the diagonal morphism ∆X{S . Let Ui “ SpecBi and Uj “ SpecBj be two open
subschemes belonging to the cover tUiu. We have

∆´1pp´1
1 pUiq X p´1

2 pUjqq “ ∆´1pp´1
1 pUiqq X ∆´1pp´1

2 pUjqq “ Ui X Uj, (11.2)

Also, from the universal property of the fibre product it follows that p´1
1 pUiq X p´1pUjq “

Ui ˆS Uj Ă X ˆS X , and from this we deduce that ∆ is a closed embedding if each
restriction

∆ij : Ui X Uj Ñ Ui ˆS Uj

of ∆ is a closed embedding. But this follows from the assumptions: by (i) the intersection
Ui X Uj is affine, say Ui X Uj “ SpecCij , and by (ii) the ring homomorphism Bi bA

Bj Ñ Cij is surjective. Hence ∆ij is a closed embedding for each i, j, and the proof is
complete.

Example 11.15. The above provides us with a convenient criterion to check that a scheme is
separated, given an affine covering. For instance, let us show that the projective line P1

k is
separated. P1

k is covered by the two affine subsets U1 “ Spec krxs and U2 “ Spec krx´1s,
which have affine intersection Spec krx, x´1s. To conclude, we need only check that the map

krxs bk krx´1s Ñ krx, x´1s

is surjective, and it is.

Example 11.16 (ProjR is separated). More generally, for each graded ring R it holds that
ProjR is separated. Indeed, ProjR is covered by the affine open sets D`pfq where f runs
over the homogeneous elements of R`. These open sets are clearly affine (Proposition 9.12),
and so is their intersection: D`pfq X D`pgq “ D`pfgq. Thus to prove that ProjR
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is separated, we need only check condition (ii) of Proposition 11.14 above, namely that
pRf q0 b pRgq0 Ñ pRfgq0 is surjective for any f, g P R`, which it is.

Example 11.17. Here is a non-separated scheme where two affine open subsets have non-
affine intersection. We glue two copies of the affine plane A2

k together along the complement
U12 “ A2

k ´ V px, yq of the origin. If U1 and U2 denote the two open embeddings of the
affine plane, then U1 X U2 “ U12, but the open set U12 is not affine (see the example in
Section 5.6 on page 69). In this example, the multiplication map in the proposition coincides
with krx, ys b krx, ys Ñ ΓpU12,OU12

q, which is surjective.

Examples of diagonals

When the fibres of a morphism f : X Ñ Y vary in regular and uniform way, the fibre product
X ˆY X has a regular behaviour. For instance, if f : Lm Ñ P1

k is one of the line bundles
from Section 7.7, the product Lm ˆP1

k
Lm will be what one might call a ‘plane bundle’, all

its fibres are affine planes A2
k, and the diagonal is just Lm, with each fibre sitting diagonally

in each A2
k-fibre.

When the morphism has irregular fibres however, the product X ˆY X also show irregular
behaviour. We shall illustrate this by a few examples. They are all birational; i.e. f is an
isomorphism on an open dense subscheme U Ă Y .

Quite generally, over any open U Ă Y the fibre product U ˆY U is an open subset of
X ˆY X , and when f |f´1U is an isomorphism, the projection f´1U ˆY f

´1U Ñ U will
be an isomorphism, and U will be an dense open subscheme of the diagonal ∆ in X ˆY X .
In each of these cases, which is typical for birational morphisms, the diagonal will be an
irreducible component of the product. In the examples h will denote the canonical map
h : X ˆY X Ñ Y , and k will be an algebraically closed field.

Example 11.18. Let f : X Ñ A2
k be the blow-up of a point p. The fibre of f over p is a

projective line, and by Example ??, the fibre of h over p will then be P1
k ˆk P1

k. By the
transitivity of pull backs, this intersects diagonal in the fibre of the diagonal over p (even
scheme theoretical), and in the identification of the diagonal with X , this corresponds to the
exceptional divisor.

So X ˆA2
k
X has two components, the diagonal X and a copy of P1 ˆ P1

k, and they meet
along a P1

k which is the exceptional divisor in one component and the diagonal in the other.

D ˆC D

h

C
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D ˆC D

C

embedded component

Example 11.19. Consider the nodal cubic curve C given in the affine plane A2
k by the

equation v2 “ u3. The nodal cubic may be parameterized by the map f : D “ Spec krts Ñ

C identifying C as Spec krt2 ´ 1, tpt2 ´ 1qs. We claim that the fibre product D ˆC D is
the disjoint union of the diagonal D and two closed isolated points lying over the origin.

Away from the fibre h´1p0q the canonical map h is an isomorphism since f restricts to an
isomorphism D ´ h´1p0q » C ´ t0u, and this shows that the diagonal D is an irreducible
component of D ˆC D.

The fibre D0 of f over the origin is given as

D0 “ Spec krts{pt2 ´ 1, tpt2 ´ 1qq “ Spec krts{pt2 ´ 1q,

and it decomposes as the disjoint union x1 Y x2 where each xi “ Spec k. According to
Example ?? the fibre of h over 0 then consists of the four points xi ˆ xj with 1 ď i, j ď 2,
each being a copy of Spec k.

Two of these (x1 ˆ x1 and x2 ˆ x2) are absorbed in the diagonal, but the others must be
isolated point in the product, indeed, they are closed, as the fibre is closed, and their union is
the complement of the diagonal, which is closed.

Example 11.20. Next, consider the cuspidal cubic curve C “ Spec krt2, t3s. It is parameter-
ized byD “ Spec krts, the map f : D Ñ C being induced by the inclusion krt2, t3s Ă krts.
This is a homeomorphism, and away from the origin 0 it is an isomorphism. The scheme
theoretic fibre over the origin equals D0 “ Spec krts{pt2q.

The closed points of DˆC D are equal to Dpkq ˆCpkq Dpkq “ Dpkq since f is bijective,
and so h is bijective as well, and set-theoretic it equals the diagonal. since f is an isomorphism
away from f´1p0q, the map h will be an isomorphism away from h´1p0q. However, the fibre
over 0 is large:

pD ˆC Dq0 “ D0 ˆk D0 “ Spec krtspt2q bkrts krus{pu2q “ Spec krt, us{pt2, u2q.

The algebra kru, ts{pt2, u2q is of length four, twice the length of the fibre of f , so something
is going on at the origin: the product D ˆC D has an embedded component there. You will
find further details in Execerise 11.3.14.

11.3 Exercises

Exercise 11.3.1. In the setting of the proof of Proposition 11.4, show that ∆X{S|Ui
“ ∆Ui{S .

Exercise 11.3.2. Let X “ SpecC and S “ SpecR. Recall that the product X ˆS X
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consists of two (closed) points. Which one is the diagonal? Can you find another R-algebra A
so that if Y “ SpecA it holds that Y ˆS Y » X ˆS X and the diagonal is the other point?

Exercise 11.3.3. Recall that a morphism ϕ : X Ñ Y is said to be affine if for some cover
tUiu of Y of open affine sets, the inverse images ϕ´1pUiq are affine (Definition 8.20 on
page 122). Show that affine morphisms are separated.

Exercise 11.3.4. Show that if a scheme X is separated (over Z), then for every scheme Y
and every morphism f : X Ñ Y , the morphism f is separated.

Exercise 11.3.5. Let X and Y be schemes separeted over a scheme S. Show that their
product X ˆS Y is separated over S.

Exercise 11.3.6. Let T Ñ S be a morphism and let X and Y be two schemes over T . Show
that there is a Cartesian diagram

X ˆT X X ˆS X

T T ˆS T,

ι

fˆf

∆T {S

and conclude that the natural map ι : X ˆT Y Ñ X ˆS Y is a locally closed embedding.
Hint: Use the functor of points to reduce to a statement of sets.

Exercise 11.3.7 (Pullback of diagonals). Let X Ñ S and T Ñ S be morphisms between
schemes, and as usual, let XT “ X ˆS T . Show that the diagonal ∆X{S pulls back to the
diagonal ∆XT {T ; in other words, that there is a canonical Cartesian square

XT XT ˆT XT

X X ˆS X.

∆XT {T

∆X{S

Exercise 11.3.8. Let X{S be a scheme and let ι : W Ñ X be a an open subscheme or a
closed subscheme (over S). Show that the diagram below is Cartesian

W X

W ˆS W X ˆS X

∆W {S ∆X{S

Conclude that W {S is separated if X{S is.

Exercise 11.3.9 (The graph of a morphism). A morphism ϕ : X Ñ Y over S has a graph
Γϕ : X Ñ X ˆS Y ; it is the pullback of the diagonal ∆Y {S under the morphism ϕ ˆ

idY : X ˆ Y Ñ Y ˆS Y . Show that the graph is a closed embedding when Y is separated.

Exercise 11.3.10 (Closed embeddings). Let f : X Ñ Y and g : Y Ñ Z be morphisms of
schemes.
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a) Assume that g is separated. Show that if the composition g ˝ f is a closed
embedding, then f is a closed embedding. HINT: Consider the diagram

X X ˆZ Y Y

X Z

Γf

g

g˝f

where the square is Cartesian and Γf is the graph of f .
b) Show by an example that in general f is not necessarily a closed embedding

even if g ˝ f is. HINT: For one of the copies of A1, say U1, in the affine line
X with two origins constructed on page 95 in Chapter ??, exhibit a morphism
X Ñ A1 that restricts to the identity on U1.

Exercise 11.3.11. Let R and S be two DVR’s with the same fraction field, and denote
by mR and mS the two maximal ideals. Assume that R and S different in the sense that
mR X S Ę mS and mS X R Ę mR. Let Z be the scheme obtained by gluing SpecR and
SpecS together along the generic points. Show that Z is affine, more precisely, show that Z
is isomorphic to Spec pR X Sq.

Exercise 11.3.12 (Equalizers). LetX and Y be schemes over S and f1 and f2 two morphisms
from Y to X . Let f : Y Ñ X ˆS X be the morphism whose components are the fi’s; that
is, fi “ πi ˝ f (as usual, the πi’s are the two projections). The pullback f´1∆X{S is called
the equalizer of the fi’s, and we shall denote it by η : E Ñ Y . In other words, the diagram
below is Cartesian:

E Y

X X ˆS X.

η

f

∆X{S

a) Show that a morphism g : Z Ñ Y satisfies f1 ˝ g “ f2 ˝ g if and only if g
factors via η;

b) Show that X is separated if and only if all equalizers of maps intoX are closed.

Exercise 11.3.13. Let A be a B-algebra. Show that the kernel of the multiplication map
µ : AbB A Ñ A is generated by the elements of the form ab 1 ´ 1b a. HINT:
ř

i ai b bi “
ř

ipai b 1 ´ 1b aiq ¨ 1b bi `
ř

i 1b aibi.

Exercise 11.3.14. This exercise connects up with Example 11.20 and explains the embedded
component appearing the D ˆC D in the product of the normalisation D of the cuspidal
plane cubic C over C. Consider the ring A “ krts bkrt2,t3s krts

a) Show that α “ tb 1 ´ 1b t is nilpotent and generates a prime ideal;
HINT: a generates the kernel of the multiplication map. Compute α3 by the
binomial theorem.

b) show that m “ ptb 1, 1b tq is a maximal ideal; HINT: Consider the image
of m under the multiplication map.

c) Show that the ideal generated by tb t is m-primary; HINT: consider m3.
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d) Show that p0q “ ptb 1 ´ 1b tq X ptb tq is a primary decomposition of the
zero-ideal p0q. HINT: All ti b tj with either i ě 2 or j ě 2 kill α.

Exercise 11.3.15. With reference to Example 11.18, check by hand that X ˆA2
k
X has two

components by covering X with two affine opens.

Exercise 11.3.16. The aim of this exercise is to show that infinite products
ś8

n“1Xi may
fail to exist in the category of schemes. That is, there is no scheme that has the universal
property of the product for schemes.

a) Show that ifX and Y are schemes, the set of points of Y where two morphisms
Y Ñ X agree is a locally closed subset of Y .

b) Let Z denote the affine line with the doubled origin. Suppose that
ś8

n“1 Z is
represented by a scheme X . Let Y “ SpecA be an affine scheme. Show that
every countable intersection of distinguished open sets of Y occurs as the locus
where two maps Y Ñ X agree. Show that this gives a contradiction, e.g., for
Y “ SpecZ, so that X is not a scheme.
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12

Algebraic varieties

In the introductory chapter we gave a temporary and restricted definition of a variety, and
there we only spoke about either affine or projective varieties. With the theory of schemes
sufficiently developed, we are now ready for the full truth

Definition 12.1. A variety over a field k is an integral, separated scheme of finite
type over k.

The literature sees a varying terminology at this point. Some authors do not require varieties
to be irreducible (but they are always reduced), and many require the base field to be
algebraically closed. It is also convenient to accept the empty scheme as a variety (over any
field k).

Example 12.2. The schemes

A1
Q̄ “ SpecQrts, SpecCrx, ys{px2 ´ y3q, SpecFprx, y, zs{px2 ´ yzq,

are affine varieties, whereas the following schemes are not:

SpecQrts{t2, SpecCrx, ys{pxyq, SpecZ.

In the introductory chapter we did not introduce maps between varieties (we did it for
affine varieties, but not for projective ). Now, quite naturally, a map between two varieties
is a morphism between the schemes. In this way, the varieties constitute a full subcategory
Var{k of the category Sch{k of k-schemes.

Subvarieties

The notion of subschemes has a counterpart in the notion of subvarieties:

Proposition 12.3 (Subvarieties). Let X be a variety over the field k.
(i) (Open subvarieties) Every open subscheme U Ă X is a variety;

(ii) (Closed subvarieties) Every closed, integral subscheme Y Ă X is a
variety;

(iii) Every closed irreducible subset Y Ă X has a unique structure as closed
subvariety.

Proof Open subschemes of integral schemes are integral by Proposition 5.22 on page 76,
and open embeddings are separated (Proposition 11.12 on page 178), so U is integral and185
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separated. Finally, U is of finite type over k; indeed, U is covered by finitely many open
affine subschemes since X is, and we conclude by Corollary 8.19.

For the second statement, according to Example 8.16 the subscheme Y is locally of finite
type, and since X is quasi compact, it is of finite type. By hypothesis, it is integral, and it is
separated by Proposition 11.12.

As to the last claim, each closed subset carries a unique reduced scheme structure, which
is integral when the subset is irreducible. The rest follows from (ii).

Example 12.4 (Affine varieties). Prime spectra SpecA of integral algebras of finite type
over k are varieties since all prime spectra are separated (Proposition 11.3 on page 174). In
particular the affine spaces Ank “ Spec krt1, . . . , tns will all be varieties.

An affine variety is a variety which is isomorphic to a prime spectrum, and by Corol-
lary 8.19 these are precisely the varieties that are affine schemes. The affine varieties form
a full subcategory AffVar{k of Sch{k, and the relative version of The Main Theorem for
Affine Schemes (Theorem 5.2 on page 68) yields that AffVar{k is equivalent to the opposite
of the category of integral domains finitely generated over k.

When k is algebraically closed, the category of ‘old style varieties’ and polynomial maps
is equivalent to AffVar{k with the functor Z ÞÑ SpecApZq being an equivalence. Note
that, except when Z is a point, SpecApZq is much larger than the ‘old style variety’ Z.
It contains all prime ideals of ApZq and not only the maximal ones. In a way, SpecApZq

carries information about all subvarieties of Z.

Example 12.5 (Projective varieties). The projective spectrum ProjR of a graded integral
domain R with R0 “ k which is finitely generated over k, is a variety. Proposition ?? tells
us that ProjR is of finite type over k, it is integral by 9.18 and separated by Example ??. In
particular, the projective spaces Pnk are varieties.

From 12.3 above, it follows that each closed integral subscheme Z Ă Pnk is a variety. Such
varieties are called projective varieties. One also has the notions of quasi projective varieties
and quasi affine varieties, which are varieties that are isomorphic to open subvarieties of
either projective or affine varieties.

12.1 Noether’s Normalization Lemma

We now turn to one of the key results in the theory of varieties, the Normalization Lemma of
Emmy Noether. It relates the dimension of an affine variety X to the transcendence degree
r of its function field over the base field, and in some sense it is the closest one comes to
having global coordinates on affine varieties. In geometric terms it states that projection of a
closed subvariety X Ă Ank onto a general linear subspace Ark of Ank is a finite morphism.

Transcendence degree

The notion of ‘transcendence degree’ of a field extension k Ă K plays a central role,
so we begin with quickly recalling a few facts. Elements a1, . . . , ar from K are said to
algebraically independent if for every polynomial P pt1, . . . , trq with coefficients from k it
holds that P pa1, . . . , arq ‰ 0; or in other words, that sending indeterminates ti to ai yields
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12.1 Noether’s Normalization Lemma 187

a k-algebra isomorphism krt1, . . . , trs » kra1, . . . , ars. Likewise, one says that a possibly
infinite subset S Ă K is algebraically independent when every finite collection of distinct
members of S are algebraically independent.

A transcendence basis for K over k is a maximal algebraically independent set S Ă

K. For independent element a1, . . . , an to form a transcendence basis it is necessary and
sufficient that the field extension kpa1, . . . , anq Ă K is algebraic, and one may prove that
all transcendence bases have the same cardinality. This common cardinality is called the
transcendence degree ofK over k and is denoted by trdegkK . In general, the transcendence
degree may be infinite, but for finitely generated field extensions it will be always finite.
Note that if A Ă B is an extension of domains with B of finite type over A, then the
associated extension of fraction fields will be a finitely generated field extension with a finite
transcendence degree.

The Normalization Lemma

With minor modifications, the standard proof of the classical version of the Normalization
Lemma yields a somewhat more general result:

Theorem 12.6. Let A Ă B be two domains with B of finite type over A and let n be
transcendence degree of the quotient fieldKpBq overKpAq. Then there are elements
x1, . . . , xn in B which are algebraically independent over A and an element f P A
such that Bf is a finite module over Af rx1, . . . , xns.

When A is a field, the localization is unnecessary, and the classical Normalization Lemma
ensues.

Corollary 12.7 (Noether’s Normalization Lemma). Let k be a field and let B be a
domain of finite type over k and denote by n the transcendence degree of KpBq over
k. Then there are algebraically independent elements x1, . . . , xn in B such that B is
a finite module over krx1, . . . , xns.

The proof of the theorem goes by induction on the number of generators that A requires. The
inductive step hinges on the following lemma of purely algebraic content:

Lemma 12.8. Let ppt1, . . . , tmq be a polynomial over a domain A, and let
u2, . . . , um be new variables. Then for s a sufficiently large integer, the leading
coefficient of ppt1, u2 ` ts1, . . . , um ` ts

m´1

1 q as a polynomial in t1 will be a non-zero
element of A.

Proof The substitutions ti “ ui ` ts
i´1

1 for i ě 2 in a monomial tα1
1 . . . tαm

m result in a
polynomial in t1 whose leading term is of degree α1 ` α2s ` ¨ ¨ ¨ ` αms

m´1, and whose
leading coefficient is one.

Now, the crucial point is that for s ąą 0, the expressions α1 ` α2s ` ¨ ¨ ¨ ` αms
m´1

will all be different, so the term of highest degree in t1 appears only once when one develops
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ppt1, u2 ` ts1, . . . , um ` ts
m´1

1 q in powers of t1, and hence it is not cancelled. Indeed, for
any pair of distinct monomials an equality

α1 ` α2s` ¨ ¨ ¨ ` αms
m´1 “ α1

1 ` α1
2s` ¨ ¨ ¨ ` α1

ms
m´1

holds only for finitely many s since non-zero polynomials merely have finitely many zeros.
And as there are only finitely many pairs of monomials terms in f , we are through.

Proof of the theorem Choose generators w1, . . . , wm for B as an algebra over A. Then
KpBq is generated as a field over KpAq by the wi’s as well. It follows that n ď m, and in
case of equality, that w1, . . . , wm are algebraically independent over A. Hence in that case
B “ Arw1, . . . , wms is a polynomial ring, and the induction can start.

If n ă m, there is a non-zero polynomial ppt1, . . . , tmq with coefficients in A such that
ppw1, . . . , wmq “ 0. We introduce new variables ti ´ ts

i´1

1 “ ui, where s is a natural
number, and set

qpt1, u2, . . . , umq “ ppt1, u2 ` ts1, . . . , um ` ts
m´1

1 q.

According to the lemma we may chose s ąą 0 so that the leading coefficient g of q
as a polynomial in t1 lies in A. With zi “ wi ´ ws

i´1

1 for i ě 2 it holds true that
qpw1, z2, . . . , zmq “ 0, and since g´1q is monic in t1, it ensues that Bg is a finite module
over the subalgebra B1 “ Agrz2, . . . , zms.

Now, KpBq “ KpBgq is algebraic over KpB1q so that the two fields have the same
transcendence degree over KpAq “ KpAgq. Moreover, by construction, B1 is generated by
less than m elements over Ag. Induction applies, and there is a h P Ag and algebraically
independent elements x1, . . . , xn so that B1

h is finite over Aghrx1, . . . , xns. Now, g is
invertible in B1, so that B1

h “ Bgh, and taking f “ gh we are done.

Example 12.9. Consider ‘the hyperbola’ X “ V pxy ´ 1q Ă A2
k “ Spec krx, ys and

the projection X Ñ A1
k “ Spec krxs onto the x-axis, which is induced by the inclusion

krxs Ă krx, 1{xs. The algebra krx, 1{xs is not finite over of krxs; it requires all powers
1{x as generators. However, for any elements a, b of k with ab ‰ 0, it holds that krx, x´1s

is finite over krax` bx´1s; indeed, krx, 1{xs is generated by x over krax` bx´1s, and x
satisfies the equation

x2 ´ xa´1pax` bx´1q ` ba´1 “ 0.

Turning Theorem 12.6 into geometry, we arrive at the following description of the generic
behaviour of a morphism locally of finite type between integral schemes.
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12.2 The Nullstellensatz 189

Theorem 12.10 (Generic structure of morphisms of locally finite type). Let X
and Y be integral schemes and f : X Ñ Y a dominating morphism locally of finite
type. Then there are open affine subsets U Ă Y and V Ă X so that fpV q “ U and
so that f |V factors as

V U ˆ An U
g p

where g is finite and p is the projection and where n “ trdegkpY q kpXq.
If X and Y are affine, we may take V to be the inverse image of a distinguished open
set.

Note that An is the absolute affine space An “ SpecZrt1, . . . , tns, and the product U ˆ An
is the product over Z. If X , Y and f are defined over a ring R, the product may be replaced
by (and in fact, coincides with) the product U ˆR AnR.

Proof Choose two open affine subschemes SpecA Ă Y and SpecB Ă X such that the
inclusion fpSpecBq Ă SpecA holds true. According to Proposition 8.18, the A-algebra B
will of finite type. Moreover, since f is dominating, it holds that f 7 : A Ñ B is injective, and
we may as well assume that A Ă B. Applying Theorem 12.6 to the extension A Ă B, we
can find algebraically independent elements x1, . . . , xn and an g P A such that Bg is finite
over Agrx1, . . . , xns. Let U “ Dpgq Ă SpecA and V “ Dpgq Ă SpecB, and note that
SpecAgrx1, . . . , xns “ SpecAg ˆ An.

Finally, by construction fpV q Ă U , and since both g, being finite and dominant (by
‘Lying–Over’, Proposition 8.27 on page 123), and p are surjective, it ensues that fpV q “ U .
Note that the projection p is surjective since pUˆAnqpkq “ UpkqˆAnpkq and Anpkq ‰ H

for every field k.

12.2 The Nullstellensatz

As a first application of the Normalization Lemma, we give short proofs of the versions of
Nullstellensatz cited in Chapter 1. The first out is the The Weak Nullstellensatz (Theorem 1.10
on page 6), and the full Nullstellensatz (Theorem 1.9 on page 6) follows suit, after a basic
result about the density of closed points of a variety.

Corollary 12.11 (Weak Nullstellensatz). If X is a scheme of locally of finite type
over a field k, and x P X is a closed point, then kpxq is a finite extension of k.

When k is algebraically closed, it follows that kpxq “ k; in other words, the k-points and
the closed points of X coincide. In particular, for X “ Ank this is precisely the content of
statement (ii) of Theorem 1.10. In case X is the spectrum of a field, the corollary if often
called Zariski’s Lemma .

Proof The point x is contained in an affine open subscheme SpecA of X with A of finite
type over k. The residue field kpxq, being a quotient of A, is of finite type as an algebra over
k as well, and the Normalization Lemma implies that kpxq is a finite extension of k. Indeed,
it says that kpxq is finite over a polynomial ring A over k. But Going–Up (Exercise 8.2.5
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on page 124) then implies that A is a field, and no genuine polynomial ring is field. Hence
A “ k.

Corollary 12.12 (Density of closed points). Let X and Y be schemes over a field k
with X locally of finite type over k.

(i) If f : X Ñ Y is a morphism over k, then fpxq is a closed point for each
closed point x P X;

(ii) The closed points in X form a dense subset.

That X be locally of finite type is essential; for instance, the statements fail for local rings.
If e.g. A is a domain and p P SpecA is a prime ideal which is not maximal, the image in
SpecA under the canonical map of the single closed point in SpecAp, is equal to the prime
p, which is not closed. Note also that if A is a local domain, but not a field, SpecA has just
one closed point, which is not dense as there are other points.

Proof To prove (i), we may assume that X and Y are affine, say X “ SpecB and
Y “ SpecA, and that B is of finite type over k. The point x corresponds to a maximal ideal
m inB, and kpxq “ B{m is a finite extension of k according to the Weak Nullstellensatz. Let
p Ă B be the prime ideal corresponding to fpxq; that is, p is the preimage of m under the map
f 7 : A Ñ B. This map induces an injection A{p ãÑ B{m “ kpxq. Now kpxq is integral
over k, hence a fortiori integral over A{p, and it follows from Going–Up (Exercise 8.2.5 on
page 124) that B{p is a field.

Proof of (ii): it suffices to see that each open subset of X contains a closed point. From
Corollary 8.18 follows that X , being locally of finite type over k, has a basis consisting of
open affines of finite type over k, and each of these have closed points. If an open subscheme
U Ă X is of finite type over k and x P U is closed in U , it ensues from (i) that x is closed
in X as well, and we are done.

The full version of the Nullstellensatz takes the following form in a setting over an arbitrary
field.

Corollary 12.13. Let A be an algebra of finite type over a field k, and a Ă A an
ideal. It then holds that

?
a “

Ş

aĂm m, the intersection extending over all maximal
ideals containing a.

To draw the line back to Hilbert’s Nullstellensatz as formulated in Chapter 1, assume that
k is algebraically closed and let a be an ideal in krt1, . . . , tns. To say that a polynomial f
vanishes at all k-points in Zpaq, is to say that f lies in all maximal ideals that contain a, and
consequently, by the corollary, it belongs to

?
a.

Proof The radical
?
a is equal to the intersection of all prime ideals containing a, so we

may as well assume that a is prime. ReplacingA byA{a it suffices to see that the intersection
of all maximal ideals in a domain of finite type over k is reduced to the zero ideal. But by
Proposition 2.11 on page 25 this is equivalent to the close points of SpecA being dense,
which holds true according to Corollary 12.12.
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12.3 The dimension of schemes of finite type over a field 191

12.3 The dimension of schemes of finite type over a field

In a general setting the definition of the dimension of a scheme in terms of the Krull dimension,
suffers from several deficiencies. The most troublesome is that maximal chains of closed
integral subschemes situated between two fixed subschemes, are not always of the same
length. In particular, the codimension of an integral subscheme Y in X , as the length of
a maximal chain ascending from Y , does not always equal the ‘intuitive’ codimension
dimX ´ dimY .

For varieties over a field, however, these occult phenomena does not take place; all maximal
chains are of the same length, and the dimension behaves as one expects. One underlying
reason is that the dimension of a variety coincides with the transcendence degree of its
function field. This follows from Normalization Lemma and Going–Up, once it holds for
affine space itself, and so to establish this will be our first task.

Dimension of affine space

The transcendence degree of the function field kpAnkq over k is by definition equal to n, and
one might be tempted to take for granted that affine space Ank is of dimension n, but this is in
fact slightly subtle. What is is obvious, is that dimAnf ě n since there are chains of linear
subspaces of length n, however, the converse inequality requires some effort.

Lemma 12.14. Let k be a field and n a natural number.
(i) dimAnk “ n;

(ii) for each non-constant, irreducible polynomial f P krt1, . . . , tns, it holds
that dimV pfq “ n´ 1.

Proof The proof goes by induction on n, and the case n “ 1 is clear. Consider a polynomial
f in A “ krt1, . . . , tns which is not constant. As in Lemma 12.8, let ui “ ti ´ ts1 with
s ąą 0. Then

fpt1, . . . , tnq “ fpt1, u2 ` ts1, . . . , un ` ts1q

is a monic polynomial in t1 with coefficients in B “ kru2, . . . , uns Ă A, and the ui’s are
algebraically independent. By induction dimB “ n´ 1.

Consider now the algebra A{pfqA. The algebra B maps injectively into A{pfqA; a
polynomial in the kernel depends only on the ui’s, but it also is a multiple of f (which
depends on t1), hence it must vanish. The extension

B Ă A{pfqA

is integral since A{pfqA is generated over B by the class of t1, which is integral since f is
monic. Going-Up then yields that dimA{pfqA “ n´ 1.

As to (i), let 0 Ă p1 Ă . . . Ă pr be a saturated chain in A, and chose an irreducible
polynomial f P p1 (in fact, p1 is a principal ideal since A is a UDF). By (ii), it holds that
dimA{pfq “ n´ 1, and so r ´ 1 ď n´ 1, and we infer that dimAnk ď n.

Exercise 12.3.1. Let A be a ring and m Ă Arts a maximal ideal. Let m0 “ A X m and
k “ A{m0.
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a) Show that Arts{m0Arts » krts;
b) Show that if m0 is maximal and generated by r elements, then m is generated

by r ` 1 elements. HINT: krts is a principal ideal domain;
c) Show by induction on the number of variables that each maximal ideal in a

polynomial ring krt1, . . . , trs over a field k is generated by r elements;
d) (Alternative proof that dimAnk “ n) Show that if A is an algebra of finite type

over a field k, then dimArts “ dimA`1. HINT: Claim (i) of Corollary 12.12
is useful;

e) If X is a variety over k, show that dimX ˆk Ank “ dimX ` n.

Dimension and transcendence degree

We have now come to the main result about the dimension of a variety:

Theorem 12.15 (Dimension and transcendence degree). Let X be a variety over
the field k.

(i) dimX “ trdegk kpXq;
(ii) For each non-empty open subvariety U Ă X , it holds that dimU “

dimX;
(iii) If Y Ă X is a closed subvariety, all maximal chain of irreducible

subvarieties

Y Ă Z1 Ă . . . Ă Zr Ă X

have the same length;
(iv) codimpY,Xq “ dimX ´ dimY .

Note that with Y the empty subvariety, claim (iii) says that all maximal chains in X are of
the same length. In particular, it holds that dimOX,x “ dimX for all closed points x P X .

Proof In view of Lemma 8.30 on page 125, the general case follows from the affine case, so
we may assume that X is affine, say X “ SpecA. The Normalization Lemma tells us that
there is a finite surjective morphism p : X Ñ Ank where n “ trdegk kpXq. Applying Going–
Up (Proposition 8.32 on page 125) and Lemma 12.14, we infer that dimX “ dimAnk “ n.

Statement (ii) follows since U has the same function field as X .
To prove (iii), consider a maximal chain 0 Ă p0 Ă . . . Ă pr of prime ideals inA, and chose

algebraically independent elements t1, . . . , tn such that A is finite over B “ krt1, . . . , tns.
The ideal p0 is minimal among the non-zero prime ideals in A, and Going–Down (part (iv)
of Theorem A.17 on page 422) ensures that q “ p0 X B is minimal among the non-zero
prime ideals in B. Hence q “ pfq for some f P B, as polynomial rings are UFD’s. Now,
B{q Ă A{p0 is an integral extension, and by Lemma 12.14 we have dimB{q “ n ´ 1.
Hence dimA{p0 “ n´ 1 by Going–Up; induction applies, and the chain tpi{p0u in A{p0
is of length n´ 1, which implies that the original chain has length n.

Finally, claim (iv) is a direct consequence of (iii).

Example 12.16. The projective space Pnk “ Proj krt0, . . . , tns is a variety of dimension n. It
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has open subvarieties isomorphic to affine n-space Ank , namely the distinguished subvarieties
D`ptiq.

Example 12.17. The quadric cone Q “ Spec krx, y, zs{px2 ´ yzq of Example 5.25 on
page 76 has dimension 2. This follows directly from (ii) of Lemma 12.14. More generally, for
any irreducible non-constant polynomial f P krt1, . . . , tns, the closed subvariety V pfq “

Spec krt1, . . . , tns, where f vanishes, is of dimension n´ 1.
In an analogues manner, an irreducible homogeneous polynomial f P krt0, . . . , tns

defines a closed subscheme Z “ Proj krt0, . . . , tns{pfq of Pnk , which is a closed subvariety
of dimension n ´ 1. Indeed, at least one distinguished open set, say Dptiq, meets Z in a
non-empty open subscheme Ui “ Dptiq X Z , which equals Spec krt0t

´1
i , . . . , tnt

´1
i s{pF q,

where F is f dehomogenized with respect to ti; that is, it equals fpt0t
´1
i , . . . , tnt

´1
i q (see

Sections 1.3 and 9.2). Hence dimUi “ n´ 1 and so also dimZ “ n´ 1.
The subvarieties described in this example are respectively called affine and projective

hypersurfaces.

There is a generalization of the notion of ‘hypersurfaces’ which is meaningful for any
scheme X . A subscheme is said to be locally given by one equation if one may find an open
affine cover tUiu of X and non-zerodivisors fi P OXpUiq so that Z X Ui “ V pfiq.

In the Noetherian case the codimension of Z will be one according to the Hauptidealsatz,
for each generic point of Z it holds that dimOZ,η “ 1, and one could be tempted to expect
that dimZ “ n´ 1. However this is not always true even in the Noetherian case; there are
examples of Noetherian domains of any Krull dimension having principal maximal ideals.
This pathology, which is due to maximal chains of prime ideals being of varying length, does
not occur in the realm of varieties, so for those, intuition concords with reality:

Proposition 12.18. Let X be variety over k and let Z Ă X be a closed subvariety
locally defined by one equation. Then dimZ “ dimX ´ 1.

For schemes which are not integral, but of finite type over k, we still have a good control
over the dimension. First of all, the dimension ofX is the same as ofXred, so we may assume
that X is reduced. Then, if X “

Ť

Xi is the decomposition into irreducible components,
each Xi is integral, and dimX is the maximum of all dimXi.

Example 12.19. Consider A3
k “ Spec krx, y, zs and Y “ V paq where a is the ideal

a “ px y ´ x, x2, y2z ´ z, y3 ´ y, x y2 ´ x yq “ pz, y, xq X py ´ 1, x2q X py ` 1, xq.

The associated primes of a are p1 “ px, y ` 1q, p2 “ px, y ´ 1q and p3 “ px, y, zq. So Y
has three components: L “ V px, y`1q,M “ V px, y´1q (two lines), and P “ V px, y, zq

(the origin). The dimension of Y equals the largest of the dimension of each component,
and dimL “ 1, dimM “ 1, dimP “ 0, so dimY “ 1. The codimension of Y in A3

k

equals the maximum of the heights of the associated primes of a; i.e. htpp1q “ 2. So the
codimension of Y equals 2.
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Dimension of fibres

When investigating a morphism f : X Ñ Y , understanding the fibres over closed points is a
must, and a first step in that direction is to survey how the dimension of a fibre Xy varies
with the closed point y. There are some general principles which we will explain, and which
involves the ‘relative dimension’ r “ dimX ´ dimY .

Heuristically, one would believe that the dimension of a fibre should be equal to the relative
dimension. However, this is not generally true, but still holds for most fibres. The fibre
dimension does not vary arbitrarily, all components of each fibre is of dimension at least the
relative dimension, and we begin with with proving this. The argument is based on Krull’s
Hauptidealsatz combined with the fact that all maximal ideals in krt1, . . . , tns are generated
by n elements.

Proposition 12.20. Let f : X Ñ Y be a dominant morphism between varieties
over a field k. For every closed point y P Y in the image of f and every irreducible
component Z of the fibre Xy, it holds that dimZ ě dimX ´ dimY .

Proof Replacing Y by some open affine neighbourhood U of y and X by some open affine
subscheme that meets Z and maps into U , we may assume that X and Y both are affine; say
X “ SpecB and Y “ SpecA.

We first treat the essential case that Y “ Ank . So, let m be the maximal ideal in the
polynomial ring krt1, . . . , tns that corresponds to y. It is generated by n elements g1, . . . , gn.
Consequently, the fibre Xy is given as

Xy “ SpecB{mB “ SpecB{pg1, . . . , gnq,

and the actual component Z of the fibre Xy equals V ppq for a prime ideal p minimal over
pg1, . . . , gnq. Citing the Hauptidealsatz, we infer that codimpZ,Xq “ dimBp ď n. Hence
by (iv) of 12.15 we conclude that dimX ´ dimZ ď n “ dimAnk ; or on other words, that
dimZ ě dimX ´ dimAnk .

Attacking the general case, we appeal to the Normalization Lemma to find a finite and
dominant morphism p : Y Ñ Ank , and consider the composition h “ p ˝ f : X Ñ Ank . The
point is that z “ ppyq is closed in Ank , and that Z is a component of the fibre h´1pzq; indeed,
the fibre p´1pzq is finite and discrete.

Theorem 12.10 combined with Going–Up gives the following;

Proposition 12.21 (Dimension of generic fibres). Let X and Y be varieties over k
and let f : X Ñ Y be a dominant morphism. There is an open dense subset U Ă Y
so that for all closed points y P Y and all irreducible components Z of Xy, it holds
that dimZ “ dimX ´ dimY .

Proof We may clearly assume that Y is affine, and we cover X by finitely many open affine
subschemes tWiu.

For each Wi we choose open affines Vi Ă Wi and Ui Ă Y such that fi “ f |Vi
factors as
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12.3 The dimension of schemes of finite type over a field 195

in Theorem 12.10; that is, as the composition of two maps

Vi Ui ˆ Ar Ui
gi pi

with gi finite and pi the projection and r “ dimVi´dimUi. Note that r “ dimX´dimY
by (ii) of Theorem 12.15. We claim that the set U “

Ş

i Ui will be as required. Indeed,
consider a closed point y P U and a component Z of the fibre Xy. At least one of the
Wi meets the given component Z in an open dense set, and hence the corresponding Vi
meets Z as well. Then Zi “ Z X Wi is open and dense in Z, and dimZ “ dimZi by
(ii) of Theorem 12.15. The restriction gi|Zi

: Zi Ñ p´1
i pyq “ y ˆk Ark is a finite map,

and so by Going–Up, the closure of the image is of the same dimension as Zi; hence
dimZ “ dimZi ď r. The converse inequality is just Proposition 12.20, so dimZ “ r.

Proposition 12.22 (Semicontinuity of the fibre dimension). Let X and Y be
varieties over k and let f : X Ñ Y be a surjective morphism. Then for all integers s
the set Fspfq “ t y P Y | dimXy ě s u is closed in Y .

Proof The proof goes by induction on dimY . The case dimY “ 0 is trivial, so assume
that dimY ą 0. If s ď r “ dimX´dimY , it holds that Fspfq “ X by Proposition 12.20
(remember that f is surjective). Suppose then that s ą r, and let U Ă Y be an open set as
in Proposition 12.21. Let Zi be the components of Y ´ U and let Wij be the components
of f´1Zi. Then dimZi ă dimY , and by induction each Fspf |Wij

q is closed in Zi. We
contend that

Fspfq “
ď

ij

Fspf |Wij
q, (12.1)

and this will imply that Fspfq is closed since Zi is closed in Y .
As to (12.1), note that for all points in y P U , each component W of Xy has dimW “

r ă s, and hence the inclusion Fspfq Ă
Ť

ij Fspf |Wij
q holds true. Then pick a point

y P Fspf |Wij
q. Each component of f |´1

Wij
pyq is contained in a component of f´1pyq, so we

infer that dim f´1pyq ě dim f |´1
Wij

pyq ě s.

Images and constructible sets

Images of morphisms A subsetE of a topological space is locally closed if it is the intersection
of an open and a closed set. When X is Noetherian, a constructible set is defined to be a
finite union of locally closed sets. It is easy to verify that finite unions and finite intersections
of constructible sets are constructible, and that a subset which is constructible in a closed
subspace, is constructible in the surrounding space.

The main interest in constructible sets lies in the fact that images of morphisms, which in
general are neither closed nor open, are constructible; at least when the morphisms are of
finite type and the schemes are Noetherian.

Example 12.23. The standard example is the map A2
k Ñ A2

k (where k is algebraically
closed), that acts on closed points as px, yq ÞÑ pxy, yq. The image is the union of the
complement of the x-axis and the origin. Indeed, the only possible points in the preimage
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196 Algebraic varieties

of a point on the x-axis are points on the x-axis, but all these map to the origin. For points
pa, bq off the x-axis, b ‰ 0 and pab´1, bq is a preimage.

Theorem 12.24 (Chevalley’s constructibility theorem). LetX and Y be Noetherian
schemes and let f : X Ñ Y be a morphism of finite type. Then the image fpXq is
constructible.

Proof Since Y and Yred are homeomorphic and since being constructible is a purely
topological property, we may assume that Y is reduced. The proof will be by Noetherian
induction. Consider the set

Σ “ tZ Ă Y | Z is closed and fpf´1Zq is not constructible u.

If fpXq is not constructible, Σ is non-empty (it contains Y ), and since Y is Noetherian, Σ has
a smallest member. Replacing Y with this smallest ‘crook’, we may assume that fpf´1Zq

is constructible for all proper closed subsets of Y . If f is not dominant, we are through,
so we may assume that f is dominant. By Theorem 12.10 there is an open non-empty set
U Ă fpXq, and for all irreducible components Zi of the complement Y ´ U (which are
finite in number since Y is Noetherian), it holds that fpf´1Ziq is constructible. But as

fpXq “ U Y
ď

i

fpf´1Ziq,

it ensues that fpxq is constructible.

One easily extends the theorem to images of constructible sets:

Corollary 12.25. Let X and Y be Noetherian schemes and let f : X Ñ Y be a
morphism of finite type. For each constructible subset E Ă X the image fpEq is
constructible.

Proof If E is locally closed, we give E the unique reduced scheme structure, which is
Noetherian and such that f |E is a morphism of finite type. Then f |E has constructible image
equal to fpEq. The corollary then follows since fpEYF q “ fpEq Y fpF q for all sets.

Exercise 12.3.2. Show that the constructible sets in a topological space form the small-
est Boolean algebra containing the open (or the closed) sets. Show inverse images under
continuous maps of contructible sets are constructible.

Exercise 12.3.3. Let X be a scheme and x P X a point. One says that a point y P X is a
specialization of x if y P x̄, and that y is a generalization of x if x P ȳ.

One says that a subset E Ă X is closed under specialization if specializations of points in
E belong to E. Likewise, E is said to be closed under generalization if generalizations of
points in E belong to E.

a) Show that E is closed under specializations if and only if the complement
X ´ E is closed under generalizations;

b) Show that E is closed under specialization if and only if it has the following
property: if x P E and Z Ă X is a closed irreducible set with x P E then
Z Ă E;

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

12.3 The dimension of schemes of finite type over a field 197

c) Show that closed sets are closed under generalization and that open sets are
closed under generalization;

d) Show that if E set closed under specialization and x R E, then each irreducible
component Z of X containing x is disjoint from E;

e) Show that in a Noetherian scheme, a constructible subset E is closed if it is
closed under specialization and that it is open if it is closed under generalization;

f) Give example that the Noetherian hypothesis is necessary. HINT: Consider the
spectrum in Exercise ??.

Products of varieties

In section?? gave examples of domains of finite type over k such that the tensor product
Abk B is not a domain — in the examples A and B were even fields. In other words, and
in geometric terms, the product X ˆk Y of two varieties needs not be a variety; it will be
separated and of finite type, but not necessarily integral. But, as we are about to see, such
things occur only when the base field is not algebraically closed.

Theorem 12.26 (Product of varieties). If X and Y are two varieties over an alge-
braically closed field k, then X ˆk Y is a variety.

Proof The product of to separated schemes of finite type over k is separated (Exercise 11.3.5
on page 182) and of finite type. So the crucial point is to see that the product is integral. To
that end, one easily reduces the proof to the affine case and so to prove that the tensor product
Abk B of two domains finitely generated over k is a domain.

Suppose that f “
ř

ai b bi and g “
ř

ci b di are two elements such that fg “ 0. We
may arrange it so that the ai’s and the ci’s are linearly independent over k. Let b be the ideal
in B generated by the bi’s and d the one generated by the di’s.

For a maximal ideal m in B and an element b P B, let b̄ denote the class of b in B{m. By
the Nullstellensatz B{m “ k and so Abk B{m “ A. Clearly f̄ ḡ “ 0. As A is a domain
and the ai’s and the ci’s are linearly independent, either f̄ “

ř

b̄iai “ 0, and all bi P m,
or ḡ “

ř

d̄ici “ 0, and all di P m. Hence b X d Ă m. This holds for all maximal ideals
m Ă B, and according to Corollary 12.12 the intersection of all maximal ideals in B equals
0, hence it holds that b X d “ 0. As B is a domain, it ensues that either b “ 0 or d “ 0,
which means that either f “ 0 or g “ 0.

Corollary 12.27. The product of two projective varieties X and Y over an alge-
braically closed field k, is a projective variety.

Proof The product is a variety by the theroem. The Segre embedding (Proposition 10.28 on
page 170) realizes Pnk ˆ Pmk as a projective variety, and if X Ă Pnk and Y Ă Pmk are closed
embeddings, then X ˆk Y Ă Pnk ˆk Pmk is a closed embedding.
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198 Algebraic varieties

Proposition 12.28 (Dimension of a product). If X and Y are varieties over the
algebraically closed field k, it holds that dimX ˆk Y “ dimX ` dimY .

Proof Replacing X and Y with non-empty open subsets, we may assume that both X and
Y are affine. Chose finite surjective morphisms f : X Ñ Ank and g : Y Ñ Amk , where n
and m are the dimensions of X and Y respectively. The morphism f ˆ g : X ˆk Y Ñ

Ank ˆk Amk “ An`m
k is finite and surjective, hence dimX ˆk Y “ n`m.

Exercise 12.3.4. Let X and Y be schemes of finite type over an algebraically closed field k.
Show that if both are irreducible, then the product X ˆk Y is irreducible. Show that if both
are reduced, then the product X ˆk Y is reduced.

Exercise 12.3.5 (Alternative proof of Theorem 12.26). This exercise presents a proof of a
slightly stronger version of Theorem 12.26. If X and Y are two varieties over k and k is
closed in the function field kpXq, then X ˆk Y is integral. (A subfield k Ă K is closed in
K if any root in K of a polynomial with coefficients in k lies in k; or equivalently every
irreducible polynomial over k is irreducible over K.)

It suffices to do the affine version: let A be a domain of finite type over the field k. Assume
that the ground field k is algebraically closed in the fraction field K of A.

a) If L “ kptq, show that Abk kptq “ S´1Arts where S is the multiplicative set
of non-zero polynomials inArts with coefficients in k. Conclude thatAbk kptq
is a domain.

b) If L “ krts{pfq with f irreducible, show that Abk L “ Arts{pfq and that
Arts{pfq is integral. HINT: Krts{pfq is a field.

c) Show by induction on the number of generators over k required by L, that
Abk L is integral for all finitely generated field extensions L of k.

d) Show that Abk B is a domain for all integral k-algebras B of finite type.
HINT: The tensor product is contained in AbkKpBq which is integral.

12.4 Birational vs biregular geometry

Two varieties are said to be birationally equivalent if they they have isomorphic open subsets.
This is a much weaker relation than being isomorphic; for instance, blowing up a point in P2

k

yields a variety which is birationally equivalent with but not isomorphic to P2
k.

Rational maps

Let us be precise about what a rational map from X to Y is. Heuristically, just like rational
functions, it is a morphism U Ñ Y where U is an open non-empty subset of X . To avoid the
ambiguity in the domain of definition U , one introduces an equivalence relation between such
pairs pU, fq, and says that two pairs pU, fq and pU 1, f 1q are equivalent if f |UXU 1 “ f 1|UXU 1 .
A rational map is then an equivalence class of such pairs. However, it follows immediately
from Proposition 6.4 about gluing morphisms that there is a preferred member in each class
for which the open set U is maximal, and this is another way of resolving the ambiguity. A
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12.4 Birational vs biregular geometry 199

rational map is denoted with a dashed arrow f : X 99K Y (with the set of definition tacitly
understood).

One says that a rational map f : X 99K Y is dominant if fpUq is dense in Y where U
is some open set where f is defined (if true for one U , it holds for all). Let g : Y 99K Z
be another rational map say defined on V Ă Y . The open set f´1pV q is non-empty since
fpUq being dense entails that fpUq X V ‰ H, and on f´1pV q the composition g ˝ f is
defined. We conclude that dominant rational maps can be composed, and so the varieties over
k together with the dominant rational maps form a category Ratk.

A map dominant rational map f : X 99K Y is birational if it is an isomorphism in Ratk;
or in clear text, if there is dominant rational map g : Y 99K X so that f ˝ g “ idY and
g ˝ f “ idX . One says that X and Y are birationally equivalent if there is birational map
between them.

Example 12.29. Sending pu0 : u1 : u2q to pu1u2 : u0u2 : u0u1q is a rational map from P2
k

to P2
k defined away from the three coordinate points p0 : 1 : 0q, p1 : 0 : 1q and p1 : 1 : 0q. It

is birational with itself as inverse.

Example 12.30. Sending pu0 : u1q ˆ pv0 : v1q to pu0v0 : u1v0 : u1v1q is a rational
map P1

k ˆ P1
k 99K P2

k. Defined away from p1 : 0q ˆ p0 : 1q. It is also birational with
pt0 : t1 : t2q ÞÑ pt0 : t1q ˆ pt1 : t2q as inverse; this map is defined away from p0 : 0 : 1q

and p1 : 0 : 0q.

The main theorem of birational geometry

A fundamental truth is that the study of of dominant rational maps, basically is reduced to the
study of extensions of function fields:

Theorem 12.31. Let X and Y be two varieties over k. Then there is a one-to-one
correspondence between rational dominant maps X 99K Y and k-algebra homomor-
phisms kpY q Ă kpXq. In particular, two varieties are birationally equivalent if and
only if their function fields are isomorphic as k-algebra.

We need a little lemma.

Lemma 12.32. Let A and B be two domains of finite type over a field k and denote
their fraction fields by K and L respectively. Assume that ϕ : K Ñ L is a k-algebra
homomorphism. Then there is some element d P B so that ϕpAq Ă Bd.

Proof Let a1, . . . , ar generate A over k. Each ϕpaiq is of the form ϕpaiq “ bi{ci with
bi, ci P A. Then d “ c1 . . . cr does the job.

Recall also that when A and B are domains, a morphism f : SpecA Ñ SpecB being
dominant is equivalent to the associated map f 7 : A Ñ B being injective; this is just
Proposition 2.29 on page 33 bearing in mind that

?
0 “ 0 in B. Note further that a rational

map f : X 99K Y being dominant means that it maps the generic point of X to the generic
point of Y .
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Proof of the theorem LetU “ SpecB Ă X and V “ SpecA Ă Y be open affine subsets.
Then kpY q is the fraction field of A and kpXq that of X .

Given a dominant rational map f : X 99K Y , we may chose U and V so that f is defined
on U and maps U into V . The induced k-homomorphism A Ñ B is injective since f is
dominant and extends to a k-homomorphism kpY q Ñ kpXq. This does not depend on the
choice of open affines; indeed, it is the map between stalks at the generic points induced by
f .

For the converse, if a k-homomorphism ϕ : kpY q Ñ kpXq is given, there is according
to Lemma 12.32 an element d P B so that ϕpAq Ă Bd; then ϕ induces a morphism
SpecBd Ñ SpecA “ V Ă Y hence a rational map X 99K Y . Evidently, A maps
injectively into Bd so the morphism is dominant.

One leisurely verifies that the two assignments are mutually inverses (the key comment is
that all maps between coordinate rings of affines are restrictions of f 7 : kpY q Ñ kpXq)

Associating X to the function field kpXq defines a functor from the category Ratk of
varieties over k and dominant rational maps to the category of fields of finite type over
k and k-homomorphism. Theorem 12.31 tells us that it is fully faithful; that is, it holds
that HomRatkpX,Y q » HomAlgkpkpXq, kpY qq. In fact, as we shortly will see, it is also
essentially surjective: every field K of finite type over k is of the form kpXq for some variety
X . So it makes the two categories ‘essentially equivalent’, but there is no natural functor that
serves as the inverse functor — there is no good, systematic way to pick out one particular
model for each field K. A variety X so that kpXq » K is called a model for the field K.

Theorem 12.33 (Main theorem of birational geomtry). The assignment X ÞÑ

kpXq is fully faithful and essentially surjective functor between the following cate-
gories:

(i) The category of projective varieties and dominant rational maps;
(ii) The category of finitely generated field extensions of k and k-algebra

homomorphisms.

Proof Given a field K of finite type over k Assume that K “ kpt1, . . . , trq and let A
be the subring of K generated by the ti’s; that is, A “ krt1, . . . , trs. To get a projective
projective variety, embed X “ SpecA in affine space Ark and close it up in Prk.

Note, to obtain a non singular model X for each field X is highly desirable, but extremely
difficult. An illustrious result of Hironaka’s is that it is true in characteristic zero, but in
positive characteristic it is still un-known, except in low dimensions.

Exercise 12.4.1. Let Qpx0, . . . , xnq be a homogeneous quadratic polynomial. Show that the
subvariety of Pn`2

k given by xn`1xn`2 `Qpx2, . . . , xnq is birational to Pn`1
k .
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13

Local properties

13.1 Tangent spaces

Consider an affine variety X Ă Ank , say X “ V pIq where I “ pf1, . . . , frq. For a k-point
p P X , the tangent space TpX is usually defined as the sub-vector space of kn given by the
null space of the Jacobian matrix

Jpf1, . . . , frqppq “

ˆ

Bfi
Bxj

ppq

˙

1ďiďr
1ďjďn

. (13.1)

It is easily verified using the chain rule that TpX does not depend on the choice of generators
for I .

The dimension of TpX is given by

dimTpX “ n´ rank Jpf1, . . . , frqppq. (13.2)

As it is defined, TpX is a subspace of kn. One sometimes also talks about the affine tangent
space at a point a “ pa1, . . . , anq as the subvariety defined by the linear equations (in Ank )

Jpf1, . . . , frqppq ¨ px´ aq “ 0.

p

Tp

X

Example 13.1. Consider the cuspidal cubic curveX “ V px3`y2q in A2
C. Then the Jacobian

at a closed point p “ pa, bq is given by J “ p3a2, 2bq. Therefore, TpX has dimension 2 at
the origin p “ p0, 0q and dimension 1 for every other point.

There is an intrinsic description of the tangent space TpX , which is independent of the
affine embedding of X , and which will be the inspiration for the general definition.

Suppose for simplicity that p “ p0, . . . , 0q is the origin (we may always arrange this
by a linear change of coordinates), and write M “ px1, . . . , xnq Ă krx1, . . . , xns for the
maximal ideal at p. For a polynomial f P krx1, . . . , xns, we consider its linearization at p,
given by

Df “

n
ÿ

i“1

Bf

Bxi
p0qxi.

201
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202 Local properties

This is just the linear part of the Taylor expansion at p. Note that the coordinates x1, . . . , xn
give a basis for the dual space pknq_ “ Homkpkn, kq. Hence we may view Df as a linear
functional on kn, and in this way we get a k-linear map

D : M Ñ pknq_.

It is clear thatD is surjective, sinceDpxiq “ xi. A polynomial f lies in kernel ofD precisely
when all terms are of degree at least two, or phrased differently, the kernel of D equals M2.
Hence D induces an isomorphism of k-vector spaces

M{M2 » pknq_.

Returning to the variety X and the tangent space TpX , we take the dual of the inclusion
TpX Ă kn, to obtain a surjection

pknq_ Ñ pTpXq_.

Concretely, this map is given by restricting a linear functional on kn to the subspace TpX .
The composition

θ : M{M2 Ñ pknq_ Ñ pTpXq_

is also surjective.
We claim that Ker θ “ M2 ` I . Indeed, note that f P Ker θ if and only if Df restricts

to 0 on TpX . This happens if and only if Df “ Dg for some g P I (since TpX is the zero
locus of Dg for all g P I); that is, if and only if f ´ g P KerD “ M2, or equivalently,
f P M2 ` I .

It follows that we have isomorphisms of k-vector spaces

pTpXq_ » M{pM2 ` Iq » m{m2. (13.3)

where m Ă OX,p is the maximal ideal. Taking duals, we now have:

Proposition 13.2. There is a natural isomorphism

TpX » Homkpm{m2, kq. (13.4)

Tangent spaces in general

Taking Proposition 13.2 as motivation, we make the following definition of tangent spaces of
general schemes.

Definition 13.3. Let X be a scheme and let p P X be a point.
(i) The cotangent space is defined the kppq-vector space mp{m

2
p, where mp

is the maximal ideal in the local ring OX,p.
(ii) The tangent space is defined as the dual kppq-vector space

TpX “ Homkppqpmp{m
2
p, kppqq

The cotangent space is functorial in the following sense. Let f : X Ñ Y be a morphism
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and let y “ fpxq. The map of local rings f 7 : OY,y Ñ OX,x takes the maximal ideal into
the maximal ideal, and being a ring map, it sends m2

y into m2
x. Therefore it induces a map of

kpyq-vector spaces

f 7
x : my{m2

y Ñ mx{m2
x.

Moreover, for each morphism g which is composable with f one has

pg ˝ fq7
x “ f 7

x ˝ g7

fpxq

since pg ˝ fq7 “ f 7 ˝ g7.
The map f 7

x is, however, just a map of kpyq-vector spaces. In general, there is no way to
make my{m2

y a kpxq-vector space, and for this reason the tangent spaces are not functorial in
general; the required duals will be with respect to different fields.

One exception is when X and Y are varieties over some field k, and x and y both are
k-points. Then kpxq “ kpyq “ k, and we are permitted to take duals to get a map

df : TxX Ñ TyY.

Once the tangent maps are defined, they behave functorially:

dpg ˝ fqx “ dgy ˝ dfx

when g : Y Ñ Z is a map of k-schemes and x is a k-point.1

Zariski tangent spaces and the ring of dual numbers

WhenX is a scheme over a field k, there is an interesting relation between the Zariski tangent
space at k-points and the ring krϵs{pϵ2q. This ring is called the ring of dual numbers over k,
which is often written krϵs, tacitly understanding that ϵ2 “ 0 in this ring. The spectrum of
krϵs is a very simple scheme: its underlying topological space is a single point. However, the
non-reduced structure on Spec krϵs shows that it is more interesting than Spec k. We picture
it as a point ε with a vector ‘sticking out of it’.

Proposition 13.4. Let X be a scheme over k. To give a k-morphism Specpkrϵsq Ñ

X is equivalent to giving a k-rational point x P Xpkq, and an element of TxX .

Before proving the proposition, let us mention that there are other interesting tiny algebras
related to krϵs. If V any vector space over k, one may form the ‘infinitesimal’ k-algebra
DV “ k ‘ V where V is as a maximal ideal with square zero; that is, the multiplication is
pa`wq ¨ pb` vq “ ab` paw ` bvq. The important property of DV is that k-algebra maps
DV Ñ krϵs correspond bijectively to linear functionals on V ; in other words, there is an
isomorphism

HomAlgkpDV , krϵsq » HomkpV, kq.

Indeed, if α : DV Ñ krϵs is given, the restriction α|V is k-linear and takes values in pϵq “ k.

1 Note that this only works if dimkpyq TyY is finite; this subtle point is another reason why the cotangent space
m{m2 is preferable to the tangent space.
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For the inverse map, if α : V Ñ k is a given functional, the assignment a` v ÞÑ a` αpvqϵ
defines a k-algebra map.

Proof of Proposition 13.4 Fix a k-point p P Xpkq. Every map Spec krϵs Ñ X that sends
the point pϵq to p, must factor through each open affine neighbourhood of p, and so we
may well assume that X is affine, say X “ SpecA. Let m “ mp. A homomorphism
α : A Ñ krϵs corresponds to a morphism Spec krϵs Ñ X that sends pϵq to p, precisely
when the diagram

A krϵs

k

α

commutes (where A Ñ k and krϵs Ñ k are the quotient maps associated to mp and ϵ
respectively). Such maps α factor in a unique manner through the canonical map A Ñ A{m2

(since αpmq Ă pϵq and ϵ2 “ 0). Now, the reduction map A{m2 Ñ A{m “ k splits
as an algebra homomorphism, the structure map k Ñ A{m2 being a section, and A{m2

decomposes as an k-algebra into A{m2 “ k ‘ pm{m2q; in other words, A{m2 “ Dm{m2 in
the terminology above. It follows that we have our desired isomorphism

HomAlgkpA, krϵsq » HomAlgkpA{m2, krϵsq » Homkpm{m2, kq.

Exercise 13.1.1. Let V and W be two vector spaces over k. Show that there is a functorial
isomorphism HomAlgkpDV , DW q » HomkpV,W q.

13.2 Normal schemes

Recall that an integral domain A is said to be normal if it is integrally closed in its fraction
field K “ kpAq. In other words, any element z P K which satisfies a monic equation with
coefficients in A, is already contained in A. Here are a few examples of normal rings:

Example 13.5. Any UFD is normal (e.g., Z, Zrx1, . . . , xns).
To see this, take any element u{v P K. If there is a monic relation of the form

pu{vq
n

` an´1 pu{vq
n´1

` ¨ ¨ ¨ ` a0 “ 0 (13.5)

with the ai P A, then multiplying by vn shows that v divides un. But then if we assume that
u have no common factors, we must have u “ a ¨ v for some a P A, hence u{v P A.

Example 13.6. If A is normal, then so is Arxs.

Example 13.7. Any localization S´1A of a normal integral domain A is normal.

The last part has a converse: An integral comain A is normal if and only if Ap is normal
for all prime ideals p, if and only if Am is normal for all maximal ideals m.

Motivated by all the desirable algebraic properties of normal rings, we make the following
definition:
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Definition 13.8. LetX be a scheme. We say thatX is normal if for each point x P X ,
the local ring OX,x is an integrally closed integral domain.

The primary example of a normal scheme is X “ SpecA, where A is a normal integral
domain. Note however, that in the definition of a normal scheme we do not make the
assumption that X is integral. However, if x P X , the local ring OX,x is an integral domain,
and normality implies that there is a unique irreducible component Xi of X containing x,
and Xi, with its induced scheme structure is integral. In any case, any normal scheme is
reduced.

Example 13.9. AnZ and PnZ are normal schemes, because the local rings is isomorphic to
Zrx1, . . . , xnspx1,...,xnq which is a localization of an UFD, hence normal.

Althogh it is not obvious from the definition, the notion of normality is related to regularity.
This is because of the algebraic fact that local regular rings are unique factorization domains
?, hence they are normal (Example 13.5). From this we conclude:

Proposition 13.10. Any regular scheme is normal.

Example 13.11. More generally, a scheme which is locally factorial (meaning that all stalks
OX,x are UFD’s), is also normal.

We will see an example below of a normal scheme which is non-regular. While normal
schemes are more general than regular schemes, they still have several nice properties. For
instance, if X is a normal variety, then:

(i) The singular locus of X has codimension at least 2 in X (Theorem 13.22);
(ii) Any finite birational morphism Y Ñ X is an isomorphism (Proposition 13.27);

(iii) Any rational function defined outside a closed set of codimension at least 2,
extends to a regular function on all of X (Theorem 13.19).

Normalization

In this section, we will construct the normalization of a scheme. This produces a normal
scheme X together with a dominant morphism π : X Ñ X . We construct the normalization
X because has better properties than X , e.g., X typically has a smaller singular locus than
X . When X is a variety, the normalization morphism π is birational, so X can be viewed as
a sort of ‘mild resolution of singularities’ of X . In fact, when X is a curve, being normal is
the same as being regular, so X is indeed the desingularization of X (cf. XXX).
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Theorem 13.12 (Normalization). For an integral scheme X , there is a normal
scheme X , and a morphism π : X Ñ X satisfying the following universal property:
For any dominant morphism h : Y Ñ X from a normal scheme Z , there is a unique
morphism h : Z Ñ X such that h “ π ˝ h.

X

Z X

π

h

h

Proof If X “ SpecA is affine, define X “ SpecA where A Ě A is the integral closure
of A in K “ kpXq, and πX : SpecB Ñ SpecA is the morphism induced by the inclusion.
Note that the scheme X is normal, because all the local rings are given by localizations Bp

which are normal in kpAq “ K by assumption. Moreover, Y pXq is integral, because A is
an integral domain.

Next we verify the universal property. Let h : Z Ñ X be a dominant morphism from
an integral normal scheme Z. This means that the map h7 : A Ñ OZpZq is injective. As
OZpZq is normal, the ring map A Ñ OZpZq factors via A as A Ñ A Ñ OZpZq. Hence h
factors via Y pXq, and we are done.

Now suppose X is a general integral scheme. For an affine subset U “ SpecA Ă X , we
set Y pUq “ SpecA and check that the collection of morphisms πU : Y pUq Ñ U satisfy
the conditions of Proposition 24.1, so that they glue to a morphism πX : Y pXq Ñ X .

If U, V are two affines with V Ă U , we can consider the open subscheme W “

π´1
U pV q Ă Y pV q. By assumption, this scheme is affine (since πU is an affine morphism),

integral and normal, being an open set in Y pUq. Note that

OW pW q “
č

pPW

OY pUq,p.

The intersection takes place inside K “ kpW q “ kpXq. As the local rings OY pUq,p

are integrally closed, we see that OW pW q is normal. By Exercise 13.5.1, we see that
OW pW q coincides with the integral closure of V in K . In other words, Y pV q is canonically
identified with π´1

U pV q “ Y pUq ˆU V . Finally, if W Ă V Ă U are three affines, the map
Y pW q Ñ Y pUq clearly factors via Y pV q.

Finally, we prove that the scheme X and πX : X Ñ X satisfy the universal property. So
let h : Z Ñ X be a dominant morphism from a normal integral scheme Z. Over each Ui,
we have an induced morphism h´1pUiq Ñ Ui, which by the universal property over the Ui
must factor uniquely via Ui via gi : h´1pUiq Ñ Ui. Again the uniqueness in the universal
property tells us that these maps must agree over the overlaps h´1pUijq. Since the h´1pUiq
form an open cover of Z, these maps glue to a map g : Z Ñ X factoring h.
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13.2 Normal schemes 207

Proposition 13.13. For a Noetherian integral scheme X , the normalization X has
the following properties:

(i) π : X Ñ X is surjective;
(ii) X and X have the same dimension;

(iii) There is a dense open subset U Ă X so that π restricted to π´1pUq is
an isomorphism;

(iv) If X is of finite type over a field or over Z, then π : X Ñ X is a finite
morphism.

Proof All of these properties are ‘local on X’. Thus by the gluing construction used in
the construction of X , we reduce to X “ SpecA and X “ SpecA and π is induced by
the inclusion A Ă A. Here the points (i)–(iv) follow from basic properties of integral ring
extensions. For instance, both statements (i) and (ii) follow from the Going-Up theorem.

The statement (iii) holds true because by construction, X and X have the same fraction
field K, and π maps the generic point η “ SpecK of X maps to the generic point of X .

Finally, the statement (iv) follows from Theorem A.18, which tell us that with our assump-
tions, A is finite as an A-module.

Corollary 13.14 (Being normal is a generic property). Let X be a Noetherian
integral scheme. Then there is a non-empty open subscheme U Ă X which is normal.

13.2.1 Examples

Example 13.15 (Cuspidal cubic). Let k be a field, and let X “ SpecA where A “

krx, ys{py2 ´ x3q. This is the cuspidal cubic curve in A2
k.

There is an isomorphism of k-algebras A krt2, t3s
» given by sending x ÞÑ t2 and

y ÞÑ t3. It is clear that krt2, t3s is an integral domain with fraction field K “ kptq. On
the other hand this ring is visibly not normal, as t R krt2, t3s but yet it satisfies the monic
equation T 2 ´ t2 “ 0. The normalization of A equals A “ krts. The inclusion A Ă A
induces the normalization morphism π : A1

k Ñ X , and this is an isomorphism over the open
set Dptq Ă A1

k.

Example 13.16 (Nodal cubic). Let nowX “ SpecAwithA being the ringA “ krx, ys{py2´

x3 ´ x2q, where k now is a field whose characteristic is not two (if the characteristic is two,
we are back in previous cuspidal case). This is the nodal cubic curve in A2

k . Here it is a little
bit tricker to find the normalization, but it helps to think about it geometrically.

If we think of the corresponding affine variety t px, yq | y2 “ x3 ` x2 u Ă A2pkq, we see
that the origin p0, 0q is a special point: a line l Ă A2

k through the closed point p0, 0q P X
(with equation y “ tx) will intersect X at p0, 0q and at one more point (with x “ t2 ´ 1),
and this gives a parameterization of the curve, which is generically one-to-one.

Back in the scheme world, we imitate this by introducing the parameter t “ yx´1 in
the function field K of X , the equation y2 “ x3 ´ x2 then reduces to t2 “ 1 ` x after
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Spec krts Spec krx, ys{py2 ´ x3 ´ x2q

π

being divided by x2. Moreover, the element t is integral, since it satisfies the monic equation
T 2 ´ x´ 1 “ 0 (which has coefficients in A). Since x “ t2 ´ 1 and y “ x ¨ y{x “ t3 ´ t,
we see that

A “ krt2 ´ 1, t3 ´ ts Ă krts Ă K “ kptq,

and since krts is integrally closed, any element in K which is integral over A, can be written
as a polynomial in t. So A “ krts is the integral closure of A in kptq. The normalization
map π : SpecA Ñ SpecA is an isomorphism outside the origin p0, 0q P X . Geometrically
the map π identifies two points pt` 1q and pt´ 1q in A1

k to the origin in X .

Example 13.17 (The quadratic cone). Consider the affine scheme X “ SpecA where
A “ Crx, y, zs{pxy´z2q. Note that this is not a factorial scheme as xy “ z2 and one easily
checks that x, y and z all are irreducible elements, so we cannot immediately conclude that
A is normal. However, there is an isomorphism of rings

ϕ : A Ñ Cru2, uv, v2s,

and the latter algebra is normal in Cpu2, uv, v2q. Indeed, note that if T “ p{q P Cpu2, uv, v2q
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satisfies a monic equation with coefficients in Cru2, uv, v2s, then T P Cru, vs is a polyno-
mial (as Cru, vs is integrally closed). Therefore, T P Cru2, uv, v2s.

A2

Q

For another proof, see Exercise 13.2.1.

Example 13.18. In general, the normalization map of a scheme π : X Ñ X needs not be
finite in the sense of Definition 8.20 on page 122. The first examples of Noetherian integral
domains A whose integral closure is not finite over A were found by Yasuo Akizuki and
Friedrich Karl Schmidt in the 1930s.

Exercise 13.2.1. Prove directly that A “ Crx, y, zs{pz2 ´ xyq is normal as follows. Let
B “ Crx, ys, so that A “ Brzs{pz2 ´ xyq.

a) Show that A is a finite B-module of rank 2, with basis 1, z.
b) Show that KpBq “ Cpx, yq and the field extension KpBq Ă KpBq has

degree 2.
c) Show that w “ u` vz P A satisfies the monic polynomial

T 2 ´ 2uT ` pu2 ´ xyv2q “ 0.

d) Show that if w is integral over B, then u P Crx, ys; xyv2 P Crx, ys and hence
v P Crx, ys. Conclude that w P A.

13.3 Normality and rational functions

Theorem 13.19 (“Algebraic Hartogs’s theorem”). Let X be a Noetherian normal
scheme, and let U Ď X be an open subset with codimXpX ´ Uq ě 2. Then the
restriction map

OXpXq Ñ OXpUq (13.6)

is an isomorphism.

In other words, every regular function f P OXpUq on U extends uniquely to all of X .

Proof We begin by proving the theorem for the case when X is affine, say X “ SpecA,
where A is a normal integral domain. If we view OXpXq “ A and OXpUq as subrings of
the function field kpXq, the restriction map (13.6) is simply an inclusion A Ă OXpUq. As
X ´ U is assumed to be of codimension at least 2, U contains all points x corresponding
to prime ideals p of height 1. This means that OXpUq Ă OX,x “ Ap for every such p.
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Therefore, by Proposition XXX, we conclude that

OXpUq Ă
č

ht p“1

Ap “ A.

Next, suppose X is a general Noetherian normal scheme, and let tUiu be an affine cover of
X . Consider the diagram

0 OXpXq
ś

iOXpUiq
ś

i,j OXpUi X Ujq

0 OXpUq
ś

iOXpUi X Uq
ś

i,j OXpUi X Uj X Uq

By the affine case, the middle vertical arrows are isomorphisms. Therefore, by a diagram
chase, we would be able to say that the left-most vertical map is an isomorphism if the
right-most map is. The issue is that the intersections Uij “ Ui X Uj need not be affine.
Nevertheless, fix i and j and let Uijk be a covering of Uij consisting of affine open sets which
are distinguished in both Ui and Uj . Again, by the affine case, we get that the restriction map

OUijk
pUijkq Ñ OUijk

pUij X Uq

is an isomorphism. Moreover, in this case, the intersections Uijk X Uijk1 are now affine,
so by the diagram above applied to X “ Uij and the covering Uijk, we conclude that
OXpUijq Ñ OXpUij X Uq is an isomorphism, and we are done.

Example 13.20. The assumption that the codimension is at least 2 can not be removed: For
the open set Dptq Ă A1

k we have OA1
k
pDptqq “ krt, t´1s whereas OA1

k
“ krts.

By the way, the Proposition gives another way to see the why OUpUq “ kru, vs for the
open set U “ A2

k ´ V pu, vq in A2
k (Example XXX).

There is a converse to this result, known as Serre’s Criterion. It gives a more geometric
characterisation of the property of ‘normality’ (which is fundamentally an algebraic notion).

Theorem 13.21 (Serre’s Criterion). Let X be a Noetherian integral scheme. Then
X is normal if and only

(i) The set of singular points, singpXq, has codimension at least 2 in X .
(ii) Whenever U Ă X is an open set whose complement has codimension at

least 2, the restriction map (13.6) is an isomorphism.

In particular, we get:

Corollary 13.22. If X is a normal variety, then the singular set singpXq has codi-
mension at least 2.

Example 13.23 (Curves). A curve X is normal if and only it is regular.

Example 13.24 (Hypersurfaces). LetX be a regular variety and let Y Ă X be a hypersurface
defined by f P OXpXq. Then the condition (ii) in Theorem 13.21 is automatically satisfied
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13.4 Normality and finite birational morphisms 211

(this is a non-trivial fact; see ?). Thus Y is normal if and only if singpXq has codimension at
least 2.

We have seen several examples of non-normal schemes which do not satisfy condition (i)
of Serre’s criterion. Here is one where the second condition fails:

Example 13.25. Let X be the scheme obtained by gluing together two copies of A2
k at the

origin (see Example 24.12 on page 405). Then X is an integral scheme of dimension 2,
and the singular locus consists of a single point p. However, consider now the complement
U “ X´p, which consists of two disjoint copies of A2

k´p. The regular function f P OXpUq

which takes the value 0 on one component and 1 on the other clearly does not extend to all of
X .

See Exercise 13.5.3 for another example.

13.4 Normality and finite birational morphisms

Birational morphisms f : Y Ñ X are isomorphisms over an open set, but they need not be
global isomorphisms. For instance, when f is the blow-up of A2

k at a point, there is a whole
P1
k which is collapsed to a point. But what if we in addition assume that f is finite – is f an

isomorphism then? In general, the anwer is no; here is a counterexample.

Example 13.26. Consider

f : Spec krx, ys{py2 ´ x3q Ñ krxs

given by Example XXX. The map is a homeomorphism and birational, but not an isomorphism
in a neighborhood of the origin. Even worse, the map

f : Spec krx, ys{py2 ´ x3 ´ x2q Ñ krxs

of Example XXX is not even bijective.

This type of phenomenon does not occur if the target is a normal scheme. The exam-
ples above are not normal schemes, and the failure of being an isomorphism is entirely
concentrated at the singular point at the origin.

Proposition 13.27. Let X and Y be integral schemes, and let f : Y Ñ X be a finite,
birational morphism. If X is normal, then f is an isomorphism.

Proof Since the property of being an isomorphism is local on the target, and finite mor-
phisms are affine, we may reduce to the case where bothX and Y are affine, sayX “ SpecA
and Y “ SpecB, and f is induced by a ring map ϕ : A Ñ B.

As f is a finite morphism, the map ϕ makes B into a finite A-module. In addition, if f is
birational, ϕ induces an isomorphism of the function fields ϕK : KpAq Ñ KpBq. Therefore,
since A is integrally closed, the map ϕ : A Ñ B must be an isomorphism, being finite hence
integral. Therefore, f is an isomorphism of schemes.
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13.5 Exercises

Exercise 13.5.1. LetA be an integral domain with fraction fieldK . Let x P K be an element.
Show that the following are equivalent:

a) x is integral over A
b) Arxs is a finite A-module
c) There exists a subalgebra A1 Ă A such that x P A1 and R is a finite A1-module.

Exercise 13.5.2 (The cone over a rational quartic curve). Consider X “ SpecA, where A
is the C-algebra

A “ Cru4, u3v, uv3, v4s » Crt0, t1, t3, t4s{pt0t4 ´ t1t3, t
3
1 ´ t20t3, t

3
3 ´ t1t

3
4q.

a) Show that X is a variety of dimension 2.
b) Show that X is non-singular outside the origin p “ V pt0, t1, t3, t4q.
c) Show that

t21
t0

“ u2v2 “
t23
t4

defines a regular function onX´p, but it does not extend to all ofX . Conclude
that X satisfies (i) but not (ii) of Serre’s criterion.

d) Show that the ideal pt0q is not principal in A. HINT: A primary decomposition
of pt0q is given by

pt0q “ pt0, t
2
1q X pt0, t4q

Exercise 13.5.3. Consider X “ SpecA, where A is the C-algebra

A “ Crs4, s3t, st3, t4s » Crx, y, z, ws{pxw ´ yz, y3 ´ x2z, z3 ´ yw3q.

a) Show that X is a variety of dimension 2.
b) Show that X is non-singular outside the origin p “ V px, y, z, wq.
c) Show that

y2

x
“ s2t2 “

z2

w

defines a regular function on X ´ p, but it does not extend to all of X .
d) Conclude that X satisfies (i) but not (ii) of Serre’s criterion.

Exercise 13.5.4. Show that the normalization of the scheme X “ SpecZr6is is given by
SpecZris.
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14

Sheaves of Modules

In this section we develop the theory of sheaves in greater detail. For a scheme X , the
category of sheaves on X is a particularly nice category which behaves very much like the
category of modules over a ring. One is able to form kernels, cokernels and images of maps,
direct sums and products of sheaves and there is the the notion of exact sequences. In short,
the category AbShX of sheaves on X is an abelian category with arbitrary products and direct
sums.

Kernels

For a map of sheaves ϕ : F Ñ G, we define its kernel as follows:

Definition 14.1. The kernel Kerϕ of ϕ is the subsheaf of F defined by

pKerϕqpUq “ KerϕU

for each open U Ă X . In other words, pKerϕqpUq consists of the sections in FpUq

that map to zero under ϕU : FpUq Ñ GpUq.

The kernel is clearly a presheaf, because ϕV ps|V q “ ϕUpsq|V for any section s P FpUq

and any open V Ă U (the diagram (3.3) commutes).
We check the two sheaf axioms. The Locality axiom for Kerϕ is inherited from the

Locality axiom for F . For the Gluing axiom, suppose we are given a cover tUiu of an open
set U and sections si P pKerϕqpUiq that agree on the overlaps. One may glue together
the si’s to a section s of F over U , and one has ϕpsq|Ui

“ ϕps|Ui
q “ ϕpsiq “ 0. By the

Locality axiom for G, it then follows that ϕpsq “ 0, and hence s P pKerϕqpUq.

Lemma 14.2. For each point x P X , one has pKerϕqx “ Kerϕx.

Proof The inclusion pKerϕqx Ă Kerϕx is clear. Conversely, an element in Kerϕx is
the germ sx of a section s of F over some open neighbourhood U of x, such that the
germ ϕUpsqx of ϕUpsq equals zero. This means that for some open V Ă U it holds that
ϕUpsq|V “ 0. Hence s|V P pKerϕqpV q, and therefore sx P pKerϕqx.

A map of sheaves ϕ : F Ñ G is said to be injective if Kerϕ “ 0; this is equivalent to
ϕU being injective for each open U . In light of the previous lemma, it is also equivalent to
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214 Sheaves of Modules

the condition that Kerϕx “ 0 for all x; that is, all stalk maps ϕx are injective. One often
expresses this by saying that ‘ϕ is injective on stalks’.

Images

Defining the image of a map ϕ : F Ñ G between sheaves is more subtle than defining the
kernel. It might be tempting to define Imϕ over an open set U by

Im pϕUq “

"

ϕUpsq P GpUq

ˇ

ˇ

ˇ
s P FpUq

*

, (14.1)

but this will in general not be a sheaf. It is however a presheaf, as ϕ is compatible with
restrictions. Gluing sections of the form ϕUi

psiq for a cover tUiu of U can be done inside
GpUq, but for the result to lie in ImϕpUq, one must make sure that the si’s come from an
element s in FpUq. However, unless ϕ is injective, there is no reason to expect that the si’s
should agree on the intersections Ui X Uj . Here is a concrete example where this fails:

Example 14.3. Let Z be the closed subscheme given by the ‘x-axis’ in A2
k. That is, Z “

Spec krxs inside A2
k “ Spec krx, ys. Let ι : Z Ñ A2

k denote the inclusion, and consider the
associated map of sheaves

ι7 : OA2
k

ÝÝÑ ι˚OZ .

We claim that the naive image presheaf G given by GpW q “ Im pι7 pW qq is not a sheaf. To
see why, let U “ Dpxq and V “ Dpyq. For these open sets, we have U X Z “ Z ´ V pxq

and V X Z “ H. Over these open sets, the map i7 is given by

i7U : OA2pUq “ krx, ysx ÝÝÑ OZpι´1Uq “ krxsx

i7V : OA2pV q “ krx, ysx ÝÝÑ OZpι´1V q “ 0

i7UXV : OA2pU X V q “ krx, ysxy ÝÝÑ OZpι´1U X V q “ 0.

i7UYV : OA2pU Y V q “ krx, ys ÝÝÑ OZpι´1pU Y V qq “ krxsx.

Here we have used Example XXX for OA2pU Y V q “ krx, ys. Now note that the elements
x´1 P GpUq and 0 P GpV q both restrict to 0 in GpU X V q “ 0. However, they do not glue
together to a section over U Y V , because there is no element of krx, ys that maps to x´1 in
krxsx.

To define the image sheaf, we need to add in all sections that can be obtained by gluing
together local sections of the form ϕUi

psiq as above. In other words, we take the sections of
GpUq which are ‘locally images of ϕ’. This will then be a subsheaf of G; it is the smallest
subsheaf of G containing the images of ϕ. For a later applications, we allow F to be simply a
presheaf.

Definition 14.4. For a map of presheaves ϕ : F Ñ G, where G is a sheaf, we define
the image sheaf Imϕ by

pImϕqpUq “

"

t P GpUq

ˇ

ˇ

ˇ

there is a cover Ui of U and sections
si P FpUiq such that t|Ui

“ ϕpsiq

*

.
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Sheaves of Modules 215

This is a presheaf because ϕ is compatible with restrictions (the diagram (3.3) commutes).
The Locality axiom holds for free because G is a sheaf. As for the Gluing axiom, suppose
we are given an open cover tUiu of an open set U and sections ti P pImϕqpUiq that agree
on the overlaps. Since G is a sheaf, the ti’s glue together to a section t P GpUq, and t is by
construction locally an image because each ti is.

Unlike the situation for kernels, pImϕqpUq is not always equal to ImϕU (see Exam-
ple 14.3). In general, all we can say is that ImϕU Ă pImϕqpUq (any section of the form
t “ ϕpsq clearly lies in Imϕ). But in the particular case of injective maps, i.e. when each
map ϕU is injective, the sheaf Imϕ coincides with the naive presheaf as in (14.1), and we
have:

Lemma 14.5. If ϕ : F Ñ G is injective, then taking the image commutes with taking
sections; that is, pImϕqpUq “ ImϕU for all U .

The situation for stalks is better: in general forming images commutes with forming stalks.

Lemma 14.6. For each x P X we have pImϕqx “ Imϕx.

Proof Let tx P Imϕx and pick an sx P Fx with ϕxpsxq “ tx. We may extend these germs
to sections s and t over some open neighbourhood V , so that ϕV psq “ t, and t is a section of
Imϕ over V . This shows that Imϕx Ă pImϕqx. Conversely, if t is a section of Imϕ over
an open U containing x, the restriction t|V lies in ImϕV for some smaller neighbourhood V
of x; hence the germ tx lies in Imϕx.

A map of sheaves ϕ : F Ñ G is said to be surjective if the image sheaf Imϕ equals G.
By the lemma below, this is equivalent to all the stalk maps ϕx being surjective (one says that
‘ϕ is surjective on stalks’). However, we underline that this does not imply that the maps ϕU
are surjective for every open U .

Lemma 14.7. Two subsheaves H,G of a sheaf F are equal if and only if Hx “ Gx
(as subgroups of Fx) for all x P X .

Proof Only the ’if-part’ needs an argument, so let U Ă X be open and let s P GpUq

be a section all whose germs sx lie in Hx. Extend each sx to a section of H over some
neighbourhood Ux of x; these extensions coincide on intersections Ux X Uy, and hence
they patch together to a section in HpUq, which by the Locality axiom equals s. This shows
that H Ă G as subsheaves of F , and the same argument with G and H switched gives
H “ G.

In the special case whenX is affine, and F and G are of ‘tilde-type’, we have the following:
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216 Sheaves of Modules

Proposition 14.8. IfX “ SpecA is an affine scheme, andM andN areA-modules,
then the following are equivalent:

(i) ϕ : ĂM Ñ rN is surjective (resp. injective)
(ii) ϕp :Mp Ñ Np is surjective (resp. injective) for every p P SpecA.

(iii) ϕX :M Ñ N is surjective (resp. injective).

Example 14.9. The map ι7 : OA2
k

Ñ ι˚OZ of Example 14.3 is surjective, as a map of
sheaves, even though it is not surjective over every open set. To see this, note that A2

k is
covered by the two opens U “ Dpxq and U 1 “ Dpx ´ 1q. We already showed that ι7U is
surjective, as this is given by the quotient map krx, ysx Ñ krxsx. By Example 14.8, ι7p is
surjective for all p P U . A similar argument applies to U 1, where the map ι7U 1 is given by

OA2
k

“ krx, ysx´1 Ñ OZpι´1U 1q “ krxsx´1.

For a map ϕ : F Ñ G to be an isomorphism, the situation is better:

Proposition 14.10. Let ϕ : F Ñ G be a map of sheaves. Then the following four
conditions are equivalent.

(i) The map ϕ is an isomorphism;
(ii) For every x P X , the map on stalks ϕx : Fx Ñ Gx is an isomorphism;

(iii) One has Kerϕ “ 0 and Imϕ “ G;
(iv) For all open subsets U Ă X the map on sections ϕU : FpUq Ñ GpUq

is an isomorphism.

Proof (i) ñ (ii). This implication is clear.
(ii) ñ (iii). Kerϕ “ 0 follows by Lemma 14.2 and Imϕ “ G follows by Lemma 14.6

and (14.7).
(iii) ñ (iv). As Kerϕ “ 0, it follows that ϕ is injective, in which case taking images

commutes with taking sections (Lemma 14.5), and so we have ImϕU “ pImϕqpUq. But by
assumption, Imϕ “ G, so we are done.

(iv) ñ (iii). If ϕU is an isomorphism for every U , the inverse maps ψU “ ϕ´1
U gives an

inverse ψ : G Ñ F .

Exercise 14.0.1. Fill in the details of the proof of Lemma 14.5.

14.1 Exact sequences

Exact sequences are essential in the study of modules over a ring. There is an analogous
notion of exactness for sequences of sheaves, which very much resembles the definition for
modules.

A sequence of maps of sheaves

F G Hϕ ψ
(14.2)

is said to be exact if Imϕ “ Kerψ (as subsheaves of G).
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14.1 Exact sequences 217

A short exact sequence is an exact sequence of the form

0 F G H 0
ϕ ψ

(14.3)

where we have exactness at all stages. This is just a convenient way of simultaneously saying
that ϕ is injective, that ψ is surjective and that Imϕ “ Kerψ.

Exactness for a sequence of sheaves is a purely local condition; the sequence (14.2) is
exact if and only if for each x P X the sequence induced on stalks

Fx Gx Hx
ϕx ψx

(14.4)

is exact. This follows from Lemma 14.7 applied to Kerϕ and Imϕ.
The following proposition will be very important:

Proposition 14.11 (Taking sections is left exact). Given a short exact sequence as
in (14.3). Then for each open subset U Ă X , the sequence

0 FpUq GpUq HpUq
ϕU ψU

is exact.

Proof As ϕ is injective, we have that ϕU is injective, and also that pImϕqpUq “ ImϕU by
Lemma 14.5. By definition, we have KerϕU “ pKerϕqpUq. Combining these, we find

pImϕqpUq “ ImϕU “ KerψU “ pKerψqpUq,

and hence the above sequence is exact.

One way of phrasing Proposition 14.11 is to say that taking sections over an open set U
is a left exact functor. This functor, however, is not exact in general. The defect of lacking
surjectivity is a fundamental problem in every part of mathematics where sheaf theory is used,
and to cope with it one has developed cohomology. (We will explore this in Chapter 17.)

Example 14.12. Consider the two points p “ p0 : 1q and q “ p1 : 0q in P1
k and let

ι : Z Ñ P1
k be the closed embedding given by their union. Let I be the kernel of the map

ι7 : OP1
k

Ñ ι˚OZ . I fits into the following sequence

0 I OP1
k

ι˚OZ 0.ι7

(14.5)

We first claim that this sequence is exact, i.e., that ι7 is surjective. For this, it suffices to check
that the map is surjective locally. If U0 “ P1

k ´ p » Spec krss, then pι˚OZqpUq “ krss{s
and the map ι7pUq is given by the quotient map krss Ñ krss{s, which is surjective. A
similar argument shows that ι7 is surjective over U1 “ P1

k ´ q. Hence the sequence (14.5) is
exact.

Evaluating (14.5) on global sections, we get ΓpP1,OP1
k
q “ k by Proposition 7.1 and

ι˚OZpP1
kq “ OZpZq “ k ‘ k and the sequence becomes

0 ΓpP1
k, Iq k k ‘ k,
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218 Sheaves of Modules

showing that the global evaluation map can not be surjective.

Example 14.13 (Sheaf version of the sheaf sequence). For each inclusion ι : U Ñ X of
an open subset U into a topological space X and each sheaf F on X there is a canonical
map F Ñ ι˚F |U . Over an open V Ă X it simply given by the restriction map FpV q Ñ

FpV XUq. The fundamental sheaf sequence (3.2) on page 44 has a sheafy version involving
these ‘restriction maps’.

Given a finite open cover tUiuiPI of X , there is an exact sequence of sheaves

0 F
ś

i ιi˚F |Ui

ś

i,j ιij˚F |Uij

where ιi : Ui Ñ X denotes the inclusion map, where Uij “ Ui X Uj and ιij : Uij Ñ X
also denotes the inclusion. Indeed, over an open U Ă X , the corresponding sequence of
sections appears as

0 FpUq
ś

iFpU X Uiq
ś

i,j FpU X Uijq

which being the fundamental sequence (3.2) for the cover tU X Uiu of U is exact.

14.2 The sheaf associated to a presheaf

Essentially any construction for abelian groups, such as forming kernels, cokernels, tensor
products, direct sums etc. have analogues for sheaves. For these constructions, one typically
starts by writing down a naive presheaf and then proceeds to show that it satisfies the two
sheaf axioms. This works well in some cases (e.g., for the kernel sheaf in the previous
section), but in general, it can fail to be a sheaf (as for images). To obtain an actual sheaf,
we sometimes need to replace this naive presheaf with a sheaf which in some sense best
approximates it; in other words, as one says, we sheafify it. More precisely, to any presheaf
F , we shall build a sheaf F` and a map of presheaves

κF : F ÝÝÑ F`

which is universal among maps from F into a sheaf. The map kills the sections which are
‘locally zero’, that is, those whose stalks are all zero, and F` ‘enriches’ F by including the
results of all possible gluing processes.

The main properties of F` and κF are summarised in the following proposition.
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14.2 The sheaf associated to a presheaf 219

Proposition 14.14. Given a presheaf F on X , there is a sheaf F` and a natural
presheaf map κF : F Ñ F` satisfying the following:

(i) κF is functorial in F : a map of presheaves ϕ : F Ñ G induces a map of
sheaves ϕ` : F` Ñ G` such that ϕ` ˝ κF “ κG ˝ ϕ;

(ii) κF enjoys the universal property that any map of presheaves F Ñ G
where G is a sheaf, factors through F` in a unique way. This property
characterizes F` up to a unique isomorphism. In other words, if G is a
sheaf, there is a natural isomorphism

HomAbPrShX pF ,Gq HomShX pF`,Gq,» (14.6)

where on the left hand side G is considered as a presheaf;
(iii) κF induces an isomorphism on stalks: Fx » F`

x for every x P X .

We will now explain how to construct F` and κF from F . If you find the construction
a bit daunting, don’t worry, we will never need the explicit construction again. All of the
arguments using F` in this book use only the three properties in the Proposition 14.14. This
is a good illustration of the slogan: “ask not what the thing is, but what it does”.

The construction uses the so-called Godement sheaf ΠpFq associated with F . For a
presheaf F , the sections of this sheaf is defined by

ΠpFqpUq “
ź

xPU

Fx “ t ptxqxPU | tx P Fx u. (14.7)

In other words, the sections are sequences ptxqxPU of arbitrary germs1 at the various points
x in U . The restriction maps are the projections: ptxqxPU |V “ ptxqxPV for open subsets
V Ă U . The first thing to check is that this indeed yields a sheaf:

Lemma 14.15. ΠpFq is a sheaf.

Proof Locality holds: if tUiu is an open cover of U , and s “ psxqxPU is a section of ΠpFq

over U such that s|Ui
“ 0 for each i, then sx “ 0 for every x P Ui. Hence, if t|Ui

“ 0 for
all i, it follows that t “ 0.

Gluing holds: Suppose we are given an open cover tUiu of U and sections ti “ ptixqxPUi

of ΠpFq over Ui matching on the intersections Ui X Uj . Saying that the sections agree over
the overlaps, means that the component of ti at a point x P Ui X Uj is the same as that of tj .
Hence we get a well-defined section t P ΠpFqpUq by using this common component as the
component of t at x. It is clear that t|Ui

“ ti.

There is a canonical map

σF : F ÝÝÑ ΠpFq

that sends a section s P FpUq to the sequence of all its germs; that is, to the element psxqxPU

of the product in (14.7). This map kills the sections of F which are ‘locally zero’. Indeed, the
kernel consists exactly of the sections with all germs equal to zero.
1 The notation is not ideal: tx is a germ at x, but at the same time, x serves as an index.
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220 Sheaves of Modules

The map σF depends functorially on F . For any map of presheaves ϕ : F Ñ G, we may
define Πpϕq : ΠpFq Ñ ΠpGq over an open U as the appropriate product of all the stalk-maps
Fx Ñ Gx with x P U . In other words, ΠpϕqU sends psxqxPU to pϕxpsxqqxPU . There is thus
a commutative diagram of sheaves

F ΠpFq

G ΠpGq.

σF

ϕ Πpϕq

σG

(14.8)

It is not hard to check that ΠpidFq “ idΠpFq and that Πpψ ˝ ϕq “ Πpψq ˝ Πpϕq for two
composable morphisms between presheaves on X , so that Π is a functor from the category
of presheaves on X to the category of sheaves on X .

Definition 14.16. For a presheaf F on X , we define the sheaf associated to F , or
the sheafification of F , as the image sheaf F of the map σF : F Ñ ΠpFq. The map
κF : F Ñ F` is just σF , but considered to take values in F`.

Explicitly, a section of F`pUq is a sequence t “ ptxqxPU of elements in the tx P Fx that
locally come from sections of F , that is, there is an open cover tUiu and sections si P FpUiq
so that psiqx “ tx for x P Ui.

Taking the associated sheaf is a functorial operation. To each map of presheaves ϕ : F Ñ G
there is a map of sheaves ϕ` : F` Ñ G` that lives in the following commutative diagram:

F F` ΠpFq

G G`

ΠpGq.

κF

ϕ ϕ`
Πpϕq

κG

(14.9)

Indeed, a section of F` is a section of ΠpFq which locally comes from F ; that is, it is of the
form σF psq. But then ΠpϕqpσFpsqq locally comes from G as well, because ΠpϕqpσFpsqq “

σGpϕpsqq. Thus ΠpFq maps F` into G`, and we let ϕ` be the restriction of Πpϕq to F`.

Proof of Proposition 14.14 Assertion (i) has already been taken care of.
As for (ii), the main observation is that when G is a sheaf, κG is an isomorphism; indeed,

the Locality axiom then causes κG to be injective. On the other hand, ImκG is the smallest
subsheaf containing the ‘naive presheaf image’ of G, which equals G itself when G is a sheaf.
This means that ϕ` ˝ κ´1

G provides the wanted factorization.
Finally, let us prove claim (iii), starting with the surjectivity. An element F`

x is the germ tx
of a section t of F` over some open neighbourhood U of x. The section t comes locally from
F , so its restrictions to the open sets belonging to some open cover tUiu of the neighbourhood
are of the form t|Ui

“ κFpsiq with si P FpUiq. Now x lies in one of the Ui’s, and hence the
corresponding germ psiqx maps to tx. The injectivity follows since the kernel of κF consists
of sections with all germs vanishing, but tautologically, these vanish already in Fx.

Example 14.17. A presheaf F which is contained in a sheaf G is particularly easy to sheafify.
The sheafification F` equals the image of the inclusion map F Ñ G. The sections in F`pUq
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14.2 The sheaf associated to a presheaf 221

are the sections in GpUq that locally lie in F ; that is, sections s so that s|Ui
P FpUiq for

some open cover tUiu of U .

Exercise 14.2.1. Prove that the sheafification is unique up to a unique isomorphism.

Cokernels and quotients

We follow the strategy outlined above and define cokernels and quotient sheaves using the
sheafification procedure.

For a map of sheaves ϕ : F Ñ G, we define the cokernel Cokerϕ to be the sheaf
associated to the presheaf

pCoker1ϕqpUq “ GpUq{ImϕpUq.

For a subsheaf G Ă F of a sheaf G, the quotient sheaf F{G is the sheaf associated to the
presheaf

pF{Gq
1
pUq “ FpUq{GpUq.

In other words, F{G is the cokernel of the inclusion map G Ñ F .
Note that over an open set U , the cokernel presheaf is simply given by CokerϕU . Com-

posing ϕ with the canonical map Coker1ϕ Ñ Cokerϕ we obtain a map G Ñ Cokerϕ. It
sits in the sequence

F G Cokerϕ 0.
ϕ

(14.10)

Example 14.18. In the sequence (14.5) the subsheaf I Ă OP1
k

identifies with the sections
of OP1

l
vanishing along the subscheme Z. By the uniqueness of the cokernel, we get an

isomorphism of sheaves O{I » ι˚OZ . Even in this example it is necessary to sheafify,
as the ‘naive’ quotient sheaf on global sections satisfies OP1pP1q{IpP1q “ k, whereas
pι˚OZqpP1q “ OZpZq “ k ‘ k.

Exercise 14.2.2. Show that the sequence (14.10) is exact. HINT: Show that it is exact on
stalks.

Exercise 14.2.3 (Universal properties). Let ϕ : F Ñ G be a map of sheaves.
a) Show that Kerϕ satisfies the following universal property: Any map of sheaves
ν : H Ñ F such that ν ˝ ϕ “ 0 factors via a unique map ν : H Ñ Kerϕ.

b) Show that Imϕ satisfies the following universal property: Given a map of
sheaves α : F Ñ H and β : H Ñ G such that β ˝ α “ ϕ, there is a unique
morphism t : H Ñ Imϕ factoring β.

c) Show that Cokerϕ satisfies the following universal property: Given a map
ψ : G Ñ H with ψ ˝ ϕ “ 0, there is a unique map t : Cokerϕ Ñ H factoring
ψ.

HINT: The arguments in each case are rather different. For b), use the explicit description of
Imϕ. For c), the universal property of sheafification may be helpful.
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14.3 Direct sums and products

The category of sheaves also has direct sums. For a finite collection F1, . . . ,Fn of sheaves,
the presheaf given by

ΓpU,
n
à

i“1

Fiq “

n
à

i“1

FipUq

is a sheaf. Indeed, restrictions are given componentwise and Locality holds because if
s “ ps1, . . . , snq P

Àn

i“1 FipUq restricts to 0 on a covering, then all s1 “ ¨ ¨ ¨ “ sn “ 0
by locality for the Fi’s. Likewise, given local sections matching on the overlaps, one can
glue componentwise.

This all works well for finitely many sheaves, but for a general collection of sheaves
tFiuiPI one has to sheafify in order to define the direct sum. That is, we define

À

iPI Fi to
be the sheaf associated to the presheaf

˜

à

iPI

Fi

¸1

pUq “
à

iPI

FipUq. (14.11)

For the collection Fi, one can also form the direct product, denoted
ś

iFi, which is defined
by

Γ

˜

U,
ź

iPI

Fi

¸

“
ź

iPI

FipUq. (14.12)

This is again a presheaf with componentwise restriction maps. It is not necessary to sheafify
ś

iFi; gluing can be done componentwise.

Example 14.19. Here is an example showing that it is necessary to sheafify in the definition
of the direct sum. Let X “

š8

n“1 SpecC be the disjoint union of countably many copies
of SpecC. The topology on X is the discrete topology. For each n P N, let ιn : pn “

SpecC Ñ X be the open embedding of the n-th copy of SpecC and let Fn “ ιn˚C the
skyscraper sheaf at pn.

We let F “
À8

n“1 Fn and claim that FpXq ‰
À8

n“1 FnpXq. Note that the right hand
side is just the countable sum

À8

n“1 C. On the other hand, X is covered by the open sets
Un “ tpnu and the elements xn “ 1 P FnpUnq trivially agree on the (empty) intersection
Um X Un for m ‰ n. Therefore the xn’s glue to an element x P FpXq, which, since all the
xn’s are non-zero, can not lie in

À

nFnpXq.

Summing up what we have done so far, the category AbShX of sheaves on X is an abelian
category. It is an additive category and every map has a kernel, a cokernel and an image, and
every map α lives in an exact sequence

0 Kerα F G Cokerα 0α

Exercise 14.3.1. Show that the direct product presheaf
ś

iPI Fi defined above is a sheaf.

Exercise 14.3.2 (Universal properties of
À

and
ś

). Let tFiuiPI be a collection of sheaves.
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14.4 Sheaves of modules 223

a) Show that the direct sum has canonical inclusions ϵi : Fi Ñ
À

iFi, which
have the following universal property: for any family of maps ηi : Fi Ñ G
there is a unique map η :

À

iFi Ñ G such that ηi “ η ˝ ϵi.
b) Show that the direct product has canonical projections πi :

ś

iFi Ñ Fi
having the universal property dual to the direct sum: i.e. for any family of maps
ϵi : Fi Ñ G there is a map η : Fi Ñ

ś

iFi such that πi ˝ η “ ϵi.

Exercise 14.3.3. Show that the direct sum can be defined as the image sheaf of the natural
map

À

iPI Fi Ñ
ś

iPI Fi where the left-hand side is regarded as a presheaf. Hint: Use
Example 14.17 and the universal property of

À

.

14.4 Sheaves of modules

A module over a ring is an additive abelian group equipped with a multiplicative action of the
ring. Loosely speaking, we can multiply elements of the module by elements from the ring.
In a similar way, if X is a scheme, an OX-module is a sheaf F whose sections over open
sets U can be multiplied by sections of OXpUq.

More formally, we define an OX -module as a sheaf F equipped with multiplication maps
FpUq ˆ OXpUq Ñ FpUq, one for each open subset U of X , making the group of sections
FpUq into a OXpUq-module in a manner which is compatible with restriction maps. In other
words, for every pair of open subsets V Ă U , the diagram below is required to commute

FpUq ˆ OXpUq FpUq

FpV q ˆ OXpV q FpV q.

(14.13)

Here vertical arrows represent restrictions maps and horizontal ones are multiplication maps.
A map of OX-modules is simply a map of sheaves α : F Ñ G between OX-modules F

and G such that for each open U the map αU : FpUq Ñ GpUq is a map of OXpUq-modules.
The OX -modules on a scheme X therefore form a category, which we denote by ModX . We
write HomXpF ,Gq, or sometimes HomOX

pF ,Gq for the set of OX-linear maps F Ñ G.
Note that this is an abelian group.

Most of the constructions for modules over a ring now have analogues for OX-modules.
For instance, for a map of OX-modules α : F Ñ G, the kernel, image and cokernel of

α, as defined in Section XXX, have natural OX-modules structures. Here it is clear that the
image and cokernel presheaves have natural OX -module structures, and then Exercise 14.5.2
shows that also the associated sheaves are OX-modules.

If F and G are OX-modules, the direct sum F ‘ G is also an OX-module in a natural
way, with multiplication being defined component-wise. The same is true for more general
direct sums

À

iPI Fi.
For two OX -modules F and G, we can also define the tensor product F bOX

G to be the
sheaf associated to the presheaf

T pUq “ FpUq bOXpUq GpUq (14.14)
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224 Sheaves of Modules

(Here it is necessary to sheafify; see Example XXX.) We will sometimes write simply F b G
for this tensor product.

If F ,G are OX-modules, the presheaf given by HomOU
pF |U ,G|Uq over an open set

U Ă X is a sheaf, denoted by HomOX
pF ,Gq. This is also a OX-module in a natural way.

For a morphism f : X Ñ Y and an OX-module F , the pushfoward f˚F is naturally an
OY -module via the natural map f 7 : OY Ñ f˚OX . That is, for a section s P f˚FpV q and
a P OY pV q, we define a ¨ s P f˚FpV q to be section f 7paq ¨ s P Fpf´1V q.

Example 14.20 (Ideal sheaves). Ideal sheaves are important examples of OX-modules.
Formally, a sheaf I is an ideal sheaf if IpUq Ă OXpUq and IpUq is an ideal for each open
set U Ă X . For an ideal sheaf I , the quotient sheaf OX{I associated to an ideal sheaf I is
an OX-module.

The primary example is the following. Let ι : Y Ñ X be a closed embedding, then the
kernel I of the map ι7 : OX Ñ ι˚OY is an ideal sheaf of OX , and there is an exact sequence

0 Ñ I Ñ OX Ñ ι˚OY Ñ 0

We also see that ι˚OY » OX{I as OX-modules.
See Example 14.12 for a more concrete example of an ideal sheaf.

Example 14.21. If F is a sheaf obtained by gluing together sheaves Fi defined on a cover
U “ tUiu, and each Fi is an OUi

-module, then F is an OX-module.

Example 14.22. Write P1 for the projective line over a field k, and consider the sheaves
OXpnq from Section 7.7. That is, OP1pnq is the sheaf obtained by gluing OU0

to OU1

using the isomorphism OU1
|U0XU1

Ñ OU0
|U0XU1

on U0 X U1 “ Spec kru, u´1s given by
multiplication by un. Then OP1pnq is an OP1-module. The map ϕ : OP1p´1q Ñ OP1 is a
map of OP1-modules, and the image of ϕ is an ideal sheaf of OP1 .

Example 14.23 (Modules on spectra of DVR’s). Modules on the prime spectrum of a discrete
valuation ring R are particularly easy to describe. Recall that the scheme X “ SpecR has
only two non-empty open sets: the whole space X itself and the tηu consisting of the generic
point. The singleton tηu is the underlying set of the open subscheme SpecK, where K
denotes the fraction field of R.

We claim that giving an OX-module is equivalent to giving an R-module M , a K-vector
space N and an R-module homomorphism ρ : M Ñ N .

Indeed, given an OX-module F , we get the R-modules M “ FpXq and N “ Fptηuq,
and the latter is a vector space over K “ OXptηuq. The homomorphism ρ is just the
restriction map FpXq Ñ Fptηuq. Conversely, given the dataM ,N and a map ρ : FpXq Ñ

Fptηuq, we can define a presheaf F by setting FpXq “ M and Fptηuq “ N and use
ρ as the restriction map. If we also set FpHq “ 0, we have a presheaf F which satisfies
the two sheaf axioms. Furthermore, since M and N are modules over OXpXq “ R and
OXptηuq “ K respectively, this makes F into an OX-module.

Note that the restriction map can be anyR-module homomorphismM Ñ N . In particular,
it can be the zero homomorphism, and in that case M and N can be completely arbitrary
modules.

Exercise 14.4.1. Let X “ A1
C and let F be the constant sheaf on Z. Is F an OX-module?
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Example 14.24 (Godement sheaves again). We may generalize the construction of the
Godement sheaf in the following way. Given any collection of abelian groups tAxuxPX

indexed by the points x of X , we can define a sheaf A by

ApUq “
ź

xPU

Ax,

and whose restriction maps to smaller open subsets are just the projections onto the corre-
sponding smaller products.

If we suppose that each Ax be a module over the stalk OX,x, the sheaf A becomes an
OX -module. Indeed, the group ΓpU,Aq “

ś

xPU Ax is automatically an OXpUq-module, as
the the multiplication is defined component-wise with the help of the stalk maps OXpUq Ñ

OX,x. Clearly these module structures are compatible with the projections, and thus makes
A into an OX-module.

14.5 Exercises

Exercise 14.5.1. Let A “ C ˆ C ˆ C. Describe all OX-modules on X “ SpecA.

Exercise 14.5.2. Suppose that F is a presheaf of OX -modules (i.e. a presheaf satisfying the
usual OX-module axioms). Show that the sheafification F` is an OX-module in a natural
way.

HINT: One can use the universal properties of sheafification, but the simplest way is via
the explicit description of F`.

Exercise 14.5.3. Let α : F Ñ G be a map between two OX-modules.
a) Show in detail that the kernel, cokernel and image of α as a map of sheaves in-

deed are OX -modules. Moreover, show that they satisfy the universal properties
of kernel, cokernel and image in the category of OX-modules as well.

b) Show that a sequence of OX-modules is exact if and only it is exact as a
sequence of sheaves.

Exercise 14.5.4. Show that the category ModX has arbitrary products and direct sums, by
showing that the products and sums in the category of sheaves AbShX are OX -modules and
are the products, respectively the direct sums, in the category ModX .

Exercise 14.5.5. For each of the schemes below, describe the OX-modules on X .
a) X is the scheme obtained by gluing SpecZp2q and SpecZp3q along their com-

mon open subscheme SpecQ.
b) X is the scheme obtained by gluing two copies of SpecZp2q along SpecQ.
c) LetX be the scheme obtained by gluing the schemesXi “ SpecZppiq together

along their common open subschemes SpecQ. Describe the OX-modules on
X .

(Here Zppq denotes the localization at the prime ideal ppq.)
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15

Quasi-coherent sheaves

15.1 The tilde of a module

The primary example of an OX-module is a sheaf of the form ĂM which we introduced in
Section 4.4. Let us briefly recall the construction. If A is a ring, and M is an A-module, the
sheaf ĂM on X “ SpecA is the sheaf extending the following B-sheaf

ĂMpDpfqq “ Mf .

The restriction maps are the canonical localization maps, which are described as follows:
when Dpgq Ă Dpfq, we may write gn “ af for some a P A and some n P N, and the
localization map Mf Ñ Mg sends mf´r to armg´nr.

It is almost immediate that ĂM is an OX -module. Over a distinguished open set U “ Dpfq,
the group ĂMpDpfqq “ Mf is a module over Af , and if U Ă X is any open subset, we may
cover it by distinguished open setsDpfq and define a OXpUq-module structure on ĂMpUq by
means of the exact sequence in claim (iii) of Proposition 4.22. In the same way, one verifies
that the restriction maps are OX-module homomorphisms. The tilde-construction therefore
yields a functor from ModA to ModX , and it has very good properties, as we are going to
see. We start by explaining a the universal property of ĂM among OX-modules.

Proposition 15.1. Let X “ SpecA be an affine scheme. For an A-module M and
an OX-module F , there is a natural isomorphism

HomOX
pĂM,Fq HomApM,FpXqq

»

that sends ϕ : ĂM Ñ F to ϕX : M Ñ FpXq. It is functorial in both M and F .

Proof Let f P A, and consider the commutative diagram

M FpXq

Mf FpDpfqq

ϕX

ϕDpfq

where the vertical maps are restriction maps. This gives the following relation:

ϕDpfqpm|Dpfqq “ ϕXpmq|Dpfq.

226

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

15.1 The tilde of a module 227

Note that FpDpfqq is an Af -module, because F is an OX-module. Therefore, in the local-
izations at f , we have the following relation

ϕDpfqpmf
´nq “ ϕXpmq|Dpfq ¨ f´n, (15.1)

where mf´n P Mf . This means that the maps ϕDpfq are completely determined by ϕX :
M Ñ FpXq. By Proposition 3.17, the map of sheaves ϕ is completely determined once it is
specified over the Dpfq’s. Thus, ϕ is determined by ϕX , and the map in the proposition is
injective.

For the surjectivity, suppose we are given a map of A-modules α : M Ñ FpXq. As usual,
to define a map ĂM Ñ F it suffices to tell what it does to sections over the distinguished open
sets Dpfq. Inspired by (15.1), we define αDpfq by

αDpfqpmf
´nq “ αpmq|Dpfq ¨ f´n.

Thus αDpfq is simply the composition of the two maps of Af -modules

Mf FpXqf FpDpfqq,
αf

where the right-hand map is induced from the restriction map FpXq Ñ FpDpfqq by
localization (note that FpDpfqq is an Af -module). This is compatible with the restriction
maps, so we get a well-defined map of sheaves ϕ : ĂM Ñ F . Taking f “ 1, we see that we
recover α from ϕ on global sections.

The statement about the functoriality follows from formula (15.1); the details are left to
the reader.

If we apply Proposition 15.1 to M “ FpXq and consider the preimage of the identity
map FpXq Ñ FpXq, we obtain the following corollary:

Corollary 15.2. For each OX-module F on an affine scheme X , there is a unique
OX-module homomorphism

βF : ČFpXq ÝÝÑ F (15.2)

that induces the identity on the spaces of global sections. The map βF is functorial in
F .

In concrete terms, the map βF is defined over a distinguished open subset Dpfq as
follows. A section of the sheaf ČFpXq over Dpfq is an element of the form sf´n where
s P FpXq. Regarding f´n as a section of OXpDpfqq “ Af , we may send sf´n to the
product s|Dpfq ¨ f´n, which, because F is an OX-module, defines a section of FpDpfqq.

The following proposition summarizes the basic properties of the tilde-functor.
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228 Quasi-coherent sheaves

Proposition 15.3 (Properties of the tilde-functor). Let A be a ring and let X “

SpecA. Then:
(i) The tilde-functor is additive, i.e., it takes direct sums to direct sums.

(ii) For any two A-modules M and N , the map α ÞÑ rα gives an isomor-
phism HomApM,Nq » HomOX

pĂM, rNq, whose inverse is the map
ϕ ÞÑ ϕX ;

(iii) The tilde-functor is exact.

Proof For statement (i) see Exercise ??. Statement (ii) follows from Proposition 15.1 with
F “ rN and the fact that by definition prαqX “ α. To prove statement (iii), let

0 M 1 M M2 0. (15.3)

be an exact sequence of A-modules. This gives the sequence OX-modules

0 ĂM 1
ĂM ĄM2 0. (15.4)

To check that (15.4) is exact, it suffices to check that it is exact on stalks for every point
x P X . But if x P X corresponds to the prime ideal p Ă A, the stalks of (15.4) is simply the
localization of (15.3) at p (which is exact, because localization is an exact functor).

Item (ii) above says that the tilde functor is fully faithful. Hence it establishes an equiva-
lence between the category ModA of A-modules and a subcategory of ModX . This subcate-
gory is usually a strict subcategory; most OX-modules are not of tilde-type.

The next result tells us that the restriction of a tilde type sheaf to an affine open is again of
tilde type. More precisely, let X “ SpecA be an affine scheme, with an open subscheme
U “ SpecB Ă X , and let M be an A-module. Then the group of sections ĂMpUq is a
module over OXpUq “ B, and there is a B-linear map

M bAB Ñ

´

ĂM |U

¯

pUq,

defined by mb b ÞÑ bm|U . Applying tilde, we get a map of OU -modules

ČM bAB Ñ ĂM |U , (15.5)

and this turns out to be an isomorphism:

Proposition 15.4 (Restriction of tilde type to open affines). Let X “ SpecA and
let U “ SpecB Ă X be an open affine subscheme. Then for each A-module M the
canonical map in (15.5) is an isomorphism

ČM bAB » ĂM |U .

Proof By Proposition XXX, it suffices to prove that (15.5) is an isomorphism on every stalk.
If y P U corresponds to the prime ideal p Ă A, the induced map on stalks is given by the
isomorphism

pM bA Bqp “ Mp bAp
Bp » Mp.
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15.2 Quasi-coherent sheaves 229

The restriction to an open affine open is a special case of a pullback; we will study these in
more detail in Section ??.

We end this section by describing how tilde-type modules behave when pushed forward.
Let X “ SpecB and Y “ SpecA. Giving a map f : X Ñ Y is the same thing as giving
the map of rings ϕ : A Ñ B, which in turn is equivalent to giving an A-algebra structure
on B. Any B-module M is therefore also an A-module, and when wanting to emphazise
the A-module structure of M , we will write MA for M considered as an A -module. In
particular, it holds for localizations in elements g P A that Mϕpgq “ pMAqg.

Recall Proposition 2.27 which says that f´1Dpgq “ Dpϕpgqq. This means that we have
equalities

pf˚
ĂMqpDpgqq “ ĂMpf´1Dpgqq “ pMAqg;

the last by (ii) of Proposition 4.22, and the first by definition of pushforwards. These equalities
are compatible with restrictions, and so citing Exercise 3.4.1 on page 53), we have shown:

Proposition 15.5 (Pushforward of tilde type modules). Let X “ SpecB and
Y “ SpecA be affine schemes, and let f : X Ñ Y be a morphism. For each
OX-module of tilde type ĂM on X it holds that f˚

ĂM “ ĄMA.

Example 15.6. If X “ SpecB, Y “ SpecA, and f : X Ñ Y is a morphism induced by
ϕ : A Ñ B, then canonical map f 7 : OY Ñ f˚OX is the map rA Ñ rB, where we consider
B as an A-module.

15.2 Quasi-coherent sheaves

The following is the most important definition in this chapter.

Definition 15.7. Let X be a scheme and F be an OX-module. We say that F is
quasi-coherent if there is an open affine covering tUiuiPI of X , say Ui “ SpecAi,
and modules Mi over Ai such that for each i there’s an isomorphism F |Ui

» ĂMi of
OX-modules.

In particular, the modules ĂM on an affine scheme SpecA are all quasi-coherent. Note that
a priori, there could be more quasi-coherent sheaves on SpecA. Indeed, for an OX-module
F to be quasi-coherent, we require that F be locally of tilde-type for just one open affine
cover. However, it turns out that this will hold for any open affine cover, or in other words,
that F |U is of tilde-type for any open affine subset U Ă X (in particular for X itself when
X is affine). This is a much stronger than the requirement in the definition, and is a rather
important fact.
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Theorem 15.8. Let X be a scheme. An OX -module F is quasi-coherent if and only
for any open affine subscheme U “ SpecA in X , the restriction F |U is of tilde-type;
that is, there is an A-module M and an isomorphism of OX-modules F |U » ĂM .

Proof Let P be the following property of an open affine U in X: the canonical map

βF |U : ČFpUq ÝÝÑ F |U

from Corollary 15.2 is an isomorphism. The key point is that P is a distinguished property
(as defined on page ??). Given this, the theorem follows, by Proposition XXX.

The first requirement of Proposition XXX comes for free, because if Dpgq Ă U is
distinguished, we have

F |Dpgq » ČFpUq|Dpgq “ ČFpUqg.

The second condition requires some work. Let U Ă X be an open affine covered by two
distinguished opens Dpg1q and Dpg2q both having property P . This means that we have
isomorphisms

βF |Dpgiq
: ČFpDpgiqq F |Dpgiq.

»

In view of Dpg1q XDpg2q “ Dpg1g2q, the fundamental exact sheaf sequence (3.2) on page
44 for the cover tDpg1q, Dpg2qu of U takes the form

0 FpUq FpDpg1qq ‘ FpDpg2qq FpDpg1g2qq,

and there is also a corresponding exact sequence for the restrictions of the involved sheaves
(as in Example 14.13)

0 F |U ι1˚F |Dpg1q ‘ ι2˚F |Dpg2q ι12˚F |Dpg1g2q.

where ιi : Dpgiq Ñ U and ι12 : Dpg1g2q Ñ U denote the inclusion maps. Since the β-
maps are functorial, these two sequences give rise to the following commutative diagram of
OX-modules

0 ČFpUq ι1˚
ČFpDpg1qq ‘ ι2˚

ČFpDpg2qq ι12˚
ČFpDpg1g2qq

0 F |U ι1˚F |Dpg1q ‘ ι2˚F |Dpg2q ι12˚F |Dpg1g2q

where the vertical maps are the appropriate β-maps. The upper sequence is exact since the
tilde-functor is exact (bearing Proposition 15.5 in mind), and the two vertical maps to the
right are isomorphism; the middle one by assumption and the rightmost one by requirement
(D1). We then finish the proof by appealing to the 5-lemma, which shows that the left vertical
map, which equals βF |U , is an isomorphism.

Applying Theorem 15.8 to affine schemes yields the important fact that each quasi-coherent
sheaf on an affine scheme X “ SpecA is of tilde-type.
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Theorem 15.9. Assume thatX “ SpecA. The tilde-functorM ÞÑ ĂM and the global
section functor F ÞÑ FpXq are mutually inverse functors giving an equivalence of
the categories ModA and QCohX .

When speaking about mutually inverse functors one should be careful; often such a
statement is an abuse of language. Two functors F and G are mutually inverses when there
are natural transformations, both being isomorphisms, between the compositions F ˝ G
and G ˝ F and the appropriate identity functors. In the present case one really has an
equality ΓpX,ĂMq “ M , so that Γ ˝ Ąp´q “ idModA . On the other hand, the functorial maps
βF : ČFpXq Ñ F from Corollary 15.2 on page 227 gives only an isomorphism of functors
Ąp´q ˝ Γ » idQCohX

The theorem has the important corollary that in the setting of quasi-coherent sheaves on
affine schemes, the global section is an exact functor:

Corollary 15.10. Let X “ SpecA be an affine scheme. If

0 F 1 F F2 0

is an exact sequence of quasi-coherent sheaves, then the sequence on global sections

0 F 1pXq FpXq F2pXq 0 (15.6)

is also exact. In other words, the global section functor is exact.

Proof Since the global section functor is left exact, we need only show that (15.6) is right
exact, i.e., that the cokernel C “ CokerpFpXq Ñ F2pXqq is zero. In any case, there is an
exact sequence

FpXq F2pXq C 0

Applying the tilde functor, which is exact (Proposition 15.3), we get

F F2
rC 0

By assumption, the map F Ñ F2 is surjective, so rC “ 0 and hence C “ ΓpX, rCq “ 0 as
well.

15.2.1 Examples

Example 15.11 (Quasi-coherent modules on P1). Consider the projective line P1
k over k. It

is as usual covered by two affine open subschemes U0 “ Spec krus and U1 “ Spec kru´1s,
which are glued together along their common open set Spec kru, u´1s.

The sheaves OP1
k
pnq are all quasi-coherent. This follows because OP1

k
pnq|Ui

» OUi
for

each i “ 1, 2 and OUi
is of course quasi-coherent.

More generally, we can classify all quasi-coherent sheaves on P1
k as follows. A quasi-

coherent sheaf on P1
k is given by a triple pM0,M1, τq, whereM0 is a module over OXpU0q “
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232 Quasi-coherent sheaves

krus, where M1 is a module over OXpU1q “ kru´1s and where

τ : M1 bkru´1s kru, u´1s Ñ M0 bkrus kru, u´1s.

is an isomorphism of modules over kru, u´1s.
In terms of this description, the sheaves OP1

k
pnq are given by the triples M0 “ krus,

M1 “ kru´1s and the map τ : kru, u´1s Ñ kru, u´1s is multiplication by un.

Example 15.12 (Quasi-coherent sheaves on spectra of DVR’s). The example of an dis-
crete valuation ring is always useful to consider, and we continue exploring Example ??
above. A OX-module F given by the data M,N, ρ is F quasi-coherent if and only if
ρb idK : M bRK Ñ N is an isomorphism (of K-vector spaces).

If F is quasi-coherent, then every point has a neighbourhood on which F is the tilde
of some module. The only neighbourhood of the unique closed point is X itself, and so
F “ ĂM . Therefore, N “ FpUq “ Mp0q “ M bRK and ρ is an isomorphism. Conversely,
if ρb idK : M bR K Ñ N is an isomorphism, then F is given by FpXq “ M and
Fptηuq “ M bRK, and so F » ĂM , and it is quasi-coherent.

Exercise 15.2.1. Show that a sheaf F on a scheme X is quasi-coherent if and only if there is
an open cover tUiu such that each of the restrictions F |Ui

may be presented as the cokernel
of a map between free OX-modules; that is, they appear in exact sequences

OJ
Ui

OI
Ui

F |Ui
0,

where GI stands for the direct sum
À

iPI G of copies of a sheaf G (and where I and J may
be infinite and dependent on i). Conclude that being quasi-coherent is a local property for an
OX-module.

Another nice consequence of the equivalence in Theorem 15.9 is that any purely categorical
construction commutes with the tilde-functor – any universal property that holds in ModA
holds as well in QCohX .

Example 15.13. The tilde of the direct sum p
À

iPIMiqr of a family of modules equals
the direct sum

À

i
ĂMi in QCohX . Likewise, if tMiuiPI is a directed system of modules, we

have plim
ÝÑ

Miq
Ă is the direct limit lim

ÝÑ
ĂMi in the category QCohX . In both examples, the

sheaf constructed in fact satisfies the universal property in ModX , not just QCohX .

Exercise 15.2.2. Let X “ SpecA be an affine scheme and let

¨ ¨ ¨ ÝÝÑ Fi´1 ÝÝÑ Fi ÝÝÑ Fi`1 ÝÝÑ ¨ ¨ ¨

be an exact sequence of quasi-coherent sheaves. Show that

¨ ¨ ¨ ÝÝÑ Fi´1pXq ÝÝÑ FipXq ÝÝÑ Fi`1pXq ÝÝÑ ¨ ¨ ¨

is also exact.

Exercise 15.2.3. Let X “ SpecA and consider an distinguished open subscheme Dpgq »

SpecAg. Let F be a quasi-coherent OX-module. Show the following two properties:
(i) If s P FpXq and s|Dpgq “ 0, then gns “ 0 for some n P N;
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15.3 Properties of quasi-coherent sheaves on general schemes 233

(ii) If s is a section of ĂM over Dpgq, then for some n P N the section gns extends
to X; that is, there is a t P FpXq so that t|Dpgq “ gns.

HINT: Use that F is of tilde type so that FpDpgqq is the localized Ag-module FpDpgqq “

FpXqg

Exercise 15.2.4 (Direct products of quasi-coherent sheaves on affines). When X “ SpecA
is affine it is straightforward to see that arbitrary direct products exist in QCohX , but they are
not as well behaved as direct sums. Let tMiuiPI be a family of A-modules.

(i) Show that Č
ś

iMi is the direct product of the sheaves ĂMi in QCohX .
(ii) Show by giving examples, that if I is infinite, forming the product does not

commute with restrictions. HINT: In general, p
ś

iMiqf is different from
ś

ipMiqf . Components of an element in the latter have denominators of the form
f´n, whereas in the former they can be f´ni with the ni’s being unbounded.

(iii) Conclude that the direct product of the ĂMi’s in the category ModX (as defined
in Section 14.3 and Exercise 14.5.4) and in QCohX are different.

15.3 Properties of quasi-coherent sheaves on general schemes

In this section, we establish some basic properties of quasi-coherent sheaves on a general
scheme.

Proposition 15.14. Let X be a scheme.
(i) If ϕ : F Ñ G is a map of quasi-coherent sheaves, then Kerϕ, Imϕ and

Cokerϕ are all quasi-coherent.
(ii) (The 2-out-of-3 property) If

0 F G H 0 (15.7)

is a short exact sequence of OX-modules, and if two of F ,G,H are
quasi-coherent, then the third is quasi-coherent as well.

Proof Over each open affine subset U “ SpecA of X a map α : F Ñ G of quasi-
coherent OX-modules may be described as α|U “ ra where a : M Ñ N is a A-module
homomorphism and M and N are A-modules with F |U “ ĂM and G|U “ rN . Since the
tilde-functor is exact, one has Kerα|U “ pKer aqr. Moreover, by the same reasoning, it
holds that Cokerα|U “ pCoker aqrand Imα|U “ pIm aqr.

The proof of (ii) relies on a future result from the cohomological toolbox (see propxxxx),
that in 15.10 only the leftmost sheaf F 1 needs to be quasi-coherent. In view of this, if an
extension like (15.7) with F and H quasi-coherent is given and U Ă X is an affine open
subscheme, the induced sequence of sections over U is exact. The upper horizontal sequence
in the diagram below is hence exact. The three vertical maps are the natural β-maps from
Corollary 15.2 on page 227, and since F and H both are quasi-coherent, the two outer vertical
maps are isomorphisms. The snake lemma then implies that the middle vertical map is an
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234 Quasi-coherent sheaves

isomorphism as well, and G is quasi-coherent.

0 ČFpUq ĆGpUq ČHpUq 0

0 F |U G|U H|U 0

15.4 Constructions of Quasi-coherent sheaves

The following lemma will be useful for constructing quasi-coherent sheaves on general
schemes.

Lemma 15.15. Let X be a scheme and let B be a basis for the topology on X
consisting of the affine open subsets. Let F be a B-presheaf such that

(i) F is a an OX -module on the opens in B; that is, for each U P B, FpUq

is an OXpUq-module, and for each inclusion V Ă U in B, the diagram
(14.13) commutes.

(ii) For each U, V P B with V Ă U the canonical map

FpUq bOXpUq OXpV q ÝÝÑ FpV q (15.8)

given by sb g ÞÑ gs|V is an isomorphism.
Then F is a B-sheaf and extends to a quasi-coherent sheaf on X .

Proof We first treat the affine case and write X “ SpecA. Taking U “ X and V “

Dpfq Ă U , the isomorphism (15.8) shows that FpDpfqq “ FpXq bAAf “ FpXqf . In
other words, F is isomorphic to ČFpXq on distinguished opens. Therefore, F extends to a
quasi-coherent sheaf, namely ČFpXq.

In general case, it follows for free from the affine case that F is B-sheaf. Indeed, if U
belongs to B, the locality and gluing conditions to be a B-sheaf involves only the open
sets in B which are contained in U , and these are fulfilled because F |U equals ČFpUq. The
extended sheaf is then by construction quasi-coherent.

An immediate corollary is the following:

Corollary 15.16. Let X be a scheme and let F be an OX-module on X . Then F is
quasi-coherent if and only if for any pair V Ă U open affine subsets the natural map

FpUq bOXpUq OXpV q Ñ FpV q (15.9)

that sends sb g to gs|V , is an isomorphism.

Proof Let U “ SpecA, and V “ SpecB with U Ą V . If F is quasi-coherent, then
F |U » ĂM for some and the multiplication map (15.9) is an isomorphism by Proposition
15.4. Conversely, if (15.9) holds, then F (considered as a B-sheaf) satisfies the conditions of
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15.4 Constructions of Quasi-coherent sheaves 235

the above lemma, and extends to a quasi-coherent sheaf on X , and this extension of course
coincides with F .

This is one explaination for the word ’coherence’: the groups of sections FpV q of F over
an open affine V are by no means arbitrary, they fit together with the sections of FpUq over
any larger open affine U , in a way determined by the restriction maps OXpUq Ñ OXpV q.

Direct sums

In Section XXX, we saw the direct sum of any collection of OX-modules has the natural
structure of an OX -module. Here we will apply Lemma 15.15 to show that the direct sum of
a collection of quasi-coherent sheaves is again quasi-coherent.

Proposition 15.17. For any collection of quasi-coherent sheaves tFiuiPI , the direct
sum

À

iFi is again quasi-coherent. Moreover,
(i) For open affine subsets U it holds that p

À

iFiqpUq »
À

iFipUq;
(ii) On stalks it holds that p

À

iFiqx »
À

ipFiqx.

We underline that (i) does not in general hold for opens that are not affine as Example 14.19
shows.

Proof Consider the direct sum presheaf given by S pUq “
À

iPI FipUq. This defines a
B-sheaf on the basis of open affines U , and clearly each S pUq is an OXpUq-module. To
check the final condition in Lemma 15.15, we need the result from commutative algebra that
tensor products commute with direct sums: If N is an A-module and tMiuiPI is a collection
of A-modules, one has a canonical isomorphism

p
à

iPI

Miq bAN “
à

iPI

pMi bANq (15.10)

defined by p
ř

miq b n ÞÑ
ř

mi b n (where the sums are finite).
Applying this to S , we get

S pUq bOXpUq OXpV q “
`à

iPI

FipUq
˘

bOXpUq OXpV q “
à

iPI

`

FipUq bOXpUq OXpV q
˘

“
à

iPI

FipV q “ S pV q.

Finally, (ii) follows by considering an open affine neighbourhood SpecA of x and again cite
(15.10) with N “ Ap and p the prime corresponding to x.

Tensor products

Next, we consider the tensor product of two quasi-coherent sheaves.
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236 Quasi-coherent sheaves

Proposition 15.18. For two quasi-coherent sheaves F and G on a scheme X the
tensor product F bOX

G in QCohX is quasi-coherent.
(i) If U Ă X is an open affine, there is a canonical isomorphism that

pF bOX
GqpUq » FpUq bOXpUq GpUq.

(ii) On stalks at points x P X we have canonical isomorphisms

pF bOX
Gqx » Fx bOX,x

Gx.

The proof is similar to that of Proposition 15.17, checking that the B-presheaf T pUq “

FpUq bOXpUq GpUq satisfies two conditions of Lemma 15.15. The main fact we need is that
for an A-algebra B there are a canonical isomorphisms

pM bANq bAB » pM bABq bBpN bABq. (15.11)

for A-modules M and N .

Exercise 15.4.1. Let tFiu be a family of sheaves on X and U Ă X an open set. If U is
quasi-compact, show that p

À

iFiqpUq “
À

iFipUq.

Exercise 15.4.2. Let X be a scheme and let tFiuiPI be a directed system of quasi-coherent
sheaves X . Show the following claims:

(i) For each open affine subschemeU Ă X it holds that plim
ÝÑ

FiqpUq “ lim
ÝÑ

FipUq;
(ii) If U Ă X is open, then plim

ÝÑ
Fiq|U “ lim

ÝÑ
Fi|U ;

(iii) For each x P X it holds that plim
ÝÑ

Fiqx “ lim
ÝÑ

pFiqx.
HINT: : Use the description in Exercise A.1.13 and properties of the direct sum.

Exercise 15.4.3. Fill in the details of the proof of Propositition 15.18.

15.5 Pushforwards and Pullbacks

For a morphism of schemes f : X Ñ Y , there are two natural operations, the pushforward
f˚ and the pullback f˚, for producing sheaves on Y from sheaves on X and vice versa.
We already introduced the pushforward functor in Chapter 3. This operation produces an
OY -module f˚F from an OX -module F . There is an opposite operation, called the pullback,
which produces an OX-module f˚G on X from a OY -module G on Y . We will define this
in the next section. Here we remark that the pushforward of a quasi-coherent sheaf still will
be quasi-coherent for a large class of morphisms.

Recall the definition of f˚F for a sheaf F : for each open set U Ă Y , the sections are
given by f˚FpUq “ Fpf´1Uq. Furthermore, recall Proposition 15.5 on page 229 which
describes the pushforward of modules of tilde-type. We rephrase it here in the terminology of
quasi-coherent sheaves:

Proposition 15.19. Let X and Y be affine schemes and let f : X Ñ Y be a mor-
phism. For each quasi-coherent F on X it holds that f˚F “ ČFpXq. In particular,
the sheaf f˚F is quasi-coherent.
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15.5 Pushforwards and Pullbacks 237

The proposition generalizes to a large class of morphisms. The proof below will use only
that inverse images of open affine subsets are quasi-compact and that the intersection of two
affine subsets can be covered by finitely many affines. For simplicity, we state it here with the
more modest hypothesis that X is Noetherian.

Theorem 15.20 (Quasi-coherence of pushforwards). Let f : X Ñ Y be a mor-
phism of schemes withX Noetherian and let F be a quasi-coherent sheaf onX . Then
the direct image f˚F is quasi-coherent on Y .

Proof We may assume that Y “ SpecB as being quasi-coherent is a local property. Since
X is Noetherian it is quasi-compact and may be covered by finitely many open affines
Ui. Each intersection Ui X Uj is again quasi-compact and we cover it with finitely many
open affines Uijk. With a slight modification of the sequence in Example 14.13 one has the
following exact sequence of sheaves on X:

0 f˚F
ś

i fi˚F |Ui

ś

i,j,k fijk˚F |Uijk
(15.12)

where fi “ f |Ui
and fijk “ f |Uijk

. Now, each of the sheaves fi˚F |Ui
and fij˚F |Uij

are
quasi-coherent by the affine case, and they are finite in number as the covering Ui is finite.
Hence

ś

i fi˚F |Ui
and

ś

i,j fij˚F |Uij
are finite products of quasi-coherent sheaves and

therefore they are quasi-coherent. Now, the sheaf f˚F equals the kernel of a homomorphism
between two quasi-coherent sheaves, and so the theorem follows from Proposition 15.14 on
page 233.

Example 15.21. Consider the projective line P1
k and the squaring map f : P1

k Ñ P1
k, which

restricts to the squaring map Spec krxs Ñ V0 “ Spec krys. We use the notation of Example
XXX.

We claim that f˚OP1
k

“ OP1
k

‘ OP1p´1q.

The following example shows the proposition fails if X is not assumed to be Noetherian:

Example 15.22. Let X “
š

iPI SpecZ be the disjoint union of countably infinitely many
copies of SpecZ and let f : X Ñ SpecZ be the morphism that equals the identity on each
of the copies of SpecZ. Then f˚OX is not quasi-coherent. Indeed, the global sections of
f˚OX satisfy

ΓpSpecZ, f˚OXq “ ΓpX,OXq “
ź

iPI

Z.

On the other hand if p is any prime, one has

ΓpDppq, f˚OXq “ Γpf´1Dppq,OXq “
ź

iPI

Zrp´1s.

It is not true that ΓpDppq, f˚OXq “ ΓpSpecZ, f˚OXq bZ Zrp´1s. Indeed, elements in
ś

iPI Zrp´1s are sequences of the form pzip
´niqiPI where zi P Z and ni P N. Such an

element lies in p
ś

iPI Zq bZ Zrp´1s only if the ni’s form a bounded sequence, which is not
the case for general elements of the form pzip

´niqiPI when I is infinite. In particular, f˚OX

is not quasi-coherent.
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15.5.1 Pullbacks

Let f : X Ñ Y be a morphism of schemes. Recall we defined the pushforward functor
which produces an OY -module f˚F from an OX -module F . There is an opposite operation,
called the pullback, which produces an OX-module f˚G on X from a OY -module G on Y .
Even though this can be defined for any OY -module G, we will outline a contruction which
works for quasi-coherent sheaves, where the definition is much more explicit.

The best way of understanding the pullback f˚ is by how it interacts with the pushforward
f˚. Namely, the sheaf f˚G satisfies a certain universal property with respect to f˚ and
OX-modules F : maps of OX-modules f˚G Ñ F are in 1-1 correspondence with maps of
OY -modules G Ñ f˚F . The precise statement is the following theorem:

Theorem 15.23. Let f : X Ñ Y be a map of schemes and let G be a quasi-coherent
sheaf on Y . Then there exists a quasi-coherent sheaf f˚G on X along with canonical
functorial bijections

θF : HomXpf˚G,Fq ÝÝÑ HomY pG, f˚Fq (15.13)

for each OX-module F . The sheaf f˚G is unique up to isomorphism.

Here θF is functorial in both F and G. This means that commutative diagrams on the left
induce (and are induced by) diagrams on the right:

f˚G F

f˚G1 F 1

ÐÑ

G f˚F

G1 f˚F 1

The pullback f˚G is determined up to isomorphism by the universal property (15.13) (by
Lemma (15.26)). We will refer to any sheaf satisfying this condition as the pullback of G by
f .

An important feature of the universal property (15.13) is that there exist canonical maps

η : G ÝÝÑ f˚f
˚G (15.14)

and and if f˚F is quasi-coherent,

ν : f˚f˚F ÝÝÑ F . (15.15)

These are obtained by applying (15.13) to the identity maps f˚G Ñ f˚G and f˚F Ñ f˚F
respectively. If ϕ : f˚G Ñ F is a map on the right hand side of (15.13), then θFpϕq is

obtained as the composition G η
ÝÑ f˚f

˚G f˚ϕ
ÝÝÑ f˚F . Likewise, if ψ : G Ñ f˚F is a map

on the left hand side, then the corresponding map f˚G Ñ F is obtained by composing
f˚ψ : f˚G Ñ f˚f˚F with ν.

Pullacks for X and Y affine

We begin by proving Theorem 15.23 in the most important special case, namely when
f : X Ñ Y is a map of affine schemes.
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Suppose X “ SpecB, Y “ SpecA and f : X Ñ Y is induced by a ring map A Ñ B.
Consider a quasi-coherent sheaf of the form G “ rN on Y , where N is an A-module. As
B is an A-algebra, the tensor product N bA B is naturally a B-module, and we define the
pullback of G by the formula

f˚
rN “ ČN bA B. (15.16)

In other words, we define

f˚G “
`

GpY q bOY pY q OXpXq
˘„
. (15.17)

This definition is motivated by the formal properties of Hom and the tensor product. More
precisely, we recall the following natural bijection, which holds for all A-modules N and
B-modules M :

HomBpN bA B,Mq “ HomApN,MAq (15.18)

This bijection sends a B-linear map ϕ on the left-hand side to the A-linear map N Ñ MA

given by n ÞÑ ϕpnb 1q. This map is functorial in M and N . (See Exercise 15.5.3.)
Now the universal property (15.13) is a consequence from the bijection (15.18). Indeed,

by Proposition XXX, we have for any OX-module F ,

HomXpf˚G,Fq “ HomXp ČGpY q bA B,Fq (15.19)

“ HomApGpY q bA B,FpXqq (15.20)

“ HomApGpY q,FpXqAq (15.21)

“ HomY pĆGpY q, f˚Fq (15.22)

“ HomY pG, f˚Fq.

The fact that these isomorphisms are functorial in F and G follows from the functoriality of
the isomorphism in (15.18) (see Exercise ??) and the isomorphism βF in Proposition XXX.
The uniqueness part of the theorem follows from Lemma 15.26 below. This concludes the
proof.

Example 15.24. We have f˚OY “ OX for any morphism f : X Ñ Y . Indeed, f˚OY is
the tilde of the tensor product AbA B, and AbA B » B (as B-modules).

Example 15.25. If F “ ĂM and G “ rN , we can understand the two adjunction maps (15.14)
and (15.15) as follows. The map

η : rN ÝÝÑ f˚f
˚
rN

is the map of OY -modules induced by N Ñ pN bA BqA, sending n ÞÑ pnb 1q. Likewise,

ν : ĂM ÝÝÑ f˚f
˚
ĂM

is induced by the map of B-modules MA bA B Ñ M sending mb b to bm.

The following lemma was used for the in the proof above. It is a version of the ‘Yoneda
lemma’.
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Lemma 15.26 (Yoneda lemma for sheaves). Let X be a scheme and let H,H1 be
two OX-modules. Assume that there are natural bijections

βF : HomXpH,Fq Ñ HomXpH1,Fq

for each OX-module F . Then there is a unique isomorphism ι : H1 Ñ H such that
βFpϕq “ ϕ ˝ ι.

Proof See Exercise 15.5.4.

Here are a few nice properties of the pullback:

Theorem 15.27. Let f : X Ñ Y be a morphism of affine schemes. Then:
(i) The pullback is a functor

f˚ : QCohY QCohX ;

(ii) If g :W Ñ X is another morphism of affine schemes, then

pf ˝ gq˚ “ g˚ ˝ f˚;

(iii) The pullback functor is additive, right exact and sends tensor products to
tensor products;

(iv) f˚OY “ OX ;
(v) For x P X , we have

pf˚Gqx “ Gfpxq bOY,fpxq
OX,x.

Proof Suppse f : X Ñ Y is induced by a ring map ϕ : A Ñ B.
(i): Any a map of quasi-coherent sheaves rN Ñ ĂN 1 is induced by a map of A-modules

N Ñ N 1. This in turn induces a map ofB-modulesN bAB Ñ N 1 bAB and consequently
a map of OX-modules f˚

rN Ñ f˚
ĂN 1. Hence f˚ is a functor.

(ii): If g : W Ñ X is induced by a ring map R Ñ B, and N is an A-module, then (ii)
follows from the isomorphism of R-modules

pN bA Bq bB R » N bA R

Alternatively, one may use the universal property (15.13) (see Lemma 15.32).
(iii): This follows from the tensor product being additive, right exact and from the formula

pM bANq bAB “ pM bABq bBpN bABq.

(iv): This was Example 15.24 above.
(v): If x P X corresponds to p Ă B, then fpxq P Y corresponds to q “ ϕ´1ppq Ă B.

Moreover,if G “ rN , the stalk of f˚G at x is given by the localization

pN bABqp “ N bABp “ pN bAAqq bAq
Bp “ Gfpxq bOY,fpxq

OX,x.
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There is also a way to pull back sections of a quasi-coherent sheaf. If G is a quasi-coherent
sheaf on Y and s P GpY q is a section, the tensor product s b 1 P GpY q bA B defines a
section of f˚G over X . We call this section the pullback of s by f , and denote it by f˚psq.

Here is a concrete example.

Example 15.28. Consider A1
k and the squaring map f : A1

k Ñ A1
k induced by krys Ñ krxs

sending y to x2. Then f˚OA1
k

“ OA1
k
, and the isomorphism is simply the tilde of the

isomorphism of krxs-modules

krys bkrys krxs “ krxs.

On global sections, the section y P OA1
k
pA1

kq, pulls back to y b 1 P krys bkrxs krxs, which
maps to x2 via this isomorphism. Hence we write f˚pyq “ x2.

Example 15.29. More generally, for a section s P OY pY q, the corresponding pull back
f˚psq P OXpXq via the isomorphism in the isomorphism f˚OY “ OX is simply the
element f 7

Y psq P OXpXq by the usual sheaf map f 7 : OY Ñ f˚OX .

Example 15.30. In general, the pullback f˚ is only right-exact. Consider for instance the
ideal sheaf sequence of the origin p P A1

k “ Spec krts:

0 Ip OA1
k

Op 0.

which is the tilde of the sequence

0 krts krts kppq 0.t

If f : Spec kppq Ñ A1
k, where kppq “ krts{ptq, is the inclusion of p, the pullback of the

sequence is the tilde of the sequence

0 krts bkrts kppq krts bkrts kppq kppq bkrts kppq 0,t

which is not exact because the map on the left-hand is the zero map.
Note also that in this example, the pullback of an element hptq P OA1

k
pA1

kq “ krts is
given by the evaluation at p: f˚phptqq “ hp0q.

Pullbacks for general morphisms

In this section we construct the pullback f˚ for a general morphism of schemes f : X Ñ Y .
The idea is to construct the sheaf f˚G by a gluing procedure that resembles the construction
of the fibre product in Chapter 10.

The next result is another useful special case of Theorem 15.23, for the case when f is an
open embedding. In this case, the pullback is simply the restriction.

Lemma 15.31. LetX Ă Y be an open subscheme, with open embedding ι : X Ñ Y
and let G be a quasi-coherent sheaf on Y . Then ι˚G :“ G|X is a pullback of G by i.
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242 Quasi-coherent sheaves

Proof Note first that ι˚G is quasi-coherent by Lemma XXX. We need to check that this
sheaf satisfies the universal property (15.13). The map θF is defined as follows. Given a map
of OX-modules ϕ : G|X Ñ F and an open set V Ă Y , we consider the composition

GpV q Ñ GpV XXq
ϕV XX
ÝÝÝÑ FpV XXq “ pι˚FqpV q.

One checks that this is a map of OY pV q-modules, and that these maps are compatible with
the restriction maps. We define θFpϕq to be the induced map of OY -modules G Ñ ι˚F .

The inverse of θF is defined as follows. Let ψ : G Ñ ι˚F be a map of OY -modules. For
an open set W Ă X , we may define ι˚G Ñ F over W simply by

ψW : pG|Xq pW q ÝÝÑ Fpι´1W q “ FpW q.

This is a map of modules over the ring OY pW q “ OXpW q. These maps give a map of
OX-modules G|X Ñ F . It is not hard to check that these two assignments are inverses to
each other.

Lemma 15.32. Let f : X Ñ Y and g : Y Ñ Z be two morphisms. If there exists
pullback functors f˚ and g˚, then also pg ˝ fq˚ exists, and pg ˝ fq˚ “ f˚ ˝ g˚.

Proof Let G be a quasi-coherent sheaf on Z , and consider f˚pg˚Gq, which, by our assump-
tions, is a quasi-coherent sheaf on X . For an OX-module F , we now have

HomXpf˚pg˚Gq,Fq “ HomY pg˚G, f˚Fq (15.23)

“ HomZpG, g˚f˚Fq (15.24)

“ HomZpG, pg ˝ fq˚Fq.

Here all equalities are canonical bijections.

With these two lemmas, we are ready to prove Theorem 15.23.

Proof CoverX and Y by affine open subschemesXi “ SpecBi and Yi “ SpecAi, i P I ,
so that f maps Xi into Yi. That is, f |Xi

factors as a map of affine schemes fi : Xi Ñ Yi
followed by an open embedding τi : Yi Ñ Y . The situation is shown in the diagram below.

Xi X

Yi Y

fi

ιi

f

τi

By the affine case, we get quasi-coherent sheaves f˚
i pG|Yi

q on Xi, satisfying the universal
property (15.13) for OXi

-modules F . We claim that these glue to a sheaf f˚G onX satisfying
the same universal property. The first observation is that the sheaf f˚

i pG|Yi
q satisfies the

universal property of pf |Xi
q

˚ G for the morphism f |Xi
“ τi ˝ fi : Xi Ñ Y . This follows

from Lemma 15.31 and 15.32.
Fix i, j P I and let Xij “ Xi X Xj . Let ιi : Xij Ñ Xi be the i-th inclusion and

let fij “ fi ˝ ιi : Xij Ñ Yi. Lemma 15.32 shows that the restrictions f˚
i pG|Yi

q|Xij
and
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f˚
j pG|Yj

q|Xij
to Xij both satisfy the universal property (15.13) for OXij

-modules F . So by
Lemma 15.26, there is an isomorphism

τij : f
˚
j pG|Yj

q|Xij
ÝÝÑ f˚

i pG|Yi
q|Xij

. (15.25)

Furthermore, Lemma 15.32 implies that over the triple intersection Xijk, the three restric-
tions f˚

i pG|Yi
q|Xijk

f˚
j pG|Yj

q|Xijk
and f˚

k pG|Yk
q|Xijk

all satisfy the universal property of
pf |Xijk

q˚G. By the uniqueness part of Lemma 15.26, the isomorphisms between them, i.e.,
the restrictions of (15.25), must satisfy τik “ τij ˝ τjk when restricted to Xijk. Hence
the sheaves f˚

i pG|Yi
q|Xij

glue to a sheaf on X , an OX-module, which we denote by f˚G.

By construction, we have f˚G|Xi
“ f˚

i pG|Yi
q “ ČGpYiq bAi

Bi on Xi, so f˚G is quasi-
coherent.

Finally, we check that this sheaf satisfies the universal property (15.13). If F is any OX-
module, and ϕ : f˚G Ñ F is a map of OX-modules, we get restrictions ϕi : f˚G|Xi

Ñ

F |Xi
and ϕij : f˚G|Xij

Ñ F |Xij
. By the universal properties of f˚G|Xi

“ f˚
i pG|Yi

q, these
maps correspond bijectively to maps of OYi

-modules

ψi : G|Yi
ÝÝÑ fi˚pF |Xi

q

Using the fact that ϕi and ϕj both restrict to the same map, namely ϕij , on Xij , we see that
these maps glue to a sheaf map ψ : G Ñ f˚F . As the ψi are maps of OYi

-modules, ψ is a
map of OY -modules.

Conversely, given a map of OY -modules ψ : G Ñ f˚F , consider the restriction ψi :
G|Yi

Ñ pf˚Fq|Yi
. Again, by the universal property of f˚

i pG|Yi
q, each ψi corresponds to

a map of OXi
-modules ϕi : f˚

i pG|Yi
q Ñ F |Xi

. For any two indexes i, j, there is also a
ϕij : f

˚
ijpG|Yij

q Ñ F |Xij
on Xij , by Lemma ??. Both ϕi and ϕj restrict to this map over

Xij , and so they glue to a map of OX-modules ϕ : G Ñ f˚F .

The main properties of f˚ in the affine case still hold in the general setting.

Theorem 15.33. The properties (i)-(v) in Theorem 15.27 hold for any morphism of
schemes f : X Ñ Y .

Proof By construction, the pullback of a quasi-coherent sheaf is quasi-coherent. Item (ii)
follows by Lemma 15.32.

The remaining properties follow either from the explicit construction of f˚G by gluing, or
the universal property (15.13). For instance, to show that f˚OY “ OX , one can either note
that the local isomorphisms ČAbA B » B glue to an isomorphism f˚OY » OX , or verify
that OX satisfies the universal property of f˚OY . (See Exercise 15.5.2).

15.5.2 Pulling back sections

Given a morphism f : X Ñ Y and a section s P GpV q of quasi-coherent sheaf G on Y ,
we can also define a pull back f˚psq P Γpf´1V, f˚Gq. One way to define this is via the
canonical map G Ñ f˚f

˚G; over an open set V Ă Y this is a map

ΓpV,Gq Ñ Γpf´1V, f˚Gq
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More concretely, we can define the section f˚psq as follows. Cover V and f´1V by affine
opens Vi “ SpecAi and Ui “ SpecBi respectively such that G|Vi

» ĂNi. Then s induces
elements si P ΓpVi,Gq “ Ni. We define f˚s as the section of f˚G given by the sections

si b 1 P ΓpUi, f
˚G|Ui

q “ Ni bAi
Bi.

(These match over the overlaps Ui, because the si agree over the Vi)
In the special case when G “ OY , we have f˚OY “ OX and the pullback of s P OY pV q

is given by

f˚psq “ f 7psq P OXpf´1V q.

Example 15.34. Consider the projective line P1
k and the squaring map f : P1

k Ñ P1
k, which

restricts to the squaring map U0 Ñ U0 on each Ui » A1
k. We claim that f˚OP1

k
p1q “

OP1
k
p2q.

Recall that OP1
k
p1q is obtained by gluing together OU0

and OU1
over U0 X U1 via the

isomorphism τ01 : OU1
|U0XU1

Ñ OU0
|U0XU1

given by multiplication by x. This means that
f˚OP1p1q is obtained by gluing together OU0

and OU1
over U0 X U1 via the isomorphism

f˚pτ01q : OU1
|U0XU1

Ñ OU0
|U0XU1

given by multiplication by f˚pxq “ x2 (see Example
15.28). Therefore f˚OP1

k
p1q “ OP1

k
p2q.

We can also pull back sections of OP1p1q. Let s P ΓpP1
k,OP1p1qq be the section given

locally by s0 “ ax` b on U0 and s1 “ a` bx´1 on U1. Then f˚s is the section given by
f˚ps0q “ ax2 ` b and f˚ps1q “ a` bx´2 on the respective open sets.

Example 15.35. Let us consider the morphism f : P1
k Ñ P2

k, given by pu0 : u1q ÞÑ pu2
0 :

u0u1 : u
2
1q. Over the standard covering, f : P1

k Ñ P2
k is given by the two morphisms

f0 : U0 “ Spec krts Ñ V0 “ Spec krx, ys

given by t ÞÑ pt, t2q and

f1 : U1 “ Spec krss Ñ V1 “ Spec kru, vs

given by s ÞÑ ps2, sq.
Over the overlap U0 X U1 “ Spec krt, t´1s,we have u “ xy´1, v “ y´1, so both

morphisms agree with the one induced by krx, y, x´1y, xy´1s Ñ krt, t´1s x ÞÑ t, y ÞÑ t2.
Consider the ideal sheaf I of the closed subscheme given by the line V px0q. Then

f˚I » f˚OP2
k
p´1q “ OP1

k
p´2q

The section f˚x0 “ u2
0 P OP2p´2q defines the subscheme of P1

k given by the ideal pu2
0q.

Exercise 15.5.1. Let f : X Ñ Y be a morphism of schemes; F an OX-module, and G an
OY -module.

a) Given a map of OX-modules OX Ñ F , show that f 7 induces a map of OY -
modules OY Ñ f˚F .

b) Given a map of OY -modules OY Ñ f˚F , show that there is an induced map
of OX-modules OX Ñ F .

c) Show that the constructions in a) and b) are inverse to each other and conclude
that f˚OY “ OX .
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Exercise 15.5.2. Let f : X Ñ Y be a morphism and let G a be a quasi-coherent OY -module.
Show that the stalk of f˚G at x P X is given by Gfpxq bOY,fpxq

OX,x. HINT: Reduce to the
affine case.

Exercise 15.5.3. Show that the map in (15.18) is a bijection, and that the isomorphism is
functorial in M and N .

Exercise 15.5.4. In this exercise you will prove Lemma 15.26. In the lemma, ‘naturality’
means that βF 1 pσ ˝ ρq “ σ ˝ θFpρq for every morphism σ : F Ñ F 1 and ρ : G Ñ F .

Let Φ “ βHpidHq : H1 Ñ H and Ψ : H Ñ H1 the unique morphism such that
βHpΨq “ idH1 .

a) Show that Ψ ˝ Φ “ idH.
b) Show that βHpΦ ˝ Ψq “ βHpidHq.
c) Conclude using injectivity of βH that Φ ˝ Ψ “ idH and that Φ and Ψ are

inverses to each other.
d) Check that the uniqueness requirement in Lemma 15.26 is satisfied.

15.6 Closed subschemes and closed embeddings

In Section 5.3 we gave a preliminary definition of a closed subscheme. Here we give a more
extensive treatment of these. The prototype example of a closed subscheme is the affine
subscheme SpecA{I Ă SpecA defined by an ideal I Ă A. The general definition will
involve ideal sheaves rather than ideals. Thus closed subschemes will correspond to ideal
sheaves I , so that IpUq Ă OXpUq is an ideal for each U . In order to obtain a scheme, it is
important that I is quasi-coherent.

We will need the notion of the support of a sheaf:

The support of a sheaf

For a sheaf F on a space X we define the support of F , denoted by SupppFq, by

SupppFq “

"

x P X
ˇ

ˇ

ˇ
Fx ‰ 0

*

.

In a similar way, for a section s P FpUq we define the support of s P FpUq, denoted by
Supppsq, as the set of points x P U such that the germ sx P Fx of s is nonzero.

Observe that if s P FpXq is a section and x is a point such that sx “ 0 in Fx, then there
is an open neighbourhood V Ď X containing x such that sy “ 0 for all y P V . It follows
that the support of s is a closed subset of X . In contrast, the support of a sheaf is in general
not closed (see Example 15.36 below).

Example 15.36. Let S Ă SpecZ be an infinite set of primes not equal to the set of all
primes, and consider the OSpecZ-module

À

pPS kppq where kppq denotes the skyscraper with
stalk Z{pZ at p. This is a quasi-coherent sheaf, being the tilde of the module

À

pPS Z{pZ
(Proposition 15.17). The stalk at a prime p equals Z{pZ when p P S and 0 otherwise (the
stalk over p0q P SpecZ is also 0). Therefore, the support is equal to S, which is not closed
(proper closed subsets of SpecZ are finite).
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15.6.1 Closed embeddings

Lemma 15.37. The support SuppOX{I of a quasi-coherent ideal I on a scheme
X is a closed subset. Equipping it with the induced Zariski topology and the sheaf
OX{I , we get a scheme pSuppOX{I,OX{Iq.

For a general ideal sheaf I , the quotient OX{I is always the structure sheaf of a locally
ringed space, and the quasi-coherence of I guarantees that this locally ringed space is locally
affine.

We shall denote this scheme by V pIq; this introduces a certain ambiguity in that V pIq

also denotes the closed subset SuppOX{I , but it is not more serious than the common usage
of letting X stand for both a scheme and its underlying topological space.

Proof For easier notation, let Z “ SuppOX{I . An ideal I being quasi-coherent means
that for each open affine subscheme U of X the restriction I|U is of tilde-type. Clearly I|U
is contained in OX |U , so if U “ SpecA, the restriction I|U will be the tilde of a unique
ideal I Ă A. Since the tilde functor is exact, we have the equality

OX{I|U “ ĄA{I. (15.26)

In particular, we see that ZXU “ V pIq, which is closed in U , and so Z is closed inX since
the open affines form a basis for the topology. Moreover, (15.26) shows as well that OX{I|Z
is a sheaf of rings on Z. The stalks are moreover local rings because they are quotients of
OX,x. Thus we have produced a locally ringed space V pIq “ pZ,OX{Iq, and again by
(15.26), it is locally affine and hence a scheme.

The lemma leads to the following definition:

Definition 15.38 (Closed subschemes). A closed subscheme of a scheme X is one of
the form V pIq “ pSupppOX{Iq,OX{Iq above with I a quasi-coherent ideal.

Let us verify that this definition is in accordance with the temporary definition from
Section 5.3, which relied on the notion of closed embeddings. Recall that a closed embedding
ι : Z Ñ X is a morphism such that for an open affine cover tUiu of X each restriction
ι|ι´1Ui

: ι´1Ui Ñ Ui is isomorphic to one of the form SpecA{I Ă SpecA. This implies
that the map ι7 : OX Ñ ι˚OZ is surjective.

The main observation is that the pushforward ι˚OZ is quasi-coherent. This follows by
Theorem 15.20 and the remarks preceding it. If U Ă X is affine, the inverse image ι´1U
is affine being closed in U , hence it is quasi-compact, and the intersection of the inverse
images of two affines is affine since closed embeddings are separated (11.12). Given this, we
conclude by Proposition 15.14 that the ideal I “ Ker ι7 is quasi-coherent, and hence that
ι yields an isomorphism between Z and the closed subscheme SpecOX{I . Thus the two
definitions agree.

In the affine case, we get a proof of 5.10, which we for completeness reproduce here:
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Proposition 15.39 (Closed subschemes in the affine case). The map I ÞÑ

SpecpA{Iq is a one-to-one correspondence between the set of ideals of a ring A and
the set of closed subschemes of X “ SpecA. In particular, each closed subscheme
of an affine scheme is also affine.

A corollary of the above reasoning is the following characterisation of closed embedding
among affine maps:

Proposition 15.40. An affine morphism f : X Ñ Y of schemes is a closed embed-
ding if and only if the induced map ι7 : OY Ñ ι˚OX is surjective.

Proof One way is clear, so assume ι7 is surjective. There is induced a map X Ñ V pIq

with I “ Ker ι7, which locally is an isomorphism by the affine case.

In Definition 15.38, there could a priori be closed subsets not supporting a scheme.
However this is not the case. One may even find a reduced scheme structure on every closed
subset, which in fact gives a canonical scheme structure on each closed subset.

Proposition 15.41. Each closed subset Z Ă X of a scheme is the support of a unique
reduced closed subscheme.

Proof Define a sheaf of ideals I Ă OX by the formula

IpUq “ t s P OXpUq | spxq “ 0 for all x P Z X U u;

where as usual spxq denotes the image of the germ sx in the residue field kpxq “ OX,x{px.
It is straightforward to check that IpUq is compatible with restrictions (forming germs is),
and that IpUq is in fact an ideal. We contend that I is quasi-coherent.

If U “ SpecA is affine, it holds that Z X U “ V pIq for a unique radical ideal I , which
equals the intersection I “

Ş

IĂp p of all the prime ideals containing I . This intersection is
precisely the set of elements a P A that vanish at all points in V pIq, and hence IpUq “ I .
Being a radical ideal is a property that localizes, so IpV q “ rI|V for all distinguished open
subsets V of U , and consequently I|U “ rI . This shows that I is quasi-coherent. Dividing
by a radical ideal yields a quotient without nilpotent elements, so OX{I will be without
nilpotent sections.

The uniqueness statement is clear in the affine case, from which it follows in general: if I
and I 1 are two quasi-coherent ideals as in the proposition, they restrict to equal subsheaves
on open affines, and so the inclusion I Ă I ` I 1 is an equality (e.g. by Lemma 14.7). Hence
I “ I 1.

The ideal I constructed above with Z “ V pJ q for a quasi-coherent ideal J , restricts to
the tilde of the radical ideal

a

J pV q on an affine open subset V Ă X . So it makes sense
to call it the radical of J , and we will consequently denote it by

?
J . It is the largest ideal

containing J and defining the closed subset V pJ q. A quasi-coherent ideal is said to be
radical if

?
J “ J .
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Theorem 15.42. Let X be scheme.
(i) The map I ÞÑ SuppOX{I sets up a bijection between radical quasi-

coherent ideals and closed subsets of X;
(ii) The map I ÞÑ V pIq is a bijection between quasi-coherent ideals and

closed subschemes of X .

Example 15.43. The sections of the radical
?
I of an ideal does not alway equal the radical

of the sections. An example follows: let Xi “ Spec krtis{ptni

i q and let X “
Ť

iXi be
the disjoint union. Then OXpXq “

ś

krtis{ptni

i q, and the element t “ ptiq will be a
global section that vanishes everywhere, but it will not be nilpotent when ni is an unbounded
sequence, so in that case t is a global section of the sheaf

?
0 which does not belong to the

radical of OXpXq.

In particular, we may apply this construction to Z “ X . We denote the resulting scheme
by Xred and refer to it as the reduced scheme associated with X . The scheme Xred and the
corresponding closed embedding rX : Xred Ñ X satisfy the following universal property,
which among other things, entail that Xred depends functorially on X (see Exercise 15.9.5
below).

Proposition 15.44. Let f : Y Ñ X be a morphism of schemes, with Y reduced.
Then f factors uniquely through the natural map rX : Xred Ñ X , i.e. there exists a
unique morphism g : Y Ñ Xred such that f “ r ˝ g.

Proof The question is easily reduced to case of affine schemes, where it follows from the
fact that a map of rings A Ñ B where B is without nilpotents, factors unambiguously
through A{

?
0.

15.7 Coherent sheaves

Just as for modules there are various ways to impose finiteness conditions on a quasi-coherent
sheaf on a scheme X . In this section we will introduce the three most important ones, OX-
modules of finite type, OX-modules of finite presentation and coherent OX-modules. All
three are generalisations of properties for modules, so we begin with a short recap.

Coherent modules

Recall that a module M over a ring A is finitely generated if it can be generated by a finite
set of elements; that is, if there is a surjective map of A-modules

An M 0.
ϕ

The module M is said to be finitely presented if it sits in an exact sequence of the form

Am An M 0
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with n,m P N. In other words, M is finitely generated, and the module of relations between
the generators is also finitely generated. It is not too hard to see that if M is of finite
presentation, then every surjective map An Ñ M has a finitely generated kernel.

One says that a module M is coherent if every finitely generated submodule M is of finite
presentation, which may be rephrased by saying that the kernel of every map An Ñ M ,
surjective or not, is finitely generated.

Contrary to what holds for the two first properties, a ring is not necessarily a coherent
module over itself (see Example 15.45 below). However, over Noetherian rings the three
conditions are equivalent; indeed, in that case every submodule of a free module of finite
rank is finitely generated.

Example 15.45 (A ring that is not coherent). The following is an almost tautological example
of a module that is not coherent. Let R “ krx, y, ti, ui|i P Ns and a “ ptix ´ uiy|i P Nq.
Then the R-module A “ R{a is not coherent: the ideal px, yq is finitely generated, but the
relations are not. Indeed, map the free module Re‘Rf with basis e1, e2 into A by sending
e1 Ñ x and e2 Ñ y. The kernel has generators tie1 ´ uie2 for i P N and is not finitely
generated: its image in R under e.g. the first projection equals the ideal pui|i P Nq, which for
sure is not finitely generated. It easily follows that the ring A is not coherent as a module
over itself.

Exercise 15.7.1. Show that if M is of finite presentation, every surjection Ar Ñ M has a
finitely generated kernel.

Coherent sheaves

In the literature one finds slightly different versions of the finiteness conditions for OX-
modules, some work even over general locally ringed spaces. We will be loyal to our overall
policy emphazising quasi-coherent sheaves, which we regard as sheaves that locally, on open
affines, are of tilde type. Hence our definition reads as follows:

Definition 15.46. Let X be a scheme and F a quasi-coherent OX-module. We
say that F is of finite type (respectively finitely presented or coherent) if for some
open affine cover tUiu it holds that F |Ui

“ ĂMi where Mi is a finitely generated
(respectively of finite presentation or coherent) module over OUi

pUiq.

And just as for quasi-coherence, the conditions hold for any open affine cover given that it
holds for one:

Proposition 15.47. If F is finite type (respectively of finite presentation or coherent)
then for each open affine U “ SpecA it holds that F |U “ ĂM with M a finitely
generated A-module (respectively of finite presentation or coherent).

Proof We will show that F |U “ ĂM with M finitely generated is a distinguished property
for open affine subschemes U “ SpecA. Obviously Mf is finitely generated when M is,
so the first condition is fulfilled. For the second, assume that SpecA “ Dpfq YDpgq and

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

250 Quasi-coherent sheaves

that Mf and Mg are finitely generated over Af and Ag respectively. Choose finite sets of
elements tmiu and tniu in M whose images generate respectively Mf and Mg. We contend
that they together generate M .

Indeed, if m P M , it holds that f rm “
ř

i aimi and grm “
ř

j bjnj for some r P N,
and since Dpf rq Y Dpgrq “ SpecA, there is a relation 1 “ af r ` bgr with a, b P A.
Hence

m “ af rm` bgrM “
ÿ

i

aaimi `
ÿ

j

bbjnj.

The statement regarding the two other properties follow similarly: if for the kernel K of a
map An Ñ M it holds that Kf and Kg are finitely generated, K will be finitely generated
by the same argument.

The full subcategory of QCohX consisting of the coherent sheaves will be denoted by
CohX . It is an abelian category having finite direct sums.

Example 15.48. Let X “ SpecZ. If F is any coherent sheaf on X , then F “ ĂM for some
finitely generated Z-module M , and by the structure theorem for finitely generated abelian
groups, we may write M “ Zr ‘ T , where T is a finite direct product of groups of the form
Z{nZ. Thus we may write

F “ Or
X ‘ T (15.27)

where T is a sheaf having stalks Tp “ 0 for all but finitely many p and Tp0q “ 0. (T is a
torsion sheaf, see Exercise XXX).

Example 15.49. The argument of the previous example in fact applies over any PID A:
every coherent sheaf on X “ SpecA must have the form ĂM for M “ Ar ‘ T where T
is a finitely generated torsion module. In particular, any coherent sheaf on the affine line
A1
k “ Spec krxs decomposes as

F “ Or
X ‘ T (15.28)

where T is a torsion sheaf.

Exercise 15.7.2. Consider an exact sequence of A-modules:

0 M 1 M M2 0

Show that M is coherent if and only if both M 1 and M2 are. Show that the category of
coherent A-modules is abelian.

Exercise 15.7.3. If A is a coherent ring, show that every finitely generated A-module is of
finite presentation, and hence that the three conditions are equivalent.

One benefit of using coherent OX-modules rather than finitely generated ones is that the
category of coherent modules is an abelian category, even in the non-Noetherian setting.
However, a problem is that coherence is very difficult to check in general, and actually, for
some schemes, even affine ones, the structure sheaf OX is not coherent.
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Sheaves of homomorphisms

For two OX-modules F and G, we defined the Hom-sheaf HomOX
pF ,Gq, by

HompF ,GqpUq “ HomUpF ||U ,G|Uq. (15.29)

where the right-hand side means all the OU -linear maps. This sheaf is an OX-module is a
natural way, but it is not always quasi-coherent even if both F and G are. This is due to the
deficiency that Hom does not always commute with localization in general. However, if F is
of finite presentation, one has

Proposition 15.50. Let F and G be quasi-coherent modules on a scheme X , and
assume that F is of finite presentation. Then HomOX

pF ,Gq is quasi-coherent.
HomOX

pF ,Gq is also coherent if F and G are. Moreover:
(i) For every open affine U “ SpecA,

HomOX
pF ,Gq|U “ HomOXpUqpFpUq,GpUqqr .

(ii) The stalk at a point x P X is given by

HomOX
pF ,Gqx “ HomOXx

pFx,Gxq. (15.30)

Proof If M is a finitely presented A-module, and B is a flat A-algebra there is a canonical

HomApM,Nq bAB » HomBpM bAB,N bABq

for eachA-moduleA. (This is clear whenM “ An, and the general case follows by choosing
a finite presentation of M .) By Lemma 15.15, the B-sheaf given by (15.29) on affines gives
a quasi-coherent sheaf.

The claim about stalks follow from Item (i) because one can compute stalks by taking the
direct limit over affine subsets.

15.8 Invertible sheaves and the Picard group

Invertible sheaves is a very important class of OX-modules. They are special cases of the
more general class ‘locally free sheaves’, which we will discuss in Chapter 19. Some of the
proofs will be postponed until that chapter.

We usually use the letter L for invertible sheaves. By definition, L is invertible whenever
there exists a covering U “ tUiu and isomorphisms

ϕi : OUi
ÝÝÑ L|Ui

.

We say that gi “ ϕip1q P LpUiq is a local generator for L. By Lemma 19.4 on page 334 a
coherent OX-module L is invertible if and only if the stalk Lx is isomorphic to OX,x for
every x P X . In particular, L is invertible if and only if every point x P X has an open
neighbourhood U such that L|U » OU .
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Proposition 15.51. Let X be a scheme and L and M two invertible sheaves on X .
Then we have

(i) LbOX
M is also an invertible sheaf. If g and h are local generators for

L and M respectively, then g b h is a local generator for LbOX
M ;

(ii) HomOX
pL,Mq is also invertible. In particular, HomOX

pL,OXq is
invertible, and

HomOX
pL,OXq bM » HomOX

pL,Mq

In particular,

HomOX
pL,OXq bOX

L » OX

This proposition explains the term ‘invertible’. Indeed, the tensor product acts as a sort of
binary operation on the set of invertible sheaves; LbM is invertible if L and M are, and the
tensor product is associative. Tensoring an invertible sheaf by OX does nothing, so OX serves
as the identity. Moreover, for an invertible sheaf L we will define L´1 “ HomOX

pL,OXq;
by the proposition, L´1 is again invertible, and serves as a multiplicative inverse of L under
b. We can make the following definition:

Definition 15.52. Let X be a scheme. The Picard group PicpXq is the group of
isomorphism classes of invertible sheaves on X under the tensor product.

Note that it is the set of isomorphism classes of invertible sheaves that form a group, not the
invertible sheaves themselves: LbOX

L´1 is isomorphic, but strictly speaking, not equal to
OX . Note also that PicpXq is an abelian group because LbOX

M is canonically isomorphic
to M bOX

L.
Invertible sheaves behave nicely with respect to pullbacks:

Lemma 15.53. Let f : X Ñ Y be a morphism of schemes and let L be an invertible
sheaf on Y . Then f˚L is invertible on X . Moreover, if L and M are two invertible
sheaves on X , then

f˚pLbOY
Mq “ f˚pLq bOX

f˚pMq

Lemma 15.54. For a morphism of schemes f : X Ñ Y , the assignment L ÞÑ f˚L
induces a morphism of groups

f˚ : PicpY q Ñ PicpXq.

Example 15.55. Let X “ SpecZ. If E is any coherent sheaf on X , then E “ ĂM for some
finitely generated Z-module M , and by the structure theorem for finitely generated abelian
groups, we may write M “ Zr ‘ T , where T is a finite direct product of groups of the form
Z{nZ . If E in addition is required to be locally free, it must hold that T “ 0 (otherwise, if p
is a prime factor of an n appearing in one of the summands of T , the stalk at ppq will not
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be free). Thus E “ ĂZr “ Or
X , and we conclude that every coherent locally free sheaf on

SpecZ is trivial. In particular, we get that

PicpSpecZq “ 0.

On the other hand, PicpZr
?

´5sq ‰ 0, by Example 19.15.

15.8.1 Locally free sheaves on the affine line

The argument of the previous example in fact applies over any PID A: every coherent sheaf
on X “ SpecA must have the form ĂM for M “ Ar ‘ T where T is a finitely generated
torsion module, and if we require ĂM to be locally free, the torsion part must vanish; i.e. it
must hold that T “ 0. In particular, this applies to locally free sheaves on the affine line
A1
k “ Spec krxs:

Proposition 15.56. Any invertible sheaf on A1
k is trivial. In particular, PicpA1

kq “ 0.

We will prove more generally that PicpAnkq “ 0 for any n in Chapter ??.

15.8.2 Invertible sheaves on P1
k

On page 94 in Chapter ?? we constructed the family OP1
A

pmq of sheaves on the projective
line over a ring A. They are all invertible, as we showed in Chapter ??, and in this section we
intend to show there are no others when A is a field.

Recall that P1
k is obtained by gluing together the two open affine subsets U0 “ Spec krus

and U1 “ Spec kru´1s along V “ Spec kru, u´1s. Given an invertible sheaf L on P1,
the restriction of it to each of the two opens must be trivial since PicpA1

kq “ 0, so there
are isomorphisms ϕi : L|Ui

Ñ OUi
. Over the intersection V “ U0 X U1 we thus obtain

two isomorphisms ϕi|V : L|V Ñ OV . In particular, the composition ϕ1|V ˝ ϕ0|´1
V : OV Ñ

OV is an isomorphism. Like any such map, it is induced by a module homomorphism
kru, u´1s Ñ kru, u´1s which is just multiplication by some unit in kru, u´1s. But all units
in kru, u´1s are of the form αum for an integer m and non-zero scalar α, the latter can be
ignored (incorporate it in one of the ϕi’s), and we recognize L to be the sheaf OP1

k
pmq from

Chapter ??.
With the present set-up we also obtain in a natural way an isomorphismOP1

k
pmq b OP1

k
pm1q »

OP1
k
pm`m1q: the gluing map over V for the tensor product equals the tensor product of the

two gluing maps (which are multiplication by sm and sm
1

respectively), and when we identify
OV b OV with OV , it becomes the product of the two; that is, it becomes multiplication by
sm`m1

. In particular, it holds that OP1
k
pmq b OP1

k
p´mq » OP1

k
.

Back in Chapter ?? we verified that the sheaves OP1
k
pmq are not isomorphic when m ě 0;

e.g. since they have different spaces of global sections, and what we just did, extends this to
all m. We thus have shown:
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Proposition 15.57. Every invertible sheaf on P1
k is isomorphic to OP1

k
pmq for some

m P Z, and sending OP1
k
pmq to m yields an isomorphism PicP1

k » Z.

We will prove a generalization of this in Proposition 18.38.

15.9 Exercises

Exercise 15.9.1. Show the following:
(i) The skyscraper sheaf of k on A1

k “ Spec krts at the origin 0 is quasi-coherent;
(ii) The skyscraper sheaf of kptq on A1

k “ Spec krts at the origin 0 is not quasi-
coherent. HINT: Consider sections over U “ Dptq.

Exercise 15.9.2. Let A3
k “ Spec krx, y, zs and consider the twisted cubic curve C given by

the ideal

I “ py ´ x2, z ´ x3q

Let π : C Ñ A1
k “ Spec krzs be the projection from the line L “ V px, yq.

(i) Show that π is a finite morphism;
(ii) Compute π˚OC , π˚OA1

k
and π˚J where J is the ideal sheaf of the closed point

0 P A1
k.

Exercise 15.9.3. Let f : X Ñ Y be a morphism of schemes and let x P X be a point. We
say that:

‚ A quasi-coherent sheaf F on X is flat over Y at x if Fx is flat as a OY,fpxq-module (where
Fx is considered as a OY,fpxq-module via the natural map f 7

x : OX,x Ñ OY,fpxq);
‚ F is flat if it is flat at every point in X;
‚ f is flat if OX is flat over Y

(i) Show that open embeddings are flat. What about closed immersions?
(ii) Show that a morphism of schemes SpecB Ñ SpecA is flat if and only if the

map of rings A Ñ B is flat. More generally, a quasi-coherent sheaf ĂM on
SpecB is flat over SpecA if and only if M is flat as an A-module;

(iii) Which of the morphisms in Exercise 2.7.14 are flat?
(iv) Prove that the blow-up morphism π : Bl0A2 Ñ A2 is not flat.

Exercise 15.9.4. Prove that the morphism r : Xred Ñ X is a closed immersion.

Exercise 15.9.5 (Functoriality of p´qred ). If f : X Ñ Y is a morphism, show that there is a
unique morphism fred : Xred Ñ Yred so that fred ˝ rX “ rY ˝ fred. Show that assignments
X ÞÑ Xred and f ÞÑ fred defines a functor Sch to RedSch which is adjoint to the inclusion
functor RedSch Ñ Sch, where RedSch is the full subcategory of Sch whose objects are the
reduced schemes.

Exercise 15.9.6. Prove Proposition 15.44
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Exercise 15.9.7 (Morphisms to a closed subscheme). Let Z be a closed subscheme of X
given by sheaf of ideals I . Suppose f : Y Ñ X is a morphism of schemes. Show that f
factors through a map g : Y Ñ Z if and only if

(i) fpY q Ď Z;
(ii) I Ď Kerpf 7 : OX Ñ f˚pOY qq.
For a morphism of schemes f : Y Ñ X , we can define the scheme-theoretic image

of f as a subscheme Z Ď X satisfying the universal property that if f factors through
a subscheme Z 1 Ď Z, then Z Ď Z 1. To define Z it is is tempting to use the ideal sheaf
I “ KerpOX Ñ f˚pOY qq — but this may fail to be quasi-coherent for a general morphism
f . However, one can show that there is a largest quasi-coherent sheaf of ideals J contained
in I , and we then define Z to be associated to J .

Exercise 15.9.8 (Noetherian induction). Let X is a scheme. The closed subschemes form a
partially ordered set when one lets Z Ă Z 1 mean that the closed immersion Z ãÑ X factors
through the immersion Z 1 ãÑ X .

(i) Show that Z Ă Z 1 if and only it IpZ 1q Ă IpZq;
(ii) Assume X to be Noetherian. Show that any non-empty set Σ of closed sub-

schemes contains a minimal element.

Exercise 15.9.9 (Generic freeness of coherent sheaves ). Assume that X is a reduced and
irreducible scheme and let F be a coherent sheaf on X . Then F is ‘generically free’, or
phrased differently, ‘up to coherent sheaves with proper support it may be approximated
by a free sheaf’. In precise terms, show that there is a coherent sheaf H on X and a map
α : F Ñ H with the two properties

(i) Both supports SuppKerα and SuppCokerα are proper subschemes of X;
(ii) There is an integer and an inclusion Or

X Ă H of a free sheaf such that the
quotient H{Or

X has proper support.

Exercise 15.9.10 (An ideal sheaf which is not quasi-coherent). Let X “ Spec krT s “ A1
k

and consider the origin P P X “ A1
k corresponding to the maximal ideal pT q Ă krT s.

Define the presheaf I of OX by for each open subset U Ă X lettingIpUq Ă OXpUq be
given as

IpUq “

#

OXpUq if P R U ;

0 if P P U.

a) Show that I is an ideal sheaf, and SupppOX{Iq is not a closed subset of X .
b) Show directly that I is not quasi-coherent by showing that IpXq “ 0, but

I ‰ 0.

Exercise 15.9.11. Show that the ‘2-out-of-3’-property holds for coherent sheaves. That is, if
0 Ñ F 1 Ñ F Ñ F2 Ñ 0 is an exact sequence of OX-modules, and if two of F ,F 1,F2

are coherent, then so is the third.

Exercise 15.9.12. Show that the direct sum of two coherent sheaves is again coherent. Hint:
Use Exercise 15.9.11.

Exercise 15.9.13. Let ϕ : F Ñ G be a map of coherent sheaves. Show that Kerϕ, Imϕ and
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Cokerϕ are all coherent. Hint: Find two natural exact sequences involving these sheaves and
apply Exercise 15.9.11.
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16

Sheaves on projective schemes

Projective schemes are to affine schemes what projective varieties are to affine varieties.
The construction of the projective spectrum ProjR is similar to that of the affine spectrum
SpecR: the underlying topological space is defined with the help of prime ideals and the
structure sheaf from localizations of R. However, there are some fundamental differences
between the two: in the proj-construction one only considers graded rings R, and only
homogeneous prime ideals that do not contain the irrelevant idealR`. As we saw, this reflects
the construction of the projective spectrum ProjR as a quotient space

π : SpecR ´ V pR`q Ñ ProjR.

Given this, we can pull back a quasi-coherent sheaf to SpecR ´ V pR`q and extend it to
a sheaf on SpecR via the inclusion map. Thus, it is natural to expect that quasi-coherent
sheaves on ProjR should be in correspondence with ‘equivariant’ modules on SpecR; i.e.
the graded1 R-modules. The irrelevant subscheme V pR`q complicates the picture and makes
the classification a little bit more involved than it is for affines schemes. In particular, we will
see that different graded R-modules may correspond to the same quasi-coherent sheaf on
ProjR.

Another important feature of ProjR is that it comes equipped with a canonical invertible
sheaf which is denoted by OProjRp1q. This is the geometric manifestation of the fact that R
is graded. Unlike the case of affine schemes, ProjR can typically not be recovered from the
global sections of the structure sheaf. It is the sheaf OProjRp1q, or rather, the various tensor
powers OProjRpdq “ OProjRp1qbd, that will play the role of the affine coordinate ring. So it
is rather from the pair pProjR,OProjRp1qq one may hope to recover R.

16.1 The graded tilde-functor

Let R be a graded ring and let GrModR denote the category of graded R-modules. Just as in
the case of the affine spectrum SpecA, we shall set up a tilde-construction which produces
sheaves on ProjR from graded R-modules, and in this way gives a functor GrModR to
QCohProjR. However, in contrast to the affine case, this will not be an equivalence of
categories.

1 In the model case of the projective spaces, the variety Pn is the quotient of An ´ t0u by the group kˆ acting by
scalar multiplication, so in this case, the notion ‘equivariant’ is precise and pertinent.
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Homogenization and dehomogenization

Back in in Chapter 9 on page 135, we used a homogenization-dehomogenization process to
construct the structure sheaf on ProjR, and we shall rely on a similar technique for modules
in the tilde-construction.

For an inclusion of two distinguished open sets D`pgq Ă D`pfq, we have a relation
of the form gr “ af for some homogeneous a P R and some r P N. And as f becomes
invertible in Rg, there is a canonical map Mf Ñ Mg between the localized modules. It
respects the gradings since both f and g are homogeneous, and its action on the degree zero
parts yields a canonical map

ρf,g : pMf q0 Ñ pMgq0,

which sends an element mf´n with x homogeneous and degm “ n deg f to the element
anmg´nr.

Let B being the basis for the Zariski topology consisting of the distinguished open subsets.
We define a B-presheaf ĂM by letting its sections over D`pfq be given by

ĂMpD`pfqq “ pMf q0,

and when D`pgq Ă D`pfq, letting the restriction maps ĂMpD`pfqq Ñ ĂMpD`pgqq be the
maps ρf,g above. The two requirements to be a presheaf are easily verified; for instance, by
taking the degree zero part (which is an exact operation) of the fundamental sequence 3.2 for
the sheaf ĂM on SpecR.

In Proposition 9.12 on page 137 we established a canonical isomorphism D`pfq »

Spec pRf q0. Unsurprisingly, the presheaf ĂM restricted to D`pfq yields the sheaf ČpMf q0 on
Spec pRf q0:

Proposition 16.1. Under the isomorphism between D`pfq and Spec pRf q0 one has
ĂM |D`pfq » ČpMf q0.

A distinguished subset D`pgq of D`pfq is mapped isomorphically onto the distinguished
open subsetDpuq of Spec pRf q0 where u “ gdeg f{fdeg g ( the simplest degree zero element
in Rf one can create out of f and g).

The proposition follows directly from the lemma below, whose proof relies on the following
two simple observations. If M is any module (graded or nor not) over a ring R, one has
a canonical isomorphism2 pMf qa » Mfa, which follows from the universal property of
localization. Secondly, if M is graded, localization in a degree zero elements commutes
with taking the degree zero part: if deg a “ 0, we have a natural isomorphism ppMf qaq0 »

ppMf q0qa.

Lemma 16.2. With the notation above, the canonical homomorphism
ρf,g : pMf q0 Ñ pMgq0 induces an isomorphism ppMf q0qu » pMgq0;

2 In clear text, this boils down to writing x{asf t “ at´sx{atf t or x{asf t “ fs´tx{asfs according to which
one of s or t is the bigger.
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16.1 The graded tilde-functor 259

Proof Write gr “ af , and consider let u “ gdeg f{fdeg g. Note that in the ringRf , where f
is invertible, the multiplicative systems taiu and tuiu have the same saturation (both being the
saturation of tgiu) so that pMf qa “ pMf qu. From the observations preceding the lemma we
infer that pMf qu » pMf qa » Mgr » Mg, and that pMgq0 » ppMf quq0 » ppMf q0qu.

As an immediate consequence of Proposition 16.1 we obtain the desired

Proposition 16.3. The B-presheaf ĂM is a B-sheaf, and extends to a quasi-coherent
sheaf on ProjR; which we continue to denote ĂM .

Proof The B-presheaf satisfies the axioms for being a B-sheaf. Indeed, for a fixed D`pfq

in B, both B-sheaf axioms only involve distinguished opens contained in D`pfq, and the
restriction ĂM |D`pfq of the B-presheaf is a sheaf by Proposition 16.1.

As is the case for the tilde-construction for affine spectra, the assignment M ÞÑ ĂM is
functorial and gives a functor GrModR Ñ QCohProjR. This is close to obvious as a map
M Ñ N which is homogeneous of degree zero, persists being homogeneous of degree zero
when localized, and so induces maps pMf q0 Ñ pNf q0.

Basic properties of the tilde-functor

In some aspects the projective tilde-functor behaves as the affine one, but in other aspects the
behaviour deviates seriously; the most striking difference being that different modules may
yield isomorphic sheaves, and this is inherent, not accidental.

The following proposition summarizes the basic properties of the tilde-functor.

Proposition 16.4. Let R be a graded ring. The functor GrModR Ñ QCohProjR that
sends M to ĂM has the following properties:

(i) It is additive and exact and commutes with direct limits;
(ii) Sections over distinguished open sets: for homogeneous elements f P R,

it holds that ĂMpD`pfqq “ pMf q0;
(iii) Stalks: for each p P ProjR it holds that ĂMp “ pMpq0;
(iv) When M is finitely generated, then ĂM is of finite type, and when M is

of finite presentation, the same holds for ĂM . In particular, when R is
Noetherian and M is finitely generated, ĂM will be coherent.

Proof Claim (i) holds since localization and taking degree zero parts are exact operation
that commutes with forming direct limits and (arbitrary) direct sums. The second claim
is just the definition of the sheaf ĂM , and third is a consequence of ĂM |D`pfq “ ČpMf q0
(Proposition 16.1), that a prime p P D`pfq Ă ProjR corresponds to q “ ppRf q0 and that
we have the equality ĂMp “ ppMf q0qq “ pMqq0 “ pMpq0.

The last statements are direct corollaries of the tilde-functor being exact.
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260 Sheaves on projective schemes

A consequence of (ii) is that each element m P M0 gives rise to a section ΓpD`pfq,ĂMq,
which is just the image of m in pMf q0. These local sections clearly agree on overlaps
D`pfgq the two restrictions borth being the image ofm in pMfgq0, and so they glue together
to a global section of ĂM . Hence we have the following

Lemma 16.5. There is a canonical map M0 Ñ ΓpProjR,ĂMq, which is functorial
in M .

It is important to note that, unlike in the affine case, the tilde-functor is not faithful; several
modules can correspond to the same sheaf. This is not so surprising and is rooted in the
fact that primes in V pR`q are thrown away in the Proj-construction, which has the effect
that modules supported in V pR`q necessarily give the zero sheaf when exposed to the
tilde-functor.

For any integer d we let Mąd be the R-module Mąd “
À

iądMi (it is an R-module
because of the standing hypothesis that R be positively graded).

Lemma 16.6. Assume that R is a graded ring and let M and N be two graded
R-modules,

(i) If SuppM Ă V pR`q, then ĂM “ 0;
(ii) Assume that Mąd » Nąd for some d. Then ĂM » rN .

If R is generated in degree one, the converse of (i) holds true.

The converse of (ii) does not hold in general even if R is generated in degree one; but as
we shall see, in that case it holds for finitely generated R-modules.

Proof To prove (i), suppose that SuppM Ă V pR`q. Statement (iii) of Proposition 16.4
above then entails that ĂM “ 0 since Mp “ 0 for all p P ProjR.

To prove (ii), note that the quotientM{Mąd is killed by the power pR`qd and consequently
has support in V pR`q. By (i) its tilded sheaf vanishes, and hence ĆMąd “ ĂM . As this holds
for both M and N we are through.

For the converse of (i): if the support of M is not contained in V pR`q, there is a homoge-
neous prime ideal p P ProjR such that Mp ‰ 0. In general, it might be that there are no
elements of degree zero in Mp, but as R is generated in degree one it holds that pMpq0 ‰ 0.
In that case, ProjR is covered by distinguished open sets D`pfq with deg f “ 1, and so
there is an f of degree one not lying in p. Then for each non-zero homogeneous element
x P Mp, the element x{fdeg f yields a non-zero element of degree zero in Mp.

Example 16.7. On X “ Proj krx0, x1s, the module M “ krx0, x1s{px2
0, x

2
1q has ĂM “ 0,

but it is non-zero.

The following simple example may be instructive. It illustrates the subtlety of the proj-
construction for rings not generated in degree one.

Example 16.8. LetR be a graded ring generated in degree two, which means that all elements
in R are of even degree. A graded R-module M all whose elements are of odd degree, will
then have a vanishing tilde-sheaf whatever its support is, for the simple reason that an element
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16.1 The graded tilde-functor 261

like x{f s can not be of degree zero when deg x is odd and deg f is even. Hence pMpq0 “ 0
for all p P ProjR.

A concrete minimalistic example can be R “ krt2s and M “
À

iě0 k ¨ t2i`1, the
submodule of krts of polynomials all whose non-zero terms are of odd degree. Then M is
not supported in V pR`q “ tpx2qu, but ĂM “ 0 by the above reasoning.

It may seem paradoxical that redefining the grading on krt2s by giving t2 degree one, the
tilde-construction will be faithful for modules supported off V pR`q; the explanation is that
the ‘counter-example’ M above is no more a graded module! Well, the only sensible degree
one could give t and still make the example work, would be 1{2, which is not allowed.

The next lemma is sometimes useful when working with the localization of M when R is
generated in degree one. It says essentially that we are allowed to ‘substitute 1 for f ’ when
restricting a module to an affine chart D`pfq Ă ProjR.

Lemma 16.9. Suppose that M is a graded R-module and that f P R homogeneous
of degree one. Then there are natural isomorphisms of pRf q0-modules

pMf q0 » M{pf ´ 1qM » M bR R{pf ´ 1qR.

In particular, pR0qf » R{pf ´ 1qR.

Proof The element f acts as the identity on theR-moduleM{pf´1qM , soM{pf´1qM is
a module overRf . Plainly sending xf´r to the class of x yields anRf -linear homomorphism
Mf Ñ M{pf ´ 1qM , as one easily verifies, and restricting it to the degree zero piece one
obtains an pRf q0-homomorphism pMf q0 Ñ M{pf ´ 1qM . It is surjective: the class of a
homogeneous element x is the image of xf´ deg x, and every element in M{pf ´ 1qM is the
sum of classes of homogenous elements. To check it is injective, assume that xf´ degm maps
to zero; i.e. that x “ pf ´ 1qy for some y P M . Expanding y in homogeneous components
we may write y “

ř

sďiďt yi with neither ys nor yt equal to zero. Then

x “ pf ´ 1qy “ ´ys `

t´1
ÿ

s

pfyi ´ yi`1q ` fyt.

Because x is homogeneous and ys ‰ 0, we may infer that ys “ ´x, but also that fyt “ 0
and yi`1 “ fyi. A straightforward induction then yields equalities yt “ f t´sys “ ´f t´sx;
consequently x is killed by a power of f and vanishes in Mf .

Example 16.10. That f is of degree one is essential. To give an example where the above
lemma fails, let M “ R “ krts and f “ t2. We find krtst2 “ krt, t´2s “ krt, t´1s so that
pkrtst2q0 “ k. But krts{pt2 ´ 1q » k ‘ k.

Tensor product & Hom’s

LetM andN be two graded modules over the graded ringR. There is a natural way of giving
the tensor product a graded structure; a decomposable tensor xb y is precisely homogenous
when x and y are, and of course, it is of degree deg x ` deg y. Homogenous tensors will
be the R0-linear combinations of decomposables of the same degree, so the graded piece
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262 Sheaves on projective schemes

of degree d of M bRN will be the image of
À

i`j“dMi bR0
Mj . One may check that

M bRN as an R0-module is the direct sum of these graded parts (that they generate is
obvious; that the pairwise intersections are zero is slightly more subtle).

The tilde-functor is in the case of affine spectra well-behaved when it comes to tensor
products in that ĂM bOSpecA

rN “ ČM bA N . In the projective case it is not always the case.
Unless R is generated in degree one, curious phenomena take place.

Example 16.11. We return to the ring R “ krt2s with t2 of degree two and the graded R-
moduleM “

À

iě0 k ¨x2i`1 from Exanple 16.8, wherewe saw that ĂM “ 0. However, in the
tensor productM bRM all elements are of even degree (indeed, deg xb y “ deg x`deg y
and both these are odd), and consequently it holds that pM bRMqr ‰ 0. So we have en
example that pM bRMq r ‰ ĂM bOProjR

ĂM .
Note that the example also illustrates that the converse of Lemma 16.6 does not hold

unconditionally (but, again as we shall see, it holds true when R is generated in degree one).

Let us proceed to compare ČM bR N with ĂM bOX
rN . For each homogeneous element

f P R there is a canonical map

Mf bpRf q0 Nf Ñ Mf bRf
Nf » pM bRNqf

which sends x{fn b y{fm to xb y{fn`m. When restricted to elements of degree zero it
gives a map

pMf q0 bpRf q0pNf q0 Ñ ppM bRNqf q0, (16.1)

which one easily checks is compatible with the restriction maps induced from inclusions
D`pgq Ă D`pfq, and so it is a map of B-sheaves with B being the basis of distinguished
open subsets. Hence it induce maps between sheaves, and we get a natural map

ĂM bOProjR
rN Ñ ČM bR N, (16.2)

It is, as the Example 16.11 above shows, not always an isomorphism, but whenR is generated
ine degree one, it is well behaved:

Proposition 16.12. Let R be a graded ring and suppose that R is generated in degree
one. For every graded R-modules M and N , the natural map

ĂM bOProjR
rN Ñ ČM bR N

is an isomorphism.

Proof By assumption, ProjR is covered by open affines of the form D`pfq where f
has degree one. For such an f , the functor M Ñ pMf q0 coincides with the tensor-functor
M ÞÑ M bR R{pf ´ 1qR by Lemma 16.9. Furthermore, one of the standard properties
of the tensor product is that the canonical map pxb aq b pyb bq ÞÑ xb yb ab yields an
isomorphism

pM bR R{pf ´ 1qRq bR{pf´1qR pN bR R{pf ´ 1qRq » pM bR Nq bR R{pf ´ 1qR,

but this is just the map in (16.1).

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

16.2 Serre’s twisting sheaf Op1q 263

Exercise 16.1.1. Let R “ Qrx, y, zs with deg x “ 1,deg y “ 2, deg z “ 3. Show that the
map (16.2) is not an isomorphism for M “ Rp1q and N “ Rp2q.

16.2 Serre’s twisting sheaf Op1q

Arguably the most interesting sheaf on ProjR is the so-called twisting sheaf, denoted
by OProjRp1q. This is a generalization of the tautological sheaf on Pnk , and constitutes a
geometric manifestation of the fact that R is a graded ring. They were introduced in the
groundbreaking paper ? by Jean-Pierre Serre. Elements in R do not define ‘regular functions’
on ProjR, and we shall see that in good cases Rd will be the space of sections of the tensor
power OProjRpdq when d ě 0, and this is a means of recovering the ring R. We already met
the sheaves OP1

A
pdq on the projective line in Section 7.2

Let M be a graded module over the graded ring R. For each integer n one defines an
R-module Mpnq as follows: the underlying R-module of Mpnq is just M , but the grading
is shifted:

Mpnqd “ Md`n. (16.3)

Thus N “ Mpnq is a graded R-module with N0 “ Mn, N1 “ Mn`1 and so on. Note that
elements from Md considered as element in Mpnq will be of degree d ´ n /replace d by
d ´ n in (16.3)). The construction is functorial and is called the functor M ÞÑ Mpnq is
called shift-functor or the twist-functor.

In the particular case when M “ R, this gives a graded and free R-module Rpnq, which
is generated by the element 1 P R´n. Note the equality Mpnq “ M bRRpnq: both have
M as underlying module, and the image of

À

i`j“dMi bR0
Rpnqj equals Md`n.

Example 16.13. It holds that Rpnq bRRpmq “ Rpn`mq.

Applying the tilde-functor to Rpnq gives us a quasi-coherent OProjR-module on ProjR:

Definition 16.14. Let R be a graded ring. For each integer n, and for X “ ProjR,
we define

OXpnq “ ĆRpnq.

It F is a sheaf of OX-modules F on X , we let Fpnq “ F bOX
OXpnq and call it

the twist of F by n.

Consider an element f P of degree one. As f is invertible in Rf it holds for each n P Z
that fnRf “ Rf , and since f is of degree one, we find taking out the piece of degree n,
that pRpnqf q0 “ pRf qn “ fn ¨ pRf q0. Thus, on the distinguished affine open set D`pfq it
holds true that OXpnq|D`pfq “ fnOX |D`pfq. In particular, OXpnq|D`pfq “ fnOD`pfq »

OD`pfq. Said differently, if R is generated in degree one, the OX-module OXpnq is an
invertible sheaf. The following generalises the multiplicative properties of OP1

A
pmq from

Example ?? to general projective schemes
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264 Sheaves on projective schemes

Proposition 16.15. WhenR is generated in degree one, the sheaf OXpnq is invertible
for every n P Z. Moreover, there are canonical isomorphisms

OXpm` nq » OXpmq bOX
OXpnq.

Proof Indeed, ifR is generated in degree one, Proposition ?? shows that OXpmq bOXpnq

is the sheaf associated to Rpmq bR Rpnq » Rpn`mq; that is, it equals OXpn`mq.

So this is a big difference between affine schemes and projective schemes: ProjR comes
equipped with lots of invertible sheaves.

Example 16.16 (P1
A once more). Recall the sheaves OP1

A
pnq from Section 7.2, which of

course are the same as the ones constructed above. Let P1
A “ ProjAru0, u1s. On the

distinguished open sets D`pu0q and D`pu1q it holds that OP1
A

pnq|D`pu0q “ un0OP1
A

|D`pu0q,
and that OP1

A
pnq|D`pu1q “ un1OP1

A
|D`pu1q, so the gluing function overD`pu0q XD`pu1q is

multiplication by pu0{u1qn, which agrees nicely with the gluing function used in Section 7.2.

As alluded to above, the main point of the sheaves OXpdq is that they help us recover the
ring R; for instance, while xd0 does not correspond to a regular function on Proj krx0, x1s, it
gives a section of the sheaf OXpdq.

16.3 The associated graded module

We have associated to a graded R-module M a sheaf ĂM on X “ ProjR. To classify
quasi-coherent sheaves on X we would, as in the case of affine schemes, like to give some
sort of inverse to this assignment. However, as opposed to the case for X “ SpecA, simply
using the global sections functor will not work. Indeed, even for F “ OP1

k
on P1

k, it holds
that ΓpP1

k,Fq “ k, from which we certainly cannot recover F . The remedy is to look at the
various Serre twists Fpdq of F ; in fact all of them at once:

Definition 16.17. Let R be a graded ring and let F be an OX-module on X “

ProjR. We define the graded R-module associated to F , denoted Γ˚pFq as

Γ˚pFq “
à

dPZ
ΓpX,Fpdqq.

In particular, from X alone we get the associated graded ring

Γ˚pOXq “
à

dPZ
ΓpX,OXpdqq.

The associated graded module has the structure of an R-module defuned in the following
way.

For each graded R-module M there is a homomorphism of graded R-modules

αM : M Ñ Γ˚pĂMq. (16.4)

Indeed, for each integer d it holds that pMpdqq0 “ Md, and the map in Lemma 16.5 is a map
Md Ñ ΓpX,ĂMpdqq. Summing up over all integers d then yields the map αM . In particular,
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with M “ R we infer that every homogeneous element h P Rd gives a section αphq (which
we by abuse of language we also shall denote by h). In other words we have a map of sheaves

OX Ñ OXpdq. (16.5)

Tensorized by Fpnq this map induces a map Fpnq Ñ Fpn ` dq. On global sections it is
a map ΓpX,Fpnqq Ñ ΓpX,Fpn ` dqq, and summing up over all n P Z, we find a map
Γ˚pFq Ñ Γ˚pFq, which is to be multiplication h.

On a distinguished open subscheme D`pgq the map in (16.5) equals the map pRgq0 Ñ

pRpdqgq0 “ pRgqpdq that acts as x{gr ÞÑ hx{gr. In particular, over D`phq we have an
isomorphism

OXpdq|D`phq » hOD`phq,

and in case x is of degree one, this yields an isomorphism

OXpdq|D`pxq » xdOD`pxq,

Proposition 16.18. Let R be a graded ring finitely generated over R0 in degree one
by elements x0, . . . , xn which are non-zerodivsors in R. Let X “ ProjR. Then

(i) Γ˚pOXq “
Şn

i“0Rxi
Ă KpRq;

(ii) If each xi is a prime element, then R “ Γ˚pOXq.

Proof Cover X by the distinguished open subschemes Ui “ D`pxiq. We have, since
ΓpD`pxiq,Opdqq » pRxi

qd, that the sheaf axiom sequence takes the form

0 Ñ ΓpX,Opdqq Ñ

n
à

i“0

pRxi
qd Ñ

à

i,j

pRxixj
qd,

which when summed over all integers m becomes

0 Ñ Γ˚pOXq Ñ

n
à

i“0

Rxi
Ñ

à

i,j

Rxixj
.

So a section of Γ˚pOXq corresponds to an pn ` 1q-tuple pt0, . . . , tnq P
Àn

i“0pRxi
q such

that ti and tj coincide in Rxixj
for each i ‰ j. Now, the xi are not zero-divisors in R, so the

localization maps R Ñ Rxi
are injective. It follows that we can view all the localizations

Rxi
as subrings of Rx0...xn

, and then Γ˚pOXq coincides with the intersection
n
č

i“0

Rxi
Ă R0rx0, x

´1
0 , ¨ ¨ ¨ , xn, x

´1
n s.

In the case that the xi’s are relatively prime, this intersection is just R.

Corollary 16.19. Let X “ PnA “ ProjArx0, . . . , xns for a ring A. Then

Γ˚pOXq » Arx0, . . . , xns

In particular we can identify ΓpPnA,Opdqq with the A-module generated by homoge-
neous degree d polynomials.
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When R is not a polynomial ring, it can easily happen that Γ˚pOXq is different than R.
Here is a concrete example:

Example 16.20 (A quartic rational space curve). A systematic way of producing examples
of projective schemes X “ ProjR so that R differs from Γ˚OX , is to start with a projective
scheme (or a variety if you want) X P Pnk and project it into Pn´1

k . In good cases this will
anew be closed embedding of X , but in this new embedding X will be represented as ProjS
with another graded ring S.

The simplest example of this set up is the rational normal quartic curve in P4
k. It is given as

X “ ProjR with

R “ kru4, u3v, u2v2, uv3, v4s Ă kru, vs,

where all of the generators are of degree one (this is nothing but the Veronese ring kru, vsp4q

from Section 9.3).
Projecting into a lower projective space corresponds to discarding some of the generators,

and in our example we throw the monomial u2v2 away and work with X “ ProjS where

S “ kru4, u3v, uv3, v4s.

Evidently S1 is of dimension 4, and we shall se that the monomial u2v2 reappears in
ΓpX,OXp1qq, and so ΓpX,OXp1qq will be of dimension 5.

Let us compute ΓpX,OXp1qq. The first observation is that X has an open affine cover
consisting of U0 “ D`pu4q and U1 “ D`pv4q. This is the case because the ideal pu4, v4q

is primary for S` “ pu4, u3v, uv3, v4q; indeed, it holds that S4
` Ă pu4, v4q. Moreover we

have equalities OXpU0q “ pSu4q0 “ krvu´1s and OXpU1q “ kruv´1s, and the cover
consisting of the Ui’s tivializes the sheaf OXp1q with isomorphisms OXp1q|U0

» OU0
u4

and OXp1q|U1
» OU1

v4. The fundamental sequence then takes the shape

0 Ñ ΓpX,OXp1qq Ñ krvu´1su4 ‘ kruv´1sv4 Ñ kruv´1, vu´1su4.

Note that u2v2 “ puv´1q2u4 “ pvu´1q2v4, so the monomial u2v2 belongs to both the
rings krsv´1sv4 and krtu´1su4 and defines an element in ΓpX,OXp1qq. In fact, one easily
checks that

ΓpX,OXp1qq “ ktu4, u3v, u2v2, uv3, v4u.

Thus ΓpX,OXp1qq contains all 5 monomials, while u2v2 is missing from S1. In this
example, the graded ring Γ˚pOXq “ kru4, u3v, u2v2, uv3, v4s is the integral closure of S.
Exercise 16.3.2 below shows that this is not a coincidence.

Example 16.21. Here is another example that Γ˚ is not right exact. Let P1
k “ ProjR, with

R “ kru0, u1s, and consider the exact sequence of graded R-modules

0 Rp´nq R R{pun0 qR 0.
un
0

When we apply the tilde functor to it, we obtain the exact sequence od sheaves

0 OP1
k
p´nq OP1

k
A 0.

un
0 ρ

The sheaf A is a skyscraper sheaf supported at the point x “ p0 : 1q with stalk Ax at x equal
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to A “ krus{punq where u “ u0u
´1
1 . All the twists Apdq are also skyscraper sheaves, and

their stalks at x are Apdqx “ Ax b OP1
k
pdq

x
“ ud1 ¨A (which is isomorphic to Ax). And, as

for any skyscraper sheaf, the global sections coincides with the stalk: ΓpP1
k,Apdqq “ ud1 ¨A

The map ρpdq on global sections becomes

ρd : kru0, u1sd Ñ ud1 ¨A “ ud1 ¨ krus{punq

which acts in the following way: write a homogeneous polynomial ppu0, u1q of degree d
as ppu0u

´1
1 , 1qud1 and send it to pnpu0u

´1
1 , 1qud1 where pn is the Taylor polynomial of p of

degree n; that is, the truncated polynomial pn “
ř

iďn aiu
i (when p “

ř

0ďiďd aiu
i). One

easily shows that the cokernel of this map is the k-vector space

Bd “
à

d`1ďiďn´1

k ¨ ui0u
i´d
1

when d ď n´ 2, and Bd “ 0 when d ě n´ 1.
Summing up over d and using that Γ˚A “

À

iě0 u
d
1A (where all elements of A “

krus{punq are of degree zero), we find the exact sequence:

0 Γ˚OP1
k
p´nq Γ˚OP1

k
Γ˚A

À

dďn´2Bd 0
Γ˚ρ (16.6)

and Γ˚ρ is not surjective when n ě 2 even though ρ is.

Exercise 16.3.1. Let k be a field and let R “ krx0, . . . , xns. Let π : An`1 ´ 0 Ñ Pnk “

ProjR denote the ‘quotient morphism’ from Exercise ??. Show that for a graded R-module
M , we have

π˚pĂM |An`1
k ´0q “

à

nPZ

ĂMpdq

Exercise 16.3.2. Let R be a graded Noetherian integral domain generated in degree one.
Show that Γ˚pOXq is an integral extension of R. (Hint: Use the Cayley–Hamilton theorem.)

Exercise 16.3.3 (An exotism of QCohX). In Exercise 15.2.4 we noted that when X is
affine, QCohX has arbitrary direct products just defined as

ś

ĂMi “ p
ś

Miqr. But unlike
the case of modules, products of surjections in QCohX are not necessarily surjective: for
each n P N consider the map Γ˚ρ in (16.6), give it an index and call it Γ˚ρn. Show
that the tildes ĆΓ˚ρn of the Γ˚ρn are surjective, but that their product

ś

n
ĆΓ˚ρn is not.

HINT: The cokernel Coker Γ˚ρn of each map Γ˚ρn is supported in V pR`q (it is of finite
dimension over k), but their direct product is not (numerous elements are not killed by any
power of x0).

16.4 Quasi-coherent sheaves on ProjR

As before, we assume that R is a graded Noetherian ring generated in degree one. The main
theorem of this section says that any quasi-coherent sheaf F on X “ ProjR is the tilde of
some graded R-module M . Not surprisingly, this R-module is exactly the associated graded
module M “ Γ˚pFq.
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Proposition 16.22. Let R be a graded ring, finitely generated in degree one over
R0. Suppose F is a quasi-coherent sheaf on ProjR. Then there is a canonical
isomorphism

β : ĂM Ñ F . (16.7)

where M “ Γ˚pFq.

We will need some notation. Let X “ ProjR. Choose generators x1, . . . , xr of degree
one forR and let letUi “ D`pxiq, thenUi “ SpecpRxi

q0. Any homogenous element f P R
of degree one induces a section in ΓpX,OXp1qq, which we will continue denoting by f . The
restriction to Ui of the invertible sheaf OXp1q has xi as generator so that Op1q|Ui

» xiOUi
.

Under this isomorphism f |Ui
may be written as fixi for some fi P ΓpUi,OXq “ pRxi

q0.
Also note that D`pfq X Ui “ Dpfiq Ă Ui is a distinguished open subset of Ui. When also
f is of degree one, there are canonical isomorphisms

Fpdq|D`pfq » fdFD`pfq. (16.8)

In particular, multiplication by xni gives an isomorphism

Fpnq|Ui
» xni F .

Proof of Theorem 16.22 We begin with defining the map (16.7) over the distinguished
opens D`pfq with f P R1; that is, we shall give maps

βf : ĂM |D`pfq Ñ F |D`pfq. (16.9)

Since D`pfq is affine, it suffices to tell how βf acts on global sections. Over D`pfq a
section of ĂM is represented by a fraction m{fd where m P Md “ ΓpX,Fpdqq and where d
is sufficiently large. By (16.8) the section m|D`pfq is of the form fds for a section s of F
over D`pfq, and we simply let βf send m{fd to s.

It is straightforward to verify that the definitions of βf and βg for two elements of degree
one agree on the overlaps Dpfgq and so glue together to the desired map β.

Injectivity of (16.9): Suppose that m{fd maps to zero via the map βf in (16.9), which
means that m P ΓpX,Fpdqq is a section such that m|D`pfqf

´d “ 0. Then clearly
m|D`pfq “ 0, and we want to infer from this that fnm “ 0 for some n P N (note
that m is a global section of Fpdq).

Now, the distinguished open sets Ui cover X , and D`pfq X Ui “ Dpfiq. Because
m|D`pfiq “ 0, we get that fni

i m|Ui
“ 0 for some ni P N (Exercise 15.2.3), and using

the greater ni, we may assume that the ni’s are equal, to n say. Locality then yields that
fnm “ 0, and we are done.

Surjectivity of (16.9). Let t P ΓpD`pfq,Fq and consider the restrictions ti “ t|Dpfiq.
Since Ui is affine for each i we know from Exercise 15.2.3 that some fni ti extends to a
section ui in ΓpUi,Fq (and as before we may choose an n that works for all i). In view of
the isomorphism F |Ui

pnq » xni F |Ui
, we find

fnti “ xni f
n
i ti “ mi P ΓpUi,Fpnqq.

A potential problem is that the mi’s might not necessarily agree on Ui X Uj , hindering
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16.4 Quasi-coherent sheaves on ProjR 269

them to be glued together. However, it holds that

mi|Dpfiq “ t|Dpfiqf
n|Dpfiq,

so at least mi “ mj on Ui X Uj X D`pfq. Now, Ui X Uj is also affine (because X is
separated), and Ui X Uj XD`pfq is a distinguished open subset of Ui X Uj , so arguing as
in the injectivity part shows that there is a large integer l ą 0 such that

f lpmi|UiXUj
´mj|UiXUj

q “ 0

in ΓpUi X Uj,Fpn ` lqq. It then follows that fn`lti can be glued to a section m P

ΓpX,Fpn` lq. By construction, this section has the property that it restricts to tfn`l|D`pfq

over D`pfq. Hence m{fn`l maps to t via the map in (16.9).

We have now have the two functors

„ : GrModR Ñ QCohX

Γ˚ : QCohX Ñ GrModR

Since β : ČΓ˚pFq Ñ F is an isomorphism, it follows that the tilde functor is essentially
surjective; that is, every quasi-coherent sheaf on X is the tilde of a graded module. However,
unlike the affine case, the functors do not give mutual inverses. The functor „ is not faithful
as the tilde of any module M with support in V pR`q is the zero sheaf. By Lemma 16.6
however, this is the only source of ambiguity.

Putting everything together, we find

Theorem 16.23. Let R be a graded ring, finitely generated in degree one over R0

and let X “ ProjR. Then the functors

„: GrModR Ñ QCohX

and

Γ˚ : QCohX Ñ GrModR

satisfy ČΓ˚pFq » F for all F P QCohX .
It holds that ĂM “ 0 for a graded R-module M if and only if M is supported in
V pR`q.

The finite type case

For finitely generated graded modules, the converse of claim (ii) in Lemma ?? holds true
and gives another criterion for when two modules have isomorphic tildes. Recall that to each
graded module M and each integer d we associated the graded module Mąd “

À

iądMd,
and we introduce an equivalence relation on the graded R-modules by declaring M and N
to be equivalent when Mąd » Nąd for some d P Z.
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270 Sheaves on projective schemes

Theorem 16.24. Assume R be generated over R0 by finitely many elements of
degree one. Let M and N be two finitely generated graded modules.

(i) Then ĂM » rN if and only if Mąd » Nąd for some d;
(ii) Moreover, F is of finite type if and only if it is the tilde of a finitely

generated R-module.

Proof Proof of (i): One way is just (ii) of Lemma 16.6. Attacking the other implication, we
consider the two each sequences

0 M Γ˚
ĂM K 0

0 N Γ˚
rN L 0.

» (16.10)

Using the assumed isomorphism Γ˚
ĂM » Γ˚

rN , we may identify the two Γ˚’s and consider
the intersections M XN Ă M and M XN Ă N . Since the support of K and L both are
contained in V pR`q, the same holds for C “ M{M XN and D “ N{M XN , and as M
and N both are finitely generated, it follows that Cd “ Dd “ 0 for d ąą0. Consequently
Mąd “ pM XNqąd “ Nąd.

Proof of (ii): If M is finitely generated, there is a surjection
À

iRp´diq Ñ M of graded
R-modules, which induces a surjection

À

iOXp´diq Ñ ĂM of OX-modules. This shows
that ĂM is of finite type since the direct sum restricts to free OX -module on a sufficiently fine
open cover.

Assume then that F is of finite type. It is quasi-coherent, so by 16.22 it equals the tilde
ĂM of a (not necessarily finite) R-module. That F is of finite type means that there is an
open affine cover tUiu of X (we may assume are distinguished open sets D`pfiq) such that
for each i there is a surjection Ori

X |Ui
Ñ ĂM |Ui

. Let eij denote the images in ĂMpUiq of the
standard basis vectors of Ori

X |Ui
. Bearing the equality ĂMpUiq “ pMfiq0 in mind, we may

write eij “ mij{f
νij with mij P M homogeneous of degree µij “ degmij “ νij deg fij .

This yields a map

Φ:
à

i,j

Rp´µijq Ñ M

whose tilde is surjective by construction since over Ui the image contains the relevant eij’s.
The cokernel thus has zero tilde, and so ĆImΦ “ ĂM , but by construction ImΦ is finitely
generated.

Exercise 16.4.1. Let P1
k “ Proj kru0, u1s and t “ u0{u1. Consider the closed sub-

scheme Z Ă P1
k which is supported at p0, 1q and which is locally given as Spec krts{tn Ă

D`pu0q “ Spec krts. Describe theRmodule Γ˚OZ and the canonical mapR “ Γ˚OP 1
k

Ñ

Γ˚OZ .
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16.5 Closed subschemes of projective space 271

16.5 Closed subschemes of projective space

Having discussed what quasi-coherent sheaves are on projective spectra, we will now use
this to study closed subschemes. We saw earlier that given a graded ideal I Ă R we could
associate a closed subscheme V pIq Ă ProjR and a closed immersion ProjpR{Iq Ñ

ProjR. On the other hand, we also saw above that many graded modules M could give rise
to the same quasi-coherent sheaf ĂM . This is also the case for graded ideals, as we shall see,
but luckily we are again able to completely identify which ideals give rise to the same closed
subscheme.

In the discussion it will be convenient to introduce the saturation of an ideal. The upshot
will be that this will serve as the ‘largest’ ideal corresponding to a given subscheme. We fix
an ideal B Ă R (the case to have in mind is the irrelevant ideal B “ R`). Then for a graded
ideal I Ă R, we define the saturation of I with respect to an ideal B as the ideal

I : B8 :“
ď

iě0

I : Bi “ tr P R|Bnr P I for some n ě 0u.

We say that I is B-saturated if I “ I : B8 and more concisely, saturated if it is R`-
saturated. We will here denote I : pR`q8 by I . It is not hard to check that I is homogeneous
if I is.

Example 16.25. In R “ krx0, x1s, the px0, x1q-saturation of px2
0, x0x1q is the ideal px0q.

Note that both px0q and px2
0, x0x1q define the same subscheme of P1

k, but in some sense the
latter ideal is inferior, since it has a component in the irrelevant ideal px0, x1q. This example
is typical; the saturation is a process which throws away components of I supported in the
irrelevant ideal.

Proposition 16.26. Let A be a ring and let R “ Arx0, . . . , xns.
(i) If Y is a closed subscheme of PnA “ ProjR defined by an ideal sheaf I ,

then the ideal

I “ Γ˚pIq Ă R

is a homogeneous saturated ideal. In this setting, Y corresponds to the
subscheme ProjpR{Iq Ñ ProjR.

(ii) Two ideals I, J defined the same subscheme if and only if they have the
same saturation.

In particular, there is a 1-1 correspondence between closed subschemes i : Y Ñ PnA
and saturated homogeneous ideals I Ă R.

Proof (i) Let i : Y Ñ PnA be a closed subscheme of PnA “ ProjR and let I Ă OPn
A

denote
the ideal sheaf of Y . Using the fact that global sections is left-exact, we have Γ˚pIq Ă

Γ˚pOPn
A

q “ R. I “ Γ˚pIq is naturally a graded R-module, so I is a homogeneous ideal of
R.

Let us show that I is saturated, i.e., that I “ Γ˚pJ q. “Ď”: Suppose f P Rd satisfies
f ¨ Bn P I for some n ą 0. So in particular, f ¨ xni P Id`n “ ΓpPnA, Ipn ` dqq for
some n ą 0. Over D`pxiq, the tensor product pf ¨ xni q|D`pxiq b x´n

i defines a section of
ΓpD`pxiq, Ipdqq “ pIxi

qd via the canonical isomorphism Ipn` dq b Op´nq “ Ipdq. It
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272 Sheaves on projective schemes

is clear that pfxni q|D`pxiq b x´n
i and pfxnj q|D`pxjq b x´n

j restrict to the same section of
Ipdq over D`pxixjq (they are both induced by the element f ). Hence they glue to a section
s P ΓpX, Ipdqq “ Id. Finally, we must have f “ s, because both restrict to the same
sections over each D`pxiq.

“Ě”: Let f P ΓpPnA, Ipdqq. Then for each i “ 0, . . . , n, we have f{1 P pIxi
qd , i.e., there

exists ni ě 0 and gi P Ini`q such that f{1 “ gi{x
ni

i , or in other words, xni

i f P I . Taking
n “ maxni we see that fxni P I for all i, so that f P I

Now both the subscheme Y and the closed subscheme j : ProjpR{Iq Ñ PnA are defined
by the same ideal sheaf I . Indeed, the first is by definition of I , and the latter because rI “ I
by Proposition 16.22. Hence the two subschemes are equal.

(ii) If I, J define the same subscheme, they have the same ideal sheaf I and so I “

Γ˚pX, Iq “ J .

Example 16.27. Let k be a field and let R “ kru, vs. Moreover introduce the graded ring
S “ Rpnq “ krun, un´1v, . . . , vns. We have a graded surjection

ϕ : krx0, . . . , xns Ñ S

given by xi ÞÑ uivn´i for i “ 0, . . . , n. The ideal I “ Kerϕ is generated by the 2 ˆ 2-
minors of the matrix

ˆ

x0 x1 . . . xn´1

x1 x2 . . . xn

˙

.

Thus we have an embedding of P1
k “ ProjS into Pn with image V pIq. The image is

called a rational normal curve of degree n. Note that for n “ 2, the image of P1
k Ñ P2

k is the
conic given by x2

1 “ x0x2.

Exercise 16.5.1. Check that the saturation I is homogeneous if I is.

16.6 Sheaves on Pn

In this section, we write Pnk “ ProjR where R “ krx0, . . . , xns with the standard grading.
We recall the following fundamental theorem in commutative algebra:

Theorem 16.28 (Hilbert’s syzygy theorem). Let k be a field and let R “

krx0, . . . , xns. Then if M is a finitely generated graded R-module, then there is
a finite free resolution (that is, an exact sequence)

0 ÝÝÑ Fn ÝÝÑ . . . ÝÝÑ F1 ÝÝÑ F0 ÝÝÑ M ÝÝÑ 0

where Fj “
Àbk

i“1Rp´dijq is a free graded R-module.

Fi is called the i-th syzygy module of the resolution.
If we apply the „-functor here we obtain an exact sequence of sheaves on Pnk

0 ÝÝÑ En ÝÝÑ . . . ÝÝÑ E1 ÝÝÑ E0 ÝÝÑ ĂM ÝÝÑ 0

where Ej “
Àbk

i“1 OPn
k
p´dijq is a direct sum of sheaves of the form Opdq.

Thus any coherent sheaf admit a projective resolution with direct sums of invertible sheaves.
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16.6 Sheaves on Pn 273

This shows very clearly why the invertible sheaves Opdq are so important: They are the
building blocks of all coherent sheaves on Pn.

Here are a few important special cases:

Example 16.29 (Hypersurfaces). Let F P R denote an homogeneous polynomial of degree
d ą 0. F determines a projective hypersurface X “ V pF q, which has dimension n ´ 1.
i : X Ñ Pnk denote the closed embedding.

Let us consider the sheaf i˚OX on Pnk . We start with the following sequence on Pnk :

0 ÝÝÑ IX ÝÝÑ OPn
k

ÝÝÑ i˚OX ÝÝÑ 0

Note that we have an isomorphism Rp´dq Ñ IpXq given by multiplication by F . Note the
shift in degrees here: The constant ‘1’ gets sent to F , which should have degree d on both
sides. Thus the above sequence is simply the tilde of the sequence

0 ÝÝÑ Rp´dq ÝÝÑ R ÝÝÑ R{pF q ÝÝÑ 0.

and the ideal sheaf sequence takes the following form

0 ÝÝÑ OPn
k
p´dq ÝÝÑ OPn

k
ÝÝÑ i˚OX ÝÝÑ 0.

Example 16.30 (Complete intersections). Let F,G be two homogeneous polynomials with-
out common factors of degrees d, e respectively. Let I “ pF,Gq and X “ V pIq Ă Pnk . X
is called a ‘complete intersection’ – it is the intersection of the two hypersurfaces V pF q and
V pGq. To study X , we use the exact sequence

0 ÝÝÑ Rp´d´ eq
α

ÝÝÑ Rp´dq ‘Rp´eq
β

ÝÑ I ÝÝÑ 0.

The maps here are defined by αphq “ p´hG, hF q and βph1, h2q “ h1F ` h2G. These
maps preserve the grading.

To prove exactness, we start by noting that α is injective (since R is an integral domain)
and β is surjective (by the definition of I). Then if ph1, h2q P Kerβ, we have h1F “ ´h2G,
which, as F,G are coprime, means that there is an element h so that h1 “ ´hG, h2 “ hF .

Applying „, we obtain the following exact sequence

0 ÝÝÑ OPn
k
p´d´ eq ÝÝÑ OPn

k
p´dq ‘ OPn

k
p´eq ÝÝÑ IX ÝÝÑ 0.

Example 16.31 (The twisted cubic curve). Let k be a field and consider P3 “ ProjR where
R “ krx0, x1, x2, x3s. We will consider the twisted cubic curve C “ V pIq where I Ă R is
the ideal generated by the 2 ˆ 2-minors of the matrix

A “

ˆ

x0 x1 x2

x1 x2 x3

˙

i.e., I “ pq0, q1, q2q “ px2
1 ´ x0x2, x0x3 ´ x1x2,´x

2
2 ` x1x3q.

Consider the map of R-modules R3 Ñ I sending ei ÞÑ qi. This is clearly surjective, since
the qi generate I . Let us consider the kernel of this map, that is, the module of relations of
the form a0q0 ` a1q1 ` a2q2 “ 0 for ai P R. There are two obvious relations of this form,
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i.e., the ones we get from expanding the determinants of the two matrices
¨

˝

x0 x1 x2

x0 x1 x2

x1 x2 x3

˛

‚

¨

˝

x0 x1 x2

x1 x2 x3

x1 x2 x3

˛

‚

(So first matrix gives x0q2 ´ x1q1 ` x2q2 “ 0 for instance). These give a map R2 m¨
ÝÑ R3,

where M is the matrix above. This map is injective, and it turns out that there is an exact
sequence of R-modules

0 ÝÝÑ R2 A
ÝÝÝÝÑ R3 ÝÝÑ I ÝÝÑ 0.

Again, if we want to be completely precise, we should consider these as graded modules, so
we must shift the degrees according to the degrees of the maps above

0 ÝÝÑ Rp´3q2
A

ÝÝÝÝÑ Rp´2q3 ÝÝÑ I ÝÝÑ 0.

This gives the resolution of the ideal I of C . Then applying „, and using the fact that I “ rI ,
we get a resolution of the ideal sheaf of C:

0 ÝÝÑ OP3
k
p´3q2

A
ÝÝÝÝÑ OP3

k
p´2q3 ÝÝÑ I ÝÝÑ 0.

We will see later in Chapter ?? how to use sequences like this to extract geometric information
about C.

16.7 Morphisms to projective space

Given a scheme X it is natural to ask when there is a morphism to a projective space

f : X Ñ Pn,

or when there is a closed immersion X ãÑ Pn. Given such a morphism, we get geometric
information aboutX using this map, e.g., by studying the fibers f´1pyq; pulling back sheaves
from Pn; or describing the equations of the image.

The corresponding question for An has already been answered. Morphisms X Ñ An
are in one-to-one correspondence with elements of ΓpX,OXqn, i.e., an n-tuple of regular
functions on X .

Even for projective space itself, there is not so much information in the space of global
sections of the structure sheaf. However, we do have something canonical associated to Pn,
namely the invertible sheaf OPnp1q. Given a morphism f : X Ñ Pn, we get an invertible
sheaf L “ f˚Op1q on X . We even get n ` 1 distinguished global sections si “ f˚xi by
pulling back the sections x0, . . . , xn of Op1q.

Note that there is no point of Pn where the xi simultaneously vanish. More precisely,
for every y P Pn, the stalk OPnp1qy is generated by the germ of one of the xi. So by the
properties of the pullback, we see that the same statement holds for L and the sections si on
X . We say that L is globally generated by the sections si.

The main result in this section is that there is a way to reverse this process. In other words,
from a given invertible sheaf L and n ` 1 global sections si P ΓpX,Lq with the above
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property, we can uniquely reconstruct a morphism f : X Ñ Pn so that f˚OPnp1q “ L and
f˚xi “ si. Thus pL, s0, . . . , snq is the exactly the data we are after.

Theorem 16.32. Let X be a scheme over a ring A, and let L be an invertible sheaf
on X with global sections s0, . . . , sn P ΓpX,Lq which generate L. Then there is a
unique morphism

f : X Ñ PnA “ ProjArx0, . . . , xns

so that f˚xi “ si for i “ 0, . . . , n.

First an easy lemma:

Lemma 16.33. Let X be a scheme and let L be an invertible sheaf on X . If s P

ΓpX,Lq is a global section, then there is an isomorphism

ϕ : OX |Xs
Ñ L|Xs

which sends 1 to s.

Proof We define ϕ over an open set U Ă Xs, by sending 1 P OXpUq to s P LpUq,
which is a map of OX-modules. This is an isomorphism if and only if it is an isomorphism
locally, so we may reduce to the case where X “ SpecA and L “ OX . In that case
Xs “ Dpsq “ SpecAs, and s P A is a unit in As, so multiplication by s is an isomorphism
As Ñ As.

Proof of the theorem We first prove uniqueness. Let f : X Ñ PnA be a morphism, and
consider the pulled back sections si “ f˚xi for i “ 0, . . . , n. Write for simplicityXi “ Xsi

for each i. From Proposition 19.34 we have f´1pD`pxiqq “ Xi for each i, so X is covered
by the n` 1 subsets Xi. We can regard the morphism as glued together from the morphisms
fi : Xi Ñ D`pxiq “ Spec pRxi

q0, where R “ Arx0, . . . , xms. This in turn corresponds
to a morphism of A-algebras

f 7 : pRxi
q0 Ñ ΓpXi,OXq.

Note that xi generates Op1q on D`pxiq and xj “
xj

xi
xi in Rpxiq for j “ 0, . . . , n. Similarly,

pulling back via f 7 gives

sj “ f˚
i pxjq “ f 7

i

ˆ

xj
xi
xi

˙

“ f 7

i

ˆ

xj
xi

˙

si

(Here we interpret the fraction xj

xi
as a section of ΓpD`pxiq,OPn

A
q.) It follows that from each

morphism f : X Ñ PnA, we get n` 1 distinguished sections s0, . . . , sn, from which we can
determine the morphisms fi. Hence f is uniquely determined from the data pL, s0, . . . , snq.

To prove existence, we suppose that we are given n` 1 sections s0, . . . , sn of a globally
generated invertible sheaf L, we will construct a morphism to PnA, such that si is the pullback
of xi. As in the above example, we define this morphism on an open cover. Let Xi “

Xsi “ tx P X|sipxq ‰ 0u. Since the si globally generate L, it follows from Lemma
16.33 that the Xi provide a local trivializing cover of L: namely there is an isomorphism
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ψi : OX |Xi
Ñ L|Xi

which sends 1 to the section si. In particular, if we restrict the global
section sj to Xi, we have sj “ rijsi for some rij P ΓpXi,OXq. We denote this section rij
by sj

si
. These define a map of A-algebras

pRxi
q0 Ñ ΓpXi,OXi

q (16.11)
xj
xi

ÞÑ
sj
si

By the correspondence between ring homomorphisms and maps into affine schemes, we
obtain a morphism of schemes fi : Xi Ñ D`pxiq. On Xi XXk, the map sends xj

xk
“

xj{xi

xk{xi

to sj
sk

“
sj{si
sk{si

. In other words, the following diagram commutes:

pRxiq0 ΓpXi,OXq

`

Rxixj

˘

0
ΓpXi X Xj ,OXq

`

Rxj

˘

0
ΓpXj ,OXq

That means that the morphisms glue to a morphism f : X Ñ Pn. It is clear that f˚Op1q » L
and that the xi pull back to the si, since this is true over the principal opens D`pxiq.

Abusing notation, we will refer to a morphism ϕ : X Ñ PnA as given by the data
pL, s0, . . . , snq and write

X Ñ PnA
x ÞÑ ps0pxq : ¨ ¨ ¨ : snpxqq

One should still keep in mind that the sections si are sections of L, not regular functions.
In fact, from the above proof, we see that it is the ratios sj{si which can be interpretated as
regular functions, locally on Xi “ tx P X | sipxq ‰ 0u.

We also see that two sets of data pL, s0, . . . , snq, pL, t0, . . . , tnq give rise to the same
morphism f : X Ñ PnA if and only there is a section λ P Oˆ

XpXq so that ti “ λsi for each i.
Thus morphisms f : X Ñ PnA are in bijective correspondence with the data pL, s0, . . . , snq

modulo this equivalence relation.
Given a scheme X with s0, . . . , sn of a line bundle L, there is a maximal open subset U

such that the sections generate L for all points in U , namely U “
Ťn

i“0Xi. Not assuming
that the si globally generate L, we still get a morphism ϕ : U Ñ PnA. In other words, ϕ
defines a rational map ϕ : X 99K PnA, which is a morphism when restricted to U .

Example 16.34. LetX “ P1
k “ Proj krs, ts andL “ OP1

k
p2q. ThenL is globally generated

by s2, st, t2 and the corresponding morphism

ϕ : X Ñ P2
k

ps : tq ÞÑ ps2 : st : t2q

has image V px0x2 ´ x2
1q which is a smooth conic.
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Example 16.35 (Cuspidal cubic). Let X “ A1
k and L “ OX . Then, ΓpX,Lq “ krts is

infinite dimensional over k. Choosing the three sections 1, t2, t3, we get a map of schemes

X Ñ P2
k

t ÞÑ p1 : t2 : t3q

whose image in P2 is the cuspidal cubic minus the point at infinity.

Example 16.36 (Pn as a quotient space). Let X “ An`1
k , and L “ OX . Then, ΓpX,Lq “

krx0, . . . , xns. If we take the sections x0, . . . , xn, then they generateL outside V px0, . . . , xnq.
Hence we get a morphism of schemes

An`1
k ´ V px0, . . . , xnq Ñ Pnk

px0, . . . , xnq ÞÑ px0 : ¨ ¨ ¨ : xnq

which is exactly the ‘quotient space’ description of Pn from Exercise ??.

Example 16.37 (Projection from a point). Consider the projective space X “ PnA and
sections x1, . . . , xn of Op1q, then these sections generate Op1q outside the point p corre-
sponding to I “ px1, . . . , xnq (that is, the closed point p “ p1 : 0 : ¨ ¨ ¨ : 0q). The induced
morphism PnA ´ V pIq Ñ Pn´1

A is the projection from p.

Example 16.38 (Cremona transformation). Consider the projective space X “ P2
A and

sections x0, x1, x2 of Op1q, then the sections x0x1, x0x2, x1x2 generate Op2q outside
V px0x1, x0x2, x1x2q corresponding to the three points p1 : 0 : 0q, p0 : 1 : 0q, p0 : 0 : 1q.
The induced rational map P2

A 99K P2
A is the Cremona transformation.

Example 16.39 (The Veronese surface). Consider X “ P2, and L “ OP2p2q. If x0, x1, x2

are projective coordinates on X , then the quadratic monomials

x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2

form a basis for H0pX,Lq, and generate L at every point. The corresponding map ϕ : X Ñ

P5 is in fact a closed immersion; the image is the Veronese surface. It is a classical fact that
the image is defined by the 2 ˆ 2 minors of the matrix

¨

˝

u0 u1 u2

u1 u3 u4

u2 u4 u5

˛

‚

Example 16.40 (The quadric surface). Let us consider again the case Q “ P1 ˆP1. Keeping
the notation from Section 18.10, we have two divisors, L1 “ p0 : 1qˆP1, L2 “ P1 ˆp0 : 1q.
Note that each Li is globally generated (being the pullback of a base point free divisor on
P1). The corresponding map is of course the i-th projection map pi : Q Ñ P1.

If x0, x1 is a basis for ΓpX,L1q, and y0, y1 is a basis for ΓpX,L2q, we find that ΓpX,L1`

L2q is spanned by the sections

s0 “ x0y0, s1 “ x0y1, s2 “ x1y0, s3 “ x1y1

Moreover, these sections generate OQpL1 ` L2q everywhere, and so we get a map

Q Ñ P3
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278 Sheaves on projective schemes

This is of course nothing but the Segre embedding; note the quadratic relation between the
four sections s0s3 ´ s1s2 “ 0.

16.8 Application: Automorphisms of Pn
k

If k is a field, then any invertible pn ` 1q ˆ pn ` 1q matrix A with entires in k acts
on krx0, . . . , xns and thus gives rise to a linear automorphism Pnk Ñ Pnk . Moreover, two
matrices A and A1 determine the same automorphism if and only if m “ λm1 for some
non-zero scalar λ P k˚. So we are led to consider the projective linear group

PGLnpkq “ GLnpkq{k˚

We will now prove that all automorphisms of Pnk are given by linear transformations.

Theorem 16.41. AutkpPnq “ PGLnpkq.

Proof The above shows that there is an injective map from the righthand side to the left. To
show the reverse inclusion, let ϕ : Pnk Ñ Pnk be any automorphism. Then we get an induced
map

ϕ˚ : PicpPnq Ñ PicpPnq

which must also be an isomorphism. Since PicpPnq “ Z, we must have either ϕ˚OPnp1q “

OPnp1q or ϕ˚OPnp1q “ Op´1q. The latter case is impossible, since ϕ˚pOPnp1qq has a lot
of global sections, whereas OPnp´1q has none. So ϕ˚pOPnp1qq “ OPnp1q. In particular,
taking global sections ϕ˚ gives a map

ΓpPn,OPnp1qq Ñ ΓpPn,OPnp1qq,

which is a isomorphism of k-vector spaces. However, we may choose tx0, . . . , xnu as a basis
for ΓpPn,OPnp1qq, and so in this basis ϕ˚ gives rise to an invertible pn`1qˆpn`1q-matrix
m. By constructionm induces the same linear transformation Pnk Ñ Pnk as ϕ, and so ϕ comes
from an element of PGLnpkq.

16.9 Exercises

Exercise 16.9.1. The aim of this exericse is to investigate the functor of points of projective
space Pn. We will associate to a scheme T , its set of data pL, s0, . . . , snq where L is
an invertible sheaf L, with an pn ` 1q-tuple of sections s0, . . . , sn that locally generate
L everywhere. We declare pL, s0, . . . , snq „ pM, t0, . . . , tnq if there is an isomorphism
f : L Ñ M so that f˚psiq “ λ ¨ ti for some λ P Oˆ

T pT q.
a) Show that „ is an equivalence relation.
b) Consider the assignment

F pT q “
␣

pL, s0, . . . , snq
ˇ

ˇs0, . . . , sn P ΓpT, Lq generate L everywhere
(

{ „

Show that F is a functor.
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c) Show that there is a natural transformation

ΦpXq : HompT,Pnq Ñ F pT q

sending a morphism f : T Ñ Pn to the equivalence class of the data

pL, s0, . . . , snq “ pf˚Op1q, f˚x0, . . . , f
˚xnq

d) Construct an inverse to Φ and deduce that F is represented by Pn.
e) Show that elements of F pSpec kq are in correspondence with pn` 1q-tuples

pa0, . . . , anq P kn`1, so that not all ai are zero. Thus we recover the usual
description of the k-points of projective space as ‘1-dimensional subspaces of
kn`1’.

f) Show that the previous exercise also holds for a local ring.
g) Show that for a ring R, the set F pSpecRq is in bijection with the set of rank

1 summands of Rn`1, i.e., modules of rank 1 such that M ‘ E » Rn`1 for
some module E. This is the right generalization of a ”line in kn” for general
rings.

Exercise 16.9.2. This is a continuation of Exercise 16.9.1. We will consider the product
X “ Pm ˆ Pn and give a new interpretation of the Segre embedding X Ñ Ppm`1qpn`1q´1

in terms of the functor of points.
a) Let T be a scheme and let pL, s0, . . . , smq and pM, t0, . . . , tnq be elements

of hPmpT q and hPnpT q respectively. Show that the pm ` 1qpn ` 1q tensor
products uij “ pr˚

1 si b pr˚
2 tj generate pr˚

1Lb pr˚
2M on T ˆ T .

b) Show that

ppr˚
1Lb pr˚

2M,u00, . . . , umnq (16.12)

defines an element of hPpm`1qpn`1q´1pT q, and that this defines a contravariant
functor from Sch Ñ Sets.

c) Deduce that there is a morphism ϕ : X Ñ Ppm`1qpn`1q´1.
d) Show that ϕ is an embedding. HINT: Show that the morphism ϕ has the

property that ϕ´1pD`puijqq “ D`px0q ˆD`py0q, and show that ϕ restricts
to an embedding on distinguished subsets.

Exercise 16.9.3. This is a continuation of Exercise 16.9.1. We will consider the projective
space Pn and give a new interpretation of the Veronese embedding X Ñ PN in terms of the
functor of points.

a) Let T be a scheme and let pL, s0, . . . , snq be an element of hPmpT q. Show that
for each d ě 1, the N “

`

n`d
d

˘

monomials

sbe0
0 b sbe1

1 b ¨ ¨ ¨ b sben
n (16.13)

for e0 ` ¨ ¨ ¨ ` en “ d, generate Lbd.
b) Show that Lb together with the N sections in (16.13) defines an element in
hPN´1pT q and that this defines a contravariant functor from Sch Ñ Sets.

c) Deduce that there is a morphism ϕ : X Ñ PN´1.
d) Show that ϕ is an embedding. HINT: Consider distinguished open sets.
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17

First steps in sheaf cohomology

One of the main challenges when working with sheaves is that surjective maps of sheaves do
not always induce surjections on global sections. Given a short exact sequence of sheaves

0 F 1 F F2 0,

one has a sequence

0 ΓpX,F 1q ΓpX,Fq ΓpX,F2q (17.1)

which is exact at each stage except on the right, but the right-most map may fail to be
surjective. In many situations in algebraic geometry, knowing that ΓpX,Fq Ñ ΓpX,F2q is
surjective is of fundamental importance. For instance, if U Ă X is an open subscheme, it is
useful to know when a regular function defined on U extends to a regular function on all of
X .

Cohomology groups can be seen as a partial response to this behavior of Γ, and in good
situations, they allow us to say something about the missing cokernel. More precisely, the
sequence (17.1), induces a long exact sequence of cohomology groups

0 ΓpX,F 1q ΓpX,Fq ΓpX,F2q

H1pX,F 1q H1pX,Fq H1pX,F2q

H2pX,F 1q H2pX,Fq H2pX,F2q ÝÑ ¨ ¨ ¨

So the failure of surjectivity of the above is controlled by the group H1pX,F 1q and the other
groups in the sequence.

In addition to problems such as lifting, cohomology groups allow us to define many
geometric invariants of F and X . These in turn allow us to distinguish schemes, that is, if
two schemes have different cohomology groups they can not be isomorphic.

Cohomology groups can be defined in a completely general setting, for any topological
space and a (pre)sheaf on it. There are several ways to define them. The modern approach uses
the theory of derived functors. This is in most respects the ‘right way’ to define the groups in
general, but going through the whole machinery of derived functors and homological algebra
would take us too far astray. We therefore begin with taking a more down-to-earth approach
using Cech cohomology which is better suited for computations.

280
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17.1 Some homological algebra 281

17.1 Some homological algebra

Recall that a complex of abelian groups A‚ is a sequence of groups Ai together with maps
between them

¨ ¨ ¨ Ai´1 Ai Ai`1 ¨ ¨ ¨
di´2 di´1 di di`1

such that di`1 ˝ di “ 0 for each i. A map of complexes A‚ f
ÝÑ B‚ is a collection of maps of

groups fp : Ap Ñ Bp making the following diagram commutative:

¨ ¨ ¨ Ai´1 Ai Ai`1 ¨ ¨ ¨

¨ ¨ ¨ Bi´1 Bi Bi`1 ¨ ¨ ¨

di´1
A

fi´1

diA

fi fi`1

di´1
B diB

In this way, we can talk about kernels, images, cokernels, exact sequences of complexes, etc.
We say that an element σ P Ap is a cocycle if it lies in the kernel of the map dp i.e.,

dpσ “ 0. A coboundary is an element in the image of dp´1, i.e. σ “ dp´1τ for some
τ P Ap´1. Since dppdp´1aq “ 0 for all a, we have

Im dp´1 Ď Ker dp,

and so all coboundaries are cocycles. The cohomology groups of the complex A‚ are set up
to measure the difference between these two notions. We define the p-th cohomology group
as the quotient group

HpA‚ “ Ker dp{Im dp´1.

One thinks of HpA‚ as a group that measures the failure of the complex A‚ of being exact at
stage p: A‚ is exact if and only if HpA‚ “ 0 for every p.

The following result is fundamental in the theory of cohomology groups:

Proposition 17.1. Suppose that 0 Ñ F ‚ f
ÝÑ G‚ g

ÝÑ H‚ Ñ 0 is an exact sequence
of complexes. Then there is a long exact sequence of cohomology groups

¨ ¨ ¨ HpF ‚ HpG‚ HpH‚

Hp`1F ‚ Hp`1G‚ Hp`1H‚ ÝÑ ¨ ¨ ¨

Proof For each p P Z, consider the commutative diagram

0 F p Gp Hp 0

0 F p`1 Gp`1 Hp`1 0

fp

dpF

gp

dpG dpH

fp`1 gp`1
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282 First steps in sheaf cohomology

where the rows are exact by assumption. By the Snake lemma, we obtain a sequence

0 Ker dpF Ker dpG Ker dpH

F p`1{Im dpF Gp`1{Im dpG Hp{Im dp`1
H 0.

fp gp

δ

fp`1 gp`1

Consider now the diagram

F p{Im dp´1
F Gp{Im dp´1

G Hp{Im dpH 0

0 Ker dp`1
F Ker dp`1

G Ker dp`1
H

fp

dpF

gp

dpG dpH

fp`1 gp`1

where the rows are exact by the above. For the maps in this diagram, HpF ‚ “ Ker dp and
Hp`1F ‚ “ Coker dp etc. Hence applying the Snake lemma one more time, we get the
desired exact sequence.

A map of complexes f : C‚ Ñ D‚ is a chain map if f ˝ dC “ dD ˝ f . Such a map
induces a well-defined map between cohomology groups

f : H ipC‚q Ñ H ipD‚q

A chain homotopy between two chain maps f, g : C‚ Ñ C‚ is a collection of maps
h : Cn Ñ Dn´1 such that

f ´ g “ dD ˝ h` h ˝ dC

If f and g are related by a chain homotopy, they induce the same map H ipC‚q Ñ H ipD‚q.
This follows by

rfpcq ´ gpcqs “ rdDphpcqqs “ 0

for all c with dCc “ 0.

Example 17.2. To show that H ipC‚q “ 0 (e.g., that C‚ is exact), it is enough find a chain
homotopy between the identity map and the zero map. Concretely, the maps h : Cp`1 Ñ Cp

should satisfy

pdp ˝ h` h ˝ dp`1qpcq “ 0 (17.2)

for every c P Cp`1.

17.1.1 Complexes of sheaves

The definitions and arguments of the previous subsection apply much more generally (in fact
to any abelian category). In particular, we make the following sheaf analogue. A complex of
sheaves F‚ is a sequence of sheaves with maps between them

¨ ¨ ¨ Fi´1 Fi Fi`1 ¨ ¨ ¨
di´2 di´1 di di`1
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17.2 Cech cohomology 283

such that di`1 ˝ di “ 0 for each i. Given such a complex, we define the cohomology sheaves
HpF‚ as Ker di{Im di´1. As above, a short exact sequence of complexes of sheaves gives
rise to a long exact sequence of cohomology sheaves.

17.2 Cech cohomology

Let X be a topological space. For simplicity, we will assume that X admits an open cover U
consisting of finitely many open sets U1, . . . , Ur. We will index the intersections

UI “ Ui0 X ¨ ¨ ¨ X Uip

using strictly increasing sequences of positive integers I “ pi0 ă i1 ă ¨ ¨ ¨ ă ipq.
For a sheaf F on X , we have the sheaf exact sequence (3.2)

0 ÝÝÑ FpXq ÝÝÑ
ź

i

FpUiq ÝÝÑ
ź

iăj

FpUi X Ujq. (17.3)

The Cech complex is essentially the continuation of this sequence; it is a complex obtained by
adjoining all the groups FpUi1 X ¨ ¨ ¨ X Uirq over all possible intersections Ui1 X ¨ ¨ ¨ X Uir .

Definition 17.3. For a sheaf F on X , we define the Cech complex C‚pU ,Fq of F
(with respect to the open covering U ) as

C0pU ,Fq C1pU ,Fq C2pU ,Fq . . .d0 d1 d2

where

CppU ,Fq “
ź

i0ăi1ă¨¨¨ăip

FpUi0 X ¨ ¨ ¨ X Uipq,

and the coboundary maps dp : CppU ,Fq ÝÝÑ Cp`1pU ,Fq by

pdpσqi0,...,ip`1
“

p`1
ÿ

j“0

p´1qjσi0,...îj ,...,ip`1
|Ui0

X¨¨¨XUip`1

where i0, . . . îj, . . . , ip`1 means i0, . . . , ip`1 with the index ij omitted.

Note that since the cover is assumed to be finite, say having r elements, CppU ,Fq “ 0
for every p ě r, simply because empty products are zero. So the Cech complex is a finite
complex.

Example 17.4. The two first groups in the Cech complex are given by

C0pU ,Fq “
ź

i0

FpUi0q and C1pU ,Fq “
ź

i0ăi1

FpUi0 X Ui1q.

An element σ P C0pU ,Fq is an r-tuple of sections σ “ pσ1, . . . , σrq, where σi P FpUiq
for each i. Likewise, an element σ “ pσijq P C1pU ,Fq is a collection of sections σij P

FpUi X Ujq, one for each pair i ă j.
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The coboundary map d0 : C0pU ,Fq Ñ C1pU ,Fq sends an element σ “ pσiq, to the
element d0σ P C1pU , F q whose ij-th component is equal to

pd0σqij “ σj ´ σi
ˇ

ˇ

Uij
(17.4)

The coboundary map d1 : C1pU ,Fq Ñ C2pU ,Fq sends σ “ pσijq, to the element with
ijk-th component equal to

pd1σqijk “ σjk ´ σik ` σij
ˇ

ˇ

Uijk
(17.5)

Substituting (17.4) into (17.5), there are many cancellations, and we see that d1 ˝ d0 “ 0.
The same happens also in higher degrees:

Lemma 17.5. For every p, we have

dp`1 ˝ dp “ 0.

Proof For an increasing sequence I “ pi0 ă ¨ ¨ ¨ ă ip`1q, we have

`

dp`1dps
˘

I
“

p`2
ÿ

j“0

p´1qjpdpσqI´tiju

“

p`2
ÿ

j“0

p´1qj
j´1
ÿ

k“0

p´1qkσI´tiju´tiku

`

p`2
ÿ

j“0

p´1qj
p`2
ÿ

k“j`1

p´1qkσI´tiiu´tiku

“
ÿ

jăk

p´1qk`jσI´tiju´tiku

´
ÿ

jąk

p´1qk`jσI´tiiu´tiku “ 0.

Therefore, the Cech complex is indeed a complex of abelian groups. The Cech cohomology
groups of F with respect to U is defined to be the cohomology of this complex:

Definition 17.6. The p-th Cech cohomology of F with respect to U is defined as

HppU ,Fq “ Ker dp{Im dp´1.

The Cech cohomology groups depend on the open cover U , but not on the choice of
the ordering of the open sets Ui. Given two orderings, there is an isomorphism of the two
associated Cech complexes given by multiplication by ˘1 on each Cp, so in particular, the
cohomology groups are the same.

A sheaf homomorphism F Ñ G induces maps CppU ,Fq Ñ CppU ,Gq (it does so
component-wise), and a straightforward computation shows that the induced maps commute
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with the coboundary maps, and hence they pass to the cohomology. So we obtain functors
HppU ,´q from sheaves to abelian groups.

Example 17.7. The group H0pU ,Fq is the kernel of the map d0 : C0pU ,Fq Ñ C1pU ,Fq,
which is simply the usual map

ź

i

FpUiq Ñ
ź

iăj

FpUi X Ujq.

This kernel is equal to FpXq by the sheaf axioms; so H0pU ,Fq “ FpXq.

Example 17.8 (H1 and lifting of sections). The most interesting cohomology group is
arguably H1pU ,Fq. It is the group of elements pσijq such that σik “ σij ` σjk modulo the
elements of the form σij “ τj ´ τi (restricted to Ui XUj). As mentioned in the introduction,
this group is closely related to the lifting of sections, as we now explain.

Suppose that we have a short exact sequence of sheaves

0 ÝÝÑ A ÝÝÑ B ÝÝÑ C ÝÝÑ 0

Suppose we want to try to lift a section c P CpXq to a section of BpXq. Since the sequence
is exact, we can at least find lifts locally, i.e. there is an open covering U “ tUiu and sections
bi P BpUiq that map to c|Ui

over each Ui. Now we ask if we can assemble the bi to a section
b P BpXq. For this to be the case, we must have bj|Uij

´ bi|Uij
“ 0. In any case,

σ “
`

bj|Uij
´ bi|Uij

˘

defines an element of C1pU ,Aq (because bi and bj map to the same element in CpUijqq.
Furthermore, dσ “ 0, because

pdσqijk “ pbk ´ bjq ´ pbk ´ biq ` pbj ´ biq “ 0

(all terms restricted to Uijk). When is σ zero in H1pU ,Aq? This occurs if and only if there is
an element a “ paiq P C0pU ,Aq such that

bj|Uij
´ bi|Uij

“ aj|Uij
´ ai|Uij

,

which is equivalent to saying that the elements bi ´ ai P BpUiq agree over the overlaps Uij ,
or in other words, that they glue together to a section b P BpXq. Note that since ai P ApUiq,
the image of bi ´ ai is the same as that of bi, i.e. b maps to c.

In summary, the section c P CpXq can be lifted if and only if the associated element in
H1pU ,Aq equals 0. If the latter group is zero, any section of CpXq lifts.

In Example 17.10 we will see a concrete example of a section which does not lift.

17.3 Examples

Example 17.9 (The projective line). Consider the projective line P1 “ P1
k over a field k. It is

covered by the two standard affines U0 “ Spec krts and U1 “ Spec krt´1s with intersection
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U0 X U1 “ Spec krt, t´1s. For the structure sheaf OP1 , the Cech-complex takes the form

0 OP1pU0q ˆ OP1pU1q OP1pU0 X U1q 0

krts ˆ krt´1s krt, t´1s,

d0

»

d

»

where d sends a pair ppptq, qpt´1qq to qpt´1q ´ pptq. We saw in Chapter 7 (during the proof
of Proposition 7.1) that Ker d “ k. On the other hand, it is clear that each element of
krt, t´1s is a sum of a polynomial in t and one in t´1. Hence d is surjective, and we have

H1pU ,OP1q “ Coker d “ 0.

Example 17.10 (The sheaves OP1pmq). Continuing the above example, let us compute the
Cech cohomology groups of OP1pmq. We use the same affine cover, and the Cech complex
still takes the form

0 krts ˆ krt´1s krt, t´1s 0,d

but the coboundary map d is different; there is a multiplication by tm in one of the restrictions,
so the coboundary map is now given by

dppptq, qpt´1qq “ tmqpt´1q ´ pptq.

(see Section 7.2). As we computed in the proof of Proposition 7.2, the kernel of d is pm` 1q-
dimensional if m ě 0, and Ker d “ 0 otherwise.

The computation of H1pU ,OP1q is slightly more subtle. Consider first the case when
m ě 0. As before, it is easy to see that any polynomial in krt, t´1s can be written in the form
tmqpt´1q ´pptq. In fact, this also works form “ ´1; indeed, one has t´k “ t´1 ¨ t´k`1 ´0
and tk “ t´1 ¨ 0 ´ tk. Hence H1pU ,OP1pmqq “ 0 for m ě ´1. For m ď ´2 however, no
linear combination of the monomials

t´1, t´2, . . . , tm`1

lies in the image, but combinations of all the others do. It follows that H1pU ,OP1pmqq is a
k-vector space of dimension ´m´ 1.

Example 17.11. Let Z Ă P1
k be the subscheme associated to two closed points p, q in P1.

We saw in Example XXX that the ideal sheaf sequence takes the form

0 Ñ OP1
k
p´2q Ñ OP1

k
Ñ i˚OZ Ñ 0

Consider the element p0, 1q P k ‘ k, which defines a section of i˚OZpP1
kq “ k ‘ k. One

can ask whether this section lifts to a global section s of OP1
k
. This is not possible, because

OP1
k
pP1

kq “ k; any regular function on P1
k is constant so it can not take the value 0 at one

point and 1 at another.
This failure of ability to lift is of course explained by the cohomology groupH1pP1

k,OP1
k
p´2qq

which is 1-dimensional. Since H1pOP1
k
q “ 0, one can think of the elements of this group as

the group of elements of k ‘ k modulo those that lift to OP1
k
. Here it is clear that an element

pa, bq P k ‘ k lifts if and only if a “ b. In fact, in this example, the connecting map

δ : H0pP1, i˚OZq Ñ H1pP1
k,Op´2qq
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can be identified with the map k ‘ k Ñ k sending pa, bq to a´ b.

Example 17.12 (The cuspidal cubic). The curve X “ Proj krx0, x1, x2s{px3
2 ´ x0x

2
1q

admits an open cover U with two open sets, U0 “ D`px0q and U1 “ D`px1q. We have

OXpU0q “ krx´1
0 x1, x

´1
0 x2s{ppx´1

0 x2q3 ´ px´1
0 x1q2q (17.6)

OXpU1q “ krx´1
1 x0, x

´1
1 x2s{ppx´1

1 x2q3 ´ px´1
1 x0qq “ krx´1

1 x2s (17.7)

OXpU01q “ krx´1
1 x2, x

´1
2 x1s.

where we have used the defining equation to identify x´1
1 x0 “ px´1

1 x2q3 and x´1
2 x0 “

px´1
1 x2q2. The coboundary d1 sends ppx´1

0 x1, x
´1
0 x2q and qpx´1

1 x2q to

qpx´1
1 x2q ´ p

`

x´3
2 x3

1, x
´2
2 x2

1

˘

.

From these expressions we can obtain any monomial x´a
2 xa1 except x´1

2 x1. Therefore,

H1pU ,OXq “ Coker d1 “ k ¨ x´1
2 x1 » k.c

Example 17.13. Let U be a finite open cover such that one of the members is the whole
space X . In this case, the higher cohomology groups of any sheaf are all zero; that is

HppU ,Fq “ 0

for all p ě 1. To see this, suppose for simplicity that U0 “ X (where 0 P I denotes the
smallest element), and define the map h : Cp`1pU ,Fq ÝÝÑ CppU ,Fq by

hpσqj0,...,jp “

#

σ0,j0,...,jp if j0 ‰ 0;

0 if j0 “ 0.

Then if i0 ‰ 0, we have

pdh` hdqpσqi0,...,ip “
ÿp

j“0
p´1qjhpσqi0,...,̂ij ,...,ip ` dpσq0,i0,...,ip

“
ÿp

j“0
p´1qjσ0,i0,...,̂ij ,...,ip

` σi0,...,ip `
ÿp

j“0
p´1qj`1σ0,i0,...,̂ij ,...,ip

“ σi0,...,ip .

Likewise, if i0 “ 0, we have

pdh` hdqpσq0,i1,...,ip “
ÿp

j“0
p´1qjhpσq0,i1,...,̂ij ,...,ip ` 0

“ σ0,i1,...,ip .

Hence h is a homotopy between the identity map on Cp`1pU ,Fq and the zero map, and the
cohomology group Hp`1pU ,Fq is zero by Example 17.2

Example 17.14 (The unit circle). Here is an example from topology. Consider the unit circle
X “ S1 (with the Euclidean topology), and equip it with a standard covering U “ tU, V u

consisting of two intervals intersecting in two intervals as shown in the figure. Let F “ ZX
be the constant sheaf on Z.
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Here we have

C0pU ,Fq “ ZXpUq ˆ ZXpV q » Z ˆ Z C1pU ,Zq “ ZXpU X V q » Z ˆ Z.

The map d0 : C0pU ,ZXq Ñ C1pU ,ZXq is the map Z2 Ñ Z2 given by

d0pa, bq “ pb´ a, b´ aq.

Hence

H0pU ,ZXq “ Ker d0 “ Zp1, 1q » Z,

and

H1pU ,ZXq “ Coker d0 “ Z2{Zp1, 1q » Z.

Readers familiar with algebraic topology may recognize that this gives the same answer as
singular cohomology. In fact, it is a general fact that the cohomology groups HppU ,Zq agree
with the usual singular cohomology groups Hp

singpX,Zq for any topological space homotopty
equivalent to a CW complex, provided that the open sets in the covering U are contractible ?.

Example 17.15 (Constant sheaves on irreducible spaces). In contrast to the above examples,
we will show that constant sheaves are not so interesting in algebraic geometry, as we
would like to study spaces which are irreducible as topological spaces. Then any open set is
connected and the constant sheaves AX are actually constant taking the value A on any open
set U .

We claim that for any group A and finite covering U of X , it holds that

HppU , AXq “ 0 for all p ě 1.

The Cech complex takes the form
ź

i

A Ñ
ź

iăj

A Ñ
ź

iăjăk

A Ñ ¨ ¨ ¨ (17.8)

Note that this complex does not depend on X nor on the covering U ; only the index set I
plays a role. We can thus use a cover consisting of pn ` 1q opens, all equal to X , and the
higher cohomology groups vanish by Example 17.13.

Exercise 17.3.1. Generalize Example 17.12 to show that the curve V pxd2 ´ x0x
d´1
1 q Ă P2

k

has an H1pX,OXq of dimension 1
2
pd´ 1qpd´ 2q.

Exercise 17.3.2. LetX “ S1 and let U be the covering ofX with three pairwise intersecting
open intervals with empty intersection. Show that the Cech complex is of the form

Z3 d0

ÝÑ Z3 Ñ 0.

Compute the map d0 and use it to verify again that H ipU ,ZXq “ Z for i “ 0, 1 as above.
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17.4 Cech cohomology on schemes

As the previous examples illustrate, the cohomology groups HppU ,Fq can be computed if
we have adequate information on the sections of F over the open sets in the finite cover U . In
that case, the maps in the Cech complex are completely explicit, and computing their kernels
and images involves only basic operations which can be done quite algorithmically.

On the other hand, the definition of the cohomology groups is unsatisfactory for a few
reasons. First of all, the groups HppU ,Fq depend on the open cover U , whereas we want
something canonical that only depends on F . More importantly, it is not clear that the
definition above really captures the desired information about F . For instance, U could
consist of the single open set X , and so H ipU ,Fq “ 0 for all i ě 1!

In the context of schemes, the most natural thing is to consider an open covering U
consisting of affine open sets. We will show that in good situations, i.e. if X is Noetherian
and separated and the sheaf F is quasi-coherent, the group H ipU ,Fq will in fact turn out to
be independent of the covering.

Theorem 17.16 (Main properties of Cech cohomology). Let X be a Noetherian
scheme, and let U “ tUiu be a finite affine cover such all intersectionsUi1 X¨ ¨ ¨XUip
are affine. Then

(i) The Cech cohomology groups are functors H ipU ,´q : AbShX Ñ Ab;
(ii) H0pU ,Fq “ FpXq;

(iii) Short exact sequences of quasi-coherent sheaves induce long exact se-
quences of cohomology

¨ ¨ ¨ Ñ HppU ,F 1q Ñ HppU ,Fq Ñ HppU ,F2q Ñ Hp`1pU ,F 1q Ñ ¨ ¨ ¨

(iv) If V “ tViu is another affine cover with all intersections Vi1 X ¨ ¨ ¨ XVip
affine, then there is a natural isomorphism

HppU ,Fq “ HppV,Fq

for every p and every quasi-coherent sheaf F .
(v) If X has dimension n, then HppU ,Fq “ 0 for all p ą n and all

quasi-coherent F .

Any Noetherian scheme admits an open cover as in the Theorem. Note in particular that
the condition on the intersections is automatically satisfied if X is separated.

Definition 17.17. With the assumptions of the above theorem, we write HppX,Fq

for the group HppU ,Fq.

We have already proved the first two of these properties. (In this case, we do not need
to assume that the intersections are affine, nor that the cover is finite.) The other items will
require a little more work.
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17.4.1 The long exact sequence

Proving item (ii) is not so difficult. Consider a short exact sequence of quasi-coherent sheaves

0 F 1 F F2 0.

In Proposition ?? we proved that whenever the U “ SpecA is an open affine in X , the
sequence

0 F 1pUq FpUq F2pUq 0 (17.9)

is exact. This means that if an affine cover U “ tUiuiPI has the property that each intersection
Ui0 X¨ ¨ ¨XUip is affine, as taking products do not disturb exactness, there is an exact sequence

0 CppU ,F 1q CppU ,Fq CppU ,F2q 0,

and consequently the sequence of Cech complexes

0 C‚pU ,F 1q C‚pU ,Fq C‚pU ,F2q 0

is also exact. Thus we are in position to apply Lemma 17.1 to obtain a long exact sequence of
Cech cohomology groups

¨ ¨ ¨ H ipU ,F 1q H ipU ,Fq H ipU ,F2q ¨ ¨ ¨ .

17.5 Cohomology of sheaves on affine schemes

The following result is fundamental in the study of sheaf cohomology groups. It is the first
example of a ‘vanishing theorem’ for cohomology. Recalling that cohomology groups were
defined to measure the ‘failure’ of certain desirable statements (e.g. restriction maps being
surjective), we are in general happy if cohomology groups are zero.

Theorem 17.18. Let X “ SpecA and let F be a quasi-coherent sheaf on X . Then
for any affine cover U of X ,

HppU ,Fq “ 0 for all p ą 0.

Proof We know the theorem to hold in the ‘trivial case’ when one of the Ui, say, U0 is
equal to X (see Example 17.13). In general, we reduce to the trivial case as follows. Let
Ui “ SpecAi be the affines in U . As X is affine, it is separated, so all intersections UI are
also affine. We want to show that the complex of A-modules

0 ÝÝÑ FpXq ÝÝÑ C0pU ,Fq ÝÝÑ C1pU ,Fq ÝÝÑ ¨ ¨ ¨ (17.10)

is exact. The exactness of this sequence can be checked by localizing at each prime ideal
p P SpecA. Assume without loss of generality that p P U0. Then since F is quasi-coherent,
the localization of (17.10) at p coincides with the localization of the Cech complex of
C‚pU X U0,Fq at p, and the latter is exact by the ‘trivial case’ by Example 17.13.
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Example XXX showed that even P1
k admits sheaves with non-vanishing higher cohomology.

Here is another example:

Example 17.19 (The affine line with two origins). Consider the ‘affine line with two origins’
X from Example 7.3 on page 95. It is covered by two affine subsets X1 “ Spec krus and
X2 “ Spec krus and these are glued together along their common open set X12 “ Dpuq “

Spec kru, u´1s with the identity as gluing map. The Cech complex for this covering looks
like

0 krus ˆ krus kru, u´1s 0d1 d2

where d1pppuq, qpuqq “ qpuq´ppuq, and is nothing but the standard sequence that appeared
in the example, and as we checked in there, it holds that OXpXq “ Ker d1 “ krus.

More strikingly, H1pX,OXq, i.e. the cokernel of the map krus ‘ krus Ñ kru, u´1s

is rather big. It equals kru, u´1s{krus “
À

ią0 ku
´i, so that H1pX,OXq is not finite-

dimensional as a vector space over k. This gives another proof that X is not isomorphic to an
affine scheme.

Exercise 17.5.1. Let X “ Ank ´ t0u be the complement of the origin.
a) Compute H ipX,OXq for all i.
b) Give a new proof that X is not an affine scheme for n ě 2.

17.6 Independence of the cover

Let us embark on the proof of item (iv). Let U “ tU1, . . . , Uru and V “ tV1, . . . , Vsu
be two finite affine covers, and form the following group of sections over all the mixed
intersections:

Cn,m “
ź

|I|“n,|J|“m

ΓpUI X VJ ,Fq

Note that for n fixed

Cn,‚ »
ź

|I|“n

CpUI X VJ ,F |UI
q

is the Cech complex of F |UI
with respect to the cover Vj X UI . Likewise,

C‚,m »
ź

|J|“m

CpVj X Ui,F |UI
q

is the Cech complex of F |VJ
with respect to the cover UI X VJ

One says that Cn,m forms a bi-complex. It has two coboundary maps, one written d in the
‘right’ direction, and one in the ‘upwards’ direction, δ. (See the figure below).

The key point is that the intersections UI X VJ are affine. That means that all the higher
cohomology groups in each direction vanish, i.e., the complexes Cn,‚ and C‚,m are exact in
degrees ě 1.

In degree 0, the cohomology groups are

H0pCn,‚q “
ź

|I|“n

ΓpUI ,Fq “ CnpU ,Fq
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and

H0pC‚,mq “
ź

|J|“m

ΓpVJ ,Fq “ CmpV,Fq

Now item (iv) is a formal consequence of the following homological algebra fact:

Lemma 17.20 (Zig-zag lemma). Let Cn,m be a bi-complex with H ipCn,‚q “

H ipC‚,mq “ 0 for all m,n ě 1. Then An “ H0pCn,‚q and Bm “ H0pC‚,mq are
complexes and there is a canonical isomorphism between their cohomology:

H ipA‚q “ H ipB‚q.

Proof We augment the bi-complex above by adding Ai and Bj , to get the picture below.

...
...

...
...

B2 C0,2 C1,2 C2,2 ¨ ¨ ¨

B1 C0,1 C1,1 C2,1 ¨ ¨ ¨

B0 C0,0 C1,0 C2,0 ¨ ¨ ¨

A0 A1 A2 ¨ ¨ ¨

δ

d

δ

d d

δ

d

δ

d

δ δ

d

δ

d

δ

d

δ δ

d

d d d

Now all rows and columns are exact. The cleanest way to proceed is to show that H ipA‚q

and H ipB‚q are both isomorphic to a third group, namely the group H ipCq defined as the
quotient of the group of ‘zig-zags’

␣

pci,0, ci´1,1, . . . , c0,iq | dpci,0q “ δpci´1,1q, . . . , dpc1,i´1q “ δpc0,iq
(

by the subgroup generated by the ‘coboundary zig-zags’

dpci´1,0q ` δpci´2,1q, dpci´2,1q ` δpci´3,2q, . . . , dpc1,i´1q ` δpc0,i´1q

For each i there is a map αi : H ipCq Ñ H ipA‚q sending pci,0, . . . , c0,iq to the image of
ci,0 in H ipA‚q. Likewise, there is a map βi : H ipCq Ñ H ipB‚q.

One shows that αi is an isomorphism by a diagram chase in the above diagram. For
instance, to show that α2 is surjective, pick a P H2pA‚q and an element c2,0 P C2,0 that
maps to it. Then one builds a the rest of the sequence pc2,0, c1,1, c2,0q by chasing up the
anti-diagonal of the diagram, as follows:
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Dc0,2 δpc1,1q 0

Dc1,1 δpc2,0q 0

c2,0 0

That is, c2,0 maps to δpc2,0q P C2,1 which in turn is mapped to 0 by both d and δ. Therefore,
there exist a c1,1 P C1,1 that maps to it. Now we consider δpc1,1q which must map to zero
in C2,2 by commutativity, and hence by exactness lifts to an element in c0,2. The resulting
element defines an element in H2pCq which clearly maps to a. The argument for injectivity
is similar; we leave the details for the interested reader. Of course, once one has established
this, one can do the same thing for βi, so we get the desired isomorphism.

In particular, we get independence of HppU ,Fq for any open affine covering on a Noethe-
rian separated scheme.

Exercise 17.6.1. Complete the details of the proof of the ‘Zig-zag Lemma’.

17.7 Cohomology and dimension

The next result is another ‘vanishing theorem’ for cohomology groups. It is a general result,
due to Grothendieck, that the cohomology groups vanish above the dimension of X , at least
for spaces X that are Noetherian and the dimension is interpreted as the Krull dimension.

Theorem 17.21. Let X be a Noetherian topological space and let F be a sheaf. Then

HppX,Fq “ 0 for all p ą dimX

A proof valid in the general case may be found in (?, Theorem 4.5.12), but we contend
ourself with proving it in the special case when X is a quasi-projective scheme over a ring A.
We begin with an easy lemma:

Lemma 17.22. LetX be a topological space and let Z Ă X be a closed subset. Then
for any sheaf F on Z and any p,

HppZ,Fq “ HppX, i˚Fq.

Proof Observe that each open cover tUiu of X induces an open cover tUi X Zu of Z , and
all open covers of Z arise like this. The lemma then follows from the basic fact that for each
open subset U Ă X it holds that ΓpU, i˚Fq “ ΓpZ X U,Fq, so the two cohomolgy groups
arise from the same Cech complexes.
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Theorem 17.23. Let X be a quasi-projective scheme of finite type over a ring A of
dimension n. Then X admits an open cover U consisting of at most n` 1 affine open
subsets. In particular, for any quasi-coherent sheaf on X ,

HppX,Fq “ 0 for p ą n.

Proof We may write X “ X ´ W where X,W Ď PrA are closed subschemes, and we
may assume that no irreducible component of X is contained in W (simply by discarding
such components). Using induction on the dimension, we will prove that X is covered by
n` 1 open affines induced from open affines in PrA.

Consider the irreducible decomposition X “
Ť

i Yi, where the Yi are integral and observe
that by prime avoidance IW Ę

Ť

IYi
where IT Ď Arx0, . . . , xN s denotes the homogeneous

ideal of a set T Ď PNA . Pick a homogenous polynomial f such that f P IW ´ p
Ť

i IYi
q,

and let H “ V pfq. Then we infer that the set PrA ´ H “ D`pfq is affine and hence so is
X ´H , being a closed subscheme of an affine scheme.

By construction X ´ H Ď X ´ W “ X and H Ğ Yi for any i by the choice of f .
Therefore dimpYi X Hq ă dimYi so we may use induction on the dimension to cover
Y XH by fewer that n open affines, all induced from the ambient projective space, which
together with Dpfq gives a covering of X with n ` 1 open affine subsets. This shows the
first claim.

For the second, note that in a Cech complex built on a covering consisting of at most
n ` 1 affines open subsets, terms CppX,Fq with p ą n will vanish, from which follows
that 0 “ HppU ,Fq “ HppX,Fq for each F and each p ą n.

17.8 Cohomology of sheaves on projective space

In Examples 17.9 and 17.10 we computed the sheaf cohomology of the sheaves OP1
k
pmq. For

d ě 0, we found that H0pP1
k,OP1

k
pmqq could be identified with the space of homogeneous

polynomials of degree d, and H1pP1
k,OP1

k
pmqq “ 0. On the other hand, for d ď ´2,

H0pP1
k,OP1

k
pmqq “ 0, while H1pP1

k,OP1
k
pmqq was non-zero.

We will now carry out a more general computation of the cohomology groups of OPn
A

pmq

for any projective space PnA over a ring A. The strategy is however the same, we have a
distinguished cover via the open sets D`pxiq, and we use Cech complex associated to this
cover to compute the cohomology.

For this cover, the groups in the Cech complex are

C0pU ,Opmqq “
ź

i

pArx0, . . . , xnsxi
qm (17.11)

C1pU ,Opmqq “
ź

iăj

`

Arx0, . . . , xnsxixj

˘

m
(17.12)

... (17.13)

CnpU ,Opmqq “ pArx0, . . . , xnsx0x1...xn
qm
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and the Cech complex takes the form
ź

i

pArx0, . . . , xnsxi
qm

d0

ÝÑ
ź

iăj

`

Arx0, . . . , xnsxixj

˘

m

d1

ÝÑ
ź

iăjăk

`

Arx0, . . . , xnsxixjxk

˘

m

d2

ÝÑ ¨ ¨ ¨

(17.14)
where the maps are as usual composed of alternating sums of localization maps.

In particular, we recover the following isomorphism:

H0pPnA,Opmqq “ Ker d0

“ Arx0, . . . , xnsm.

To compute the higher cohomology groups, we need a careful analysis of the complex (17.14).

Theorem 17.24 (Cohomology of Pn). Let PnA “ ProjArx0, . . . , xns where A is a
ring.

(i) For each m P Z,

H0pPnA,Opmqq “ Arx0, . . . , xnsm.

(ii) For all 0 ă p ă n and all m P Z,

HppPnA,Opmqq “ 0.

(iii) For each m P Z, we have

HnpPnA,Opmqq “
`

x´1
0 ¨ ¨ ¨x´1

n Arx0, . . . , xnsx0¨¨¨xn

˘

m

In particular, there is a canonical isomorphism

HnpPnA,Op´n´ 1qq “ A.

Proof Since PnA is separated, we may compute the cohomology groups using the Cech-
complex associated with the standard coveringU “ tUiu whereUi “ D`pxiq “ SpecpRxi

q0.
(ii): Suppose 0 ă p ă n. We need to check that the Cech complex is exact at CppU ,OXpmqq.

The main idea is to use the multigrading on the polynomial ring Arx0, . . . , xns and its lo-
calizations, defined by saying that a Laurent monomial xe “ xe00 ¨ ¨ ¨xenn has multidegree
e “ pe0, . . . , enq P Zn`1. Thus, for instance,

Arx0, . . . , xnsx0¨¨¨xn
“

à

ePZn`1

Axe

as A-modules. The terms in the Cech complex (17.14) admit a similar decomposition:

CppU ,Opmqq “
à

ePZn`1

CppU ,Opmqqe (17.15)

The differentials in the complex, being alternating sums of localization maps, are also
compatible with this decomposition. Therefore it suffices to check that CppU ,Opmqqe is
exact for each e.

Note that each CppU ,Opmqqe is a product of finitely many copies of A. In fact, when
all the entries of e are non-negative, CppU ,Opmqqe “

ś

i0ă¨¨¨ăip
Axe, and, forgetting the
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monomial xe, the complex CppU ,Opmqqe takes the form

. . .
ś

i0ă¨¨¨ăip´1
A

ś

i0ă¨¨¨ăip
A

ś

i0ă¨¨¨ăip`1
A . . .

(17.16)
We have already seen that this is exact: it is the Cech complex CppV,OSpecAq for the
structure sheaf on X “ SpecA, associated with the “trivial covering” with pn` 1q copies
of Vi “ SpecA as the open sets in the cover.

When some of the entries of e are negative, we still have

CppU ,Opmqqe “
ź

i0ă¨¨¨ăip such that
ejě0 for all jRti0,...,ipu

Axe

Consequently, CppU ,Opmqqe forms a subcomplex of the complex (17.16). In fact, have the
following commutative diagram:

. . . Cp´1pU ,Opmqqe CppU ,Opmqqe Cp`1pU ,Opmqqe . . .

. . .
ś

i0ă¨¨¨ăip´1
A

ś

i0ă¨¨¨ăip
A

ś

i0ă¨¨¨ăip`1
A . . .

When p ă n, the top row is even a direct summand of the bottom row complex (the projection
maps give sections to the inclusions). Having shown that the bottom sequence is exact, we
conclude that the top row is exact as well.

To prove (iii), observe that CnpU ,Opmqq “ pArx0, . . . , xnsx0¨¨¨xn
qm is a free graded

A-module spanned by monomials of the form xe00 ¨ ¨ ¨xenn with multidegrees pe0, . . . , enq P

Zn`1 with
ř

ei “ m. The image of dn´1 is spanned by such monomials where at least one
ei is non-negative. Hence

HnpX,Opmqq “ Coker dn´1

“ A
!

xe00 ¨ ¨ ¨xenn
ˇ

ˇ ei ă 0 for every i and
ÿ

ai “ m
)

“
`

x´1
0 ¨ ¨ ¨x´1

n Arx0, . . . , xnsx0¨¨¨xn

˘

m

In degree m “ ´n´ 1 there is only one such monomial, namely x´1
0 ¨ ¨ ¨x´1

n , so

HnpPnA,Op´n´ 1qq “ A ¨ x´1
0 ¨ ¨ ¨x´1

n .

The proof of Theorem 17.24 also gives the following duality between H0 and Hn on Pn.
Consider the following pairing of A-modules given by

p , q : Arx0, . . . , xns ˆ
`

x´1
0 ¨ ¨ ¨x´1

n Arx´1
0 , . . . , x´1

n s
˘

Ñ A, (17.17)

sending pp, qq to the coefficient of x´1
0 . . . x´1

n in the product pq. Note that this is A-linear
in each factor. In terms of the standard monomial basis, we have

pxd00 . . . xdnn , x
e0
0 . . . xenn q “

#

1 if di ` ei “ ´1 for all i
0 otherwise
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This pairing is perfect1 and allows us to canonically identify
`

x´1
0 ¨ ¨ ¨x´1

n Arx´1
0 , . . . , x´1

n s
˘

d
“ HomApArx0, . . . , xns´n´1´m, Aq.

This allows us to regard the n-th cohomology group HnpPnA,Opdqq as the dual of a corre-
sponding H0:

Corollary 17.25 (Serre duality for Pn). For each d P Z, there is a canonical
isomorphism

HnpPnA,Opmqq “ HomApH0pPn,Op´m´ n´ 1qq, Aq. (17.18)

When A “ k is a field, the dimensions of the cohomology groups are easily computed:

Corollary 17.26. Let k be a field. Then for m ě 0

dimkH
0pPnk ,OPn

k
pmqq “

ˆ

m` n

n

˙

(17.19)

dimkH
npPnk ,OPn

k
p´mqq “

ˆ

m´ 1

n

˙

.

All other cohomology groups are 0.

17.9 Cohomology groups of coherent sheaves on projective schemes

By the results of the previous section, the cohomology groups of Opmq on Pnk over a field k
are always finite-dimensional k-vector spaces. This is part of a more general result, saying
that on projective schemes of finite type over a ring, the cohomology groups of coherent
sheaves are always of finite type. Note that this is definitely not the case for affine schemes:
Even the H0 of the structure sheaf on A1

k is infinite dimensional, as it equals krts.

Theorem 17.27 (Serre). Let X Ă PnA be a projective scheme of finite type over a
ring A and let F be a coherent sheaf on X .

(i) Then the cohomology groups H ipX,Fq are finitely generated A-
modules for each i.

(ii) There exists an n0 ą 0 such that

H ipX,Fpnqq “ 0.

for all n ě n0 and i ą 0.

Proof Let i : X Ñ PnA denote the closed embedding and consider the sheaf i˚F . Since i is
affine, the sheaf i˚F is again coherent (Lemma XXX) and H ipX,Fq “ H ipPnA, i˚Fq, so
we immediately reduce to the case X “ Pn.

1 Recall that a bilinear map M ˆ N Ñ A is a perfect pairing if the induced map M ÞÑ HomApN,Aq is an
isomorphism.
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Recall that a coherent sheaf F on PnA is of the form ĂM for some finitely graded module
M over R “ Arx0, . . . , xns.

Note that both parts of the theorem are trivially satisfied for i ą dimPnA “ n` dimA,
because H ipPnA,Fq “ 0 in that range. The proof will take this as the base case and proceed
by downwards induction on i.

(i): As M is finitely genenerated, we may pick a graded surjection
À

iRp´aiq Ñ M
for M . Let K be the kernel, so that we have an exact sequence of finitely generated graded
R-modules

0 Ñ K Ñ
à

i

Rp´aiq Ñ M Ñ 0

Applying tilde, we have a sequence of coherent sheaves

0 Ñ K Ñ
à

i

OPn
A

p´aiq Ñ F Ñ 0

If we take the long exact sequence of cohomology, we get

¨ ¨ ¨ Ñ H ipPnA,Kq Ñ
à

i

H ipPnA,OPn
A

p´aiqq Ñ H ipPnA,Fq Ñ H i`1pPnA,Kq Ñ . . .

By induction on i, the groupH i`1pPnA,Kq is a finitely generatedA-module, as is
À

iH
ipPnA,OPn

A
p´aiqq

by Theorem 17.24. H ipPnA,Fq is therefore squeezed between two finitely generated A-
modules, so by exactness, it is itself finitely generated.

(ii): Twist the above sequence by OPn
A

pmq and take the long exact sequence in cohomology
to get

H ipX,
à

i

pm´ aiqq Ñ H ipX,Fpmqq Ñ H i`1pX,Kpmqq

Again, by downward induction on i, and the fact that H ipX,OPn
A

pm´ aiqq “ 0 for i ą 0
and m ą ai, we find that H ipX,Fpmqq “ 0.

The Euler characteristic

If X is a projective scheme of finite type over a field k and F is a coherent sheaf on X ,
Serre’s theorem tells us that the cohomology groups H ipX,Fq are finite-dimensional k-
vector spaces. In particular, we can ask about their dimensions. It turns out that the alternating
sum of these dimensions has very good formal properties, so we make the following definition:

Definition 17.28. Let X be a projective scheme of finite type over a field k. We
define the Euler characteristic of F as

χpFq “
ÿ

kě0

p´1qk dimkH
kpX,Fq.

Note that the sum is well-defined, as there are only finitely many non-zero cohomology
groups appearing on the right hand side.
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Proposition 17.29. The Euler characteristic χ is additive on exact sequences, i.e., if
0 Ñ F 1 Ñ F Ñ F2 Ñ 0 is an exact sequence of coherent sheaves, then

χpFq “ χpF 1q ` χpF2q.

Proof This follows because if 0 Ñ V0 Ñ V1 Ñ ¨ ¨ ¨ Ñ Vn Ñ 0 is an exact sequence of
k-vector spaces, then

ř

ip´1qi dimk V “ 0. Applying this to the long exact sequence in
cohomology gives the claim.

Example 17.30. Let X “ Pnk and F “ Opdq for d ě 0. Then dimkH
0pPnk ,Fq “

`

n`d
n

˘

and all of the higher cohomology groups are zero. In the case when d ă 0, only HnpX,Fq

can be non-zero, and the rank is given by
`

n`d
n

˘

, where we use the extended binomial
coefficient

ˆ

x

d

˙

“ xpx´ 1q ¨ ¨ ¨ px´ d` 1q{d!

for any x P R. In particular,

χpOPn
k
pdqq “

ˆ

n` d

d

˙

is a polynomial in d of degree n, which agrees with dimH0pPnk ,OPn
k
pdqq for all d ě 0.

The example shows that for a direct sum E “ OPnpa1q ‘ . . .OPnparq, the Euler charac-
teristic χpEpmqq is a polynomial in m. Even more generally, we can take any coherent sheaf
F and a free resolution of it:

0 Ñ En Ñ ¨ ¨ ¨ Ñ E1 Ñ E0 Ñ F Ñ 0

where the Ei are direct sums of invertible sheaves of the form Opdq. If we tensor this sequence
by OPn

A
pmq, we get2

0 Ñ Enpmq Ñ ¨ ¨ ¨ Ñ E1pmq Ñ E0pmq Ñ Fpmq Ñ 0

Note that each of the termsχpEipmqq is a polynomial inm. Then since the Euler characteristic
is additive on exact sequences, also χpFpmqq is a polynomial in m. Moreover, again by
Serre’s theorem, we have H ipX,Fpmqq “ 0 for m " 0 and i ą 0, and so χpFpmqq “

H0pFpmqq for m large.
If we start with a coherent sheaf F on a X Ă Pnk , and apply the previous discussion to

i˚F on Pnk , we have proved the following:

Corollary 17.31. Let X Ă Pnk be a projective scheme of finite type over k and let
Op1q be the Serre twisting sheaf. Then the function

PFpmq “ χpFpmqq

is a polynomial in m, and for large m, PFpmq “ H0pX,Fpmqq.

2 Recall that tensoring by a locally free sheaf preserves exactness.
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300 First steps in sheaf cohomology

This polynomial is called the Hilbert polynomial of F . While χpFq is an intrinsic invariant
of F , the Hilbert polynomial is not, as it depends on the choice of embedding X Ă Pnk .

When F “ ĂM for a graded module M , PFpmq coincides with the usual Hilbert polyno-
mial of M as defined in commutative algebra.

17.10 Extended example: Plane curves

LetX “ V pfq Ă P2
k be a plane curve, defined by an homogeneous polynomial fpx0, x1, x2q

of degree d. Let us compute the groups of the structure sheaf H ipX,OXq. We have the ideal
sheaf sequence

0 ÝÝÑ IX ÝÝÑ OP2 ÝÝÑ i˚OX ÝÝÑ 0

where the ideal sheaf IX is the kernel of the restriction OP2 Ñ i˚OX . By Section 16.29,
OP2p´Xq » OP2p´dq, and the sequence can be rewritten as

0 ÝÝÑ OXp´dq ÝÝÑ OP2 ÝÝÑ i˚OX ÝÝÑ 0 (17.20)

From the short exact sequence, we get the long exact sequence as follows:

0 H0pP2,Op´dqq H0pP2,OP2q H0pX,OXq

H1pP2,Op´dqq H1pP2,OP2q H1pX,OXq

H2pP2,Op´dqq H2pP2,OP2q 0.

Using the results on cohomology of line bundles on P2, we deduce the equalityH0pX,OXq »

k and hence

H1pX,OXq » kpd´1qpd´2q{2.

The dimension of the cohomology group on the left is the genus of the curve X (it will be
introduced properly in Chapter ??). So the above can be rephrased as saying the genus of a
plane curve of degree d is pd´ 1qpd´ 2q{2.

Tensoring the sequence (17.20) by OP2pmq, we obtain

0 ÝÝÑ OP2pm´ dq ÝÝÑ OP2pmq ÝÝÑ i˚OXpmq ÝÝÑ 0

and the long exact sequence gives that the Hilbert polynomial of OX equals

P pmq “

ˆ

m` 2

2

˙

´

ˆ

m´ d` 2

2

˙

“ dm´
d2 ´ 3d

2
.

Example 17.32. A plane curve of degree 1, i.e., a projective line, is isomorphic to P1
k, hence

the genus is zero.
A plane curve of degree 2, i.e., a projective conic, also has genus 0. In case the case k is

algebraically closed this is clear, because then it is isomorphic to P1
k.
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A plane curve of degree 3, i.e., an elliptic curve, has genus 1. It follows for instance that
the curve

X “ V px3
0 ` x3

1 ` x3
2q Ă P2

k

is not isomorphic to P1
k.

17.11 Example: The twisted cubic in P3

Let k be a field and consider P3 “ ProjR where R “ krx0, x1, x2, x3s. We will continue
Example 16.31 and consider the twisted cubic curve X “ V pIq where I Ă R is the ideal
generated by the 2 ˆ 2-minors of the matrix

M “

ˆ

x0 x1 x2

x1 x2 x3

˙

.

Let us compute the group H1pX,OXq. Of course we know what the answer should be,
because X » P1, and H1pP1,OP1q “ 0.

Now, to compute H1pX,OXq on X , it is convenient to relate it to a cohomology group on
P3. We have H1pX,OXq “ H1pP3, i˚OXq where i : X Ñ P3 is the inclusion. The sheaf
i˚OX fits into the ideal sheaf sequence

0 ÝÝÑ I ÝÝÑ OP3 ÝÝÑ i˚OX Ñ 0

where I is the ideal sheaf of X in P3. Applying the long exact sequence in cohomology, we
get

¨ ¨ ¨ H1pP3, Iq H1pP3,OP3q H1pP3, i˚OXq

H2pP3, Iq H2pP3,OP3q ¨ ¨ ¨

By our description of sheaf cohomology on P3, H1pP3,OP3q “ H2pP3,OP3q “ 0, which
implies that H1pX,OXq “ H2pP3, Iq. We can compute the latter cohomology group using
the exact sequence of Example 16.31:

0 Ñ OP3p´3q2 Ñ OP3p´2q3 Ñ I Ñ 0.

Now, taking the long exact sequence we get

¨ ¨ ¨ H2pP3,Op´3q2q H2pP3,OP3p´2q3q H2pP3, Iq

H3pP3,Op´3q2q H3pP3,OP3p´2q3q H3pP3, Iq.

Here H2pP3,Op´2qq “ 0 and H3pP3,Op´3qq “ 0 by our previsous computations. Hence
by exactness, we find H2pP3, Iq “ 0. It follows that H1pX,OXq “ 0 also, as expected.

Exercise 17.11.1. Prove Lemma 17.22 in more detail.
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Exercise 17.11.2. Using the sequences above, show that

‚ H0pP3, Ip2qq “ k3 (find a basis!)
‚ H1pP3, Ipmqq “ 0 for all m P Z.
‚ H2pP3, Ip´1qq “ k.

17.12 Extended example: Hyperelliptic curves

Let us recall the hyperelliptic curves defined in Chapter 7.
Let k be a field. For an integer g ě 1, we consider the scheme X glued together by the

affine schemes U “ SpecA and V “ SpecB, where

A “
krx, ys

p´y2 ` a2g`1x2g`1 ` ¨ ¨ ¨ ` a1xq
and B “

kru, vs

p´v2 ` a2g`1u` ¨ ¨ ¨ ` a1u2g`1q
.

and before, we glue Dpxq Ă U to Dpuq Ă V using the identifications u “ x´1 and
v “ x´g´1y.

Let us compute the Cech cohomology groups of OX with respect to the affine covering
U “ tU, V u above. Viewing the ring A as a krxs-module, we can write

krx, ys

p´y2 ` a2g`1x2g`1 ` ¨ ¨ ¨ ` a1xq
“ krxs ‘ krxsy

and similarly B » krus ‘ krusv as a krus-module.
As U has only two elements, the Cech complex of OX has only two terms, OXpUq ‘

OXpV q and OXpU X V q and the differential between them,

d0 : pkrxs ‘ krxsyq ‘
`

krx´1s ‘ krx´1sx´g´1y
˘

Ñ krx˘1s ‘ krx˘1sy,

is given by by the assignment

d0pppxq ` qpxqy, rpx´1q ` spx´1qx´g´1yq

“ ppxq ´ rpx´1q ` pqpxq ´ spx´1qx´g´1qy.

Comparing monomials xmyn on each side, we deduce that

H0pX,OXq “ Ker d0 “ k

and

H1pX,OXq “ Coker d0 “ ktyx´1, yx´2, . . . , yx´gu » kg.

In particular, dimkH
1pX,OXq “ g. The latter invariant is usually referred to as the

arithmetic genus of a curve; we have shown that the hyperelliptic curve X has arithmtic
genus g.

For g “ 2, we get a particularly interesting curve – an irreducible projective curve which
cannot be embedded in P2. Indeed, we showed that for any irreducible curve in P2 of degree
d and the corresponding arithmetic genus equals dimH1pX,OXq “ 1

2
pd ´ 1qpd ´ 2q.

However, there is no integer solution to 1
2
pd´ 1qpd´ 2q “ 2. This implies the following:
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Proposition 17.33. There exist non-singular projective curves which cannot be em-
bedded in P2.

Note that we still haven’t proved that X is projective. Actually, it is not hard to see that
X can be embedded into the weighted projective space Pp1, 1, g ` 1q “ Proj krx0, x1, ws

given by the equation

w2 “ a2g`1x
2g`1
0 x1 ` ¨ ¨ ¨ ` a1x0x

2g`1
1 . (17.21)

Note that this makes sense if w has degree g ` 1, but it does not define a subscheme of P2.

17.13 Bezout’s theorem

Let k be an algebraically closed field. Let C and D be two curves in P2
k of degrees d and

e respectively. We assume here that C and D have no common component, so that Z is a
0-dimensional subscheme.

Let us compute the cohomology group H0pZ,OZq. If we assume Z “ tx1, . . . , xru is
contained in Dpx0q » krx, ys (which we may arrange by a linear coordinate change), then

OZpZq “

r
à

i“1

OZ,xi
“

r
à

i“1

ˆ

krx, ys

pf, gq

˙

mxi

(17.22)

where f, g are the dehomogenized equations for C and D. In other words, dimkH
0pZ,OZq

is the sum of the multiplicities at the points xi:

dimH0pZ,OZq “

r
ÿ

i“1

dimk

ˆ

krx, ys

pf, gq

˙

mxi

.

On the other hand, we can compute H0pZ,OZq using the ideal sheaf sequence

0 ÝÝÑ IZ ÝÝÑ OP2 ÝÝÑ i˚OZ ÝÝÑ 0,

and we deduce that dimkH
0pZ,OZq “ dimkH

1pP2, IZq ´ 1, and

H2pP2, Iq “ H1pP2, i˚OZq “ 0

because Z has dimension 0. We proceed to study the cohomology group H1pP2, IZq. Recall
the exact sequence from Section 16.30,

0 Ñ OPn
k
p´d´ eq Ñ OPn

k
p´dq ‘ OPn

k
p´eq Ñ IZ Ñ 0.

Taking the long exact sequence of cohomology we obtain

0 Ñ H1pP2, Iq Ñ H2pP2,Op´d´ eq Ñ H2pP2,Op´dqq ‘H0pP2,Op´eqq Ñ 0.
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From which we get the pleasant conclusion that

dimkH
0pZ,OZq “ dimkH

1pP2
k, IZq ` 1 (17.23)

“ dimkH
2pOp´d´ eq ´ dimkH

2pOp´dqq ´ dimkH
2pOp´eqq ` 1(17.24)

“

ˆ

d` e´ 1

2

˙

´

ˆ

d´ 1

2

˙

´

ˆ

e´ 1

2

˙

` 1 (17.25)

“ de

In other words, we have proved Bezout’s theorem for P2
k:

r
ÿ

i“1

dimk

ˆ

krx, ys

pf, gq

˙

mxi

“ de

17.14 Extended example: Non-split locally free sheaves

A locally free sheaf is said to be split if it is isomorphic to a direct sum of invertible sheaves.
We have seen several examples of locally free sheaves that are not free, even on affine
schemes, but a priori it is not so clear whether these are direct sums of invertible sheaves. In
this section we will study the sheaf E from Section ?? and show that it is indeed non-split.

The sheaf E is the locally free sheaf of rank n on Pnk sitting in the exact sequence (??)

0 Ñ OPn
k
p´1q Ñ On`1

Pn
k

Ñ E Ñ 0.

Suppose that E is not split, i.e., E is not isomorphic to a direct sum of invertible sheaves.
Since PicpPnkq “ Z is generated by the class of Op1q, this would mean that E » OPn

k
pa1q ‘

¨ ¨ ¨ ‘ OPn
k
panq for some integers a1, . . . an P Z.

Recall that for n ě 2, we have Hn´1pPnk ,Opmqq “ 0 for any m P Z. So if we could
show that Hn´1pPnk , Eq ‰ 0, we would have a contradiction. Actually, it is the case that
Hn´1pPnk , Eq “ 0, but we can instead consider F “ Ep´nq, which fits into the sequence

0 Ñ OPn
k
p´n´ 1q Ñ OPn

k
p´nqn`1 Ñ F Ñ 0.

Taking the long exact sequence in cohomology, we get

¨ ¨ ¨ Ñ Hn´1pOn`1
Pn
k

q Ñ Hn´1pFq
δ

ÝÑ HnpOPn
k
p´n´ 1qq Ñ HnpOn`1

Pn
k

q Ñ ¨ ¨ ¨

Here the two outer cohomology groups are zero, by Theorem 17.24. Hence, by exactness, we
find that Hn´1pPnk ,Fp´1qq » H0pPnkOPn

k
q “ k. This implies that F “ Ep´nq, and hence

E cannot be a sum of invertible sheaves, and we are done.
The above gives an example of a non-split locally free sheaf of rank n. However, coming

up with examples of non-split sheaves of low rank on projective space is a famously difficult
problem. In fact, a famous conjecture of Hartshorne says that any rank 2 vector bundle on Pn
for n ě 5 is split.

Exercise 17.14.1. Let X Ă P5 denote a quadric hypersurface (i.e., X “ V pqq for a
homogeneous degree 2 polynomial). Recall the exact sequence 19.4

0 Ñ OP5p´1q4 Ñ O4
P5 Ñ i˚E Ñ 0
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17.14 Extended example: Non-split locally free sheaves 305

where E is a locally free sheaf of rank 2.
Use this exact sequence to show that E is not split.

Exercise 17.14.2. Let n ą 0 be an integer and consider the integral projective scheme
X “ ProjpRq, where R is the ring

R “ krx, y, z, ws{px2, xy, y2, unx´ vnyq.

a) Show that X is irreducible, non-reduced, and of dimension 1.
b) Compute H0pX,OXq and H1pX,OXq.
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18

Divisors and linear systems

18.1 Weil divisors

Let X be a normal integral Noetherian scheme scheme. A prime divisor is an integral
subscheme Z Ă X of codimension 1. A Weil divisor is a finite formal sum

D “
ÿ

i

niZi

where ni P Z and the Zi’s are prime divisors. The group of Weil divisors will be denoted by
DivpXq.

We say that D is effective if all ni ě 0 and call
Ť

i Zi the support of D. This makes
DivpXq into a partially ordered group: Given two Weil divisors D “

ř

Z nZZ and D1 “
ř

mZZ , we say that D ě D1 if D ´D1 is effective, or equivalently, that nZ ě mZ for all
prime divisors Z.

Example 18.1. On X “ P1
k, the prime divisors are simply the closed points. Here are some

examples of Weil divisors:

D1 “ 3 ¨ p1 : 0q ´ 5 ¨ p0 : 1q, D2 “ p1 : 1q ` 5 ¨ p0 : 1q

D1 `D2 “ 3 ¨ p1 : 0q ` p1 : 1q.

The reader may wonder why we include the assumption that X is normal. Certainly,
the above definition can be made for any scheme, but the concept of a Weil divisor is not
particularly useful without this assumption. There are two main reasons reasons for why
normality is a natural assumption:

(i) There is a well-behaved notion of ‘multiplicity’. This in turn leads to the notion
of the divisor associated to a rational function.

(ii) The fact that a pure codimension 1 subscheme is determined by its underlying
irreducible components and their multiplicities (Proposition 18.4)

We will explain these two points in the next section.

18.2 Local rings on normal schemes

Let X be a normal integral Noetherian scheme with fraction field K “ kpXq. By definition,
X is normal if all the local rings OX,x are integrally closed in their fraction field, namely K .
One of the most important features of such a scheme is that it is regular in codimension one.
This means that if ξ is a codimension 1 point, the local ring A “ OX,ξ is a regular local ring

306
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18.2 Local rings on normal schemes 307

of dimension 1. This means that A is also a discrete valuation ring (see Appendix XXX). In
particular, any nonzero ideal in A is of the form mn, where m is the maximal ideal of A.

This algebraic fact has the following geometric implication. Let Z Ă X be a prime divisor
of X with generic point ξ. If Y is any codimension 1 subscheme, defined by a coherent ideal
sheaf I , then ideal sheaf IOX,ξ equals a power mn of the maximal ideal m of OX,ξ. We
call n the multiplicity of Y at ξ or the multiplicity of Y in Z and shall write nZpY q for it.
Certainly it can happen that nZpY q “ 0, but this happens only when Z is a not a component
of Y . In this way we may associate the Weil divisor

rY s “
ÿ

Z

nZpY qZ,

where the summation runs over all prime divisors Z in X . Since X is Noetherian, Y has
only finitely many irreducible components, and so the sum is finite.

Example 18.2. On X “ P1
k, the subscheme Y defined by the ideal I “ px2

0px0 ` x1qq is of
codimension 1, and it has two irreducible components: one as associated to I1 “ px2

0q and
one to I2 “ px0 `x1q. Note that I1 is supported at the origin p0 : 1q P D`px1q “ Spec krts
with t “ x1{x0. The local ring at p0 : 1q equals OP1

k,p0:1q “ krtsptq and the ideal sheaf
Ĩ localizes to the ideal pt2pt ` 1qq “ ptq2 (since t ` 1 is unit in this ring). Hence Y has
multiplicity 2 at p0 : 1q and

rY s “ 2p0 : 1q ` p1 : ´1q.

On P1
k, the subscheme is in fact uniquely determined by the divisor; any codimension 1

subscheme is given by a homogeneous principal ideal

I “ ppa1x0 ´ b1x1qn1 ¨ ¨ ¨ parx0 ´ brx1qnrq Ă krx0, x1s,

so knowing the closed points pa1 : b1q, . . . , par : brq and the exponents ni determines the
ideal I uniquely.

Example 18.3. Consider the nodal cubic curve X Ă A2
k given by the equation y2 “

x2px` 1q. Cutting X with the x-axis we get the subscheme Spec krx, ys{px2, yq, whereas
cutting it with the y-axis yields krx, ys{px, y2q. The two subschemes are both supported at
the origin, with multiplicity 2, but they are different.

The issue in the last example dissears if we make the assumption that X is normal. This is
the first reason why normal schemes are desirable; that there is one-to-one correspondence
between subschemes of pure codimension one and effective Weil divisors. (Recall that a
subscheme is of pure codimension one if all its irreducible components are of codimension
one.)

Proposition 18.4. Let X be a normal integral Noetherian scheme. Let Y and Y 1 be
two subschemes of pure codimension one. Then Y “ Y 1 if and only if they define
the same Weil divisor.

Proof ’Being equal’ is a local property for closed subschemes: If tUiu is an open cover and
Z X Ui “ Z 1 X U for all i, it holds that Z “ Z 1. We may therefore assume that X is affine
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308 Divisors and linear systems

say X “ SpecA, where A is a Noetherian normal domain. The point is that if p is a height
one prime in A, the only p-primary ideals are the symbolic powers ppνq for ν ě 0 (see for
instance [??]). Don’t get scared by these seemingly occult powers, their important feature is
that ppvq is the only p-primary ideal which defines a subscheme whose multiplicity at p is n.

That a closed subscheme Y “ V paq of X is of pure codimension one, means that all the
associated primes of a are of height one; and in view of the discussion above, the primary
decomposition of a takes the form a “ p

pν1q

1 X ¨ ¨ ¨ X ppνrq
r , where the νi’s are exactly the non-

zero multiplicities nZpY q with Z a prime divisor. So two ideals with the same multiplicities
are equal.

Orders of vanishing

A second useful fact about the local ring A “ OX,ξ at a codimension one-point ξ is that it is
a discrete valuation ring, so there is an assocated valuation map v : K Ñ Z Y t8u such that
A “ v´1pZě0 Y t8uq. More explicitly, we can define v as follows. Given a nonzero a P A,
we can write it as a “ u ¨ tm, where t is the generator for the maximal ideal m Ă A, and
define the valuation of a at ξ to be vprq “ m. Alternatively, can define

vprq “ length pA{aq

for a P A. (The latter definition extends to singular curves as well.) Finally, we extend this to
elements of Kˆ by setting vpab´1q “ vpaq ´ vpbq. This gives a map

v : Kˆ Ñ Z

We finally extend this to include 0 as well, by defining vp0q “ 8.
If Z Ă X is an integral subscheme of codimension 1, and ξ is the generic point, we define

the order of vanishing of a rational function f P K along Z to be the number

ordZpfq “ vpfq

where v is the valuation of OX,η.
If X “ SpecA is affine, the group of Weil divisors DivpSpecAq, being the free abelian

group on the prime divisors, has a basis consisting of the divisors V ppq for p running through
the primes of height one. Then each Ap is a discrete valuation ring, so f P K has order of
vanishing along V ppq if and only if f P Aˆ

p . In light of Hartog’s theorem, which tells us that
Ş

pA
ˆ
p “ Aˆ, we conclude that ordV ppqpfq “ 0 if and only if f P Aˆ.

Lemma 18.5. Let A be a Noetherian normal domain, and f P KpAq. Then

‚ ordV ppq f ě 0 for all p P SpecA if and only if f P A; and
‚ ordV ppq f “ 0 if and only if f P Aˆ.

This leads to the definition of the divisor of a non-zero rational function:
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Definition 18.6 (Principal divisors). If f P Kˆ, we define its corresponding Weil
divisor as

divpfq “
ÿ

Z

ordZpfqZ, (18.1)

where the sum runs over all prime divisors of codimension one.
Divisors of the form divpfq are called principal divisors, and together with 0 they
form a subgroup of DivpXq.

There are only finitely many nonzero terms in the sum (18.1) thanks to the following
lemma:

Lemma 18.7. Suppose that X is a normal integral Noetherian scheme scheme with
fraction field K and let f P Kˆ. Then ordZpfq “ 0 for all but finitely many prime
divisors Z.

Proof We first reduce to the case when X is affine. Let U “ SpecA be any open affine
subset such that f |U P ΓpU,OXq. Since X is Noetherian and integral, the complement
W “ X ´ U is a closed subset of X of codimension at least one, which has finitely many
irreducible components; in particular, only finitely many prime divisors Z are supported in
W . So we reduce to the affine caseX “ SpecA and f P ΓpX,OXq “ A, by ignoring these
finitely many components. Then ordZpfq ě 0 automatically, and ordZpfq ą 0 if and only
if Z is contained in V pfq; and since V pfq has only finitely many irreducible components of
codimension one, we are done.

The proof of the lemma above shows where we make use of some of the finiteness
assumptions on our schemes. Unfortunately, there is no getting around it, as Example 18.13
below shows.

Example 18.8. On X “ SpecZ, a Weil divisor is an expression of the form

D “ n1V pp1q ` ¨ ¨ ¨ ` n1V pprq

where the pi are prime numbers. In the function fieldK “ Q of SpecZ, the ‘rational function‘
f “ pn1

1 ¨ ¨ ¨ pnr
r satisfies div f “ D. Thus any divisor is principal on X “ SpecZ.

Example 18.9. Let k be algebraically closed, and consider X “ A1
k “ Spec krts. Let

K “ kptq. Here prime divisors in X correspond to closed points ras P A1
k associated to

maximal ideals pt´ aq in krts. Consider the rational function

f “ t2pt´ 1qpt` 1q´1 P K.

Then f is invertible in all the local rings OX,ras except when a “ 0,˘1. When a “ 1, t´ 1
defines the uniformizer of OX,r1s “ krtst´1, and we can write f as pt ´ 1q¨ (unit). Hence
the order of vanishing is 1 at the point ξ “ r1s. Similarly, in OX,r0s, f has the form t2punitq,
and in OX,r´1s, f “ pt` 1q´1punitq. Thus all the non-zero orders of vanishing are

ordr0spfq “ 2, ordr1spfq “ 1, ordr´1spfq “ ´1.

and the divisor of f is 2r0s ` r1s ´ r´1s.
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In fact, when k is algebraically closed, every Weil divisor on A1
k is principal. Indeed, if the

divisor is D “
řn

i“1 nirαis where ni P Z and αi P k, then the rational function

f “

n
ź

i“1

pt´ αiq
ni

has divpfq “ D. We will prove a generalization in Corollary 18.19.

Example 18.10. Consider the projective line X “ P1
k “ Proj krx0, x1s, whose function

field is K “ kptq where t “ x1{x0. Consider the function f “ t2pt ´ 1q´1 P K. To find
the divisor of f , we treat the two affine charts D`px0q and D`px1q separately:

On U “ D`px0q “ Spec krts, f defines an element in OX,p for every p ‰ r1s, and it is
invertible for every p ‰ r0s, r1s. At the point p “ r0s, the local ring equals OX,p “ krtsptq,
and since t´ 1 is invertible here, we have

f “ t2pt´ 1q´1 “ t2punitq

Thus f has order of vanishing 2. Similarly, we find ordr1spfq “ ´1.
On the open chart U “ D`px1q “ Spec krus, where u “ x0{x1 “ t´1, we may write

f “ u´2pu´1 ´ 1q “ pu ´ u2q´1. The only non-zero valuations are: ordr0s “ ´1 and
ordr1s “ ´1. Note that the point r1s P D`px1q is the point p1 : 1q which we found also in
D`px0q above. It follows that the divisor of f is given by

divpfq “ 2p1 : 0q ´ p1 : 0q ´ p1 : 1q.

Example 18.11. One may consider the function from Example 18.9 as a rational function
on P1

k. In addition to the prime divisors p1 : aq lying on U0 “ Spec krts, we have the point
p0 : 1q at infinity. The function f will have pole of order two at p0 : 1q, so that

div f “ 2p1 : 0q ` p1 : 1q ´ p´1 : 1q ´ 2p0 : 1q.

Indeed, near p1 : 0q we may use s “ t´1 as a parameter, and expressed in t, the function f
becomes f “ s´2ps´1 ´ 1qps´1 ` 1q´1 “ s´2p1 ´ sqp1 ` sq´1, which vanishes to the
order two at s “ 0.

Example 18.12. Let X be the curve V px3 ´ y3 ` yq Ă A2
k. Then x, y and y{x2 define

rational functions on X . Note that x and y in fact belong to OXpXq, thus they have no
negative orders of vanishing anywhere. Let us find the points p P X where ordppxq ą 0.

The function x vanishes exactly at the points in V px, x3 ´ y3 ` yq Ă A2, i.e., the points
p0, 0q, p0, 1q, p0,´1q. The local ring at the origin p0, 0q is isomorphic to

OX,p0,0q “
`

krx, ys{px3 ´ y3 ` yq
˘

In this ring we have x3 ´ ypy2 ´ 1q “ 0, and so y “ x3punitq. Hence x is the uniformizing
parameter. In particular, ordp0,0q x “ 1. Similar computations show that

div x “ p0, 0q ` p0,´1q ` p0, 1q

As for y, this can only have non-zero orders of vanishing at the points in V px3 ´ y3, yq “

V px, yq, i.e., at the origin p0, 0q. We just computed that y “ x3punitq here, so

div y “ 3p0, 0q
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From this we get that

divpy{x2q “ 3p0, 0q ´ 2 pp0, 0q ` p0,´1q ` p0, 1qq “ p0, 0q ´ 2p0,´1q ´ 2p0, 1q

Example 18.13. Imitating the construction of the affine line with two origin, we can con-
struct the affine line X with infinitely many origins: this scheme is integral, normal, locally
Noetherian with fraction field kptq, but there are infinitely many closed points p P X for
which ordpptq “ 1.

... X

Exercise 18.2.1. Show that all the local rings OX,p of the curve X given by y2 “ x3 ´ 1
in A2

k are discrete valuation rings, and hence X is a normal variety. We assume that k is
algebraically closed and of characteristic different from three and two. More precisely, if
pa, bq is a point on X show that x´ a is a parameter if b ‰ 0 and that y is one when b “ 0.
HINT: It holds true that y2 ´ b2 “ x3 ´ a3.

Exercise 18.2.2. LetX “ SpecCrx, ys{py2 ´x3 ´xq. Compute the divisors of the rational
functions x, y and x2{y.

18.3 The class group

One of the fundamental invariants of a scheme (or of a ring) is the class group (and its close
relative, the Picard group). The term ‘class group’ comes from algebraic number theory and
its origins can be traced back to Kummer’s work on Fermat’s last theorem. Algebraic number
theory was, and to some extent still is, largely devoted to the determination of class groups of
the ring of integers in algebraic number fields. One may view the class group as the group
giving the obstructions for a divisor being the divisor of a rational function.

Definition 18.14 (The class group). We define the class group of X as the group of
Weil divisors modulo the principal divisors, i.e.,

ClpXq “ DivpXq{xdiv f | f P Kˆy

Two Weil divisors D and D1 are said to be linearly equivalent (written D „ D1) if
they have the same image in ClpXq, or equivalently, that D ´D1 is principal.

When A is a ring, we usually write ClpAq for the class group ClpSpecAq. This group
generalizes the ideal class group ClpAq of algebraic number theory, which is usually studied
when A is a Dedekind domain. This ring is designed to measure how far A is from being a
unique factorization domain.

Example 18.15. It follows from Example ?? that any Weil divisor on A1
k is principal, hence

ClpA1
kq “ 0.

Example 18.16. Similarly, it follows from Example 18.8 that ClpSpecZq “ 0.
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Example 18.17. On the other hand, Zr
?

´5s is not an UFD, because 2 ¨3 “ p1´
?

´5qp1`?
´5qq, and in fact ClpZr

?
´5sq “ Z{2Z.

When X “ SpecA is affine the divisor divpfq of a rational function f is given as

divpfq “
ÿ

ordppfqV ppq

Hence div f “ 0 if and only if ordppfq “ 0 for all height one primes, or, by Lemma 18.5 if
and only if f P Aˆ. Thus the kernel of the map div : Kˆ Ñ DivpSpecAq equals Aˆ, and
the cokernel is by definition the class group ClpAq. Hence we have the exact sequence

0 Ñ Aˆ Ñ Kˆ div
ÝÝÑ DivpSpecAq Ñ ClpAq Ñ 0. (18.2)

Proposition 18.18. Let A be a normal Noetherian integral domain and let X “

SpecA. Then the following are equivalent:
(i) ClpXq “ 0;

(ii) Every height one prime ideal in A is principal;
(iii) A is a unique factorization domain.

Proof The equivalence of (ii) and (iii) is just Theorem ??, so the task is to show that
statement (i) is equivalent to one of the two other statements; we shall show the equivalence
(i) ô (ii).

(ii) ñ (i): If Z Ă X is a prime divisor in SpecA, then Z “ V ppq for some prime ideal
p Ă A of height one. By assumption, we therefore have Z “ V pfq for an element f P A,
that is, Z “ divpfq, and so ClpXq “ 0.

(i)ñ (ii): Assume that ClpXq “ 0. Let p be a prime of height one, and letZ “ V ppq Ă X .
By assumption, there is an f P Kˆ such that divpfq “ Z. We want to show that in fact
f P A and that p “ pfq. But the first point follows from the exact sequence (18.2), since
ordqpfq “ 0 for q ‰ p and ordppfq “ 1, and so f lies in ta P Kˆ| ordppaq ě 0u “ A.

Finally, to prove that f generates p, consider any element g P p. Then ordppgq ě 1
and ordqpgq ě 0 for all q ‰ p. It follows that ordqpg{fq “ ordqpgq ´ ordqpfq ě 0 for
all prime ideals q P SpecA. Hence g{f P Aq for all primes q of height one, and hence
g{f P A, by Hartog’s theorem (Theorem ??). It follows that g P fA, and so p “ pfqA is
principal.

In particular, since A “ krx1, . . . , xns is a unique factorization domain, we get

Corollary 18.19. The class group of affine n-space over a field is trivial, i.e.,

ClpAnkq “ 0.

Example 18.20. Let A be a discrete valuation ring and let X “ SpecA. If x P X denotes
the closed point, we have DivpXq “ Z ¨ x. Any Weil divisor on X is principal; if t is a
generator for the maximal ideal ofA, then divptnq “ n ¨x. Hence ClpXq “ 0, in accordance
with Proposition 18.18.

Example 18.21. Consider the ideal p “ p2, 1`
?

´5q in Zr
?

´5s. One easily checks that p
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is a prime ideal, so that Y “ V ppq is a prime divisor in SpecZr
?

´5s. A small computation
shows that the square p2 is principal and generated by 2. Thus 2Y “ div 2, and the class of
Y in ClpZr

?
´5sq is two-torsion. Using the norm, one sees that Y is not principal, so its

class is a genuine two-torsion element in ClZr
?

´5s. For a continuation of this example see
page 331.

Exercise 18.3.1. Consider the curve y2 “ x3 ´ 1 in A2
k where k is algebraically closed of

characteristic different from two and three. If pa, bq P X we let σpa, pq “ pa,´bq, which
also lies in X .

a) Show that for any P P X , it holds that ´P „ σpP q;
b) Show that if P ,Q andR are three collinear points onX , then P `Q`R „ 0;
c) Show that any Weil divisor on X is linearly equivalent to a prime divisor.

18.4 Projective space

Write Pnk “ ProjR, with R “ krx0, . . . , xns. Prime divisors on Pnk are given by homoge-
neous height one prime ideals inR, that is, ideals p “ pgq where g is a nonzero homogeneous
irreducible polynomial. The generator g is unique up to a scalar, so its degree is well de-
fined. We can use this to define the degree of a divisor, by taking the sum of degrees of the
corresponding polynomials. More precisely, if D “

ř

i niV pgiq, we let

degD “
ÿ

i

ni deg gi.

This gives an additive map deg : Div Pnk Ñ Z.
Now, a rational function f P KpPnkq is the quotient of two homogeneous polynomials of the

same degree. Factoring the numerator and the denominator, we can write it as f “
ś

i f
ni

i

where the fi are different irreducible polynomials in R and the exponents ni P Z, and
ř

i nipdeg fiq “ 0, because f is homogeneous of degree zero. Let us first show that

Lemma 18.22. divpfq “
ř

nirV pfiqs.

Proof IfZ Ă Pnk is a prime divisor, let ξ P Z be the generic point. SinceZ has codimension
one, it holds that Z “ V pgq for some irreducible polynomial g of some degree d. For any
other polynomial h of degree d, the quotient g{h is a generator of the maximal ideal mξOX,ξ.
We may write f “ pg{hqrf 1 and f 1 a unit in OZ,ξ. Clearly r “ ni if fi divides g (and 0 if
no fi divides g) and f 1 a rational function which does not contain g in its numerator nor in
its denominator. In any case, we get that divpfq “

ř

nirV pfiqs.

In view of the equality deg divpfq “
ř

ni deg fi “ 0, the degree map descends to a
group homomorphism

deg : ClpPnq Ñ Z

We claim that it is an isomorphism. It is clearly surjective since the degree of any hyperplane,
for instance V px0q, equals one. Now, any Z “

ř

nirV pfiqs in the kernel of deg, must have
ř

ni deg fi “ 0. Consequently, the element f “
ś

i f
ni

i , is homogeneous of degree zero
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314 Divisors and linear systems

and defines an element of K. By the lemma above, we have Z “ divpfq. Hence Z is a
principal divisor, and deg is injective.

We have thus shown:

Proposition 18.23. The degree map gives an isomorphism ClpPnkq » Z.

18.5 The sheaf associated to a Weil divisor

Let D “
ř

nZZ be a Weil divisor on a Noetherian normal and integral scheme X . We
would like to form a sheaf, denoted OXpDq, consisting of the rational functions with ‘poles at
worst along D’. There are several ways of expressing this, the simplest is to require of f that
ordZpfq ě ´nZ for all Z, so that pole order of f along Z in magnitude is bounded by nZ .
Another way is to say that divpfq `D is an effective Weil divisor; i.e. that div f `D ě 0.
Heuristically, one may say that the pole part of div f is cancelled out by D. Concretely, we
define the sheaf OXpDq as follows:

Definition 18.24 (The sheaf of a Weil divisor). LetX be a normal integral Noetherian
scheme with function field K , and let D be a Weil divisor on X . We define the sheaf
OXpDq by letting

OXpDqpUq “ t f P K | ordZpfq ě ´nZ for all Z with ξZ P U u

for each open subset U Ă X .

The condition ξZ P U simply means that U meets Z; i.e. that UXZ is a dense open subset
of Z. The condition in the bracket is relaxed when applied to a smaller subset U 1 Ă U , and
so we can define the restriction map OXpDqpUq Ă OXpDqpU 1q simply by the inclusion.

You should check that this makes OXpDq into a sheaf. As such, it is a subsheaf of the
constant sheaf K on the function field K. Moreover, if a P OXpUq is a regular function U ,
it holds that ordY pafq “ ordY paq ` ordY pfq ě ´nZ for all Z and all f P OXpDqpUq,
and this makes OXpDq into an OX-module. Even more is true, it will be quasi-coherent:

Proposition 18.25. The sheaf OXpDq is quasi-coherent.

Proof Let U “ SpecA Ă X be an open affine subset. We claim that for f P A, there is a
canonical isomorphism

ΓpU,OXpDqqf “ ΓpDpfq,OXpDqq.

It follows that OXpDq restricts to the tilde of the A-module M “ ΓpU,OXpDqq on U , and
so it is quasi-coherent.

There is always an injective map ΓpSpecA,OXpDqqf Ñ ΓpSpecAf ,OXpDqq. Con-
versely, take s P ΓpSpecAf ,OXpDqq, so that div s ` D ě 0 on SpecAf . This implies
that div s`D ě 0 can fail only over V pfq Ă SpecA. But then there is some n ą 0 so that

pdiv fns`Dq ě 0
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18.5 The sheaf associated to a Weil divisor 315

over SpecA. Then s is the image of pfnsq{fn on the left-hand side, so the map above is
surjective.

Example 18.26. Let X be the projective line P1
k “ Proj krx0, x1s over k and consider the

divisor D “ V px1q “ p1 : 0q. We have the standard covering of P1
k by the distinguished

open sets U0 “ Spec krx1{x0s “ Spec krts and U1 “ Spec krx0{x1s “ Spec krss (so
s “ t´1 on U0 X U1). Let us find the global sections of OXpDq.

Note that the point p1 : 0q does not lie in U1 “ D`px1q, and this means that a rational
function f P K such that divpfq `D is effective on U1, must be regular on U1; that is

ΓpU1,OXpDqq “ krss.

Over the open set U0, we are looking at elements f P kptq having order of vanishing at least
´1 at t “ 0. This implies that

ΓpU0,OXpDqq “ t f | f “ αt´1 ` pptq u

where α P k and pptq a polynomial.
Now, by the usual sheaf sequence, we may think of the elements in ΓpX,OXpDqq as

pairs pf, gq with f and g sections of OXpDq over U0 and U1 respectively, so that f “ g on
U0 X U1. Here g “ gpsq is a polynomial in s, and

fptq “ pptq ` αt´1 “ pps´1q ` αs.

If f “ g in krt, t´1s, it is clear that p must be a constant. This implies that

ΓpX,OXpDqq “ k ‘ k t´1.

In fact, we will see in a bit that OXpDq » OP1p1q.

Example 18.27. Let A be a discrete valuation ring with uniformizer t, and let X “ SpecA.
If x “ ptq P X denotes the closed point, we have OXpnxq “ t´n ¨ OX . If f P K, then
div f “ ordx f ¨ x. Moreover,

OXpdiv fq “ t´ ordx fOX .

Lemma 18.28. Let V be a normal integral Noetherian scheme and let D be a Weil
divisor. Then D is a principal divisor if and only if OV pDq » OV . Furthermore, if
f P K, we have

OV pdiv fq “ f´1 ¨ OV Ă K

as subsheaves of the constant sheaf K .

Proof Suppose first that D “ div f is principal. Let U Ă V be an open subset. Then
OUpDqpUq consists of the rational functions g P K such that

0 ď div g ` div f “ divpfgq.

In other words, r “ f ¨ g is a rational function on V with non-negative order of vanishing
at every prime divisor Z Ă V . Thus r P OV pUq is a regular section by Hartog’s theorem.
Thus g “ rf´1 belongs to the right hand side. The opposite containment is clear.

Conversely, suppose there is an isomorphism ϕ : OV Ñ OV pDq. Define f P K so that
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f´1 is a generator of OXpDq as an OX-submodule of K , i.e., OXpDq “ f´1OX Ă K .
We claim that D “ div f . To see this, it suffices to note that if Z Ă V is a prime divisor,
then ordZ f equals the coefficient of Z in D. This follows from Example 18.27, by taking
the stalk of OXpDq at the generic point of Z.

Proposition 18.29. Let X be a normal integral Noetherian scheme and let D be a
Weil divisor on X . Then the following are equivalent:

(i) OXpDq is locally free (that is, invertible).
(ii) D is locally principal, that is, there is an open covering Ui and rational

functions fi such that

D|Ui
“ div fi.

Proof First of all, if OXpDq is locally free, then it must have rank 1. This is because over
an open set V Ă X ´ SupppDq, the group OXpDqpV q consists of the rational functions
such that ordZpfq ě 0, for every prime divisor Z Ă X , i.e., f P OXpV q. That is, OXpDq

is isomorphic to OX over an open set, so it has rank 1.
(i) ñ (ii). If OXpDq is an invertible subsheaf of K , we can define fi P K by picking local

generators so that OXpDqpUiq “ f´1
i OXpUiq Ă K . Then it follows that D|Ui

“ div fi by
Lemma 18.28.

(ii) ñ (i). If D|Ui
is principal, then Lemma 18.28 shows that OXpDq|Ui

» OX |Ui
, so

OXpDq is invertible.

Definition 18.30. Let X denote a normal integral scheme. We say that a Weil divisor
D is Cartier if it satisfies one of the conditions in Proposition 18.29.

There are differing opinions on what a Cartier divisor ‘is’, e.g., whether it is a Weil divisor
of a special form or whether it is a section of a certain sheaf (see Exercise 18.6.1). In any
case, the prototype example of a Cartier divisor is the Weil divisor associated to the section
of an invertible sheaf (see Section 18.7).

There are two main reasons for introducing them: (i) Cartier divisors are conveniently
described in terms of rational functions on an affine covering (Definition 18.31); and (ii)
Cartier divisors have much better formal properties (e.g., with respect to morphisms). We
will come back to the latter point in Section 18.9.

Definition 18.31 (Cartier data). Let X be an integral scheme with function field K.
We define a set of Cartier data by the following data:

(i) an open covering tUiuiPI of X;
(ii) elements fi P K satisfying fif´1

j P Oˆ
XpUi X Ujq for every i, j.

We consider two defining data tpUi, fiquiPI and tpVj, gjquiPI to be equivalent if
fig

´1
j P ΓpUi X Vj,Oˆ

Xq for all i, j.

Proposition 18.29 shows that any Cartier divisor is specified by a set of Cartier data, and
conversely. Moreover, given an affine covering as in (iii) of the Theorem, the invertible sheaf
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OXpDq has the following description:

OXpDq|Ui
“ f´1

i OX Ă K .

Two different data pUi, fiq and pVj, gjq for the same divisorD give rise to the same invertible
sheaf. This is because over UiXVj , we have fi “ dijgj for some units dij P OXpUiXVjq

ˆ.
This means that f´1

i OUiXVj
“ g´1

i OUiXVj
, and so the sheaf is uniquely determined as a

subsheaf of KX .
The set of Cartier divisors naturally forms a subgroup, denoted CaDivpXq, of DivpXq.

In terms of the Cartier data, the identity is given by pX, 1q. Given D and E represented by
the data tpUi, fiquiPI and tpVi, giquiPJ , then the Cartier data for D ` E is given by

tpUi X Vj, figjqui,j

Moreover, the inverse ´D will be defined as tpUi, f
´1
i quiPI . Note also that pUi, fiq is a

principal divisor if and only if it is equal to pX, fq for some f P Kˆ.
The subgroup of Cartier divisors may certainly be smaller than DivpXq, but as we will

see shortly, any Weil divisor is Cartier whenever X has mild singularities (Theorem XXX).

Example 18.32. Consider the projective n-space Pnk over a field k. Write Pnk “ ProjR
where R “ krx0, . . . , xns.

Any homogeneous polynomial of degree d, F px0, . . . , xnq P Rd defines a closed sub-
scheme of Pnk of codimension 1. The corresponding Weil divisor D is Cartier. Concretely, we
can write down the Cartier data with respect to the standard covering Ui “ D`pxiq of Pnk .
Note that F px{xiq “ F px0

xi
, . . . , xi´1

xi
, 1, xi`1

xi
, . . . , xn

xi
q defines a non-zero regular function

on Ui, and the collection

pUi, F px{xiqq

forms a Cartier divisor D on X . Indeed, on the overlap Ui X Uj , we have the relation

F px{xiq “ pxj{xiq
d
F px{xjq

and xj{xi is a regular and invertible function on Ui X Uj . The corresponding invertible
OXpDq sheaf is isomorphic to OPn

k
pdq. Two homogeneous polynomials F,G of the same

degree d give linearly equivalent divisors, because the quotient F pxq{Gpxq is a global
rational function on Pnk .

Proposition 18.33. Let X be a normal integral Noetherian scheme scheme and let D
and D1 be two Cartier divisors. Then:

(i) OXpD `D1q » OXpDq b OXpD1q

(ii) OXpDq » OXpD1q if and only if D and D1 are linearly equivalent.

Proof We may pick a common covering Ui so that both D and D1 are both represented by
data pUi, fiq, pUi, f

1
iq. Then D ` D1 is determined by the Cartier data pUi, fif

1
iq. Locally,

over Ui the sheaf OXpD ` D1q is defined as the subsheaf of K given by pfif
1
iq

´1OUi
“

f´1
i f 1´1

i OUi
. The tensor product is locally(!) given as f´1

i OUi
b f 1

i
´1OUi

, which is clearly
isomorphic to f´1

i f 1´1
i OUi

via the map af´1
i b bf 1

i
´1

ÞÑ abfi
´1f 1

j
´1.
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For the second claim, it suffices (by point (i)) to show that OXpDq » OX if and only if
D is a principal Cartier divisor. But this is a consequence of Lemma 18.28.

18.6 Divisors and invertible sheaves

By the item (i) and (ii) in Proposition 18.33, we see that the natural map

ρ : CaDivpXq Ñ PicpXq,

which sendsD to the class of OXpDq in PicpXq is additive and has the subgroup of principal
divisors as its kernel. This means that the induced map ρ : CaClpXq Ñ PicpXq is injective.
It is also surjective: given any invertible sheaf L on X , we can take a rational section
s P LpV q, so that

L » OXpdiv sq

We have therefore shown

Corollary 18.34. Let X be a normal integral Noetherian scheme. Then ρ induces an
isomorphism

CaDivpXq » PicpXq.

Having defined Weil and Cartier divisors, it is natural to ask when the two coincide. We
will soon see (rather simple) examples where they do not. However, when X has ‘mild
singularities’, any Weil divisor is in fact Cartier.

Proposition 18.35. Let X be an normal integral Noetherian scheme. Then the fol-
lowing are equivalent:

(i) CaDivpXq “ DivpXq

(ii) X is factorial (all the local rings OX,x are UFDs).

Proof Note that any Weil divisor is a linear combination of prime divisors, so (i) holds
if and only if any such divisor is Cartier. But here the equivalence follows from Theorem
18.47.

So if X is factorial, every Weil divisor comes from a Cartier divisor, and vica versa. The
intuition is that this holds whenever X has ‘mild’ singularities. For instance, regular local
Noetherian rings (i.e., dimk m{m2 “ dimA) are also UFDs ([Atiyah-MacDonald Ch. 7] or
[Stacks 0AG0]). So in particular, the above applies to the main examples of interest:

Corollary 18.36. On a non-singular variety X , then the map ι : CaDivpXq Ñ

DivpXq is an isomorphism. Moreover, this induces natural isomorphisms between
the groups of

(i) Weil divisors (up to linear equivalence)
(ii) Cartier divisors (up to linear equivalence)

(iii) Invertible sheaves (up to isomorphism)
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From our previous computation of ClpAnkq, we get the following theorem:

Theorem 18.37. Let k be a field. Then PicpAnkq “ ClpAnkq “ CaClpAnkq “ 0.

We previously computed that ClpPnkq “ Z, so Corollary 18.36 gives the following:

Corollary 18.38. On Pnk any invertible sheaf is isomorphic to some OPn
k
pmq.

Exercise 18.6.1. Let X be an integral normal scheme and let KX denote the constant sheaf
on K “ kpXq. Note that the sheaf Oˆ

X of invertible sections of OX embeds as a subsheaf of
KX . Show that a Cartier divisor is the same thing as a global section of the sheaf K ˆ

X {Oˆ
X .

Exercise 18.6.2. Check that the inverse of a Cartier divisors and the sum of two are well
defined; that is, that all cocycle conditions are fulfilled and that the inverse, respectively the
sum, is independent of choices of representatives.

18.7 The Weil divisor associated to a section of an invertible sheaf

We have now come to one of the most important classes of Weil divisors; those assocated to
sections of an invertible sheaf. The construction pararells the definition of a principal divisor.

Let L be an invertible sheaf on X and let s be a global section of L. Let Ui be an open
cover of X such that L is trivial on each Ui. This means that there are isomorphisms

ϕi : L|Ui
Ñ OX |Ui

.

Let fi P OXpUiq be the image of s|Ui
via ϕi. Since fi is regular on Ui, we may regard it as

an element of the function field K “ kpXq. We define

ordZpsq “ ordZpfiq.

The number on the right does in fact not depend on the index i. This is because on Ui X Uj ,
the two rational functions fi and fj are related by fj “ cjifi where cij P Oˆ

XpUi X Ujq is
an invertible section. (See section XXX). Thus if the prime divisor Z belongs to both Ui and
Uj , we get that ordZpfjq “ ordZpfjq.

Summing up over all prime divisors, we get a Weil divisor associated to s:

divpsq “
ÿ

Z

ordZpsqZ. (18.3)

Some choices have been made on the way, but of course they don’t matter, moreover the
sum in (18.3) is finite:

Lemma 18.39. The divisor divpsq is independent of the choice of the open sets U
and V and the trivialization ϕ. The sum in (18.3) is finite.

Proof Suppose we are given two trivializations ϕα : L|Uα
Ñ OUα

and ψ : L|Uβ
Ñ OUβ

.
Then over each U Ă Uα X Uβ , we have ϕps|Uq “ c ¨ ψps|Uq where c is unit in OXpUq. As
ordZpcq “ 0, we get that ordZpϕpsqq “ ordZpψpsqq.
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320 Divisors and linear systems

For the last statment, let U be any affine open set over which L is trivial. There is only
finitely many components of the complement U ; and replacing s|U by the image under a
trivialization L|U » OU , we are back to Lemma 18.7, and so we are done.

Example 18.40. On X “ P1
k, the monomial x3

0x
2
1 defines a global section s of the invertible

sheaf L “ OP1p5q. Over U0 “ D`px0q, we have trivialization

ϕ0 : Čkrx1{x0sx5
0 Ñ Čkrx1{x0s

given by multiplication by x´5
0 . Thus s|U0

is transported to the rational function t2 “ x2
1{x2

0

on U0, which has order of vanishing two at p1 : 0q. Similarly, the order of vanishing of s at
p0 : 1q is equal to 3. Thus the divisor of s is equal to

div s “ 2p1 : 0q ` 3p0 : 1q.

Geometrically, the divisor divpsq equals the Weil divisor rY s where Y “ V psq is the
zero scheme of s. To give some more details, we recall from Section 19.7 that the subscheme
V psq is constructed from the coherent ideal sheaf

I “ Im ps_ : L_ Ñ OXq Ă OX .

where s_ is the map dual to the map OX Ñ L given by multiplication by s.
Note that the map s_ is injective (the restriction of s to each Ui is non-zero and any

non-zero map between invertible sheaves on an integral scheme is injective). This implies
that the ideal sheaf I is in fact isomorphic to L_. Letting fi denote the rational functions
associated to s, we note that s_|Ui

in fact corresponds to the map OUi
Ñ OUi

which sends 1
to fi. The image of s_ over IpUiq is therefore the ideal generated by fi. Thus the Cartier
divisor D determined by the fi is exactly the zero scheme V psq.

In particular, if Z is a prime divisor, we see that the multiplicity of Y along Z is exactly
the order of vanishing ordZpsq. Thus

rY s “
ÿ

Z

ordZpsqZ.

Weil divisors associated to rational sections

It is important to notice that the above constuction can in fact be carried out for a section
s of L defined over any subset V Ă X . We call such a section a rational section. Indeed,
if s P LpV q, the trivializations of L still give rational functions fi (working over the open
sets Ui X V ) and we have well-defined orders of vanishing ordZpsq for any prime divisor
Z Ă X .

The above construction, when V “ X , always produced Weil divisors which are effective;
this may no longer be the case when s is only a rational section. Here is a typical example:

Example 18.41. Continuing the example of X “ P1
k, consider the quotient s “

x3
0

x1
which

defines a section ofL “ OP1
k
p2q overD`px1q, hence a rational section onX . Let us compute

the divisor associated to s: Let t “ x0

x1
be the coordinate on U “ D`px1q “ Spec krts.

OXp2qpUq “ krx0{x1sx2
1 “ krtsx2

1.
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So the rational function f “ ϕpsq is given by x3
0

x3
1

“ t3 which has non-zero order of vanishing
only at the point t “ 0 P U , where we have ordtpfq “ 3. To compute divpsq, we must also
consider the point outside D`px1q. On U “ D`px0q, we use the coordinate u “ x1

x0
, and

we have

OXp2qpUq “ krusx2
0.

So the rational function ϕpsq is given by f “ x0

x1
“ u´1. This has order of vanishing

ordtpfq “ ´1 at t “ 0 (and ordZpfq “ 0 at all other points). Hence we obtain

divpsq “ 3p0 : 1q ´ p1 : 0q.

We finish by yet another characterization of when a Weil divisor is Cartier:

Proposition 18.42. Let X be a normal integral Noetherian scheme and let D be a
Weil divisor on X . Then D is Cartier if and only if D “ divpsq for some rational
section s of an invertible sheaf.

Proof Most of the work here has been done already. First of all, any divisor D “ divpsq of
a rational section is clearly locally principal.

Conversely, if D is Cartier, we can consider the invertible sheaf L “ OXpDq, which
admits a distinguished rational section sD of the sheaf OXpDq. Namely, the element ‘1 P K’
defines an element of ΓpV,OXpV qq over the open set V “ X ´ SupppDq. We then have

div sD “ D.

18.8 Subschemes of codimension one and effective divisors

One of the benefits of using zero schemes of sections of invertible sheaves is that they can
be defined on any scheme. In this section, we do not assume that X is normal, integral or
Noetherian.

The main theme of this section is to study closed subschemes of codimension one. We
are particularly interested in the subschemes which are locally defined by a single equation
which is a nonzerodivisor, i.e. subschemes whose ideal sheaf is an invertible sheaf. We will
see that this is often the case, at least when the ambient scheme X has mild singularities.
However, we shall also see simple examples of subschemes which are not possible to define
locally by just one equation (see for instance Example 18.10).

For now, let us note the following characterisation of such subschemes:
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Proposition 18.43. Let X be a scheme and let D Ă X be a closed subscheme with
ideal sheaf I . Then the following are equivalent:

(i) I is an invertible sheaf;
(ii) For every x P X , the ideal Ix Ă OX,x is principal and generated by a

nonzerodivisor;
(iii) There is an open covering Ui of X and nonzerodivisors fi P OXpUiq

such that fi generates IpUiq;
(iv) For every x P X , there is an open affine neighbourhood U “ SpecA of

x such that U XD “ SpecA{pfq where f P A is a nonzerodivisor.
(v) D is the zero scheme of a global section s of an invertible sheaf L.

When X is normal integral Noetherian, this is equivalent to
(vi) rDs is an effective Cartier divisor.

Proof Clearly the first three conditions are equivalent; this is just a restatement of what it
means to be locally free of rank one. Let us show the equivalence (i) ô (iv).

We begin with the implication (i) ñ (iv). Let x P X and pick an open affine set V “

SpecA Ă X so that ID|V » OV . This means that there is an element f P IDpV q Ă

A “ OXpV q which is an A-basis for ID|V , and in particular, f must be a nonzerodivisor.
Moreover, D X V is the subscheme of SpecA defined by f , so that D X V “ SpecA{pfq.

For the implication (iv) ñ (i) we need to show that I is invertible near every point x P X .
Pick an open affine U “ SpecA neighbourhood of x so that D X U “ SpecA{pfq, for
some nonzerodivisor f . Then I|U » Ăpfq » rA » OU , which means that I is invertible.

(iii) ñ (vi). Let us now assume that X is normal. Note that the sections fi in (iii) form a
set of Cartier data. This is because on Ui X Uj , fi and fj generate the same, principal ideal,
so they must be related by a unit cij P Oˆ

XpUi X Ujq.
Write rDs “

ř

nZZ for the Weil divisor associated to D. On each Ui, the ideal sheaf of
D is generated by fi, so the multiplicity nZ of D is exactly ordZpfq. It follows that

rDs|Ui
“ div fi

for each i. Thus rDs is an effective Cartier divisor.
(vi) ñ (iii). Conversely, suppose that rDs is Cartier, and of the form div fi over each Ui

in an open covering. By the Cartier data conditions, the fi define an ideal sheaf J of OX .
The corresponding subscheme Y , is supported on D with the same multiplicities on each
component, so Y “ D. Thus I “ J by Proposition 18.4, so I is locally generated by the fi.

(vi) ñ (v). If D is an effective Cartier divisor, it is the zero set of the distinguished section
sD of OXpDq. (v) ñ (iii). If D is the zero set of s P ΓpX,Lq, then the ideal sheaf I is
isomorphic to L_, which is invertible.

IfD is an effective Cartier divisor, thenD is determined by the ideal sheaf I “ OXp´Dq

which is locally generated by the elements fi. Informally, we say that the fi’s are local
equations of D. As before, these equations are not unique; two sets of local equations
pUi, fiq, pVj, gjq give the same subscheme if and only if they define the same Cartier data.

If i : D Ñ X denotes the inclusion, the ideal sheaf sequence (??) takes the form

0 Ñ OXp´Dq Ñ OX Ñ i˚OD Ñ 0
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18.8 Subschemes of codimension one and effective divisors 323

Example 18.44. Let X “ Ank over a field k and let G be a polynomial. Then D “ V pGq is
an effective Cartier divisor. It is specified by the obvious data pAn, Gq.

Example 18.45. Let X “ P1
k “ Proj krx0, x1s over a field k and let P be the point p1 : 0q.

Using the standard covering D`px0q and D`px1q, we see that P is the effective Cartier
divisor determined by the data

pD`px0q, x1x
´1
0 q and D`px1, 1q.

Note that on the intersection D`px0q XD`px1q the function x1x
´1
0 is invertible, so the data

yields an effective Cartier divisor.
On the open set D`px0q “ Spec krx1x

´1
0 s “ A1

k the ideal is generated by x1x
´1
0 which

defines the point P , and on D`px1q the local equation is 1 which is without zeros, so the
devisor defined is exactly P .

We might also consider the data pD`px0q, px1x
´1
0 qnq and pD`px1q, 1q. In the distin-

guished open set D`px0q “ Spec krx1x
´1
0 s it gives the ideal ppx1x

´1
0 qnq which defines a

subscheme supported at P and of length n, and in D`px1q the ideal will be the unit ideal,
whose zero set is empty. We denote the corresponding divisor by nP .

Proposition 18.46. Let X be a normal integral Noetherian scheme. Then:
(i) Each effective Cartier divisor D Ă X is the zero set V psq of some

regular section s P ΓpX,Lq of some invertible sheaf L;
(ii) Two regular sections s, t P ΓpX,Lq give rise to the same divisor if and

only if t “ λs for some unit λ P Oˆ
XpXq.

Proof We only need to prove the last statement. Suppose that s and t define the same ideal
sheaf I of OX , so that we have isomorphisms

L_ s_

ÝÑ I pt_
q

´1

ÝÝÝÝÑ L_.

Note by Proposition ?? on page ?? it holds that HomOX
pL_, L_q » HomOX

pOX ,OXq »

OX so that HomOX
pL_, L_q “ ΓpX,OXq. Hence each isomorphism L_ Ñ L_ is given

by multiplication by some element in Oˆ
XpXq. Thus s and t differ only by a unit.

Theorem 18.47. Let X be a Noetherian integral scheme. Then the following two
statements are equivalent:

(i) Every integral subscheme of codimension one is an effective Cartier
divisor;

(ii) X is locally factorial (that is, the local rings OX,x are all UFD’s).

Proof Both conditions can be checked locally, so we may assume that X “ SpecA is
affine. Let D “ SpecpA{qq be an integral subscheme. Saying that D has codimension one is
equivalent to saying that q is a prime ideal of height one. If SpecA is factorial, then each Ap

for p P SpecA is a UFD and qAp is principal according to Theorem ??. One may extend the
generator to a generator for q over a neighbourhood of p, and thence by Proposition 18.43, D
will be an effective Cartier devisor.
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For the converse, assume (i). Note first that for each p P SpecA every prime ideal in Ap

is of the form qAp for a prime q in A, and when qAp is of height one, q is also of height
one (there is a one-to-one correspondence between primes in A lying in p and primes in Ap).
Consequently, if qAp is of height one, q is locally principal by (i), which means that qAp is
principal.

Definition 18.48. The set of effective divisors D1 linearly equivalent to D is denoted
by |D|. This is called the complete linear system of D.

The name ‘linear system’ comes from the special case when X is a projective variety
X over a field k (thus X is integral, separated of finite type over k). In this case, we have
ΓpX,OXqˆ “ kˆ, and the previous discussion shows that the linear system |D| is given by

|D| “ tD1|D1 ě 0 and D1 „ Du (18.4)

“ pΓpX,OXpDqq ´ 0q {kˆ (18.5)

“ PΓpX,OXpDqq

When X is projective over k, the groups ΓpX,OXpDqq are finite dimensional as k-vector
spaces (we will prove this fact in Chapter ??), so the set of effective divisors D1 linearly
equivalent to D is (as a set) a projective space Pnk .

Definition 18.49. A linear system of divisors is a linear subspace of a complete linear
system |D|.

Example 18.50. Consider the case X “ Pnk and D “ dH , where H is the hyperplane
divisor (so H is a Cartier divisor with OXpHq » OXp1q). In this case the linear system
of D associated to OXpdHq is given by the set of homogeneous polynomials of degree d
modulo scalars, i.e.,

|D| “

#

ÿ

i0`¨¨¨`in“d

ai0,...,inx
i0
0 ¨ ¨ ¨xinn

+

{kˆ » PNpkq

where N “
`

n`d
d

˘

´ 1. The points of this projective space correspond to degree d hypersur-
faces, and the coefficients ai0,...,in give homogeneous coordinates on it.

Exercise 18.8.1. Given data tpUi, fiqu as in ??. Assume that there are units cij P OXpUi X

Ujq with fj “ cjifi which satisfy the cocycle condition. Show that the data then defines a
sheaf of invertible ideals.

Exercise 18.8.2. Check that the ideal sheaf InP of the divisor nP in Example 18.45 is
isomorphic to OP1p´nq.

Exercise 18.8.3. Describe Cartier data that defines the hyperplane V pxiq in Pnk “ Proj krx0, . . . , xns.
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18.9 Pullbacks of divisors

Given a morphism ϕ : X Ñ Y and a Weil divisor D on Y , we can ask whether we can
define a Weil divisor on X supported on ϕ´1D. In general, this is not possible. Consider
for instance, the case where ϕ is the inclusion of a closed subscheme, say Y “ P2

k and
f : X Ñ Y is the inclusion of a line X “ V px0q. Then of course D “ X defines a Weil
divisor on Y , but there is no reasonable definition of ϕ´1D that defines a codimension one
subscheme of X .

Example 18.51. Let X “ V px0q be a line in Y “ P2 and let f : X Ñ Y be the inclusion.
We may consider D “ X as a Weil divisor on Y . But then

There is a situation where we can always define the pullback of a divisor D. This is when
ϕ : X Ñ Y is a dominant morphism and D is a Cartier divisor. In that case, there is a
covering Ui such that D|Ui

is given by div fi over Ui. The fact that f is dominant, means
that there is an induced map on function fields ϕ7 : kpY q Ñ kpXq. We can therefore define
a divisor ϕ˚D by

ϕ˚D “
ÿ

Z

ordZpϕ7fiqZ

This is well-defined, because over each intersection Ui X Uj .

Example 18.52. ClpP2q is generated by the class of line L Ă P2, e.g. L “ V px0q, and any
two lines L,L1 are linearly equivalent.

Example 18.53. Consider the curve X as in Figure 18.1, given by

X “ V py2z ´ x3 ´ z3q Ă P2.

For a line L “ V pyq on P2
k, let L|X denote the restriction of L to X (i.e., the Weil divisor

L X X on X which is of codimension 1 as X is integral). Moreover, for another line
L1 “ V pzq, the two restrictions L|X and L1|X are linearly equivalent divisors on X , since
L|X ´ L1|X “ divpx

z
|Xq. This argument applies for any two lines L,L1 in P2, so we

get many relations between divisors on X . The figure below shows one example where
L|X “ P `Q`R and L1 “ 2S ` T .

18.10 Examples

A useful exact sequence

Given a Noetherian, normal and integral X and an open subset U , the restriction of a prime
divisor on X is a prime divisor on U , so it is natural to ask how the two class groups are
related. The answer is given by the theorem below.

Before stating the result, let us make the restriction map a bit more precise. Consider a
prime divisor Z in X . If Z X U ‰ H, it is dense in Z , and so the generic point of Z lies in
U . Since DivX is free abelian on the prime divisors, this allows us to define a restriction
map DivX Ñ DivU by

Z ÞÑ

#

Z X U if Z X U ‰ H,

0 else .
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Figure 18.1 Two linearly equivalent divisors on a plane cubic

Moreover, if f is a rational function on X , the restriction f |U is a rational function on U , and
it holds that ordYXUpf |Y q “ ordY pfq (the two valuation rings are equal), and consequently
the divisor divpfq restricts to the divisor divpf |Uq. The restriction map passes to the quotient
and yields a map ClpXq Ñ ClpUq.

Theorem 18.54. Let X be a normal integral Noetherian scheme. Let W Ă X be
a closed subscheme and let U “ X ´ W . If Z1, . . . , Zr are the prime divisors
corresponding to the codimension one components of W , there is an exact sequence

r
à

i“1

ZZi Ñ ClpXq Ñ ClpUq Ñ 0, (18.6)

where the map ClpXq Ñ ClpUq is defined by rZs ÞÑ rZ X U s.

Proof If Z is a prime divisor on U , the closure in X is a prime divisor in X , so the map is
surjective, and we just need to check exactness in the middle.

Suppose Z is a prime divisor which is principal on U . Then Z|U “ divpfq for some
f P kpUq “ K “ kpXq. Now D “ divpfq is a divisor on X such that D|U “ divpfq|U .
HenceD´Z is a Weil divisor supported inX´U , and hence it must be a linear combination
of the Zi’s. Thus D ´ Z is in the image of the left-most map, and we are done.

As a special case, we see that removing a codimension two subset does not change the
group of Weil divisors. So for instance ClpA2 ´ 0q “ ClpA2q.

Example 18.55. Consider the projective line P1
k over a field k, and let P be a point. We have

the exact sequence

ZrP s Ñ ClpP1q Ñ ClpA1q Ñ 0.

We saw that ClpA1q “ 0, so the map Z Ñ ClpP1q is surjective. It is also injective: If
rnP s “ 0 in ClpP1q for some n, then nP “ divpfq for some f P kpP1q. Consider the
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open set U “ P1 ´ P » A1. Then nP |U “ 0, so we must have divpfq|A1 “ 0. Thus f has
neither zeros, nor poles, and so f P ΓpA1,Oˆ

A1q “ kˆ. Hence f is constant, and so n “ 0.
This gives another proof of ClpP1q “ Z.

Exercise 18.10.1. Let P2 “ Proj krx0, x1, x2s. An irreducible homogeneous polynomial f
of degree d ě 1 determines a prime divisor D “ V pfq. Consider the open set U “ P2

k ´D.
Show that the above exact sequence above takes the form

0 Ñ Z ¨d
ÝÑ Z Ñ ClpUq Ñ 0.

Deduce that ClpUq “ Z{dZ.

The smooth quadric surface

Let k be an field, and let Q “ P1
k ˆ P1

k. Recall that Q embeds as a quadric surface in P3
k via

the Segre embedding. So we can view Q both as a fiber product P1 ˆ P1 and the quadric
V pxy ´ zwq Ă P3.

Since Q is a product of two P1s there are natural ways of constructing Weil divisors on Q
from those on P1. For instance, we can let

L1 “ p0 : 1q ˆ P1 Ă Q,

which is a prime divisor on Q corresponding to the ‘vertical fiber’ of Q. Similarly, L2 “

P1 ˆ p0 : 1q is a Weil divisor on Q. From these we obtain an exact sequence

ZL1 ‘ ZL2 Ñ ClpQq Ñ ClpQ´ L1 ´ L2q Ñ 0

Here Q´ L1 ´ L2 “ U11 “ Spec krx´1, y´1s. The latter is isomorphic to A2
k, so ClpQ´

L1 ´ L2q “ 0. This shows that ClpQq is generated by the classes of L1 and L2. We claim
that the first map is also injective, so that in fact that

ClpQq “ ZL1 ‘ ZL2.

If the map is not injective, there must be a relation aL1 ´ bL2 „ 0, or equivalently,

OQpaL1q » OQpbL2q (18.7)

for some integers a, b P Z. We will show that this is not the case, by showing
(i) OQpL1q|L1

» OP1 ;
(ii) OQpL2q|L1

» Op1qP1

Then restricting (18.7) to L1, we get b “ 0, and hence also a “ 0, by switching the roles of
L1 and L2.

To prove i): Note that L1 » L1
1 where L1 “ p1 : 0q ˆ P1. This follows because we can

consider the divisor of the rational function x P kpQq “ kpx, yq:

div x “ p0 : 1q ´ p1 : 0q “ L1 ´ L1
1

Then note that OQpL1
1q|U » OU over the open set U “ Q´ L1

1. However L1 is contained
in U , so the isomorphism i) follows.
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Q is covered by four affine subsets

U00 “ Spec krx, ys U10 “ Spec krx´1, ys (18.8)

U01 “ Spec krx, y´1s U11 “ Spec krx´1, y´1s

Consider P1
k “ W0 YW1, where W0 “ Spec krts,W1 “ Spec krt´1s. The first projection

p1 : Q Ñ P1
k is induced by the ring maps

krxs Ñ krx, ys krx´1s Ñ krx´1, ys (18.9)

krxs Ñ krx, y´1s; krx´1s Ñ krx´1, y´1s;

Let p “ p0 : 1q be the Weil divisor on P1. The Cartier data of p is given by pW0, tq, pW1, 1q,
so that OP1ppq » OP1p1q. The pullback D “ p˚

1 ppq is a Cartier divisor on Q, corresponding
to the Weil divisor p0 : 1q ˆ P1. The corresponding Cartier data is given by

pU00, xq, pU10, 1q (18.10)

pU01, xq, pU11, 1q

Let L1 “ p0 : 1q ˆ P1
k and L2 “ P1

k ˆ p0 : 1q. Consider the restriction of D to L2. L2

is covered by the two open subsets V0 “ U00 X L2 “ Spec krx, ys{y “ Spec krxs, V1 “

U10 X L2 “ Spec krx´1, ys{pyq “ Spec krx´1s. In terms of these opens, the restriction
D|L2

has Cartier data

pV0, xq, pV1, 1q

obtained by restricting the data above. In particular, identifying L2 » P1, we see that
OQpDq|L1

» OP1p1q. In particular, since ClpP1q “ Z, no multiple nD is equivalent to 0
in ClpQq: if that were the case, we would have OQpnDq » OQ, and hence OQpnDq|L2

»

OQ|L2
» OP1 , a contradiction.

This completes the proof that

ClpQq » ZL1 ‘ ZL2.

IfD is a divisor onQ,D „ aL1`bL2 and we call pa, bq the ‘type’ ofD. A divisor of type
p1, 0q or p0, 1q is a line on the quadric surfaceQ Ă P3. We have i˚OP3p1q » OQpL1 `L2q,
so a p1, 1q-divisor is represented by a hyperplane section of Q (a conic). A prime divisor of
type p1, 2q or p2, 1q is a twisted cubic curve.

The quadric cone

Let X “ SpecR where R “ krx, y, zs{pxy ´ z2q, and k has characteristic ‰ 2. Let
Z “ V py, zq be the closed subscheme corresponding to the line ty “ z “ 0u. Note that
Z » Spec krx, y, zs{pxy ´ z2, y, zq “ Spec krxs, so it is integral of codimension 1.
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A singular quadric surface

Note that X ´ Z “ X ´ V pyq “ Dpyq, and the latter equals

Spec krx, y, y´1, zs{pxy ´ z2q “ Spec kry, y´1srt, us{pt´ u2q “ Spec kry, y´1, us

which is the spectrum of a UFD. It follows that ClpX ´ Zq “ 0. Recall now the sequence

Z Ñ ClpXq Ñ ClpX ´ Zq Ñ 0

where the first map sends 1 to rZs. Hence ClpXq is generated by rZs.
We first show that 2Z “ 0 in ClpXq. This is because we can consider the divisor of y.

The rational function y is invertible in every stalk OX,p except when p P V pyq. Moreover,
by the defining equation xy “ z2, we see that the divisor of y can only be non-zero along Z .
The valuation at the generic point η of Z is 2: The local ring equals

OX,η “ pkrx, y, zs{pxy ´ z2qqpy,zq

and since x is invertible here, we see that y P pz2q and that z is the uniformizer.
Now we show that Z is not a principal divisor. It suffices to prove that this is not principal

in SpecOX,p where p P X is the singular point of X . The local ring here equals

OX,p “ pkrx, y, zs{pxy ´ z2qqpx,y,zq

In this ring p “ px, zq is a height 1 prime ideal, but it is not principal: Let m Ă OX,x be
the maximal ideal. Note that x, y P m, since x, y are not units. Moreover, it is clear that the
vector space m{m2 (which is the Zariski cotangent space at x) is 3-dimensional, spanned
by tx, y, zu. Then x, y gives a 2-dimensional subspace of m{m2. Hence, since x and y are
linearly independent in this quotient, there couldn’t be an non-constant element f P OX,x for
which x “ af, y “ bf . This means that rZs ‰ 0 in ClpXq and hence

ClpXq “ Z{2.

Note that the open subscheme X ´ p0, 0, 0q is factorial. Hence removing a codimension
2 subset has an effect on CaClpXq. Recall however, that the class group of Weil divisors
ClpXq stays unchanged under removing a codimension 2 subset.

Projective quadric cone

Let X “ ProjR where R “ krx, y, z, ws{pxy ´ z2q. Let H “ V pwq be the hyperplane
determined by w. We have

0 Ñ ZH Ñ ClpXq Ñ ClpX ´Hq Ñ 0

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

330 Divisors and linear systems

(Here H is a divisor corresponding to the restriction of OP3p1q, hence it is non-torsion in
ClpXq, so the first map is injective). X ´H is isomorphic to the affine quadric cone from
before, hence ClpX ´Hq “ Z{2. Using this sequence, we see that ClpXq “ Z, generated
by a Weil divisor D such that H “ 2D. More precisely, D is the divisor V px, zq which is
supported on a line on X .

The Weil divisor D is not Cartier; being Cartier is a local condition, so this follows
from the example of the affine quadric cone above. Here is an alternative way to see it: If
D “ V px, zq is Cartier, the sheaf L “ OXpDq is invertible, and hence so is its restrtction
to the line ℓ “ V px, zq » P1

k. The Picard group of P1
k is Z, generated by OP1p1q, so we

have L|ℓ » OP1paq for some a P Z. On the other hand, we know that the divisor H “ 2D
is Cartier and in fact OXpHq » OP3p1q|X (the local generator is given by w). Restricting
further to ℓ, we obtain OP3p1q|ℓ » OP1p1q (as the divisor of w is just one point on ℓ). But
these two observations imply that 2a “ 1, a contradiction. Hence D is not Cartier.

Quadric hypersurfaces in higher dimension

Here is an application of the ‘useful exact sequence’ (18.6).
Let A “ krx1, . . . , xn, y, zs{px2

1 ` ¨ ¨ ¨ ` x2
m ´ yzq. We will prove that A is a UFD for

m ě 3. A is a domain, since the defining ideal is prime. Apply Nagata’s lemma with the
element y:

Ay “ krx1, . . . , xn, y, y
´1, zs{py´1px2

1 ` ¨ ¨ ¨ ` x2
mq ´ zq » krx1, . . . , xn, y, y

´1, zs

which is a UFD. We show that y is prime: Taking the quotient we get

A{y “ krx1, . . . , xn, xs{px2
1 ` ¨ ¨ ¨ ` x2

mq

which is an integral domain, because x2
1 ` ¨ ¨ ¨ ` x2

m is irreducible (for m ě 3).
Note that for m “ 2, we get the quadric cone, which we have seen is not a UFD.
Applying a change of variables, we find the following description of the class groups of

quadrics in any dimension:

Proposition 18.56. Let k be a field containing
?

´1 and let X “ V px2
0 ` ¨ ¨ ¨ `

x2
mq Ă An`1

k “ Spec krx0, . . . , xns.
(i) m “ 2, ClpXq “ Z{2

(ii) m “ 3, ClpXq “ Z
(iii) m ě 4, ClpXq “ 0

There is also the following statement for projective quadrics:

Proposition 18.57. Let X “ V px2
0 ` ¨ ¨ ¨ ` x2

mq Ă Pn “ Proj krx0, . . . , xns.
(i) m “ 2, ClpXq “ Z;

(ii) m “ 3, ClpXq “ Z2;
(iii) m ě 4, ClpXq “ Z.
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18.11 Exercises

Exercise 18.11.1. Show that for the weighted projective space P “ Pp1, 1, dq we have
ClpPq “ ZD and CaClpPq “ ZH where H “ dD.

Exercise 18.11.2. The same reasoning as for P1
k can be applied to the affine line X with two

origins. Compute PicpXq for this example.

Exercise 18.11.3. The aim of this exercise is to prove the following statement, known as
”Nagata’s Lemma”: Let A be a noetherian integral domain, and let x P A´ 0. Suppose that
pxq is prime, and that Ax is a UFD. Then A is a UFD.

a) Show that Ax is normal.
b) Show that A is normal. HINT: If t P KpAq is integral over A, then t P Ax.
c) Show that there is an exact sequence

ZD Ñ ClpSpecAq Ñ ClpSpecAxq “ 0 Ñ 0

d) Use the above sequence to show that ClpAq “ 0, and conclude that A is a
UFD.

An example from number theory

We turn to an example from number theory and pick up the thread from Example 18.21. There
we claimed that the class group of the quadratic extension A “ Zr

?
´5s “ Zrxs{px2 ` 5q

is equal to Z{2Z. We also verified that the class of Y “ V p2, 1 `
?

´5qq was a non-trivial
two-torsion element. Here we complete the claim and show that the class of Y generates
ClpAq.

Since A is a Dedekind ring, the class group is generated by prime divisors, so we will
be through when we show that V ppq is equivalent to Y for each prime ideal in A that is
not principal. The only non-principal prime ideals in A are those of the form pp, a˘

?
´5q

where p P Z is a prime and a is an integer that satisfy a congruence a2 ` 5 ” 0 mod p,
and altering a by a multiple of p, we may assume that 0 ď a ă p.

The proof goes by induction on p, and to lubricate the induction, we shall prove a somehow
more general statement. Note that the lemma with n “ p yields what we want; that the class
of every non-principal prime divisor equals Y .

Lemma 18.58. For each ideal a “ pn, a`
?

´5q for any integers n and a satisfying
n ě 2 and a2 ` 5 ” 0 mod n, there are non-zero elements f and g in A so that

pfqpn, a˘
?

´5q “ p2, 1 `
?

´5qϵpgq

where either ϵ “ 0 or ϵ “ 1.

The two signs in the statement reflects the two possible choices of the square root, and it
will suffice to do the case a`

?
´5; it is however crucial that p2, 1`

?
´5q “ p2, 1´

?
´5q.

Proof The most significant portion of the proof is the induction part which reduces the
proof to the case that n ď 5 (which subsequently is done case by case):
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332 Divisors and linear systems

So we assume n ą 5 and proceed by induction on n; we write a2 ` 5 “ bn, and compute

pbqpn, a`
?

´5q “ pbn, bpa`
?

´5qq “ (18.11)

“ pa2 ` 5, bpa`
?

´5qq “ pa´
?

´5, bqpa`
?

´5q. (18.12)

Now, bn “ a2 ` 5 ă n2 ` 5, so as n ą 5, it follows that b ă n and clearly a2 ` 5 ” 0
mod b. By induction, it follows that for approriate elements f 1 and g from A, we have the
equality

pf 1q ¨ pb, a`
?

´5q “ p2, 1 `
?

´5qϵ ¨ pgq,

and so muliplying xxx through by f 1 we arrive at

pbf 1qpn, a`
?

´5q “ p2, 1 `
?

´5qϵ ¨ pgqpa`
?

´5q.

It remains to treat the special cases with n ď 5. Again, write a2 `5 “ bn with 0 ď a ă n.
When n “ 5, it holds that a2 “ 5pb´ 1q, and this implies that b “ 1 and a “ 0. One easily
verifies that all ideals pn,

?
´5q are principal (either generated by 1 or by

?
´5). That n “ 4

is impossible since no square is congruent ´1 mod 4. Finally, if n “ 3 and a “ 1, we have

p2qp3, 1 `
?

´5q “ p6, 2p1 `
?

´5qq “ p1 ´
?

´5, 2qp1 `
?

´5q,

and if a “ 2, we note that p3, 2 `
?

´5q “ p3, 1 ´
?

´5q. We are left with the case n “ 2
and a “ 1, which is exactly what we want.

Exercise 18.11.4. Let d be a square free integer and assume that d ı 1 mod 4 so that
Zr

?
ds is a Dedekind ring. Show that the class group of Zr

?
ds is finite. HINT: Concider

the indction portion of the proof above.
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19

Locally free sheaves

The most important examples of quasi-coherent sheaves are the locally free sheaves. As the
name suggests, these are sheaves which are locally isomorphic to a direct sum of copies of
the structure sheaf of the scheme. Because of this ‘freeness’ property, these sheaves are in
many respects the nicest examples of sheaves on a scheme and the easiest to work with. They
are also the algebraic counterpart to the vector bundles in topology.

19.1 Basic properties

Let X be a scheme. An OX-module E is called free if it is isomorphic to a direct sum of
copies of OX . It is locally free if there exists a trivializing cover; that is, an open cover tUiu
of X such that the restriction E |Ui

is free for each i. In view of the criterion in Exercise xxxx
every locally free OX -module is quasi-coherent. A locally free OX -modules which is globally
free; that is, one which is isomorphic to a free OX-module, is often said to be trivial.

The rank rxpEq of E at a point x P Ui is the number of copies of OUi
needed to express

E |Ui
as a free OX-module. This may be finite or infinite, but we shall almost exclusively

concern ourself with the case of finite rank. The local rank is obviously constant throughout
each Ui, so the sets tx P X | rxpEq “ r u are all open as r varies, and consequently they
are also all closed. It follows that the rank is constant along each connected component of X .
If the rank is constant all over, say equal to r, we say that E is of rank r and write rpEq for it.
In particular, this is the case when X is connected. A locally free sheaf of rank one is called
an invertible sheaf.

Example 19.1. It is easy to give examples of locally free sheaves with varying rank. If X
is disconnected with connected components U and V , we are free to define E by letting
E |U “ On

U and E |V “ Om
V with n,m P N arbitrary.

Example 19.2. On the projective line X “ P1
A one has the sheaves OP1

A
pmq constructed on

page 94. These were made by gluing together trivial sheaves of rank one, so they are locally
free of rank one. Most of them are non-trivial; we showed that OP1

A
pmq is not isomorphic to

OP1
A

when m ‰ 0.

Example 19.3. There are many ways of constructing new locally free sheaves from given
ones. For instance, if E and F are locally free, their direct sum will be locally free as well.
Indeed, if tUiu is a trivializing cover for E and tViu one for F , the cover tUi X Vju will be
trivializing for E ‘ F .

In particular, if m1, . . . ,mr are integers, the sum
À

iOP1
A

pmiq will be locally free.

333
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334 Locally free sheaves

In general, a locally free sheaf E of finite rank r is obtained by gluing together copies of
the trivial sheaves. More precisely, if E is locally free of rank r, there is by definition an open
cover tUiu trivializing E ; that is, there are isomorphisms of OUi

-modules

ϕi : Or
Ui

E |Ui
.» (19.1)

Over the intersections Uij “ Ui X Uj the maps τji “ ϕ´1
j ˝ ϕi are well defined, and they

give isomorphisms

τji : Or
Uij

Or
Uij
,»

which restricted to triple intersections Uijk “ Ui X Uj X Uk satisfy the cocycle condition

τki “ τkj ˝ τji. (19.2)

Indeed, we have ϕ´1
k ˝ ϕi “ pϕ´1

k ˝ ϕjq ˝ pϕ´1
j ˝ ϕiq.

Conversely, we know from the Gluing lemma for sheaves that given isomorphisms τji as
above, satisfying the cocycle condition (19.2) on the triple overlaps, the sheaves Or

Uij
may

be glued together to a sheaf E , which by definition is locally free of rank r.
Note that there are many ambiguities in this process, both the trivializing cover and the

bases for the trivial sheaves are chosen. So it is not an ideal way of classifying locally free
sheaves. The same sheaf may be constructed in an infinite number of ways, and it is generally
very hard to decide when two constructions yields isomorphic sheaves.

Note that any isomorphism of OUij
-modules Or

Uij
Ñ Or

Uij
is given by some rˆ r-matrix

with entries in OXpUijq. Thus, we will sometimes specify E by giving the gluing maps τji
as matrices satisfying the cocycle condition (19.2).

Stalks

If E is a locally free OX -module, the stalk Ex is clearly a free OX,x-module for every x P X .
Having stalks that are free modules over the stalks of the structure sheaf, is a priori a weaker
property than being locally free, and in fact, in a general the two properties are not equivalent.
However, under mild finiteness conditions, they are equivalent for finitely presented sheaves:

Lemma 19.4. A finitely presented quasi-coherent OX-module E on a scheme X
having the property that Ex is a free OX,x-module for every x P X , is locally free.

Proof One way is trvial. So assume that the stalks Ex are free. Pick a point x P X and a
enxtend a basis for Ex to sections σ1, . . . , σr of E over an open U . This gives

0 K Or
U E C 0

ϕ

where ϕ sends the i-th basis vector to σi. The cokernel C is finitely generated so its support
is closed, and it is a proper subset because Cx “ 0. Shrinking U , we may thus assume that
C “ 0. Hence Kx b kpxq “ 0 since Ex is free, and ϕb idkpxq is an isomorhism. The kernel
K is of finite type since E is of finite presentation, and its support is therefore closed. It does
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not contain x, and so has a complement which is a non-empty open neigbourhood V about x
where K restricts to zero. Hence ϕ|V is an isomorpism.

The hypothesis thatX be locally Noetherian may be relaxed; what is needed is that sheaves
of finite type are finitely presented, which certainly is the case over locally Noetherian
schemes. Examples of schemes for which the lemma fails are exotic and rather involved
(we give one below, Example 19.16). A simple example that the coherence hypothesis is
necessary appears already on the spectrum of a DVR, a continuation of Example 14.23 on
page 224.

Example 19.5. Let A be DVR with fraction field K, and let x and η be respectively the
closed and the open point of X “ SpecA. Let E be the OX -module with ΓpX, Eq “ A and
Γptηu, Eq “ K , and with the restriction map being the zero map. Then E is an OX -module
with exactly the same stalks as the structure sheaf OX , but it is not locally free (in fact, it is
not even quasi-coherent).

19.2 Examples

Example 19.6 (The tangent bundle of the 2-sphere). Consider X “ SpecA where we put
A “ Rrx, y, zs{px2`y2`z2´1q, and consider theA-module homomorphism ϕ : A3 Ñ A
given by multiplication by the vector V “ px, y, zq. Then M “ Kerϕ gives rise to a quasi-
coherent sheaf T “ ĂM . Any element in the kernel corresponds to a vector of polynomials
pp, q, rq P A3 so that

xp` yq ` zr “ 0

On U “ Dpxq we may divide by x, and solve for p, so pp, q, rq is uniquely determined
by the elements q, r. Conversely, given any pair q, r of elements in A, we may define the
element p´x´1pyq ` zrq, q, rq which lies in Mx. This implies that Mx » A2. A similar
argument works for y and z, showing that T is locally free of rank 2.

It is a non-trivial fact that M is not free, i.e. not isomorphic to A2. Every element of A3

gives a vector field on the sphere S2. For instance, px, y, zq P A3 defines the vector field
normal to the sphere which points out from the origin to the point px, y, zq. Any element
of M therefore gives a tangent vector to S2. If M were free, elements of a basis would be
non-vanishing vector fields on S2, which is impossible (from topological reasons).

Example 19.7. Let k be a field and let R “ kru0, . . . , uns. Let further An`1 “ SpecR and
U “ An`1 ´ t0u. Consider the eaxct sequence of R-modules

0 R Rn`1 M 0
ϕ

where the map ϕ sends a plolynmial p to
ř

i pxiei where ei is the i-th standard basis vector.
We contend that the restriction E “ ĂM |U is a locally free sheaf of rank n. Taking tildes and
restricting to U we obatin the sequence

0 OU On`1
U E 0 (19.3)

of sheaves on U . Over the distinguished open set Dpxiq, this sequence splits since the map π
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that sends
ř

j ajej to aix´1
i is section of ϕ. Consequently EDpxiq » On

Dpxiq
. The sheaf E is

not free, and we will come back to that later.

Example 19.8. Let E a be finitely presented quasi-coherent sheaf on an integral scheme
X and assume that the dimension dimkpxq Ex bOx,x

kpxq is the same for all points x P X .
Then E will be locally free. Citing Lemma 19.4 it suffices to show that if M is a finitely
presented module over a local domain A with fraction field K and residue class field k
and M satisfying dimkpxq M bA kpxq “ dimM bAK, then M is free. This is a standard
application of Nakayama’s lemma: lifting a basis for M bA kpxq to elements in M , we find
an exat sequence

0 Kerϕ Ar M 0
ϕ

where ϕ is surjective after Nakayama’s lemma. Tensoring the sequence with K, yields
KerϕbAK “ 0 sinceM bAK is a vector space overK of rank r “ dimkpxq M bA kpxq.
It follows that K is torsion module, but being contained in a free module over an integral
domain, it is torsion free, so K “ 0.

Example 19.9. If X is an integral scheme and ϕ : E Ñ F is map of locally free sheaves.
Assume that dimkpxq ϕx bOX,x

kpxq is constant for x P X . Then Cokerϕ is locally free.

Exercise 19.2.1. Let E be of finite presentation on an integral scheme X . Show that there is
an open sense subset U Ă X where E |U is free. Assume that the closed points are dense in
X , and that dimkpxq Ex bOX,x

kpxq is constant for all closed points x P X . Show that E is
locally free. Note that this applies to sheaves on varieties.

Exercise 19.2.2. The most general version of the algebraic statement in Example 19.7 is
the following. Let A be a reduced ring and M a finitely generated A-module. Assume that
dimkppq K bA kppq is constant for all maximal and all minimal prime ideals in A. Then M
is free. Show this.

.

Example 19.10 (The four-dimensional quadric hypersurface). Let k be a field and let
R “ krp01, p02, p03, p12, p13, p23s. Consider the matrix

M “

¨

˚

˚

˝

0 p01 p02 p03
´p01 0 p12 p13
´p02 ´p12 0 p23
´p03 ´p13 ´p23 0

˛

‹

‹

‚

.

Let us consider the closed subschemes in P5 “ ProjR defined by the conditions that this
matrix has a rank less than a given bound. Note that M has rank at most 3 precisely when the
determinant vanishes. In fact, this matrix M has the special property that the determinant is a
square: one computes that detM “ q2 where

q “ p01p23 ´ p02p13 ` p03p12

It is a fact that the rank of an antisymmetric matrix is even, so the g3 ˆ 3-minors of M are
all identically zero. The locus of points where M has rank at most 2 is given by the ideal
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generated by the 2 ˆ 2-minors, which by direct calculation has radical equal to the irrelevant
ideal R`. Consider the exact sequence

0 Ñ Rp´1q4
M
ÝÑ R4 Ñ CokerM Ñ 0.

Applying the tilde-functor we obtain an exact sequence of sheaves

0 Ñ OP5p´1q4 Ñ O4
P5 Ñ F Ñ 0 (19.4)

where F “ ČCokerM , and by Exercise 19.2.1 the sheaf F is locally free of rank two.
Consider the quadric hypersurface X “ V pqq and let ι : X Ñ P5 denote the inclusion.

Applying, ι˚ we arrive at an exact sequence of sheaves on X

OXp´1q4 Ñ O4
X Ñ E Ñ 0

where E “ i˚F (recall that i˚ is only right-exact). Now the discussion above shows that E is
locally free of rank 2 (as it has rank 2 at all closed points).

19.3 Locally free sheaves on affine schemes

On an affine scheme X “ SpecA every quasi-coherent OX-module E is isomorphic to ĂM
for some A-module M . Thus a natural question is which A-modules give rise to locally free
sheaves. The main result of this section is that E is locally free of finite rank if and only if M
is finitely generated and projective.

We recall a few basic facts about projective modules (for a more extensive treatment see
the appendix). AnA-moduleM is called projective if it is a direct summand in a free module;
that is, if there is another moduleN so thatM ‘N » AI . A moduleM being projective can
further be characterized by saying that the functorN ÞÑ HomApM,Nq is exact. Clearly free
modules have this property, but examples of projective modules which are not free abound.
However, over local rings the two notions are equivalent for finitely generated modules:

Lemma 19.11. A finitely generated projective module M over a local ring A is free.

Proof This is a standard application of Nakayama’s lemma. Let k “ A{m denote the
residue field, and consider the module M bA k “ M{mM , which is a finite dimensional
vector space over k. Lifting the elements of a basis to elements mi of M , we obtain a
map ϕ : Ar Ñ M that sends the standard basis elements ei to mi. Then ϕb idk is an
isomorphism, so by Nakayama’s lemma ϕ is surjective, and we have a short exact sequence

0 Ñ Kerϕ Ñ Ar
ϕ
ÝÑ M Ñ 0.

As M is a projective module, this sequence splits. This shows that Kerϕ is finitely gener-
ated, and that the sequence stays exact when tensorized by k. Again, since ϕ b idk is an
isomorphism, it holds that K bA k “ 0, and hence that K “ 0, once more by Nakayama’s
lemma. It follows that M » Ar, and is M free.

Being projective is a local property for finitely presented modules:
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Lemma 19.12. A finitely presented module is projective if and only if Mp is projec-
tive for all p P SpecA.

Proof That being projective is preserved under localization is clear. For the converse, the
salient point is that for finitely presented modules forming hom’s commutes with localization;
that is, for all p P SpecA it holds that HomApM,Nqp “ HomAp

pMp, Npq when M is
finitely presented. Coupling this with the standard facts that localisation is an exact operation
and being zero is a local property, the lemma follows.

Proposition 19.13. Let X “ SpecA where A is Noetherian, and let F “ ĂM be a
coherent sheaf. The following are equivalent:

(i) F is locally free;
(ii) Fx is a free OX,x-module for all x P X;

(iii) Mp is a free Ap-module for all p P SpecA;
(iv) M is a projective A-module.

Proof That (i) and (ii) We have already seen that (i) and (ii) are equivalent (Lemma 19.4),
and that (ii) and (iii) are equivalent follows by definition of ĂM . Finally, (iii) and (iv) are
equivalent by the two preceding lemmas.

Example 19.14. This is a minimalistic example of a projective module that is not free (see
also Example 19.1 above). Let A “ Z{2 ˆ Z{2 and consider the ideal I “ Z{2 ˆ p0q. Then
I is a projective A-module, since if J “ p0q ˆ Z{2, we have I ‘ J » A. However, I is not
free because any free A-module must have at least four elements!

The sheaf rI on SpecA is thus locally free, but not free. Note that SpecA is the disjoint
union of two copies of SpecZ{2, and rI restricts to the structure sheaf on one of these and to
the zero sheaf on the other.

Example 19.15. A less trivial example arises in number theory. We consider A “ Zri
?
5s

and the ideal a “ p2, 1 ` i
?
5q. Then a direct computation shows that a ‘ a » A ‘ A,

so a is projective. However, a is an ideal in A, so it is free if and only if it is principal. We
therefore conclude that it is not free.

Example 19.16 (An exotic example). Let R “
ś8

i“1 F2 be a direct product of countably
many copies of the field F2 with two elements, and let I “

À8

i“1 F2. Then I is an ideal and
R{I is locally free in the sense that pR{Iqp is free for all primes p, but R{I is not projective.

Elements of R are sequences α “ pαiqiPN where αi P t0, 1u, and I consists of the α’s
with only finitely many non-zero components. Let ei denote the sequence with a 1 in slot i
and a 0 in all the others. Then I is generated by the ei’s. Moreover, no non-zero element in R
is killed by all the ei’s, and this shows that R{I cannot be a summand in a free module.

For the other part of the claim, let p be a prime ideal in R. If I ­Ă p, it holds that
pR{Iqp “ 0, hence is free. So assume that I Ă p. For each element α P I , it holds that
αi “ 0 when i ě n for some n. Let β be the sequence with βi “ 0 for i ă n and βi “ 1 for
i ě n. Then β kills α. But 1 “

ř

iăn ei ` β and as
ř

iăn ei P I Ă p, it follows that β R p.
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Hence α maps to 0 in Ip, and as this holds for all α P I , it ensues that Ip “ 0. Consequently
pR{Iqp “ Rp is free.

Exercise 19.3.1. Let X “ SpecA, where A “
ś8

i“0 Z. Show one may give M “ Z an
A-module which is projective, but not free.

Exercise 19.3.2 (Torsion sheaves). LetX be an integral scheme, and let F be a quasi-coherent
sheaf on X . Define for each open set U Ă X , a subgroup T pUq Ă FpUq consisting of
all the elements m P FpUq such that the germ mx is torsion in Fx for all x P X , i.e.,
ax ¨mx “ 0 for some non-zero ax P OX,x.

a) Show that T is a subsheaf of F . Also, show that T is quasi-coherent. T is called
the torsion subsheaf of F ; another notation for it is Ftors.

b) Let K denote the constant sheaf on K “ kpXq. Define a map of sheaves

ν : F Ñ F bOX
K .

Show that T “ Ker ν.
c) A sheaf is called torsion free if Ftors “ 0. Show that the quotient F{T is

always torsion free, i.e., pF{T qtors “ 0.
d) Show that any locally free sheaf is torsion free.

19.4 Properties of locally free sheaves

From the previous proposition, local properties of coherent locally free sheaves are obtained
from corresponding properties of coherent projective modules. And by using sufficiently fine
affine covers, one may even (at least, when maps are globally defined) reduce to the case of
free modules.

In Example 19.3 we saw that the direct sum of two locally free sheaves is locally free. I the
same manner, numerous of the standard operation in commutative algebra when performed
on locally free sheaves, yield locally free sheaves. The ensuing formulas are indispensable
when working with locally free sheaves, and we summarize some in Proposition 19.17below.

So let E and F be two locally free sheaves of finite rank. As in Example19.3 there are
covers of X that trivialize both of them and let tUiu be one, and refining it if necessary, we
may assume that the Ui’s are affine. When U “ SpecA is an open affine subscheme, E and
F will denote A-modules such that E |U “ rE and F |U “ rF .

On U “ SpecA the tensor product E bOX
F restricts to

E bOX
F |U “ pEbA F qr

which obviously is free of finite rank when E and F are, and the rank will be rpEqrpF q.
Let us take a closer look at the hom-sheaves. Each A-module M has a dual module

M_ “ HomApM,Aq. When M is a free module of finite rank, the dual M_ will likewise
be free, and it will have the same rank asM : given a basis teiu forM , the maps δi : M Ñ A
with ei ÞÑ 1 and ej ÞÑ 0 when i ‰ j form a basis for M_, called the dual basis. For any
moduleM there is a canonical evaluation mapM Ñ pM_q_ defined bym ÞÑ pϕ ÞÑ ϕpmqq,
and when M is free, it is straightforward to verify it is an isomorphism.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

340 Locally free sheaves

Given another module N , there is a canonical map

M_ bAN Ñ HomApM,Nq,

which is given by the assignment ϕb n ÞÑ pm ÞÑ ϕpmqnq. When M and N are free of
finite rank it will be an isomorphism; indeed, when N “ A, this is obviously true, and both
sides are additive in N .

Returning to the locally free sheaves on X , we let E and F be two of finite rank. The
Hom-sheaf HomOX

pE ,Fq is then well-behaved; it is quasi-coherent and restricts to affine
open sets U “ SpecA as expected:

HomOX
pE ,Fq|U “ HomApE,F qr.

The canonical maps in (19.4) are defined over each open affine and glue together to a global
map

E bOX
F Ñ HomOX

pE ,Fq.

When both E and F are locally free of finite rank, it will be an isomorphism.
The next proposition summarises some of the basic properties of locally free sheaves of

finite rank.

Proposition 19.17. Let X be a scheme and let E and F be two locally free OX-
modules of finite rank.

(i) The direct sum E ‘ F is locally free of rank rxpEq ` rxpFq;
(ii) The tensor product E bOX

F is locally free of rank rxpEq ¨ rxpFq;
(iii) The dual sheaf E_ is locally free of rank rxpEq, and the canonical

evaluation map pE_q_ Ñ E is an isomorphism;
(iv) The canonical map E_ bOX

F Ñ HomOX
pE ,Fq is an isomorphism;

and rank of HomOX
pE ,Fq equals rxpEqrxpFq.

Example 19.18. Suppose E is locally free of rank r. Let Ui be a trivializing cover, and let τji
denote the gluing functions for E . As before, we interpret τji as an r ˆ r matrix with entries
in OXpUi X Ujq. Then E_ is obtained by the gluing matrices νji “ pτ tjiq

´1.

Example 19.19. Suppose E and F are locally free of ranks r and s respectively. After
refining, we may assume that they admit the same trivializing cover. Suppose that the gluing
functions are given by τji and νji respectively. Then E ‘ F is obtained by gluing together
the different Or

Ui
‘ Os

Ui
with help of the matrices

Φji “

ˆ

τji 0
0 νji

˙

Thus, for instance, the sheaf OP1
A

‘ OP1
A

p´1q on the projective line is obtained using the
gluing matrix

τ01 “

ˆ

1 0
0 u

˙

over U0 X U1 “ SpecAru, u´1s with U0 “ SpecArus and U1 “ SpecAru´1s.
When it comes to tensor products the gluing functions of E bOX

F will of course be the
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tensor products τij b νij , whose matrices will be the Kronecker products of the matrices
of the τij’s and νij’s. In the particular case that F is of rank one the gluing maps are just
multiplication by invertible sections gij in OXpUijq, and the gluing maps of E b F will be
gijτij .

19.5 Locally free sheaves on P1

In 1955, Grothendieck wrote his paper ”Sur la classification des fibres holomorphes sur la
sphere de Riemann”, showing that any locally free sheaf on the projective over a field splits
as a sum of invertible sheaves:

Theorem 19.20. Let X “ P1
k and let E be a locally free sheaf of rank r. Then there

are integers a1, . . . , ar such that

E » OP1
k
pa1q ‘ ¨ ¨ ¨ ‘ OP1

k
parq. (19.5)

Grothendieck’s proof was sheaf-theoretic, but in fact this is a rather elementary result
which has been rediscovered and reproved several times. For instance, Grothendieck was not
aware of the following result, due to Dedkind–Weber from 1882. Dedekind, Weber. Theorie
der algebraischen Funktionen einer Veränderlichen’, Crelle’s Journal, 1882

Lemma 19.21 (Dedekind–Weber). Let k be a field and let A P GLrpkrx, x´1sq.
Then there exist matrices B P GLrpkrxsq and C P GLrpkrx´1sq such that

BAC “

¨

˚

˝

xa1 0
. . .

0 xar

˛

‹

‚

. (19.6)

This lemma is completely elementary, and can be proved by induction on r with only basic
row-operations on matrices.

In any case, Theorem 19.20 follows immediately from the description of quasi-coherent
sheaves on P1

k from Example 15.11. In the notation of that example, we have M0 “ krxsr,
M1 “ krx´1sr and τ : krx˘1sr Ñ krx˘1sr. The lemma above implies that after changing
bases, the map τ is given by a diagonal matrix 19.6. Hence E splits as (19.5).

Exercise 19.5.1. Prove Lemma 19.21 for r “ 2.

19.6 Pushforwards and pullbacks

A word of warning: the pushforward of a locally free sheaf is not locally free in general.
For instance, if ι : Spec k Ñ A1

k is the inclusion of a closed point p in A1
k, F “ i˚OSpec k

has stalk kppq at p but zero stalks everywhere else, so F is not locally free. For pullbacks,
however, we have the following:
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Proposition 19.22. Let f : X Ñ Y be a morphism of schemes. If E is a locally free
OY -module of finite rank, then f˚E is a locally free OX -module of the same rank as
E .

Proof Let U Ă Y be an open over which E is trivial; that is E |U » Or
U . Then, since

f˚OY “ OX for any morphism and f˚ is an additive functor, we see that f˚E |f´1U »

Or
f´1U . Hence f˚E is locally free.

Note that if τij are the gluing matrices for E over Uij corresponding to a trivializing
cover tUiu, the cover f´1Ui will be trivialising for f˚E and the gluing matrices are just the
pullbacks of those of E ; i.e. the images under the maps f 7|Uij

: OY pUijq Ñ f˚OXpUijq.

Example 19.23. Let k be a field and P1
k “ Proj kru0, u1s. Fix a natural number n and

consider the map f : P1 Ñ P1 given by ui ÞÑ uni introduced i Example 9.23 on page 142.
We contend that f˚OP1

k
pmq “ OP1

k
pnmq.

With u “ u1u
´1
0 the projective line P1

k is as usual covered by the open sets U0 “

Spec krus and U1 “ Spec kru´1s, and the transition function

τm : OU1
|U0XU1

Ñ OU0
|U0XU1

of the locally free sheaf OP1
k
pmq acts as multiplication by um, as explained in Section 7.2.

The map f maps each of the open sets Ui into itself, and the action of f 7 on u is u ÞÑ un.
It follows that the pullback of the transition function τm is just multiplication by unm:

τnm : OU1
|U0XU1

Ñ OU0
|U0XU1

.

Hence f˚OP1
k
pmq “ OP1

k
pnmq.

Example 19.24. Letting n “ 2 in the previous exercise we obtain the ‘squaring-morphism’

f : P1
k Ñ P1

k

We claim that the pushforward f˚OP1
k

is locally free of rank two. We shall use two copies
Proj krt0, ts and Proj kru0, u1s and the map is induced by the assignments ui ÞÑ t2i . We let
u “ u1u

´1
0 and t “ t0t

´1
1 .

Over the local chart U0 “ Spec krus the map f is induced by krus ÞÑ krts with u ÞÑ t2,
and over the chart U1 “ Spec kru´1s it is given by the map kru´1s Ñ krt´1s such that
u´1 ÞÑ t´2.

It follows that the restriction f˚OP1 |U0
to U0 equals the tilde of krts as a krus-module,

which clearly is free with basis 1 and t; indeed, one has krts “ krt2s‘krtst “ krus‘krust.
In a symmetric way, on the chart U1 “ Spec kru´1s the pushforward f˚OP1 restricts to the
tilde of the module kru´1s ‘ kru´1st´1. Hence f˚OP1 is locally free of rank 2.

In fact, one can readily check that there is an isomorphism f˚OP1 » OP1 ‘ OP1
k
p´1q

where OP1
k
p´1q Indeed, over U0 X U1 we have the equality

krt, t´1s “ krt2, t´2s ‘ krt2, t´2st “ krt2, t´2s ‘ krt2, t´2st´1

or in other words

krt, t´1s “ kru, u´1s ‘ kru, u´1s “ kru, us ‘ kru, ust´1
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Now, ppu, u´1qt´1 “ ppu, u´1qu´1t so when the equality krt2, t´2st´1 “ krt2, t´2st is
translated into a gluing function kru, u´1s Ñ kru, u´1s, it becomes multiplication by u´1;
that is, the corresponding sheaf is OP1

k
p´1q.

Example 19.25. Let Y be an integral scheme with the property that the local ring OY,y at
each closed point y is a DVR (one would call Y a regular curve). Let X be a Noetherian
scheme and f : X Ñ Y a finite morphism and assume that all components of X (including
embedded ones) dominate Y . Then f˚OX is locally free of finite rank.

After localization this boils down to the case that X “ SpecB and Y “ SpecA with
A a DVR. Each component V ppq of X dominates Y so p pulls back to the zero ideal in
A (item (iii) of Proposition ?? on page ??), and since the union of the primes p Ă B
corresponding to the components of X , equals the set of zero divisors, we infer that B is a
torsion free A-module, and it is finitely generated by hypothesis. The claim then follows by
the general property of DVR’s that finitely generated torsion free modules are free.

Exercise 19.6.1. With the setup of Example 19.23, show that f˚OP1
k

is locally free of rank
n, and in fact that the more precise formula

f˚OP1
k

“
à

0ďiďn´1

OP1
k
p´iq.

holds true.

Exercise 19.6.2 (The projection formula). Let f : X Ñ Y be a morphism of schemes, F an
OX -module, and E a locally free sheaf of finite rank. Show that there is a natural isomorphism
of OY -modules

f˚pF b f˚Eq » f˚pFq b E .

19.7 Zero sets of sections

Let E be a locally free sheaf on a scheme X and let x P X be a point. We will call the fibre
of E at x the kpxq-vector space Epxq

Epxq “ Ex{mxEx » Ex bOX,x
kpxq

If U Ă X is an open subset containing x and s P ΓpU, Eq is a section of E over U , we shall
denote by spxq the image of the germ sx P Ex in the fibre Epxq. This is in close analogy with
what we called the ‘value’ of a regular function in Chapter 2.

Definition 19.26. Let E be an locally free sheaf on the scheme X , and suppose
s P ΓpX, Eq is a global section. We define the zero set of s by

V psq “ tx P X | spxq “ 0u.

Also, we define the open set Xs by

Xs “ tx P X | spxq ‰ 0 u.

Equivalently, Xs is the set of points x where s R mxEx.
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The set V psq is indeed a closed subset of X: the sheaf E is locally free, so every point has
an open affine neighbourhood U such that E |U » OX |U , and we may safely assume that
E “ Or

X with X “ SpecA. This brings us back to the ‘function case’: the section s is an
element in Ar, and V psq coincides with the usual closed set. It follows that Xs “ X ´V psq
is also open in X .

Proposition 19.27. Let f : X Ñ Y be a morphism of schemes and let E be a locally
free sheaf on Y . Then

f´1pV psqq “ V pf˚sq and f´1pXsq “ Xf˚s.

Proof For each of these statements, we may reduce to the case X “ SpecB; Y “ SpecA
and L “ Or

Y . In that case (i) follows from the fact that f´1pV paqq “ V pϕpaqq for a P A,
which we have seen several times before.

The set V psq just defined is a priori just a closed subset of X , but we can put a canon-
ical scheme structure on it as follows. We may view a global section s P ΓpX, Eq “

HompOX , Eq, as a map of OX-modules s : OX Ñ E . Applying HomOX
p´,OXq, we get

a map

s_ : E_ Ñ OX (19.7)

The image of s_ is a quasi-coherent ideal sheaf of OX . We define the subscheme of zeroes of
s to be the closed subscheme Zpsq of X .

Example 19.28. Let X “ SpecA, and E “ Or
X . Then a section s P ΓpX, Eq is given

by an r-tuple pf1, . . . , frq P Ar of elements in A. The map s_ is simply the tilde of the
map Ar Ñ A, that sends the i-th basis vector ei to fi. Therefore, Zpsq is simply the usual
subscheme given by the ideal I “ pf1, . . . , frq. Locally, any subscheme Zpsq looks like this
example.

Exercise 19.7.1. Show that the subscheme Zpsq satisfies the following universal property:
A morphism f : T Ñ X satisfies f˚s “ 0 if and only if it factors through Zpsq. (Hint:
Understand the subscheme on each open affine SpecA Ă X first. Reduce to the case
E “ OX .)

19.8 Globally generated sheaves

Definition 19.29. Let X be a scheme and let F be an OX-module. We say F is
globally generated (or generated by global sections) if there is a family of sections
si P FpXq, i P I , such that the germs of si generate Fx as an OX,x-module for each
x P X .

Equivalently, F is globally generated if there is a surjection

OI
X Ñ F Ñ 0

for some index set I . In particular, any quotient of a globally generated sheaf is also globally
generated.
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Let us consider a few examples:

Example 19.30. On an affine scheme any quasi-coherent sheaf is globally generated. Indeed,
if X “ SpecA, F “ ĂM , for some A-module M , then picking any presentation AI Ñ

M Ñ 0 for M and applying tilde shows that F is globally generated.

Example 19.31. Let R be a graded ring generated in degree 1 and set X “ ProjR. Then
F “ Op1q is globally generated. Indeed, the only way F could fail to be globally generated
is that there is a point x P X for which all sections s P ΓpX,Op1qq “ R1 simultaneously
vanish. However, by assumption R1 generates the irrelevant ideal, so this is impossible.

On the other hand, if R is not generated in degree 1, then it can happen that the sheaf
Op1q has no global sections at all. This happens for instance for the weighted projective
space Pp2, 3, 4q “ Proj krx2, x3, x4s (with deg xi “ i). The sheaf Op´1q is likewise not
typically globally generated (unless, say, X is a point).

Example 19.32. For a closed subscheme Y Ă X , the structure sheaf i˚OY is globally
generated (generated by the section ‘1’). On the other hand the corresponding ideal sheaf I is
typically not globally generated. For instance, if Y a closed point in P1

k, then IY » Op´1q,
which has no global sections.

Example 19.33. The locally free sheaves from Section ?? are both globally generated. For
instance, the sheaf E from (??) admits a surjection On`1 Ñ E Ñ 0.

Proposition 19.34. Let f : X Ñ Y be a morphism of schemes and let L be an
invertible sheaf on Y . Then if L is generated by global sections s0, . . . , sn, then f˚L
is generated by the sections t0 “ f˚s0, . . . , tn “ f˚sn, and X is covered by the
open sets Xt0 , . . . , Xtn .

Proof For each of these statements, we may reduce to the case X “ SpecB; Y “ SpecA
and L “ OY . In that case (i) follows from the fact that f´1pV paqq “ V pϕpaqq, which we
have seen several times before.

For (ii), we note that hypothesis gives that the sections s0, . . . , sn are elements in A that
generate the unit ideal. But then clearly the same holds for the pullbacks ϕps0q, . . . , ϕpsnq.

Example 19.35. For the pushforward, f˚F may fail to be globally generated even when F is
the structure sheaf. For example, if f : P1 Ñ P1 is the ‘squaring map’, i.e., the map induced
by kru2, v2s Ă kru, vs, then f˚OP1 » OP1 ‘ OP1p´1q. The latter sheaf is not globally
generated, since it has Op´1q as a quotient.
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20

Differentials

So far we have defined schemes and surveyed a few of their basic properties (e.g. how to
study sheaves on them). In this chapter, we introduce tangent spaces and Kähler differentials,
which allow us in some sense to do calculus on schemes. This in turn will allow us to define
the most important sheaves in algebraic geometry, namely, the cotangent sheaf, the tangent
sheaf, and the sheaves of n-forms.

Differentials appear prominently throughout many areas of mathematics, multivariable
analysis, manifolds and differential geometry to mention a few. In algebraic geometry they
are introduced algebraically using their formal properties and are usually referred to as Kähler
differentials after the German mathematician Erich Kähler (1906–2000).

20.1 Derivations and Kähler differentials

We will work over a base ring A, and B will be an A-algebra. We will also need a B-
module M . The geometric picture to have in mind is that A “ k, where k is a field, and
X “ SpecB Ñ Spec k is the structure morphism.

Definition 20.1. An A-derivation (from B with values in M ) is an A-linear map
D : B Ñ M satisfying the product rule, also called the Leibniz rule:

Dpbb1q “ bDpb1q ` b1Dpbq.

Given that the product rule holds, D is A-linear if and only if it vanishes on all elements of
the form a ¨1 with a P A; ifD isA-linear, we haveDpa ¨1q “ aDp1q “ 0 sinceDp1q “ 0,
which follows from the product rue applied to 12 “ 1. If D vanishes on A, the product rule
gives Dpabq “ aDpbq ` bDpaq “ aDpbq. We may therefore think of the elements in B of
the form a ¨1 as ‘constants’; note however, that a derivation also can vanish on other elements
inB (a silly example is the zero map, which is a derivation). For a more constructive example
see Example 20.8 below).

Example 20.2. The map of the polynomial ring B “ krxs to itself which is given
by P ptq ÞÑ P 1ptq, is a k-derivation. More generally, the partial differential operators
B{Bx1, . . . , B{Bxn, as well as their k-linear combinations, are k-derivations on the poly-
nomial ring krx1, . . . , xns.

A straightforward induction shows that the good old rules from calculus have analogues in
the abstract situation: it holds true that Dpbnq “ nbn´1Dpbq and, in case b is invertible in B,
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20.1 Derivations and Kähler differentials 347

that Dp1{bq “ ´Dpbq{b2. Moreover, if P ptq is a polynomial in Arts, one has the chain rule
DpP pbqq “ P 1ptqDpbq, where P 1ptq is the formal derivative defined as P 1ptq “

ř

i iait
i´1

when P ptq “
ř

i ait
i.

The set of A-derivations D : B Ñ M is denoted by DerApB,Mq. This set inherits a
B-module structure from M , and it is as such naturally a submodule of HomApB,Mq.
This gives rise to a covariant functor DerApB,´q from ModB to itself. More precisely, if
ϕ : M Ñ M 1 is aB-linear map, we can map a derivationD P DerApB,Mq to ϕ˝D : B Ñ

M 1, which is in turn an A-derivation of B with values in M 1.
The set of derivations DerApB,Mq is also functorial in the base ring A and the A-algebra

B; in both cases it is contravariant. If A Ñ A1 is a ring homomorphism, any A1-derivation
B Ñ M is in turn an A-derivation. We therefore obtain an inclusion DerA1 pB,Mq Ă

DerApB,Mq.

20.1.1 The module of Kähler differentials

The covariant functor DerApB,´q on the category of B-modules is representable. This
simply means that there exists a distinguished B-module ΩB{A and an isomorphism of
functors

DerApB,´q » HomBpΩB{A,´q. (20.1)

In more down-to-earth terms, this condition is equivalent to there being a universal derivation1

dB : B Ñ ΩB{A that has the following property: For any A-derivation D : B Ñ M there
exists a unique B-module homomorphism α : ΩB{A Ñ M such that D “ α ˝ dB . In terms
of diagrams, we have

B ΩB{A

M.

dB

D
α

To see directly why such a module exists, we can construct it via generators and relations. For
each element b P B introduce a symbol db and consider the free B-module G “

À

bPB Bdb
they generate. Inside G we have the submodule H generated by the expressions of the form

dpb` b1q ´ db´ db1, or dpbb1q ´ bdb1 ´ b1db, or da

for b, b1 P B and a P A. We then define ΩB{A “ G{H , and the map dB : B Ñ ΩB{A

is given by dBpbq “ db. It is well-defined as a group homomorphism since any Z-linear
relation among the db’s maps to zero in G{H by the imposed additive constraint, and it is a
derivation because all relations dpbb1q “ bdb1 ` b1db are forced to hold in G{H . Finally, it
will be A-linear because da “ 0 in G{H .

It is not hard to see that this module indeed satisfies the universal property above: given an
A-derivation D : B Ñ M , we define the B-homomorphism α : ΩB{A Ñ M by αpdbq “

Dpbq (which is well-defined precisely because D is a derivation!).
1 The ring A is an essential part of the structure,but for the sake of a practical notation is not shown; when it is

necessary to emphasize the base ring, the notation will be dB{A
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348 Differentials

Definition 20.3. The elements of the module ΩB{A are called the Kähler differentials,
or simply differentials of B over A.

Example 20.4 (Change of constants). To any homomorphism of rings ρ : A Ñ A1 corre-
sponds the natural inclusion DerA1 pB,Mq Ă DerApB,Mq, which via the isomorphism
(20.1) induces a surjective B-linear map

β : ΩB{A Ñ ΩB{A1 .

It is just the B-linear map that arises from dB{A1 ˝ ρ by the universal property of dB{A. In
terms of the generating sets in the construction above, the map β simply sends db to db; note
that da1 ÞÑ 0 for all a1 P B coming from A1.

Proposition 20.5 (Polynomial rings). LetA be any ring and letB “ Arx1, . . . , xns.
Then ΩB{A is the free B-module generated by dx1, . . . , dxn and the universal deriva-
tion is given by

dBf “
ÿ

pBf{Bxiqdxi.

Proof The universal property follows from the general chain rule: for any A-derivation
D : B Ñ M into a B-module M , the formula

Dpfq “
ÿ

i

pBf{BxiqDpxiq. (20.2)

holds true. Indeed, an easy induction, using the product rule, shows it to be true when f is
a monomial, and then A-linearity finishes he story. The B-linear map α :

À

iBdxi Ñ M
which sends each basis element dxi to Dpxiq, will be the wanted factoring map; by the
general chain rule (20.2), it satisfies the equality D “ α ˝ dB .

20.2 Examples

Here are some more explicit calculations of ΩB{A:

Example 20.6 (Localization). If B “ S´1A is a localization of A, then ΩB{A “ 0. Indeed,
take b P B, and choose s P S so that sb P A. Then sdBb “ dBpsbq “ 0, which implies that
dBb “ 0 since s is invertible in B.

Example 20.7 (Surjections). Generally, if ϕ : A Ñ B is surjective, then ΩB{A “ 0, because
if b “ ϕpaq, then dBb “ a ¨ dBp1q “ 0 in ΩB{A.

Example 20.8 (Separable field extensions). Let K “ kpaq be a separable field extension
and let P ptq be the minimal polynomial of a. For any k-derivation D : K Ñ K it holds that
0 “ Dp0q “ DpP paqq “ P 1paqDpaq. Hence Dpaq “ 0 since P 1paq ‰ 0 the element a
being separable over k. The product rule implies that Dpanq “ nan´1Dpaq “ 0 for each
natural number n, and since the powers an generate K as a vector space over k, it follows
that D “ 0.
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20.3 Properties of Kähler differentials 349

Example 20.9 (Inseparable field extensions). Contrary to the separable ones, inseparable
extensions have non-trivial derivations. Let us consider the simplest case when K is obtained
by adjoining a p-th root to a field k of characteristic p; that is, K “ kpbq with bp “ a,
where a P k is not a p-th power. The minimal polynomial of b is P ptq “ tp ´ a, and
K “ krts{ptp ´ aq. The point is that P 1ptq “ ptp´1 “ 0, so for each c P K the k-linear
map krts Ñ K given by Qptq ÞÑ Q1ptqc vanishes on P ptq and descends to a k-linear map
Dc : K Ñ K. Leibniz’ rules immediately yields that Dc is a derivation, and as Dcpbq “ c,
the derivation Dc does not vanish. We conclude that DerkpK,Kq » K and that ΩK{k » K
as well; in fact, Db serves as a universal derivation.

Example 20.10 (The differentials of a tensor product). Let B and C be two A-algebras.
Then the map

d : BbAC Ñ pΩB{A bACq ‘ pBbAΩC{Aq

given as bb c ÞÑ bb dCc` dBbb c on decomposable tensors and extended by bilinearity
is a universal A derivation. We compute

dpb1bb c1cq “ bb1 b pc1dCc` cdCc
1q ` pb1dBb` bdBb

1q b cc1 “

“ b1 b c1 ¨ pbb dCc` dBbb cq ` bb c ¨ pb1 b dCc
1 ` dBb

1 b c1q

and δ is a derivation, and which is universal in view of the formula

γpdbb c` b1 b dc1q “ 1b c1 ¨ αpb1 b 1q ` b1 b 1 ¨ βp1b c1q,

which defines the required map γ : pΩB{A bACq‘pBbAΩC{Aq Ñ M . Here α : ΩB{A Ñ

M and β : ΩC{A Ñ M are the linear maps corresponding to the derivations D|Bb 1 : B Ñ

M and D|1 b C : C Ñ M and D : BbAC Ñ M is a given A-derivation.

20.3 Properties of Kähler differentials

There are a few useful ways for computing modules of differentials when changing rings.

20.3.1 Base change

The Kähler differentials behave well with respect to base change:

Proposition 20.11. Let A be a ring and B be an A-algebra, and let A1 be another
A-algebra. Define B1 “ BbAA

1. Then there is a canonical isomorphism

ΩB1{A1 » ΩB{A bB B
1

Proof The universal derivation dB : B Ñ ΩB{A induces an A1-linear map

d1 “ dB b idA1 : B1 Ñ ΩB{A bAA
1 “ ΩB{A bB B

1

which clearly is a derivation. This will be the required universal derivation of ΩB1{A1 , and
so the claim follows: let ι : B Ñ B1 “ BbAA

1 be the canonical map b ÞÑ bb 1. Given
an A1-derivation D : B1 Ñ M into a B1-module, the map D ˝ ι : B Ñ M will be an
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A-derivation, and consequently it will factor as α ˝ dB for a B-linear map α : ΩB{A Ñ M .
The map αb idA1 : ΩB{A bAA

1 Ñ M bAA
1 “ M then yields the desired factorization of

D.

20.3.2 Two exact sequences

Let A be a ring and let ρ : B Ñ C be a homomorphism of A-algebras. There is natural
homomorphism of C-modules

ρ˚ : ΩB{A bB C Ñ ΩC{A

defined by ρ˚pdBbb cq “ cdCρpbq. The dual of ρ˚ corresponds, under the identification
(20.1), to the map DerApC,Nq Ñ DerApB,Nq that sends a derivation D : C Ñ N to
D ˝ ρ. (Note that HomBpΩA{B, Nq “ HomCpΩA{B bB C,Nq since N is a C-module.)

Moreover, there is a canonical ‘change-of-constants-map’

β : ΩC{A ΩC{B

as explained in Example 20.4 above.
The next propositions describes the kernel of this ‘change-of-constants-map’, and as one

would suspect, it is generated by the elements shaped like db where b P C comes from B:

Proposition 20.12. The following sequence of C-modules is exact

ΩB{A bB C ΩC{A ΩC{B 0
ρ˚ β

Proof That β ˝ ρ˚ “ 0 is clear. Checking exactness amounts to showing that for any
C-module N , the dual sequence

0 Ñ HomCpΩC{B, Nq Ñ HomCpΩC{A, Nq Ñ HomCpΩB{A bB C,Nq

is exact, and, as the map β is surjective (Example 20.4), only exactness in the middle is
an issue. Note that HomCpΩB{A bB C,Nq “ HomBpΩB{A, Nq, so the in view of the
constituting isomorphisms (20.1), the sequence can be written as

0 DerBpC,Nq DerApC,Nq DerApB,Nq.

The map on the left merely considers a B-derivation to be an A-derivation, whereas the one
on the right sends D : C Ñ N to the composition D ˝ ρ. Saying that D is mapped to zero
in DerApB,Nq, is saying that it vanishes on all elements b in C coming from B, which is
equivalent to saying it is a B-derivation; indeed, it will B-linear by Leibniz rule:

Dpbxq “ bDpxq ` xDpbq “ bDpxq,

for x P C and b P C coming from B.

In the next proposition, we establish an exact sequence that relates the differentials of anA-
algebraB and those of a quotientC “ B{I . It involves a map δ : I{I2 Ñ ΩB{A bB C which
sends the class of f P I mod I2 to dBf b 1, or more formally, which results from applying
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the tensor functor ´ bB C to the restriction dB|I : I Ñ ΩB{A. (Note that I bB C “ I{I2

as C “ B{I).

Proposition 20.13 (Conormal sequence). Suppose that B is an A-algebra. Let
C “ B{I for some ideal I Ă B and let α : B Ñ C “ B{I be the canonical map.
Then there is an exact sequence of C-modules

I{I2 ΩB{A bB C ΩC{A 0.δ α˚

Proof As in the previous proposition it suffices to check that for each C-module N , the
dual sequence

0 DerApC,Nq DerApB,Nq HomCpI{I2, Nq “ HompI,Nq

is exact. In view of Proposition 20.12 and Exampe 20.7 the map α˚ is surjective, and hence
the leftmost map is injective. The rightmost map associates to a derivation D : B Ñ N its
restriction to I . (Note that this is indeed a homomorphism of C-modules since IN “ 0).
If D|I “ 0, clearly D passes to the quotient and yields a D1 : C “ B{I Ñ N , which is a
C-derivation since D is a B-derivation. In other words, D lies in the image of DerApC,Nq,
and the sequence is exact in the middle as well.

Corollary 20.14. Let A be a ring and let B be a finitely generated A-algebra (or a
localization of such). Then ΩB{A is finitely generated over B.

Proof Write B “ Arx1, . . . , xns{I for some variables x1, . . . , xn and apply Proposi-
tion 20.5 on page 348 and the above proposition.

Exercise 20.3.1 (The diagonal and ΩB{A). Suppose that B is an A-algebra. There is an exact
sequence of A-modules

0 I BbAB B 0
µ

where µ is the multiplication map, which acts as b1 b b2 ÞÑ b1b2 on decomposable tensors,
and where I is the kernel of µ. Since BbAB{I » B, the module I{I2 has the structure of
a B-module.

a) Show that I is generated by elements of the form ab 1 ´ 1b a;
b) Show that the two B-module structure on I{I2 induced from each factor of the

tensor product agree; that is, bb 1 ¨ x “ 1b b ¨ x for all x P I{I2;
c) Show that d : B Ñ I{I2 defined by db “ bb 1 ´ 1b b is an A-derivation;
d) Show that d is a universal derivation so that I{I2 » ΩB{A and d “ dB{A.

Exercise 20.3.2. Let A Ñ B be a map of Noetherian rings, π : X Ñ Y . Assume
that ΩB{A “ 0. Show that the diagonal ∆ is a connected component of X ˆY X “

SpecBbAB.
Assume that I Ă A is finitely generated ideal such that I2 “ I . Show that I is a principal

ideal generated by an idempotent. HINT: Let txiu generate I and write xi “
ř

j aijxj with
aij P I . Consider the matrix Φ “ pδij ´ aijq. Show that detΦ annihilates I , and hence
there is an e P I so that p1 ´ eqI “ 0. Show that e2 “ e and that I “ peq.
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20.3.3 Kähler differentials and localization

When we later shall globalize the construction of the Kähler differenials, the following two
results about their behavior with respect to localizations are important. They both rely on the
sequence in Proposition 20.12.

Proposition 20.15. Let S Ă A be a multiplicative subset mapping into the group of
units in B. Then ‘change-of-constants-map’ is an isomorphism

ΩB{A » ΩB{S´1A.

Proof The ‘change-of-constants-map’ is the map β in the sequence

ΩS´1A{A bS´1AB ΩB{A ΩB{S´1A 0,
β

and by Example 20.6 we have ΩS´1A{A “ 0.

Proposition 20.16. Suppose S is a multiplicative system inB and let ι : B Ñ S´1B
be the localization map. Then the natural map ι˚ yields an isomorphism

ι : S´1ΩB{A » ΩS´1B{A.

Proof Note that S´1ΩB{A “ ΩB{A bB S
´1B, so we are in the context of Proposi-

tion 20.12 and may use the exact sequence there. We previously checked that ΩS´1B{B “ 0
(Example 20.6) and hence ι˚ is surjective. Thus in view of the identityHomS´1BpS´1ΩB{A,Mq “

HomBpΩB{A,M,) which is valid for any S´1B-module M , it suffices to see that the map

DerApS´1B,Mq DerApB,Mq

corresponding to ι˚ is surjective. This is the case since every D : B Ñ M extends to a
derivation D1 : S´1B Ñ M by the formula

D1pbs´1q “ psDb´ bDsqs´2, (20.3)

some checking must be done, which is left to the reader.

Exercise 20.3.3. Check that the expressionD1pbs´1q in (20.3) does not depend on the choice
of representative for bs´1 and that the resulting D1 is a derivation.

20.4 Exercises

Exercise 20.4.1. Let B “ krx, ys{px2 ` y2q. Show that if k has characteristic ‰ 2, then

ΩB{k “ pBdx`Bdyq {pxdx` ydyq

If k has characteristic 2, then ΩB{k is the free B module Bdx`Bdy.

Exercise 20.4.2 (Torsion in the Kähler differentials). (This exercise requires some knowledge
of Koszul complexes and homological algebra). Let f P krx, ys be a polynomial without
multiple factors and let A “ krx, ys{pfq. Show that the submodule of torsion elements of
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ΩA{k is isomorphic the quotient
`

pfx, fyq : f
˘

{pfx, fyq of the transporter ideal
`

pfx, fyq :

f
˘

in the polynomial ring R “ krx, ys. Show that X “ V pfq is regular if and only if ΩA{k

is torsion free. Show that, more precisely, the torsion is of length dimk A{pfx, fyqA. (This
number is the sum of a contribution from each singular point, often called the Tjurina number
of the singular point. The formula for the length is due to Zariski (?)).

Exercise 20.4.3. Let f P krx, ys be the equation of a non-singular curve. Let A “

krx, ys{pfq and B “ krx, ys{pf2q. Show that ΩB{k » Bdx ‘ Bdy if k is of charac-
teristic two and that ΩB{k » ΩA{k if not.

Exercise 20.4.4 (Transcendental extensions). Let k be a field and K “ kpx1, . . . , xnq a
purely transcendental field extension. Show that ΩK{k » Kn with dx1, . . . , dxn as a basis.
HINT: Consider krx1, . . . , xns and use (??), then localize and use 20.16.

Exercise 20.4.5. Assume that k Ă K is a finitely generated field extension.
a) Show that dimK ΩK{k ě trdegK{k;
b) Show that equality holds if and only if K is separably generated2 over k.
c) Show that if k is perfect, it holds that dimK ΩK{k “ trdegK{k, hence K

is separably generated over k. HINT: Let P ptq “
ř

i ait
i be a minimal

polynomial in for x, show that dP “ P 1ptqdt `
ř

i dai ¨ ti P ΩKrts{k is non
zero.

20.5 The sheaf of differentials

For us, the primary motivation for studying ΩB{A is that its tilde gives an intrinsic sheaf
on SpecB associated to any morphism of affine schemes SpecB Ñ SpecA. We would
like to globalize this construction to an arbitrary morphism of schemes f : X Ñ S. This
will lead us to form the sheaf of relative differentials ΩX{S which will be a quasi-coherent
OX-module.

This sheaf is locally built out of the various ΩB{A on local affine charts. These are not
just arbitrary modules that just happen to glue together to a sheaf; each of them come with
the universal property of classifying derivations D : B Ñ M . For this reason, we would
like to say that the ΩX{Y should satisfy a similar universal property. We make the following
definition:

Definition 20.17. LetF be a quasi-coherent (?)OX module. A morphismD : OX Ñ

F of OX -modules is an S-derivation if for all open affine subsets V Ă S andU Ă X
with fpUq Ă V , the map D|U is an OSpV q-derivation of OXpUq with values in F .
The set of all such S-derivations is denoted by DerSpOX ,Fq.

2 A field extension k Ă K is separably generated if there is a transcendence basis x1, . . . , xn for K over k so
that K is separable over kpx1, . . . , xnq. If in addition K is finitely generated over k, the K will be finite over
kpx1, . . . , xnq.
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Definition 20.18. The sheaf of relative differentials is a pair pΩX{S, dX{Sq of a quasi
coherent (?) OX -module ΩX{S and a S-derivation dX{S : OX Ñ ΩX{S that satisfies
the following universal property: For each quasi-coherent (?) OX-module F , and
each S-derivationD : OX Ñ F there exists a unique OX -linear map α : ΩX{S Ñ F
such that D “ α ˝ dX{S .
When S “ SpecA, we sometimes write ΩX{A for ΩX{S .

In other words, ΩX{S is a sheaf that represents the functor of S-derivations, in the sense
that there is a functorial isomorphism

HomOX
pΩX{S,´q » DerSpOX ,´q.

Exercise 20.5.1. Prove, using the universal property of differentials, that gives that this sheaf
is unique up isomorphism, if it exists.

In the affine situation with a morphismX “ SpecB Ñ S “ SpecA we have the module
of Kahler differentials ΩA{B and the corresponding sheaf ĆΩA{B will serve as the sheaf of
relative differential on X; this is just a consequence of „ being an equivalence of categories
ModB and QCohX . In the general case, gluing the local differential on affine covers works
well, and the main theorem of this section says that sheaves of relative Kähler differentials
exist unconditionally.

Theorem 20.19. Let f : X Ñ S be a morphism of schemes. Then there is a sheaf of
relative differentials ΩX{S , which is a quasi-coherent sheaf on X .
Moreover, ΩX{S has the property that for each open affine open V “ SpecA and
each open affine U “ SpecB Ă f´1pV q it holds that

ΩX{S|U » ĆΩB{A.

Also for each x P X , we have

pΩX{Sqx » ΩOX,x{OS,fpxq
.

Proof Fix an open subset V “ SpecA of S, and let U “ SpecB be an affine open subset
in X so that fpUq Ă V . For these two, we define

ΩU{V “ ĆΩB{A

which is a sheaf on U . We first show that the different ΩU{V glue together to an Of´1V -
module Ωf´1pV q{V when U runs through an open affine cover of f´1pV q. This comes down
to showing that if U 1 “ SpecB1 is a distinguished open affine subset of U , then

ΩU{V |U 1 » ΩU 1{V .

But as B1 is a localization of B, Proposition 20.16, tells us that ι˚ is such an isomorphism
with ι : B Ñ B1 Ñ the localization map. These maps depend functorially on the inclusions,
so the gluing conditions are trivially fulfilled.

Then we show that the sheaves Ωf´1V {V for all affine opens V Ď S glue to a OX -module
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ΩX{S . This amounts to showing that for each distinguished open V 1 “ SpecA1 Ď V , and
all open U “ SpecB of f´1pV 1q, we have

ΩU{V “ ΩU{V 1

But this follows from Proposition 20.15, as A1 is a localization of A in a single element
(which maps to an invertible element in B).

This means that we get an OX-module ΩX{S . Let us check that it satisfies the above
universal property. So we need to define the universal derivation dX{S : OX Ñ ΩX{S .

Let V “ SpecA Ď S and U “ SpecB Ď X be an affine open subset such that
fpUq Ď V . Define dX{SpUq “ dB{A. By the gluing construction above, this map does not
depend on the chosen affine open V , and it can be checked that the assignment is compatible
with restriction maps. Hence this gives a morphism of sheaves dX{S : OX Ñ ΩX{S , which
by construction is an S-derivation.

To check that this is universal, we again work locally. Let d : OX Ñ F be an S-derivation,
where F is an OX-module. Let U “ SpecA Ď S and V “ SpecB Ď X so that
fpUq Ď V . By the universal property of ΩB{A, we get an A-derivation DpV q : B Ñ FpV q,
and hence a unique B-linear map αpV q : ΩX{SpV q “ ΩB{A Ñ FpV q such that DpV q “

αpV q ˝ dX{V pV q. One has to check that these maps are compatible with restriction maps
(use the universal property of ΩB{A), but after that, we obtain a unique OX-linear map
α : ΩX{S Ñ F so that D “ α ˝ dX{S .

Note that the sheaf ΩX|S is always quasi-coherent (it is by definition locally of the form ĂM
for some module). Moreover, when X is of finite type over a field, ΩB{k is finitely generated,
and so ΩX|k is even coherent.

Example 20.20. Let A be a ring and let X “ AnS “ SpecArx1, . . . , xns be affine n-space
over S “ SpecA. Then ΩX{S » On

X is the free OX-module generated by dx1, . . . , dxn.

If X is a separated scheme over S then one could also define ΩX{S as follows. Let
∆ : X Ñ X ˆS X be the diagonal morphism and let I∆ be the ideal sheaf of the image of
∆. Then ΩX{S “ ∆˚pI∆{I2

∆q. This does in fact give the same sheaf as above, since these
two definitions coincide when X and S are both affine (Exercise 20.3.1). This definition
gives a slick way of defining the sheaf ΩX{S , but it is not very suited for computations.

The properties of the Kähler differentials ΩB{A translate into the following results for
ΩX{Y :

Proposition 20.21 (Base change). Let f : X Ñ S be a morphism of schemes and
let S1 be a S-scheme. Let X 1 “ X ˆS S

1 and let p : X 1 Ñ X be the projection.
Then

ΩX1{S1 » p˚ΩX{S
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Proposition 20.22. Let X , Y , and Z be schemes along with maps X
f
ÝÑ Y

g
ÝÑ Z.

Then there is an exact sequence of OX-modules

f˚pΩY {Zq Ñ ΩX{Z Ñ ΩX{Y Ñ 0. (20.4)

Proposition 20.23 (Conormal sequence). Let Y be a closed subscheme of a scheme
X over S. Let IY be the ideal sheaf of Y on X . Then there is an exact sequence of
OX-modules

IY {I2
Y Ñ ΩX{S b OY Ñ ΩY {S Ñ 0. (20.5)

20.6 The Euler sequence and differentials of Pn
A

We have seen that the sheaf of differentials on affine space An is trivial, that is, ΩAn
k

» On
An .

In this section we will give a concrete description of the cotangent bundle of projective space,
suitable for explicit computations.

Euler’s theorem states that if f is a rational function of degree d, it holds that
ř

xifxi
“ df ,

or, in particular, when f is of degree zero, one has
ř

i xifxi
“ 0. Now, the functions on open

sets in projective space are all rational functions of degree zero, and so Euler tells us that
their differentials all live in the kernel of the map

n
à

i“0

OPnp´1qdxi Ñ OPn

that sends
ř

i fidxi to
ř

i xifi. This gives a strong heuristic argument for the next theorem:

Theorem 20.24. Then there is an exact sequence

0 ΩPn
A{A OPn

A
p´1qn`1 OPn

A
0.

Proof Choosing coordinates on PnA we have PnA “ ProjR whereR is the gradedA-algebra
R “ Arx0, . . . , xns. We introduce a graded R-module M by the exact sequence

0 M
À

iRp´1qdxi R
η

where η is the ‘Euler map’
ř

i fidxi ÞÑ
ř

i fixi. It is homogenous of degree zero when we
give each dxi degree one. Note that Coker η “ R{px0, . . . , xnq, so that when ‘tilded’ the
sequence becomes

0 ĂM
À

iOPnp´1qdxi OPn 0.
rη

We will use the covering of ProjR by the standard open affines D`pxiq each equal
to Spec pRxi

q0, where pRxq0 is the degree zero piece of the localization Rxi
(equipped

with natural grading). The overlaps of the standard opens are the distinguished open sets
D`pxixjq “ Spec pRxixj

q0.
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The universal derivation dR : R Ñ ΩR{A “
À

j Rdxj extends to a derivation

dRxi
: Rxi

Ñ ΩRxi
{A “

À

jRxi
dxj

by the usual rule for the derivative of a fraction, and it preserves degrees when each dxj is
given degree one; that is pRxi

dxiqν “ pRxi
qν´1dxi. Taking the degree zero part, yields a

derivation

pRxi
q0 Ñ

À

jpRxi
p´1qq0dxj;

that is, when exposed to tilde, a derivation

OD`pxiq Ñ
à

j

OPnp´1q|D`pxiqdxj.

Since these derivations for different i originate from the same global derivation dR, they are
forced to agree on the overlaps, and glue together to a derivation

OPn Ñ
à

j

OPnp´1qdxi.

It takes values in ĂM , and by universality there is a map ΩPn{A Ñ ĂM . The rest of the proof
consists of checking that this is an isomorphism, which is a local issue. Both ΩPn{A and ĂM
are locally free of rank n, so it suffices to see that α is surjective.

On the open set D`pxiq the sheaf ΩPn{A “ ΩD`pxiq{A originates from the module
ΩpRxi

q0{A, which has a basis formed by the dpxj{xiq for j ‰ i, and one checks without
much resistance that the map α sends dpxi{xjq to pxjdxi ´ xidxjq{x2

i . But the kernel of
the Euler map η is generated by the elements xidxj ´ xjdxi

, and so we are through.

Since ΩPn
A

injects into OPn
A

p´1qn`1 (which has no global sections), we get:

Corollary 20.25. ΓpPnA,ΩPn
A

q “ 0

Exercise 20.6.1. Show that the kernel of η is generated by npn´ 1q{2 expressions xidxj ´

xjdxi.

20.7 Relation with the Zariski tangent space

The tangent space to a differentiable manifold at a point is defined at the space of ‘point
derivations’ as the point, i.e. derivations from the ring of C8-germs near the point to R.
The analogue to this for a scheme X over a field k would be the space of derivations
DerkpOX,x, kpxqq, where kpxq is the residue class field at x, and in view of the fundamental
relation (20.5) and the equality

HomOX
pΩX{k, kpxqq “ HomkpxqpΩX{k b kpxq, kpxqq,

the cotangent space; i.e. the dual of the tangent space, will be ΩX{k bOX
kpxq.

Another candidate is, however, the Zariski tangent space Homkpxqpm{m2, kpxqq, In con-
trast to the ‘point derivations’, the Zariski tangent space is not a relative notion, it does not
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depend on the subfield k, and can be defined for any local ring. The Zariski cotangent space
will simply be the dual space m{m2.

These two possible tangent spaces give rise to two different notions, regularity and smooth-
ness, which both in some sense mimic the property of being a manifold. Fortunately, in several
cases the two are equivalent; one such situation is in described in the following proposition:

Proposition 20.26. Suppose pB,mq is a local ring with residue field K “ B{m and
assume that B contains a field k. If the extension k Ă K is finite and separable, then
the map from the conormal sequence

δ : m{m2 Ñ ΩB{k bB K

is an isomorphism.

Proof The conormal sequence with A “ k and C “ K takes the following shape:

m{m2 ΩB{k bBK ΩK{k 0,δ

and according to Example 20.8 on page 348 it holds that ΩK{k “ 0, so δ is surjective.
The map δ sends x P m to dx. We shall exhibit an inverse ψ : ΩB|k bB K Ñ m{m2 to δ.

Constructing such a map is equivalent to constructing a map of B-modules ΩB|k Ñ m{m2,
or equivalently, a derivation D : B Ñ m{m2.

The derivation D : B Ñ m{m2 will be the composition D ˝ π of the canonical ‘reduction-
mod-m2-map’ π : B Ñ B{m2 and a derivation D0 : B{m2 Ñ m{m2. To construct the latter,
we cite the lemma below that the k-algebraB{m2 splits as a direct sumB{m2 “ K‘m{m2,
and simply let D0 be the projection onto m{m2; that is

D0pa` xq “ x,

where α P K and x P m{m2. The reduction map π being an algebra homomorphism, it
suffices to see that D0 is a k-derivation. To this end, we compute:

D0ppa` xqpa1 ` x1qq “ D0paa` pax1 ` a1xq ` x1xq

“ D0paaq `D0pax1 ` a1xq `D0px1xq “ ax1 ` a1x,

and we get the same answer when we expand

pa1 ` x1qD0pa` xq ` pa` xqD0pa1 ` x1q

since xx1 “ 0. Hence D0 is a derivation, and we get the desired inverse. It is indeed an
inverse to the map δ, since via the identification DerApB,Mq “ HomBpΩB{A, Aq, it sends
dx to x.

Lemma 20.27. Let B be a local ring with maximal ideal I that satisfies I2 “ 0.
Assume that B contains a field k and that the extension k Ă K “ B{I is finite and
separable. Then B contains a subring isomorphic to K; so that B “ K ‘ I .

Proof Since K is finite and separable over k, it is primitive. So let K “ kpxq and let P
being the minimal polynomial of x over k. It is separable, so P 1pxq ‰ 0. We shall lift x
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to an element y P B{m2 such that that P pyq “ 0 (meaningful as k Ă B{m2 and P has
coefficients in k). Then the the subring kpyq maps isomorphically onto K.

Chose any lifting z of x. Then P pzq “ ϵ P I . For any α P I Taylor’s formula yields

P pz ` αq “ P pzq ` P 1pzqα

as α2 “ 0. Now P 1pxq is a unit inB{I , and as units reduce to units (Lemma 20.28 below)and
hence y “ z ` α is such that P pyq “ 0.

Recall that a Noetherian local ring B is called regular if the Krull dimension equals
the embedding dimension; or with m the maximal ideal and K “ B{m, it holds that
dimK m{m2 “ dimB.

Lemma 20.28. Let π : B Ñ A be a surjective ring homomorphism with kernel I .
Assume that I2 “ 0. Then every element in B that maps to a unit in A is invertible,
and there is an exact sequence of groups

1 1 ` I B˚ A˚ 1π .

Proof All elements in 1 ` I are units, since if x2 “ 0, it holds that p1 ` xqp1 ´ xq “ 1.
Assume that πpxqy “ 1 and let z P B be so that πpzq “ y´1 Then xz P 1 ` I and is
therefore invertible, so a fortiori x is invertible.

Exercise 20.7.1. Show that if K is a finitely generated extension of k with a separating
basis, there is a field K 1 Ă B mapping isomorphically to K. HINT: First treat the case that
K “ kpxq with x a variable; then use induction on the cardinality of a separating basis.

Corollary 20.29. With notation as in Proposition 20.26 but additionally withB being
Noetherian, the ring B is a regular local ring if and only if

dimB “ dimk ΩB{K bBK.

The separability condition in Proposition 20.26 is certainly necessary, this is already the
case for fields: fields are regular local rings of dimension zero, and for a inseparable field
extension k Ă K the module of differentials ΩK{k is never zero; for instance, if K “ kpxq

with xp “ a, it holds that ΩK{k “ K.

Smooth varieties

We give a definition for smoothness of varieties. In general schemes can have components
of different dimension, so we if x P X is a point, we let dimxX be the Krull dimension
of a sufficiently small affine neighbourhood of x; if x is a closed point it coincides with
dimOX,x.
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Definition 20.30 (Smoothness over fields). Let X be a (separated (?) ) scheme of
(essential (?) ) finite type over a field k and let x P X be a point. We say that X is
smooth at x if ΩX{k is locally free of rank dimxX near x. The scheme X is called
smooth if it is smooth at every closed point.

Theorem 20.31. Let X be a variety (integral separated scheme of finite type) over
a perfect field k (e.g. k algebraically closed, finite or of characteristic zero) and let
x P X be a closed point. Then the following are equivalent:

(i) X is smooth at x;
(ii) pΩX{kqx is free of rank dimX;

(iii) X is non-singular at x.

Proof (i) ðñ (ii) is just the definition of X being smooth together with the fact that a
coherent module F over OX is locally free in near x if and only Fx is free.

(ii) ùñ (iii). Assuming that ΩOX,x{k is free of rank n “ dimOX,x, we infer, by the
above proposition, that dimkpxq mx{m2

x “ n, and so OX,x is a regular local ring.
(iii) ùñ (ii). There are two salient points: The first is that if x is a regular point, the integer

dpyq “ ΩX{k bOX
kpyq takes on its minimal value at x, and the second is that dpyq can only

increase upon specialization. The details are as follows: Let K be the function field of X . If
the local ring OX,x is regular, it follows from Proposition 20.26 that dim pΩX{kq b kpxq “

dimkpxq mx{m2
x “ dimX . From Exercise 20.4.5 on page 353 follows that dimK ΩK{k “

dimK ΩX{k bK ě trdegK{k. The transcendence degree of the function field of a variety
equals dimX , and hence pΩX{kqx is a free OX,x-module by the general fact that a finite
module over an integral local ring having generic fibre of the larger dimension than the special
one, is free (Exercise 20.7.2 below).

Exercise 20.7.2 (Jumping of fibre dimension upon specialization). Let A be a local integral
domain with maximal ideal m, residue field k “ A{m and fraction field K . Let M be a finite
A-module and assume that dimKM bAK ě dimkM bA k. Then M is a free A-module.
(See also Proposition ?? on page ?? in CA)

Exercise 20.7.3. Let X be a variety over a perfect field. Show that the function field K of X
is separably generated over k and that the smooth (hence regular) closed points of X form an
open dense subset. Give a counterexample if k is not perfect.
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Curves

We have through the course seen several examples of curves. Plane curves with conics and
hyper elliptic curves have been favourites, the normal rational curves as examples of curves
that are not plane. In this chapter we shall study curves more systematically and from a
intrinsic point of view, that is we curves per se and not as subschemes of larger scheme.

So far we have not given a formal definition of a curve; here it comes: a curve is a
one dimensional variety over a field k. Recall that this means that X apart from being of
dimension one, is an integral scheme separated and of finite type over k.

We shall restrict our attention to curves over perfect fields; in addition to all fields of
characteristic zero this covers the cases that k is algebraically closed or a finite field.

21.1 The local ring at regular points of a curve

A variety X is smooth at a point x if the ΩX,x is locally of rank dimX near x, and over
a perfect field this is equivalent to OX,x being a regular local ring. In other words, it is
equivalent to the Zariski cotangent space mx{m2

x being of dimension dimX as a vector space
over kpxq.

For curves, the important points is that the Noetherian regular local rings of dimension
one are precisely the discrete valuation rings; that is the Noetherian local PID’s. The ideal
structure of these rings is particularly simple, the powers of the maximal ideal are the only
non-zero ideals.

Lemma 21.1. Let A be a Noetherian local ring with maximal ideal m. The following
statements are equivalent:

(i) A is a DVR;
(ii) the maximal ideal m is principal;

(iii) all ideals are principal and powers of the maximal ideal;
(iv) dimA{m m{m2 “ 1.

At a regular point x P X the maximal ideal mx is principal, and any generator is called a
local parameter or a uniformizing parameter at x. Each rational function on X can expressed
in a unique fashion as f “ αtν where ν is an integer and α is unit in OX,x; that is, it is
a regular function which does not vanish at x. To every DVR is associated a normalized
valuation on the fraction field, which we in the present case denote by νx. Note that νxpfq is
precisely the integer ν above. One may think about the valuation vxpfq as the order of f at
x, either the order of vanishing, if f is regular at x, or the order of the pole if not.
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Our ground field is assumed to be perfect, and the differential criterion for regularity in
Theorem 20.31 on page 360 applies:

Proposition 21.2. A curve X over a perfect field is regular at a closed point x if and
only if the stalk pΩX{kqx is free of rank one.

Example 21.3 (Plane curves). Consider X “ SpecA where A “ kru, vs{pfq. In Exam-
ple ?? we found the following expression for the Kähler differentials of A:

ΩA{k “ Adu‘Adv{pfudu` fvdvq,

and this is not of rank one (i.e. of rank two) exactly at the points of X where the two partials
fu and fv vanish. Hence a point x P X is a smooth point if and only if at least one of the
partials does not vanish at x, and X is a regular curve when V pf, fu, fvq “ H. In terms of
ideals this reads pf, fu, fvq “ kru, vs.

Example 21.4 (A regular but not smooth curve). Over fields that are not perfect, being regular
and being smooth are not the same, every smooth curve is regular but regular curves need not
be smooth; it might cease being regular after a base extension. For instance, assume that k is
of characteristic two and that α P k is an element that is not a square. Then m “ pv, u2 `αq

is a maximal ideal in kru, vs and x “ V pu2 ` α, vq a closed point in A2
k.

The plane affine curve V pfq with f “ v2 ´ upu2 ` αq is regular at all points: since
df “ pu2 ` αqdu, it is smooth except at x “ V pu2 ` α, vq, where it, however, is regular.
Indeed, f does not belong to m2 “ pv2, vpu2 ` αq, u4 ` α2q.

The curve X 1 “ X bk k
1 acquires a singular point if k1 is an extension of k containing a

square root of α, say β2 “ α. Then f takes the form f “ v2´upu2`β2q “ v2´upu`βq2,
and X 1 has a node at p´β, 0q.

The moral is that regularity is not always invariant under base change.

Exercise 21.1.1. Find the singularities of the curve in P2
k whose equation is x2y2 ` x2z2 `

y2z2 “ 0.

Another all important feature of one dimensional Noetherian domains is that they are regular
precisely when they are normal:

Proposition 21.5. Let A be a one-dimensional Noetherian domain A. Then A is
normal if and only if it is regular.

Proof Being normal is a local property, and by definition a Noetherian ring is regular
precisely when then all the local rings Ap are regular, so the proposition boils down to the
local case, which is standard algebra: a one-dimensional local domain is normal if and only if
it is a DVR.

Back in Chapter ?? we constructed the normalization X of an integral scheme X (Theo-
rem 13.12) together with a morphism π : X Ñ X . In view of the above proposition, X is in
fact a desingularization of X .
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Theorem 21.6. The normalization X of a curve X over k, is a non-singular curve.
The normalization map π : X Ñ X is finite and birational. If X is proper over k the
same holds for X .

Proof This is just Theorem 13.13 on page 207.

21.2 Morphisms between curves

We recall the following three fundamental facts about morphisms of curves

Proposition 21.7. Let X be a variety and Y a curve over k, and let f : X Ñ Y be a
morphism. Then either

(i) fpXq is a point in Y ; or
(ii) fpXq is open and dense in Y .

In the case (ii), when X is a curve, the extension kpY q Ď kpXq of function fields
will be a finite extension. Moreover, when X is proper over k, so is Y , and f is a
finite morphism.

Proof The first statement follows from lemma below; indeed, let SpecA Ă Y and
SpecB Ă X be open affines such that SpecB maps into SpecA. The image of SpecB is
either a point, in which case the image of X will be that point, or SpecB dominates SpecA,
and its image contains an open subset. The image of f will then be open because subsets of
an irreducible curve containing a non-empty open set are open.

Lemma 21.8. Let A and B be a domains and ϕ : A Ñ B a ring homomorphism.
Assume that A is of Krull dimension one. Then either ϕ is injective or factors by a
field. In particular, the induced morphism SpecB Ñ SpecA is either dominant or
has a closed point as image.

Proof Since B is domain, so is also ϕpAq, and Kerϕ is a prime ideal. Since A is a domain
of Krull dimension one, the kernel Kerϕ is either maximal or zero.

Assume then that X is a curve and that f is dominant. The two function fields kpXq and
kpY q are both of transcendence degree one, and so kpXq is algebraic over Y , but X is of
finite type over Y , since it is of finite type over k, and thus kpXq is a finite extension of
kpY q. When f is proper and dominant, it will be surjective, and by general properties of
proper maps (xxxx) Y will be proper over k as well. Is X also a curve, every fibre of f over
a closed point will be a proper closed set, and so will be finite. Hence f is quasi-finite, and
also being proper, it is finite (xxxx).

This leads to the notion of the degree of a morphism between curves:
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Definition 21.9 (The degree of a finite morphism). Let f : X Ñ Y be a dominant
morphism between curves. The degree rkpXq : kpY qs is called the degree of f and
is denoted deg f .

Since the degree of field extensions is multiplicative in towers, one has:

Proposition 21.10. If f and g are dominant composable morphisms between curves,
the composition f ˝ g is dominant and deg f ˝ g “ deg f deg g.

21.2.1 The fibre of a morphism

We shall examine the scheme theoretic fibreFor the basic details about scheme theoretic fibres
see Section 10.5 f´1pyq over a closed point y P Y of a morphism f : X Ñ Y between
two curves in more detail. The most interesting case is when both X and Y are regular
curves and the morphism is finite and dominant, and we will confine the analysis to that
case. The analysis is local on Y , so we may additionally assume that X and Y are affine;
say X “ SpecB and Y “ SpecA, where A and B are reular one-dimensional rings and
B is a finite A-algebra. If x P X the ring OX,x is a valuation ring and we denote by vx the
corresponding valuation on kpXq.

Proposition 21.11. Let f : SpecB Ñ SpecA be a finite morphism where A is a
regular one-dimensional ring. If each component of SpecB dominates SpecA, then
B is a locally free A module. In the case that B is integral, the rank of B equals
deg f .

Proof The zero divisors of B is the union of the minimal prime ideals tpiu in B, and since
each component of X dominates Y , it holds that pi XA “ 0. This means that each non-zero
element t of A is a non-zero divisor on B. Hence B is a torsion free finite A-module, and as
A is a Dedekind ring, it follows (see xxxx)) that B locally free.

Example 21.12 (Illustartive example). Let fptq be a polynomial in krts. The assignment
t Ñ fptq defines a map krts Ñ krts and hence a map A1

k Ñ A1
k. The scheme theoretic fibre

over the closed point pt ´ aq P A1
k (heuristically speaking over α P A1pkq ) is the closed

subscheme V pfptq ´ αq. The polynomial f ´ α factors as

f ´ α “ fν11 ¨ ¨ ¨ ¨ ¨ fνrr

where the fi’s are irreducible and pairwise distinct. One would like to think about V pfptq´αq

as the solutions of fptq ´α “ 0, but the roots βi of the fi’s do not necessarily lie in k, but in
extensions kpβiq; and of course, each appears with multiplicity νi. The Chinese Remainder
Theorem gives

krf s{pfptq ´ αq “
ź

1ďiďr

krts{pfνii q.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

21.2 Morphisms between curves 365

And so we get the expression

dimk krf s{pfptq ´ αq “ deg f “
ÿ

rkpβi : kqsνi.

for ‘the number of points in the fibre’; indeed, if all βi P k and all νi “ 1, it is equal to the
cardinality of the fibre.

Coming back to general situation, with X and Y be regular curves over k and f : X Ñ Y
be a finite non-constant morphism, we shall describe the scheme fibre f´1pyq quit similarly
as done in the illustrative example above. Let t be a uniformizer at y.

Consider a point x P X mapping to y. The induced map f 7
y : OY,y Ñ OX,x gives rise to a

field extension kpyq Ă kpxq, which is finite since the Nullstellensatz tells us that both kpxq

and kpyq are finite extensions of k. The degree dx “ rkpxq : kpyqs is called the local degree
of f at xi. In the case that k is algebraically closed, the two fields coincide with k, and the
local degree equals one.

The number ex “ vxpf 7ptqq will be called the ramification index of f at x. It does not
depend on the choice of parameter t, and it holds that myOX,x “ me

xOX,x and we have the
equality

ex “ dimkpxq OX,x{myOX,x.

We say that f ramifies in x when ex ą 1.
The scheme theoretic fibre f´1pyq equals SpecB{myB, and as the domain B is of Krull

dimension one and myB ‰ 0, the ring B{myB will be of dimension zero. It is of finite
length and decomposes as the product of its localizations:

B{myB “
ź

fpxq“y

OX,x{myOX,x.

Combining this formula with Proposition 21.11 above one gets:

Proposition 21.13. Let f : X Ñ Y a finite morphism between regular curves over
k. For each closed point y P Y , it holds that

deg f “
ÿ

fpxq“y

dxex.

Example 21.14. Let A “ krus and let B “ kru, vs{pu ´ v2q » krvs where k is a field
whose characteristic is not two. Let X “ SpecB and Y “ SpecA. Let f : X Ñ Y
be the morphism induced by the inclusion A ãÑ B (thus u ÞÑ v2). The morphism f
is ramified at the origin x “ p0, 0q, and here the ramification index is two. Indeed, u
is a uniformizing parameter of OY,y “ kruspuq at y “ 0, while v is the uniformizer of
OX,x “ Bpu,vq “ krvspvq. Then we have vypuq “ vxpv2q “ 2.

The reader might notice a resemblance between the previous example and Example ?? ,
where ramification was defined in terms of the relative sheaf of differentials ΩX{Y . In that
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example, ΩX{Y was a torsion sheaf supported on the single point x “ p0, 0q. This correspon-
dence between the two notions of ramification is a general fact (at least in characteristic 0),
and we have the useful formula for the ramification indexes of curves:

Proposition 21.15. Let : X Ñ Y be a morphism between non-singular curves over
k, and let x P X be a closed point. Assume that the ramification index ex is invertible
in k. Then one has

ex “ lengthpΩX{Y qx ` 1.

Proof From a general perspective, one has the exact sequence

f˚ΩY {k ΩY {k ΩX{Y 0
df

(21.1)

from Proposition 20.22 on page 356. In our setting Y is a regular curve, so at a point y P Y
the stalk pΩY {kqy is a free OY,y-module with basis du for u a uniformizer at y. Similarly, at
a point x P X the stalk pΩX{kqx is free OX,x-module with basis dv for v a uniformizer at x.

Now f 7
y : OY,y Ñ OX,x acts as u ÞÑ αve with α a unit and e “ ex, and so the stalk at x

of df in (21.1) is determined by the assignment du ÞÑ dαve, and we compute

dαve “ veα1dv ` eα ¨ ve´1dv “ ve´1pvα1 ` eαqdv.

Now, by hypothesis, e is invertible in k so that α1v ` eα is a unit in OX,x. Consequently the
image of df is the submodule generated by ve´1dv; and so the cokernel of df (which equals
pΩX{Y qx) is isomorphic to OX,xdv{ve´1OX,xdv » OX,x{me´1

x .

Example 21.16. Continuing Example 21.14 above, we se that the origin is the only place
where f ramifies since df “ 2udu, and the characteristic of k is supposed to be different
from 2. If k is not algebraically closed, the local degree may be two; this happens, for instance,
at a point a P k if a does not have a square root in k.

Extension of maps and The Fundamental Theorem

This section presents two basic result about non-singular curves. The first basically says
that any rational map on a non-singular curve into a a projective variety is globally defined.
Combining this with the Main Theorem of Birational Geometry (Theorem 12.33 on page 200)
and the fact that every curve is birationally equivalent to a non-singular one, we obtain the
second, which states that the category of projective non-singular curves over k with dominant
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maps is equivalent to the category of finitely generated field extensions of k of transcendence
degree one.

Later it will turn out that all curve are projective, so in fact the claim applies to the category
of non-singular curves proper over k.

Proposition 21.17. Let X be an irreducible curve over k and let x P X be a closed
point where X is regular. Then any morphism f : X ´ txu Ñ Y to a projective
variety Y has a unique extension f : X Ñ Y .

Proof The salient point of the proof is precisely the same as in the proof of Lemma ?? on
page ??. Fixing the notation, we let t be a uniformizer at x, and denote by K the function
field of X .

The morphism f yields a K-point SpecK Ñ PnK which is described by homogenous
coordinates pa0t

ν0 : ¨ ¨ ¨ : ant
νnq where the ai are units in OX,x and the νi’s are integers.

After scaling through by t´ min νi we may assume that for each i it holds that νi ě 0 and at
νi0 “ 0 for at least one i0.

Now the ai are non-vanishing sections of OX over some some open neighbourhood U of
x and after shrinking U if need be, t will also be a section of OX over U with x as the sole
zero. Hence the aitvi define a map U Ñ Pnk .

Corollary 21.18. Any rational map between two non-singular projective curves
extends to a morphism. In particular, any birational map extends to an isomorphism.

Proof The first statement is just a reformulation of Proposition 21.17.
That two curves X and Y are birationally equivalent, means that there are open subsets

U Ă X and V Ă Y and an isomorphism f : U Ñ V . Now, both f and f´1 extends
respectively to morphisms g : X Ñ Y and h : Y Ñ X , and since h ˝ g|U “ idU and
g ˝ h|V “ idV , it follows that h ˝ g “ idX and g ˝ h “ idY ; indeed, morphisms that agree
on an open dense set are equal.

Theorem 21.19 (Main theorem of non-singular projective curves). There is an
equivalence of categories between the following categories:

(i) The category of non-singular projective curves over k and dominant
morphisms;

(ii) The category of finitely generated field extensions of k of transcendence
degree one and k-algebra homomorphisms.

Proof First, if X and Y are two nonsingular projective curves, any rational map extends
to a morphism. This shows, combined with Theorem 12.31 on page 199, that the functor
X ÞÑ kpXq is fully faithful.

Next we show it is essentially surjective: each finitely generated field K of transcendence
degree one over k is of the form kpXq for some nonsingular projective curve X . If K is
generated by a1, . . . , ar the k-subalgebra A “ kra1, . . . , ars will be of dimension one
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according to Theorem ?? on page ??. The curve X “ SpecA is contained in the affine space
Ark in a natural way, and closing it up in Prk, yields a projective curve, whose normalization is
projective (after xxx) and has K as function field.

Example 21.20 (Morphisms into P1
k). For a non-singular curve X over k, there is a natural

one-to-one correspondence between non-constant rational functions on X and dominant
maps from X to P1

k. A rational function on X is just a morphism from some open subset to
A1
k and, this extends to a morphism from the entire X to P1

k.
To be somehow more explicit, we let P1

k “ Proj krt0, t1s and the affine line A1
k in the

construction above be D`pt0q. Let g P kpXqˆ be given. To lessen the confusion, denote by
G the extended map G : X Ñ P1

k.
Let Ug be the maximal open where g is defined; i.e. Ug “ G´1D`pt1q, then G7pt0{t1q “

g in OXpUgq. LetUg´1 be the maximal open where g´1 is defined, thenUg´1 “ G´1D`pt0q,
and it holds that G7pt1{t0q “ 1{g in OXpUg´1q.

Coherent sheaves on curves

Recall that an element of an A-module is called a torsion element if it is killed by a nonzero-
divisor of A, and a module is a torsion module if all elements are torsion. On the other hand,
a module is torsion free if no non-zero element is torsion. The sum of two torsion elements is
clearly torsion, so the subset of a module M formed by the torsion elements, is a submodule
T . It has the property that M{T is torsion free.

We shall need the following result from algebra:

Proposition 21.21. Let A be a PID. Then any finitely generated torsion free module
M is free. In particular, if A is regular of dimension one, every finitely generated
torsion free module is locally free.

Proof Observe first that there are non-zero maps M Ñ A. Indeed, the natural map M Ñ

M bAK that sends m to mb 1 is injective since M is torsion free. Then choose a K-linear
map M bAK Ñ K that does not vanish on M . If tmiu is a finite generating set for M , the
images ϕpmiq may be brought on the form ai{b with a common denominator. Then bϕ is our
map.

We proceed by induction on the rank of M . If the rank is one, M is an ideal in A, and
hence is free since A is a PID. If the rank is superior to one, chose a non-zero map M Ñ A.
The image is an ideal, hence free of rank one, and M splits as M “ Kerϕ ‘ Imϕ. By
induction, Kerϕ is free, and we are done.

Finally, that A is regular of dimension one, means that all the local rings Ap with p P

SpecA are DVR’s, and in particular, they are PID’s. Hence each localization Mp is free; in
other words, M is locally free.

Returning to the global situation, any coherent sheaf F on a scheme X contains a torsion
subsheaf T , whose sections over an open set U Ă X equals the subgroup of FpUq of
elements annihilated by some nonzerodivisor of OXpUq (see Exercise 19.3.2 on page 339).
The quotient F{T is torsion free in the sense that on open affine subsets U its section space
(which equals FpUq{T pUq) is a torsion free module over OXpUq.
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When X is a curve, the support of T is finite, say it consists of the points p1, . . . , pr, and
T is the direct sum of its stalks at these points: T “

Àr

i“1 Tpi .

Theorem 21.22. Let X be a non-singular curve and let F be a coherent sheaf on X .
Then there is a decomposition

F “ E ‘ T

where T Ă F is the torsion subsheaf and E is locally free.

Proof The quotient E “ F{T is locally free by Proposition 21.21, and are to see that the
exact sequence

0 T F E 0 (21.2)

is split exact. Let U be an affine neighbourhood about pi. Since F{T |U is the tilde of a
projective module, the sequence (21.2) splits when restricted to U . Hence there is a map
ϕi : F |U Ñ Tpi splitting the inclusion Tpi Ñ F . This map extended by zero is a map
ϕi : F Ñ Tpi that splits off Tpi . The sum

ř

ϕi then splits of the entire torsion subsheaf
T .

The torsion sheaves on X are easily classified, but only for rather few class curves are
the locally free sheaves satisfactory understood, but there is a vast literature about them. For
instance, back on page 341 we proved Theorem 19.20 which states that every coherent locally
free sheaf on P1

k decomposes as a direct sum
À

OP1
k
paiq of line bundles. In fact this property

characterises P1
k among non-singular curves (even among normal projective varieties).

21.3 Divisors on regular curves

We shall mostly work with regular curves in this section, in which case there is no substantial
distinction between Weil and Cartier divisors, every Weil divisor has a a set of Cartier data,
and every set of Cartier data yields a Weil divisor. The distinction only shows up in the way a
divisor is presented.

The codimension one-subsets of a curve are precisely the closed points, so that a Weil
divisor is a finite formal combination

D “
ÿ

xPX

nxx

of closed points in X , where the coefficients are integers. Each residue field kpxq is a finite
extension of the ground field k whose degree is denoted by rkpxq : ks. Note that in case the
ground field is algebraically closed, all these degrees equal one. We define the degree of the
prime divisor x as deg x “ rkpxq : ks, and extending this by linearity, every Weil divisor is
given a degree, namely the sum:

degD “
ÿ

rkpxq : ksnx.

As noted above, every Weil divisor on a regular curve has a Cartier representation. To
a given Weil divisor D “

ř

x nxx we may associate Cartier data tpUx, gxqu, indexed by
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SuppD, by letting Ux be any open affine neighbourhood of x disjoint from the rest of
SuppD, and letting gx “ tnx

x , where tx is a uniformizing parameter at x. In terms of the
Cartier data, the degree is given as

degD “
ÿ

xPX

rkpxq : ksvxpgxq,

where, as usual, vxis the valuation associated to OX,x.
Each non-zero coherent sheaf of ideals on a regular curve X is invertible (all the local

rings are PID’s), so with each finite subscheme Z of X is associated an effective Weil divisor
(as in ?? on page ??):

DZ “
ÿ

xPX

lengthpOZ,xqx,

where the sum is finite because lengthpOZ,xq “ 0 for x outside the finite set Z. The
lengthpOZ,xq is the number of terms in composition series, and each subquotent equals
kpxq, so rkpxq : ks lengthpOZ,xq “ dimkOZ,x. Summing up over closed points x P X
yields

degDZ “ dimkOZ .

Recall also that each Weil divisor determines an invertible sheaf OXpDq, which over an open
set U takes the value

OXpDqpUq “ tf P K|pdiv f `Dq|U ě 0u

Then D is effective if and only if ΓpOXpDqq ‰ 0. In particular, if ΓpX,OXpDqq has
dimension at least 2, there is a second effective divisor D1 “

ř

miqi such that D and D1 are
linearly equivalent.

Example 21.23. Consider the prime divisor x on X “ A1
R “ SpecRrts corresponding to

the maximal ideal pt2 `1q in Rrts. Then kpxq “ OX,x{pt2 `1qOX,x “ Rrts{pt2 `1q “ C
and hence deg x “ 2.

Example 21.24. Consider the closed subset D “ V pt5 ´ 1q of X “ SpecQrts. Since
sptq “ t4 ` t3 ` t2 ` t` 1 is an irreducible polynomial over Q the ideal psptqq in Qrts is
maximal. Thus the set D consists of the two points p “ V pt´ 1q and q “ V psptqq, and we
may considerD as the divisorD “ p`q. The residue fields are kppq “ Q and kpqq “ Qpηq,
where η is a primitive fifth-root of unity. Consequently, the degree of D “ p` q is

degD “ rQ : Qs ` rQpηq : Qs “ 1 ` 4 “ 5,

which of course fits well with t5 ´ 1 being of degree 5.
Over the field k “ Qpηq, the divisor V pt5 ´ 1q in SpecQpηqrts splits as the sum of

five different points, each with local degree one. Indeed, t5 ´ 1 “
ś

i t ´ ηi, and letting
pi “ V ptηiq, we find D “ p0 ` ¨ ¨ ¨ ` p5.

Example 21.25 (The circle). Consider the circle X “ SpecRru, vs{pu2 ` v2 ´ 1q. The
example is about the divisors on X obtained by intersecting X with lines u` v ´ a where
a real; or in the present terminology, the principal divisor D “ divpu ` v ´ aq. The
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support of D equals V paq where a is the ideal a “ pu` v ´ a, u2 ` v2 ´ 1q. It holds that
a “ pu` v ´ a, P pvqq where P pvq “ 2v2 ´ 2av ` a2 ´ 1, so that

kru, vs{a » krvs{pP pvqq.

Now there are three cases. Firstly, if a ą
?
2, the polynomial P pvq does not have real roots,

and Rru, vs{a “ C. The divisor D is the prime divisor x “ V paq and kpxq “ C.
Secondly, if a ă

?
2, the polynomial P pvq splits as the product of two disinct linear

factors l1 and l2, and a “ m1 Xm2 with mi “ pu` v´a, liq. Each ideal mi is maximal, and
Rru, vs{mi “ R. The divisor D equals D “ x1 ` x2 with xi “ V pmiq, and kpxiq “ R.

Finally, when a “
?
2, we find a “ pu` v ´ a, l2q where l “ v ´

?
2{2. The divisor D

becomes D “ 2x with x “ pu´
?
2{2, v ´

?
2{2q and kpxq “ R.

21.3.1 Pullbacks of divisors

If f : X Ñ Y is a morphism, we can pull back invertible sheaves from Y to X , as well
as sections of these. By the correspondence between divisors and invertible sheaves, this
gives us a way of pulling back divisors from Y to X . In the context of curves, we can make
this a little bit more explicit. We assume that the morphism f : X Ñ Y is finite, it is then
surjective, and f 7 induces an inclusion of function fields kpY q ãÑ kpXq.

We aim at defining the pull back of Weil divisors and start by just pulling back a point
y P Y . This pullback is just the divisor associated to the scheme theoretic fibre f´1pyq. To
give a detailed description, choswe a local parameter t P OY,y at y and define

f˚pyq “
ÿ

fpxq“y

vxpf 7tqx,

where as usual vx is the valuation at x. Changing t by a unit in OY,y does not alter the
valuation vxpf 7tq because a unit in OY,y stays a unit in OX,x. Extending this by linearity, we
obtain a well defined group homomorphism

f˚ : DivX Ñ Div Y.

We can also understand this map on the level of Cartier divisors: ifD is a Cartier divisor on Y
given by the data tpUi, giqu, where gi P kpY qˆ, we can consider the data tpf´1Ui, f

7giqu,
which defines a Cartier divisor on X .

Example 21.26 (Principal divisors). The principal divisor div g of a rational function g P

kpXqˆ equals the pullback G˚pp0 : 1q ´ p1 : 0qq, where G : X Ñ P1
k is the extension of g

as in Example 21.20 on page 368. With the notation there it holds that

div g “
ÿ

xPUg

vxpgq `
ÿ

xPUg´1

vxpgq “
ÿ

xPUg

vxpgq ´
ÿ

xPU1{g

vxp1{gq

since vxpgq “ 0 for x P Ug XUg´1 . But this is precisely the pullback G˚pp0 : 1q ´ p1 : 0qq

sinceG7pt0{t1q “ g and g7pt1{t0q “ 1{g and and t0{t1 and t1{t0 are uniformizers at p0 : 1q

and p1 : 0q respectively.
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Lemma 21.27. If f : X Ñ Y is finite and D is a divisor on Y , we have deg f˚D “

deg f ¨ degD.

Proof It suffices to treat the case of prime divisors, so let D “ y. Now, let SpecA be an
open neighbourhood of y and SpecB the inverse image of SpecA. Then B is a torsion free
A-algebra a so is locally free of rank equal to rkpXq : kpY qs “ deg f . For t a uniformizer
at y the value vxpf 7tq is the ramification index of f at x and is written ex. Moreover,

deg x “ rkpxq : ks “ rkpxq : kpyqsrkpyq : ks “ dx deg y

where dx is the local degree of f at x. From (21.3.1) and Proposition 21.13 follows that

deg f˚y “
ÿ

fpxq“y

vxpf 7tq deg x “ p
ÿ

fpxq“y

dxexqdeg y “ deg f ¨ deg y.

Lemma 21.28. For a non-zero g P kpXq and a morphism f : X Ñ Y , we have

f˚ div g “ div g ˝ f.

Proof Let G : X Ñ P1 be the extension of g then G ˝ f is the extension of g ˝ f and so
according to Example 21.26 above, it holds that

f˚ div g “ f˚pG˚pp0 : 1q ´ p1 : 0qq “ pG ˝ fq˚pp0 : 1q ´ p1 : 0qq “ div g ˝ f.

Corollary 21.29. For a non-zero rational function g P kpXq, we have deg div g “ 0.
Hence the degree map descends to a well-defined map

deg : ClpXq Ñ Z.

In other words, linearly equivalent divisors have the same degree.

Proof This is clear if g is a constant. If not, g defines a morphism G : X Ñ P1
k so that

div g “ G˚pp1 : 0q ´ p0 : 1qq.

Thus we are done by the above lemma.

Example 21.30. Assume that k is a field whose characteristic is different from 2 and 31. and
consider the curve X Ă A2

k “ Spec kru, vs given by the equation

v2 “ u3 ` u2 ` 1 (21.3)

which is a regular curve. Consider the the rational function g “ v ` 1 on X . What is div g?
Note that g is regular, so there are no points x for which vxpgq ă 0. Rewriting (21.3) as

pv ´ 1qpv ` 1q “ u2pu` 1q, (21.4)
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we see that the zeros of v`1 are the points x “ p0,´1q and y “ p´1,´1q. Near x “ p0, 1q

both pv ` 1q and u` 1 are invertible, and the equality

v ´ 1 “ u2pu` 1qpv ` 1q´1 (21.5)

shows that u is uniformizer there (the maximal ideal mx is generated by v ´ 1 and u). In the
same vein, near y “ p´1,´1q both v ` 1 and u are invertibel, and we infer from (21.5) that
u` 1 is a uniformizer. It follows that

div g “ vxpu2q ` vypu` 1q “ 2x` y. (21.6)

Example 21.31. Consider the curve Y Ă P2
k “ Proj t0, t1, t2 given by the equation

t22t0 “ t31 ` t21t0 ` t30

Note that the curve in the previous example equals X XDpt0q, where we use coordinates
u “ t1{t0, v “ t2{t0. Let us compute div g for the same rational function g “ t2{t0 ` 1 as
before, but this time on Y . For this, we only need to consider the points where t0 “ 0. From
the equation, we see that there is a single point in Y XV pt0q, namely the point z “ p0 : 0 : 1q.
To compute vxpgq here, we use the chart Dpt1q. Then Y XDpx2q is isomorphic to the plane
curve given by the equation

u “ v3 ` v2u` u3 (21.7)

where now u “ t0{t2 and v “ t1{t2. The point z is then the origin pu, vq “ p0, 0q in
D`pt2q. Note that g “ u´1 ` 1. Rewriting (21.7) as

v3 “ up1 ´ v2u´ u3q,

we see that v is a uniformzer at z and that vxpuq “ 3. Hence we find we also see that
vzpuq “ 3, and so

vxpgq “ vxpu´1 ` 1q “ vxpu` 1q{uq “ vxpu` 1q ´ vxu “ ´3

Finally, we concude thats

div g “ 2p1 : 0 : ´1q ` p1 : ´1 : ´1q ´ 3p0 : 0 : 1q. (21.8)

Note that, since Y is projective we may use Corollary 21.29 and conclude that deg div g “ 0,
which immediately yields 21.8.

21.3.2 Pushforward of divisors

For a morphism of curves f : X Ñ Y , one may also define a pushforward map f˚ : DivpXq Ñ

DivpY q as follows. If D “
ř

xPX nxx, we define

f˚pDq “
ÿ

xPX

dxnxx,

where dx is the local degree of f at x (as defined on page 365). This defines an element
of DivpY q and f˚ will be a linear map DivX Ñ Div Y . In this case it is not so obvious
that the map descends to a map between the class groups ClpXq and ClpY q. However, it
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turns out that this is indeed the case: for f P kpXqˆ, we have f˚ divpfq “ divNpfq where
N : kpXq Ñ kpY q is the norm map between the function fields.

Proposition 21.32. If f : X Ñ Y is a finite morphism between regular curves and
g P kpXq a non-zero rational function. then f˚ div f “ divNpfq. In particular, f˚

passes to the quotient and gives a homomorphism f˚ : ClpXq Ñ ClpY q.

Quit generally there is norm for any finite field exetension K Ă L. Then norm Npgq of
an element g P Lˆ is defined as the determinant of the multiplication map L Ñ L given as
t ÞÑ gt. It is a multiplicative map N : Lˆ Ñ Kˆ. If B Ă L is a subsring and A “ B XK ,
it holds that Npgq P A for each g P B.

Lemma 21.33. IfA is a DVR and ϕ : An Ñ An is an injective map, then vpdetϕq “

lengthpCokerϕq.

Proof Represent ϕ by a matrix paijq. After a permutation of rows and columns we may
assume that vpa11q ď vpaijq for all other entries aij . It is then straightforward to perform
elementary row and column operations to make the matrix have a1i “ ai1 “ 0 for i ‰ 1.
Repeated application of this procedure yields bases for the source and target of ϕ in which ϕ
has a diagonal matrix. If the i-th diagonal element is αitei with αi a unit, then Cokerϕ »
À

iA{pteiqA and lengthpCokerϕq “
ř

ei, which obviously equals vpdetϕq.

Corollary 21.34. If A is a DVR and B a finite free A-algebra, then
lengthBpB{pbqBq “ vApNpbqq for any element b P B.

Proof As to the proof of Proposition 21.32, it will be sufficient to establish that

vypNpgqq “
ÿ

fpxq“y

dxvxpgq

for all y P Y . We shall apply the Corollary with A “ OY,y and B “ pf˚OXqy; the latter is
finite and free over A (Proposition 21.21 on page 368).

The ring B is a one-dimensional semi-local ring whose maximal ideals correspond to the
points in the fibre f´1pyq. Hence B{pgqB is Artinian, and it decomposes as B{pgqB “
À

OX,x{pgqOX,x. We claim that

lengthAOX,x{pgqOX,x “ dxvxpgq,

from which 21.32 follows in view of the Corollary. Indeed, it holds true that lengthOX,x
pOX,x{pgqOX,xq “

vxpgq, which means that OX,x{pgqOX,x has a composition series of length vxpgq, and
the subquotients are all isomorphic to kpxq; hence lengthApOX,x{pgqOX,xq “ rkpxq :
kpyqs lengthOX,x

pOX,x{pgqOX,xq, and the claim follows.

Exercise 21.3.1 (The projection formula). Let f : X Ñ Y be a finite morphism between
regular curves and let D be a divisor on Y . Show that f˚f

˚D “ deg f ¨D.
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21.4 The canonical divisor

In this section we exclusively work over a perfect field k. A curve over k will then be smooth
if and only if it is regular, and the sheaf ΩX{k of regular differential is then locally free of
rank one.

The elements of ΩkpXq{k are called rational differential forms We are going to associate
a Weil divisor with each non-zero rational differential form on X . These divisors will all
be rationally equivalent, and so we find a well defined divisor class in DivX , which only
depends on the curve. It is called the canonical class and the divisors belonging to it will be
called canonical divisors; often denoted by KX . The canonical class is the most important
invariant of the curve.

Since the Kähler differentials localize well (Theorem 20.31), the module ΩkpXq{k is a
one-dimensional kpXq-vector space being the stalk of the invertible sheaf ΩX{k. Any local
generator η of ΩX{k at a point x P X , is a generator for ΩkpXq{k as well, so that each
rational differential ω is of the form ω “ gη for some g P kpXq; indeed, ΩkpXq{k “

ΩOX,x{k bOX,x
kpXq.

To every rational differential one may associate a Weil divisor divω by the following
procedure. For each point x P X chose a generator ηx for ΩOX,x{k and write ω “ gxηx with
gx P kpXq. Then let

divω “
ÿ

xPX

vxpgxqx. (21.9)

The expression on the right in (21.9) is independent of the choice of local generators, which
is clear since two generators η1

x and ηx will be related through an equality ηx “ αη1
x with α

a unit in OX,x. Hence ω “ gxηx “ αgxη
1
x, and vxpαgxq “ vxpgxq. Note also that the sum

in fact is finite. This ensues from any local generator ηx being a generator for ΩX{k in some
neighbourhood U of x.

That the divisors associated with two rational differentials are linearly equivalent, is clear
from the definition in (21.9); indeed, two rational differentials are proportional with a factor
from kpXq, and for each x P X it holds that vxphgxq “ vxphq ` vxpgxq, so that

divphωq “ div h` divω.

This leads to:

Definition 21.35 (The canonical class). Let X be a smooth curve over k. The canon-
ical class of X in ClX is the divisor class of divω for any non-zero ω P ΩkpXq{k.
Any divisor in the canonical class is called a canonical divisor and often will be
denoted by KX .

What we have done so far is valid over any field as long as the curve is smooth. When
the ground field is perfect, there is as a good local description of the rational differentials in
terms of uniformizers making calculations easier.
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Lemma 21.36. Assume that X is smooth at the closed point x P X and that t is
uniformizer at x. Then each element of ΩkpXq{k is of the form gdt with g P kpXq; in
other words, ΩkpXq{k is of rank one over kpXq with dt as a basis.

Proof The Zariski cotangent space mx{m2
x at x is always generated by the class of a

uniformizer, and in virtue of Proposition 20.26, if follows that dt generates ΩOX,x{k when X
is smooth and kpxq is a separable extension of k.

Example 21.37. When the residue field kpxq is not separable over the ground field k, it
happens that dt “ 0 for a uniformizer t at x. For instance, if k is of characteristic p and
α P k does not have a p-th root in k, the ideal m “ ptp ´αq in krts is maximal. The element
tp ´ α is a uniformizer in the local ring krtsm, but its derivative equals 0.

Be reminded that two Weil divisors D and D1 are linearly equivalent precisely when the
two associated invertible sheaves are isomorphic.

Proposition 21.38. The invertible sheaf associated to divω equals ΩX .

Example 21.39. LetX “ P1
k with the usual coveringU0 “ Spec krts andU1 “ Spec krt´1s.

The differential form dt is an element of ΩkpXq{k, which generate ΩX{k|U0
. This means that

vxpdtq “ 0 for every x P U0. For the remaining point p1 : 0q at infinity, note that t´1 is the
uniformizer there, p1 : 0q corresponding to the origin in U1. We have dpt´1q “ ´t´2dt;
hence dt “ ´pt´1q´2dpt´1q. This means that vp1:0qdt “ ´2, so that div dt “ ´2p1 : 0q.

As a Cartier divisor, the corresponding divisor is given by pU0, 1q, pU1, t
2q This shows

that ΩX » OP1p´2q.

Example 21.40. Assume that k is of characteristic different from 2. Let X Ă Ak be the
elliptic curve given by the equation

v2 “ u3 ´ u,

and consider the differential ω “ du. At a point p “ pa, bq where b ‰ 0, the coordinate u is
a uniformizer, and so du “ dpu ´ aq has zero valuation at p. When b “ 0, the curve has
three points: p1 “ p0, 0q, p2 “ p´1, 0q, and p3 “ p1, 0q.

At these points, v will be a uniformizer, and since 2vdv “ p3u2 ´ 1qdu, it holds that

du “ 2v{p3u2 ´ 1qdv.

Hence vpipduq “ 1 for all three. Summing up, we conclude that

divω “ p1 ` p2 ` p3.

Example 21.41. We consider the projectivization X Ă P2
k of the previous example, i.e. the

curve whose homogeneous equation is

x2
1x2 “ x3

0 ´ x0x
2
2.

Consider again the rational differential ω from before; that is, ω “ dpx0{x2q. We know
the behaviour of ω on the distinguished open set D`px2q, so what remains to compute the
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divisor of ω, is the valuation vppωq for each point in X X V px2q, but this intersection has
just one single point x “ p0 : 1 : 0q.

Dehomogenizing the chart D`px1q by setting u “ x0{x1 and v “ x2{x1, the equation of
X in D`px1q becomes

v “ u3 ´ uv2.

Since 1 ` uv is invertible near x, this shows that u is a uniformizer at x and that vxpvq “ 3.
Our differential ω takes the form ω “ dpx0{x1 ¨ x1{x2q “ dpu{vq “ pudv ´ vduq{v2. We
find

dv “ 3u2 ´ v2 ´ 2uvv1qdv,

which yields

udv ´ vdu “ p3u3 ´ uv2 ´ 2u2vv1 ´ vqdu

“ p2u3 ´ 2uv2 ´ 2u2vv1qdu
(21.10)

The terms uv2, 2u2vv1 vanish to order at least 5 at x, and the dominating term in (21.10) is
2u3, which means that vxpωq “ vxpu3q ´ 2vxpvq “ ´3. We conclude that

divω “ p0 : 0 : 1q ` p´1 : 0 : 0q ` p1 : 0 : 0q ´ 3p0 : 1 : 0q

The genus of a curve

The genus of a curve belongs to the hall of fame of notions in algebraic geometry, and is
even one of the most promient membres. Traces are found in Abels work on the addition
formula, where it appeats as a ‘mysteroius number’, but it would be fair to say that it was
Riemann who brought it into daylight. The genus is an invariantwith at least two faces: it is a
topological invariant of real surfaces (as the number of handles you attache to the sphere to
get the surface) and at the same tme a purely algebraic invariant, which is defined over any
field (even for curves over the feld with two elements).

Definition 21.42. Let k be a field and X a curve proper over k. The arithmetic genus
of X is defined as the number

papXq “ dimkH
1pX,OXq.

The geometric genus of X is defined as

pgpXq “ dimkH
0pX,ΩXq.

Note that χpOXq “ dimH0pX,OXq ´ dimH1pX,OXq, so we get

papXq “ 1 ´ χpOXq.

These numbers are defined using different sheaves, and there is no a priori reason to expect
that they should have anything to do with each other. However, we shall see later in the
chapter that there is a strong relation between them: pa “ pg whenever X is non-singular.
For the time being we will still refer to the arithmetic genus pa as the genus of X .
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Example 21.43. When X “ P1, we have H1pP1,Oq “ 0 so the arithmetic genus is 0.
Likewise, we have that H0pP1,ΩP1q “ H0pP1,OP1p´2qq “ 0, so also pg “ 0.

Example 21.44. Let X Ă P2 be a plane curve, defined by a homogeneous polynomial
fpx0,1 , x2q of degree d. In Chapter ??, we computed that H1pX,OXq » kpd´1

2 q. Hence the
genus of X is pd´1qpd´2q

2
.

21.5 Hyperelliptic curves

Let us recall the hyperelliptic curves defined in Chapter 3. For an integer g ě 1 we consider
the scheme X glued together by the affine schemes U “ SpecA and V “ SpecB, where

A “
krx, ys

p´y2 ` a2g`1x2g`1 ` ¨ ¨ ¨ ` a1xq
and B “

kru, vs

p´v2 ` a2g`1u` ¨ ¨ ¨ ` a1u2g`1q

As before, we glue Dpxq to Dpuq using the identifications u “ x´1 and v “ x´g´1y.
In Chapter ?? we showed that the genus of X was g and claimed that X was actually

projective.
Let us examine the last point in more detail, and give a new projective embedding of X .

To do this, we will need to work out the groups ΓpX,OXpnP qq for a point p P X .
Let us for simplicity assume that a2g`1 “ 1. Let p be the unique closed point given by

V pu, vq in X . In the local ring at p, we have

u “ v2p1 ` a2gu` ¨ ¨ ¨ ` a1u
2gq´1 “ v2punitq,

and hence v generates mp. Hence v is the local parameter. The valuations of v, u, x, y are
given by

νppvq “ 1, νppuq “ 2, νppxq “ ´2, νppyq “ 1 ` pg ` 1qp´2q “ ´p2g ` 1q

We computed in XXX that ΓpX,OXq “ k, which agrees with our expectation that there
are no non-constant regular function on a projective curve. Let us consider the case where
the rational functions are allowed to have poles at p (and only at p). In other words, we
are interested in elements s P ΓpX,OXppqq. Note that the point p does not lie in U ; this
means that s is regular there, and hence can be viewed as a polynomial in x, y. Now, as
A “ krxs ‘ krxsy as a krxs-module, we can express any element s can be expressed as
fpxq ` hpxqy. We can then calculate

νppfpxq ` hpxqyq “ mintνppfpxqq, νpphpxqqνppyqu

“ mint´2 deg f,´p2 deg h` 2g ` 1qu
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Thus, since we assume g ě 1, any non-constant rational function with a pole at p must have
valuation ď ´2 there, and hence we have only the constants in ΓpX,OXppqq “ k.

On the other hand for the divisor 2p we obtain an extra section, corresponding to the
rational function x:

ΓpX,OXp2pqq “ k ‘ kx

Note that OXp2pqp “ OX,p ¨x. The section x P ΓpX,OXp2pqq is non-vanishing at p, while
the section 1 P ΓpX,OXp2pqq is vanishing at p, since 1 “ u ¨ x and u P m Ă Op. Note that
the linear series generated by 1, x generates OXp2pq everywhere, so we get the morphism

X
φ
ÝÑ P1 (21.11)

px, yq ÞÑ p1 : xq

This morphism is exactly the double cover above. It gets even more interesting if we allow
even higher order poles at p. The computation above shows that

ΓpX,Op3pqq “

#

k ‘ kx‘ ky if g “ 1

k ‘ kx if g ą 1

Case g “ 1. We can show, using the embedding criterion of Chapter ??, that the sections
x0 “ 1, x1 “ x, x2 “ y give an embedding

X ÑãÑ P2
k

The image is even seen to be a cubic curve: One computes that ΓpX,Op6pqq is 6-dimensional,
but we have 7 global sections: 1, x, y, x2, xy, x3, y2. That means that there must be some
relation between them of the form - of course it is just the relation in A:

y2 “ a3x
3 ` a2x

2 ` a1x.

This gives the following defining equation of X in P2:

x2
2x0 “ a3x

3
1 ` a2x0x

2
1 ` a1x

2
0x1

Case g “ 2. In this case, the divisor 3p does not give a projective embedding. However, the
map given by 5p gives something interesting: We obtain

ΓpX,OXp5pqq “ k ‘ kx‘ kx2 ‘ ky

These sections generate OXp5pq, so we obtain a morphism

ϕ : X Ñ P3

given by the sections u0 “ 1, u1 “ x, u2 “ x2, u3 “ y of L “ OXp5pq. Notice that
u0u2 ´ u2

1 “ 0, so the image of X lies on a quadric surface. In fact, the image of ϕ is
precisely the relations between the sections:

The map ϕ is in this case a closed immersion, showing that X is projective.
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22

The Riemann–Roch theorem

When X is a projective curve over a field k, the cohomology groups H ipX,Fq are finite-
dimensional k-vector spaces and we define

hipX,Fq :“ dimkH
ipX,Fq

Note that in this case, hipX,Fq “ 0 for all i ě 2, so we have two cohomology groups
h0pX,Fq and h1pX,Fq to work with. We will mostly be interested in the case when
F “ OXpDq for some divisor D; any invertible sheaf on X is of this form.

Our most basic tool for studying the cohomology groups H0pX,OXpDqq is the ideal
sheaf sequence of a point p P X , which takes the form

0 ÝÝÑ OXp´pq ÝÝÑ OX ÝÝÑ kppq ÝÝÑ 0 (22.1)

where the first map is the inclusion and the second is evaluation at p. Here we have identified
the ideal sheaf mp Ă OX by the invertible sheaf OXp´pq, and the sheaf i˚Op with the
skyscraper sheaf with value kppq at p. If L is an invertible sheaf, we can tensor (22.1) by L
and get

0 ÝÝÑ Lp´pq ÝÝÑ L ÝÝÑ kppq ÝÝÑ 0 (22.2)

where Lp´pq is the invertible sheaf of sections of L vanishing at p. (Here we also identify
Lb kppq » kppq, because every invertible sheaf over a point is trivial). In particular, taking
L “ OXpD ` pq in (22.2) we get the following basic bound:

Lemma 22.1. Let X be a non-singular projective curve, and let D be a divisor on X .
Then

‚ h0pX,OpD ` pqq ď h0pX,OpDqq ` 1 for each p P X .
‚ h0pX,OXpDqq ď degD ` 1.

Proof We only need to prove the last part. Also, it suffices to constder the case when
D “

ř

npp is effective (otherwise the left-hand side is 0). In that case, the inequality follows
by applying the first inequality degD times.

Recall, that we defined for a sheaf F , the Euler characteristic χpFq as the alternating
sum of the hipX,Fq. One useful property of χpX,´q is that it is additive on short exact
sequences: χpFq “ χpF 1q ` χpF2q. Thus applying χ to (22.2), we get

χpLp´pqq “ χpLq ´ χpkp´pqq “ χpLq ´ 1.

380
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Theorem 22.2 (Easy Riemann–Roch). Let X be a smooth projective curve of genus
g and let D be a Cartier divisor on X . Then

χpOXpDqq “ h0pOXpDqq ´ h1pX,OXpDqq “ degD ` 1 ´ g

Proof Let p P X be a point and consider the sequence (22.2) with L “ OXpD` pq. Then,
as we just saw, χpOXpD ` pqq “ χpOXpDqq ` 1. Also the right-hand side of the equation
above increases by 1 by adding p to D (since degpD ` pq “ degD ` 1). This means that
the theorem holds for a divisor D if and only if it holds for D ` p for any closed point p. So
by adding and subtracting points, we can reduce to the case whenD “ 0. But in that case, the
left hand side of the formula is by definition dimkH

0pX,OXq´dimkH
1pX,OXq “ 1´g,

which equals the right hand side.

The formula above is useful because the right hand side is so easy to compute. The number
we are really after is the number h0pX,OXpDqq, since this is the dimension of global
sections of OXpDq. This in turn would help us to study X geometrically, since we could
use sections of OXpDq to define rational maps X 99K Pn. So if we, for some reason, could
argue that say, H1pX,OXpDqq “ 0, we would have a formula for the dimension of the
space of global sections of OXpDq.

In any case, we can certainly say that h1pX,OXpDqq ě 0, so we get the following
bound on h0pX,OXpDqq. It is a lower bound on h0pX,OXpDqq, which is often enough in
applications.

Corollary 22.3. h0pX,OXpDqq ě degD ` 1 ´ g.

Example 22.4. A typical feature is that H1pX,OXpDqq “ 0 provided that the degree
degD is large enough. This is basically a consequence of Serre’s theorem. To give an
example, consider again the case where X is a hyperelliptic curve of genus 2, as in XXXX.
We have the following table of the various cohomology groupsH ipX,OXpnpqq for the point
p “ pu, vq:

D 0 1p 2p 3p 4p 5p 6p 7p
H0pX,OXpDqq 1 1 2 2 3 4 5 6
H1pX,OXpDqq 2 1 1 0 0 0 0 0
χpOXpDqq -1 0 1 2 3 4 5 6

and it is not so hard to prove directly using the Cech complex that H1pX,OXpnpqq “ 0 for
all n ě 3.

Fortunately, there are more general results which tell us when H1pX,OXpDqq “ 0. This
is due to the following fundamental theorem:
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Theorem 22.5 (Serre duality). Let X be a smooth projective variety of dimension n
and let D be a Cartier divisor on X . Then for each 0 ď p ď n,

dimkH
ppX,OXpDqq “ dimkH

n´ppX,OXpKX ´Dqq

So ifX is a curve, we get that h1pX,OXpDqq “ h0pX,OXpKX´Dqq and the Riemann–
Roch theorem takes the following form:

Theorem 22.6 (Riemann–Roch). Let X be a non-singular projective curve of genus
g and let D P DivpXq be a divisor. Then

h0pX,OXpDqq ´ h0pX,OXpKX ´Dqq “ degD ` 1 ´ g

This is a much stronger statement than the Riemann–Roch formula we had before. It is
more applicable because the groupH0pX,OXpKX´Dqq is easier to interpret: it is the space
of global sections of the sheaf associated to the divisor KX ´D, or equivalently ΩXp´Dq.
It is also often easier to argue that there can be no such global sections of this sheaf. For
instance, in the case degD ą dimKX then KX ´D cannot be effective: effective divisors
ř

nipi have non-negative degree.
So what is this degree of the canonical divisor KX? From Serre duality, we get that

H0pX,OXpKXqq and H1pX,OXq have the same dimension, so the geometric genus and
arithmetic genus agree:

pg “ pa “ g.

Then applying the Riemann–Roch formula to D “ KX , we get

g ´ 1 “ dimkH
0pX,OXpKXqq ´ dimkH

0pX,OXpKX ´KXqq “ degK ` 1 ´ g

and so degKX “ 2g ´ 2. We summarize this in the following corollary.

Corollary 22.7. Suppose that D is a Cartier divisor of degree ď 2g ´ 1. Then
H1pX,OXpDqq “ 0, and

h0pX,OXpDqq “ degD ` 1 ´ g

Moreover, if degD “ 2g ´ 2, then H1pX,OXpDqq ‰ 0 only if D „ KX .

Example 22.8. Let us verify the Riemann–Roch formula for X “ P1. It suffices to check it
for all divisors of the form D “ dP where P P P1 is a point. In this case, the right-hand-side
of the fomula equals degD ` 1 ´ 0 “ d` 1.

If d ě 0, we may identifyH0pX,Dq with the space of homogenous degree d polynomials
in x0, x1. Hence h0pX,Dq “ d` 1. Moreover, h1pX,Dq “ 0, as we saw in Chapter XXX.
If d ă 0, we have h0pX,Dq “ 0 and h1pX,Dq “ ´d´ 1.
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22.1 Serre duality 383

22.1 Serre duality

The aim of the next few sections is to prove the following:

Theorem 22.9 (Serre duality). Let X be a projective curve over an algebraically
closed field k. Then there is a coherent sheaf ωX on X , together with an isomorphism
t : H1pX,ωXq Ñ k, such that for any locally free sheaf E on X , there is a perfect
pairing

H0pX,Fq ˆH1pX,ωX b E_q Ñ H1pX,ωXq » k (22.3)

In particular, H1pX,ωX b E_q » H0pX, Eq_.

The sheaf ωX is called a dualizing sheaf. The existence of ωX is usually not enough for
applications or explicit computations. The important point is that, in the smooth case, the
dualizing sheaf equals with the cotangent sheaf, which is easier to study (e.g., because there
are formulas for the canonical divisor).

Theorem 22.10. If X is a non-singular, projective curve, the dualizing sheaf ωX is
isomorphic to the cotangent sheaf ΩX .

There are many proofs in the literature of this result ?, ?, ?, ?. Our proof is quite elementary,
in the sense that it requires no derived functors, Ext -sheaves, residues, adeles, etc. The ad hoc
approach here is however much less conceptual than the standard proofs, and give essentially
no information about the isomorphism H1pX,ΩXq » k.

We will prove the two theorems in three steps:
(i) First we prove both theorems for X “ P1. In which ωX “ OP1p´2q serves as

a dualizing sheaf (and we know this coincides with ΩP1).
(ii) Then we prove existence of ωX for a general curve, using a Noether normaliza-

tion f : X Ñ P1. Here the sheaf ωX is constructed just to satisfy the formal
properties of Serre duality.

(iii) We finally prove that ωX » ΩX by a computation on the self product X ˆk X .
The fact that P1, and hence X , can be a covered by two affine open sets simplifies things a
lot. In particular, we have a concrete interpretation of the first cohomology group H1 of a
sheaf, in terms of the Cech complex.

22.2 Proof of Serre duality for X “ P1

Lemma 22.11. Serre duality holds for P1 with ωP1 “ OP1p´2q and F is an invertible
sheaf.

Proof Recall that we may identifyH0pX,OP1pdqq with the k-vector space of homogeneous
polynomials of degree d and H1pX,OP1p´2 ´ dqq with the k-vector space spanned by
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Laurent monomials x´u
0 x´v

1 with u` v “ d` 2 u, v ě 1. The multiplication map

xa0x
b
1 ˆ x´u

0 x´v
1 :“

#

x´1
0 x´1

1 if pu, vq “ pa´ 1, b´ 1q

0 otherwise

defines a perfect pairing, which induces (22.3) when F “ Opdq with d ě 0. For d ă 0 all
groups are zero.

22.3 A simple cohomological lemma

In our proof, we will deduce Serre duality on a general curveX by considering a finite (hence
affine) morphism π : X Ñ P1. The following lemma will allow us to transport computations
of cohomology of sheaves on X to computations on P1, at the cost of replacing F with π˚F .

Lemma 22.12. Let π : X Ñ Y be an affine morphism of varieties. Then for each
coherent sheaf F on X , and i ě 0, we have a canonical isomorphism

H ipX,Fq “ H ipY, π˚Fq.

Proof Let U “ tUiu be a finite affine covering of Y such that H ipX,π˚Fq is computed
by the Cech complex C‚pUi, π˚Fq. The hypotheses give that X is covered by the affine
subsets π´1pUiq. The lemma follows simply because the Cech complexes of F and π˚F
with respect to the respective coverings are the same.

22.4 Curves obtained by gluing two affines

IfX is a non-singular projective curve over k, we can pick a Noether normalization π : X Ñ

P1, which is affine, finite and flat.
Recall the standard gluing construction of P1 as U Y U 1 where U “ SpecA, and

U 1 “ SpecA1, and A “ kras and A1 “ kra1s. The gluing is defined by the isomorphism
Dpaq “ SpecAa » SpecA1

a1 “ Dpa1q, using the isomorphism τ : Aa Ñ A1
a1 given by

τpaq “ a1´1.
Because the morphism π is affine, we find that alsoX can be covered by two affine subsets

π´1pUq, π´1pU 1q. We write V “ SpecB and V 1 “ SpecB1 for these subsets. Note that
π|V (resp. π|V 1 ) is induced by a ring map u : A Ñ B (resp. u1 : A1 Ñ B1), so that b “ upaq

(resp. b1 “ u1pa1q). Thus X is obtained by gluing V and V 1 along SpecBb and SpecB1
b1

using an isomorphism σ : Bb Ñ Bb1 , which is compatible with π, in the sense that the
diagram below commutes:

Bb B1
b1

Aa A1
a1

σ

ua

τ

u1
a1
.
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22.5 The dualizing sheaf 385

22.4.1 Gluing sheaves

Given a quasi-coherent sheaf G on P1, we get anA-moduleN “ ΓpU,Gq, and anA1-module
N 1 “ ΓpU 1,Gq. On Dpaq “ SpecAa » SpecA1

a1 “ Dpa1q, these are related by an
isomorphism of Aa1 -modules

µ : N 1
a1 Ñ Na

(where we view Na as an Aa1 -module using the isomorphism τ ). Conversely, by the tilde-
construction and the Gluing lemma for sheaves, given modules N,N 1 and an isomorphism µ
as above, we can construct a quasi-coherent sheaf G on P1.

Similarly, giving a quasi-coherent sheaf F on X is equivalent to giving: A B-module M ;
A B1-module; and an isomorphism of Bb1 -modules

ν :Mb1 Ñ Mb

F is coherent if and only if M and M 1 are finitely generated.

22.5 The dualizing sheaf

We will use the gluing construction of the previous section to define a sheaf ωX onX , starting
from ωP1 “ OP1p´2q on P1. To define it, we need to define two modules on each affine open
and check that they glue over the intersection.

The general construction goes as follows. Start with an A-module N and consider the
A-module

M “ HomApB,Nq.

The crucial point is that M can be viewed as a B-module, via the rule

b ¨ ϕpyq :“ ϕpb ¨ yq, y P B

for each A-linear map ϕ : B Ñ N . Likewise, for an A1-module N 1, the A1-module
M 1 “ HomA1 pB1, N 1q can be viewed as a B1-module.

If N and N 1 arise from a sheaf G on P1 in the construction above, there is a natural
isomorphism

HomA1
a1

pB1
b1 , N 1

a1 q Ñ HomAa
pBb, Naq

sending ϕ : B1
b1 Ñ N 1

a1 to µ´1 ˝ ϕ ˝ σ : Bb Ñ Na. One checks that this is an isomorphism
of Bb-modules. Thus from any sheaf G on P1, we obtain a sheaf, denoted by π!G, on X .
In fact, the map G ÞÑ π!G defines a functor from the category of coherent OP1-modules to
OX-modules, but we will not need this fact here.

The crucial ingredient we need is that there is a canonical isomorphism

π˚ HomXpF , π!Gq » HomP1pπ˚F ,Gq. (22.4)

We first prove this locally:
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Lemma 22.13. For a finitely generated B-module L, there is a natural isomorphism
(of A-modules)

HomBpL,HomApB,Nqq Ñ HomApL,Nq (22.5)

Proof The map is defined by sending ϕ : L Ñ HomApB,Nq to ℓ ÞÑ ϕpℓqp1q.
The map (22.5) is clearly an isomorphism for L “ B‘n. To prove it in general, pick a

presentation

B‘m Ñ B‘n Ñ L Ñ 0.

Applying HomBp´, HomApB,Nqq, we get a diagram

0 HomBpL,HomApB,Nqq HomBpB,HomApB,Nqq‘n HomBpB,HomApB,Nqq‘m

0 HomBpL,Nq HomBpB,Nq‘n HomBpB,Nq‘m

Then (22.5) is the left-most vertical map, and this is an isomorphism by the 5-Lemma.

Inspecting the proof of Lemma 22.5, we note that the isomorphism in (22.5) is compatible
with localizations. Thus the isomorphisms sheafify, and we get the sheaf isomorphism (22.4).

Definition 22.14. We define the dualizing sheaf of X as the sheaf ωX “ π!ωP1 .

So far we haven’t used the fact that X is non-singular; any projective curve admits a
dualizing sheaf ωX . which is a coherent OX-module. Note that ω is a coherent sheaf on
X (because locally it is constructed by HomApB,Nq, which is finitely generated). In the
non-singular case, we will prove in Section 22.7 that ωX » ΩX . A first step towards this, is
to show that ωX is invertible.

Proposition 22.15. LetX be a non-singular projective curve. ThenωX is an invertible
sheaf.

Proof Since X is a non-singular curve, ωX is locally free if and only if it is torsion free.
Let T “ pωXqtors denote the torsion subsheaf and E is the torsion free part, so that there is
an exact sequence

0 Ñ T Ñ ωX Ñ E Ñ 0

Applying π˚ to this, we get

0 Ñ π˚T Ñ π˚ωX Ñ π˚E

Then applying formula (22.4), shows that π˚ωX “ Hompπ˚OX , ωP1q. As π is finite and
surjective, π˚OX is locally free. Thus since ωP1 “ OP1p´2q is invertible, we find that π˚ωX
is also locally free. Note that π˚T is again a torsion sheaf on P1. As π˚T maps injectively into
a locally free sheaf, we must have π˚T “ 0. This implies that ΓpX, T q “ ΓpP1, π˚T q “ 0.
On a curve, the only torsion sheaf with no global sections is the zero sheaf, so T “ 0 as well.
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22.6 Proof of Theorem 22.9 387

Finally, to compute the rank of ωX , we use the fact that the formation of π!G behaves
well with localization. This implies that ωX,η at the generic point η “ Spec kpXq coincides
with HomkpP1qpkpXq, kpP1qq. The latter is a kpP1q-vector space of dimension equal to the
degree of kpXq : kpP1q. Hence, as a kpXq-vector space it has dimension 1.

22.6 Proof of Theorem 22.9

From here on, we can finish the proof of Serre duality on X:

H1pX,F_ bOX
ωXq “ H1pP1, π˚pF_ bOX

ωXqq pLemma 22.12q

“ H1pP1, π˚ HompF , ωXqq

“ H1pP1,Hompπ˚F , ωP1qq pby (22.4)q

“ H1pP1, pπ˚Fq_ bOP1
ωP1q

“ H0pP1, π˚Fq_ pSerre duality on P1q

“ H0pX,Fq_. pLemma 22.12q

22.7 The dualizing sheaf equals the canonical sheaf

The goal of this section is to show that the dualizing sheaf ωX is isomorphic to the cotangent
sheaf ΩX . Note that both of these sheaves are locally free: the first by Corollary 22.15, and
ΩX because X is smooth.

We will work with the self-product X ˆX with the two projections p, q : X ˆX Ñ X .

Lemma 22.16 (”Kunneth formula”). Let V andX be varieties over k with V affine.
Let F denote a coherent OV -module and let G denote a coherent OX-module and
write p, q : X ˆ V Ñ X for the two projections on V ˆX . Then there is a natural
isomorphism

H ipV ˆX, p˚F b q˚Gq “ ΓpV,Fq bk H
ipX,Gq (22.6)

Proof Let U “ tUiu denote an open affine covering of X so that C‚pU ,Gq computes the
cohomology group H ipX,Gq. Tensoring C‚pU ,Gq with the module M “ ΓpV,Fq gives a
complex C‚pU ,Gq bk M which is easily seen to compute the cohomology of both sides of
(22.6).

Consider the diagonal embedding i : ∆ Ñ X ˆX . Recall that the normal bundle of ∆ in
X ˆX is isomorphic to the tangent bundle TX . We thus have an exact sequence

0 Ñ OXˆX Ñ OXˆXp∆q Ñ i˚TX Ñ 0. (22.7)

We now tensor this sequence by q˚ωX , to we get a sequence

0 Ñ q˚ωX Ñ q˚ωXp∆q Ñ i˚pωX b TXq Ñ 0 (22.8)

Here we have used the projection formula:

i˚TX b q˚ωX “ i˚pTX b i˚q˚ωXq “ i˚pTX b ωXq.
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If we restrict the sequence (22.8) to the open set V ˆX , where V “ SpecR is affine, and
take the long exact sequence in cohomology, we get

ΓpV ˆX, i˚pωX b TXqq Ñ H1pV ˆX, q˚ωXq Ñ H1pV ˆX, q˚ωXp∆qq (22.9)

By Lemma 22.12), we may identify the first group with ΓpV, ωX b TXq. By Lemma 22.16,
we may identity the second with ΓpV,OXq bk H

1pX,ωXq “ ΓpV,OXq (we also use the
isomorphism H1pX,ωXq “ k). These identifications are compatible with restriction maps,
so we get a map of sheaves ωX b TX Ñ OX , or equivalently,

ρ : ωX Ñ ΩX

We claim that ρ is surjective. Since both sheaves are locally free, it must then be an isomor-
phism because the kernel is locally free of rank 0. Thus we find that ωX » ΩX .

To conclude, it suffices to prove that the group H1pV ˆX, q˚ωXp∆qq in (22.9) vanishes
for each affine V Ă X . Note that by Lemma 22.12, we have

H1pV ˆX, q˚ωXp∆qq “ H1pX,ωX b q˚OVˆXp∆qq

Note that q˚OVˆXp∆q is locally free. By the duality property of ωX , we may identify this
with

H0pX,HomXpq˚OVˆXp∆q,OXqq_

By the change-of-rings property of Hom, the latter equals

H0pX, q˚ HomXpOVˆXp∆q,OVˆXqq_ “ H0pX, q˚OVˆXp´∆qq_

Using 22.12 agian, the latter cohomology group equals

H0pV ˆX,OVˆXp´∆qq_

But this last group is indeed zero: sections of OVˆXp´∆q » I∆ correspond to sections of
OVˆX that vanish along the diagonal. However, we have

ΓpV ˆX,OVˆXq “ ΓpV,OV q bk ΓpX,OXq » ΓpV,OV q bk k,

which implies that any such section can only vanish along a ‘vertical’ divisor D ˆ X for
D Ă V .

22.8 Exercises

Exercise 22.8.1. a) Show that the pushforward of a torsion sheaf is torsion
b) Show that a sheaf F is torsion iff it is supported on a proper closed subset
c) Show that if F is a torsion sheaf on a curve X then H0pX,Fq “ 0 if and only

if F “ 0.
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23

Applications of the Riemann–Roch theorem

In this chapter we give a few of the (many) consequences of the Riemann–Roch formula. We
start by translating the results of Chapter ?? into concrete numerical criteria for a divisor D
to be base point free or very ample. Then we use these results to classify all curves of all
genus ď 4.

An embedding theorem

Let X be a variety over (an algebraically closed) field k with an invertible sheaf L on X .
For each point x P X there is a evaluation map L Ñ Lpxq “ Lb kpxq whose kernel is
mxL. One says that L is generated by global sections if the induced map on global sections
H0pX,Lq Ñ Lpxq is surjective. Choosing a basis tσiu forH0pX,Lq, we get a well defined
morphism f : X Ñ Pnk with the property that f˚OPn

k
p1q “ L and, on the level of sections,

that f˚xi “ σi. Here the xi’s are homogeneous coordinates on Pnk ; i.e. they form basis for
the space of global sections H0pPnk ,OPn

k
p1qq.

For each pair of points x, y from X there is an evaluation map L Ñ Lpxq ‘Lpyq, and we
say that L separates points, if the induced map on global sectionsH0pX,Lq Ñ kpxq‘kpyq

is surjective for all x and y. This means there is a section σ vanishing at x but not at y, so
that corresponding hyperplane in Pnk contains x but not y. We conclude that f is injective on
closed points, hence injective. Note that the condition that L separates points, ensures it is
globally generated.

Next step is to control the ‘derivative’ of f . We say that L separates tangent directions
if for each closed point x P X , the map mxL Ñ mxL{m2

xL “ mx{m2
x bk Lpxq induces a

surjection on global sections. This means the elements from the section space H0pX,mxLq

generate mx{m2
x b Lpxq. Now, if σ0 is a section that does not vanish at x, it holds that

Lpxq “ σ0pxq¨k, so dividing by σ0pxq, we obtain a surjective mapH0pX,mxLq Ñ mx{m2
x.

Theorem 23.1. Let X be a variety proper over an algebraically closed field k and L
an invertible sheaf on X which is generated by its global sections.

(i) If L separates points, then f is a homeomorphism onto its image, and
the image is closed;

(ii) If L also separates tangent directions, then f is a closed embedding.

Proof Since X is assumed to be proper, the map f is closed, and as shown above, it will
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be injective on closed points. We conclude that it is bijective onto its image, and hence a
homeomorphism onto fpXq.

For the second statement, we have to show that map of sheaves f 7 : OPn Ñ f˚OX is
surjective. This is a local issue, so chose a point x P X . It suffices to see that the local map
f 7
x : OPnk,fpxq Ñ OX,x is surjective. By an appropriate choice of homogeneous coordinates

on Pnk we may assume that fpxq P D`px0q; that is , σ0pxq ‰ 0, and that the maximal ideal
mfpxq in OPn,fpxq is generated by the xix´1

0 . Then the hypotheses ensure that their images
σipxqσ0pxq´1 in OX,x generate mx{m2

x. The next lemma finishes the proof.

Lemma 23.2. Let ϕ : A Ñ B be a homomorphism of Noetherian local rings with
maximal ideals mA and mB . Assume that B is a finite A-module, and assume further
that the induced map mA Ñ mB{m2

B is surjective. Then ϕ is surjective.

Proof Consider the ideal a “ mAB in B. Clearly a{mBa Ñ mB{m2
B is surjective, so

Nakayama’s lemma yields that a “ mB . Now, B is finite over A and A{mA “ B{mB “

B{mAB, so Nakayama’s lemma once more gives that A Ñ B is surjective.

As an application Serre duality and of the embedding theorem, let us show the promised
result that every proper smooth curve is projective:

Theorem 23.3. Let X be a proper smooth curve over a field k. Then X is projective.

Proof We are to see that H1pX,Lp´x´ yqq “ 0 for each pair of points x, y on X . Its the
separetes points and tangent vectors

0 Lp´x´ yq L E 0

Where E equals Lpxq ‘ Lpyq when x ‰ y and E “ L{m2
xL when x “ y (Indeed, Op´2xq

is the locally ideal t2x ).
By Serre duality, this H1 group is dual to H0pX,ωb L´1px` yqq; in terems of divisors,

if L “ OxpDq, this means that h0pKX ` x` y´Dq “ 0. But we achieve this by choosing
D to be of degree greater than 2g´2`2 “ 2g, indeed, then the degree ofKX `x` y´D
will be negative.

23.1 Very ampleness criteria

Recall the criterion of Theorem ??, that an invertible sheaf L is very ample if and only if its
linear system separates points and tangent vectors. Using Riemann–Roch we can translate
that result into a very simple, numerical criterion for very ampleness on a curve:
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23.1 Very ampleness criteria 391

Theorem 23.4. Let X be a non-singular projective curve and let D be a divisor on
X . Then

(i) |D| is base point free if and only if

h0pD ´ P q “ h0pDq ´ 1 for every point P P X.

(ii) D is very ample if and only if

h0pD ´ P ´Qq “ h0pDq ´ 2 for every two points P,Q P X

(including the case P “ Q)
(iii) A divisor D is ample iff degD ą 0

Proof (i) We take the cohomology of the following exact sequence

0 Ñ OXpD ´ P q Ñ OXpDq Ñ kpP q Ñ 0

and get

0 Ñ H0pX,OXpD ´ P qq Ñ H0pX,OXpDqq Ñ k

From this sequence, we get h0pDq ´ 1 ď h0pD ´ P q ď h0pDq.
The right-most map takes a global section of OXpDq and evaluates it at P . To prove

that |D| is base point free, we must prove that there is a section s P OXpDq which does
not vanish at P , or equivalently, that the map H0pX,OXpDqq Ñ k is surjective. But this
happens if and only if h0pD ´ P q “ h0pDq ´ 1.

(ii) If the above inequality is satisfied, we see in particular that |D| is base point free. So
it determines a morphism ϕ : X Ñ Pn. We can use Theorem ?? that ensure that ϕ is an
embedding. That is, we need to check that ϕ separates (a) points and (b) tangent vectors.

For (a), we are assuming that h0pD ´ P ´ Qq “ h0pDq ´ 2, so the divisor D ´ P is
effective and does not have Q as a base point (by (i)). But this means that there is a section of
H0pX,OXpD ´ P qq which doesn’t vanish at Q. We have H0pX,D ´ P q Ď H0pX,Dq,
so we get a section of OXpDq which vanishes at P , but not at Q. Hence |D| separates points.

For (b), we need to show that |D| separates tangent vectors, i.e., the elements ofH0pX,OXpDqq

should generate the k-vector space mPOXpDq{m2
POXpDq at every point P P X . This con-

dition is equivalent to saying that there is a divisor D1 P |D| with multiplicity 1 at P : Note
that dimTP pXq “ 1, dimTPD

1 “ 0 if P has multiplicity 1 in D1 and dimTppD
1q “ 1

if P has higher multiplicity. But this is equivalent to P not being a base point of D ´ P .
Applying (i) again, we see that h0pD ´ 2P q “ h0pDq ´ 2, so we are done.

(iii) By definition, D is ample if mD is very ample for m " 0. So the result follows by
the next result, since any divisor of degree ě 2g ` 1 is very ample.

Proposition 23.5. Let X be a non-singular projective curve and let D be a divisor on
X . Then

(i) If degD ě 2g, then D is base point free.
(ii) If degD ě 2g ` 1, then D is very ample.
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392 Applications of the Riemann–Roch theorem

Proof By Serre duality, h1pDq “ h0pK ´ Dq “ 0 because degD ą degK “ 2g ´ 2.
Similarly, h1pD ´ P q “ 0.

(i) Applying Riemann–Roch, we find that h0pD ´ pq “ h0pDq ´ 1 for any P P X , so
we are done by the above theorem.

(ii) In this case we also get h1pD ´ P ´Qq “ 0, so Riemann–Roch shows that h0pD ´

P ´Qq “ h0pDq ´ 2, which is the conclusion we want.

Example 23.6. On X “ P1 a divisor D is base point free if and only if deg ě 0. Moreover,
D is very ample if and only if degD ą 0

Example 23.7. If X is a curve of genus 1, a divisor D is base point free if degD ě 2. We
will see later that, if D “ p for some point p, we have h0pX,OXpDqq “ 1, so D can not be
base point free (because the generator of H0pX,OXpDqq vanishes at p).

A divisor D of degree ě 3 is very ample if degD ě 3.

23.2 Curves on P1 ˆ P1

Let us consider one central example, namely curves on the quadric surface Q “ P1 ˆ P1.
Recall that ClpQq “ ZL1 ‘ ZL2 where L1 “ r0 : 1s ˆ P1 and L2 “ P1 ˆ r0 : 1s.

We can use this to prove that Q contains non-singular curves of any genus g ě 0. (This is
in contrast with the case of P2, where only genera of the form

`

d´1
2

˘

were allowed).
To prove this, consider the divisor D “ aL1 ` bL2 where a, b ě 1. D is effective, so let

C P |D| be a generic element.

Lemma 23.8. C is non-singular.

Proof D is defined by a bihomogeneous equation
ÿ

i`j“a,l`k“b

cij,klx
i
0x

j
1y
l
0y
k
1 “ 0

On the open set D`px0q XD`py0q » A2 “ Spec krx, ys this is given by
ÿ

i`j“a,l`k“b

cij,klx
jyk “ 0

and it is clear that if the coefficients cij,kl are general, this is non-singular. By symmetry this
also happens in the other charts, so C is non-singular.

To compute the genus of C , we use the formula 2g´ 2 “ degΩC . So we need to find ΩC
and compute its degree. This is best computed using the Adjunction formula of Proposition
??:

ΩC “ ωQ b OQpCq|X (23.1)

“ OQp´2L1 ´ 2L2q b OpaL1 ` bL2q|C (23.2)

“ OCppa´ 2qL1 ` pb´ 2qL2q

To compute the degree of this, we consider the degrees of L1|C and L2|C separately. Note
that the degree degL1|C is invariant under linear equivalence, so we can compute the degree
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23.3 Curves of genus 0 393

of any rs : ts ˆ P1 for a general point rs : ts ˆ P1. The point is that as a Weil divisor,
L1|X is obtained by intersecting rs : ts ˆ P1 with X . When rs : ts P P1 is a general point,
the intersection X X rs : ts ˆ P1 is a reduced subscheme of X , consisting of b points (as
C Ă Q “ P1 ˆP1 is a divisor of type aL1 ` bL2). Hence degL1|C “ b and degL2|C “ a.
It follows that

2g ´ 2 “ degΩC “ pa´ 2qb` pb´ 2qa “ 2ab´ 2a´ 2b

Solving for g gives us the following theorem:

Theorem 23.9. Let Q “ P1 ˆ P1. Then a generic divisor C in |aL1 ` bL2| is a
smooth projective curve of genus

g “ pa´ 1qpb´ 1q.

In particular, Q contains non-singular curves of any genus g ě 0.

23.3 Curves of genus 0

The results of the previous results are particularly strong when the genus is small. For instance,
when g “ 0, any divisor of positive degree is very ample! We can use this to classify all
curves of genus 0. First a simple lemma:

Lemma 23.10. Let X be a non-singular curve. Then X » P1 if and only if there
exists a Cartier divisorD such that degD “ 1 and h0pX,OXpDqq ě 2. In this case,
the divisor D is even very ample.

Proof Let g P H0pX,OXpDqq. Then D1 „ div g ` D ě 0, so replacing D by D1 we
may assume that D is effective. Since degD “ 1, we must have D “ p for some point
p P X . Now take f P H0pX,OXpDqq ´ k. As above, f induces a morphism ϕ : X Ñ P1.
This morphism has degree equal to 1, so it is birational, and henceX is isomorphic to P1.

Proposition 23.11. A non-singular curve X is isomorphic to P1 if and only if
ClpXq » Z.

Proof We have seen that the Picard group of any Pnk is isomorphic to Z via the degree map
deg : PicpPnkq Ñ Z.

Conversely, suppose X is a curve with ClpXq » Z. Let p, q be two distinct points on X .
By assumption, p and q are linearly equivalent, so the linear system |p| “ PH0pX,OXpDqq

is at least 1-dimensional. Then X » P1
k by the previous lemma.

Theorem 23.12. Any curve of genus 0 over an algebraically closed field is isomorphic
to P1.

Proof Let p P X be a point and consider the divisor D “ p. If X has genus 0, then
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1 “ degD ą 2g ´ 2 “ ´2, so H1pX,OXpDqq “ 0. Then Riemann-Roch tells us that

dimH0pX,OXpDqq “ 1 ` 1 ´ 0 “ 2

Hence X » P1
k by Lemma 23.10.

We conclude by yet another characterisation of P1:

Lemma 23.13. Let C be a non-singular projective curve and D any divisor of degree
d ą 0. Then

dim |D| ď degD

with equality if and only if C » P1.

Proof Although one might guess that this lemma follows directly from Riemann-Roch, this
does not seem to be the case: Riemann-Roch gives a different sort of relationship between
the dimension and degree of a divisor.

We may assume thatD is effective, i.e.,D “ P1 ` ¨ ¨ ¨ `Pd for some points P1, . . . , Pk P

C (possibly equal) (otherwise replace D by some different effective divisor D1 P |D|). We
induct on d.

First suppose d “ 1. There is an exact sequence

0 Ñ OC Ñ OCpP q Ñ kpP q Ñ 0.

Now h0pOCq “ 1 and h0pkpP qq “ 1 therefore h0pOCpP qq ď 2 so dim |P | ď 1. If
dim |P | “ 1 then |P | has no base points so we obtain a morphism C Ñ P1 of degree
degP “ 1 which must be an isomorphism, and so C » P1 is rational.

Next supposeD “ P1 ` ¨ ¨ ¨ `Pd. LetD1 “ P1 ` ¨ ¨ ¨ `Pd´1. There is an exact sequence

0 Ñ OCpD1q Ñ OCpDq Ñ kpPdq Ñ 0.

Now h0pOCpD1qq ď d by induction and h0pkpPdqq “ 1 so h0pOCpDqq ď d` 1, therefore
dim |D| ď d with equality iff h0pOCpD1qq “ d. By induction h0pOCpD1qq “ d iff C is
rational.

23.3.1 Non-algebraically closed fields

It is of course possible to develop the theory of curves over any field k, not just algebraically
closed ones. In this case, there tend to be more divisors around than just the combinations of
closed points. For instance, for X “ P1

R, the subscheme D “ V px2 ` 1q is of codimension
1, so it gives a Weil divisor on X . The results of this chapter, including the Riemann–Roch
theorem, still holds true, provided the degree of a divisor D is defined in terms of the degree
of the field extension over which D is defined. In the above example, we would for instance
have degD “ rRpDq : Rs “ rC : Rs “ 2.

In this setting, a curve of genus 0, need not be isomorphic to P1
k (although certainly this is

true over the algebraic closure: X ˆk k » P1
k
). For instance, the curve X “ V px2

0 ` x2
1 `

x2
2q Ă P2

R has genus 0, but is not isomorphic to P1
R: This is because XpRq “ H, whereas

P1pRqq is infinite. A nice and surprising fact, however, is that a curve of genus 0 over a field k
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is at least always isomorphic to a projective conic in P2
k. This is because of the anticanonical

divisor: ´KX has degree 2 and defines an embedding X ÞÑ P2
k.

Example 23.14. Let k be any field, and consider the conic X “ V px2
0 ` x2

1 ´ x2
2q Ă P2

k.
This X has a k-rational point p0 “ p1 : 0 : 1q. Projecting from p0, we obtain a rational map
X 99K P1

k, which is birational. Hence X is isomorphic to P1
k.

Example 23.15. The conic X “ V px2
0 ` x2

1 ´ 3x2
2q has many R-points, but no Q-points!

23.4 Curves of genus 1

A plane curve X Ă P2
k of degree 3 has genus 1. This follows from our earlier work on

the canonical divisor, which showed ωX » OP2
k
pd ´ 3q|X » OX , and so g “ h0pωXq “

h0pOXq “ 1. In this section, we show that in fact every curve of genus 1 arises this way:

Theorem 23.16. Any projective curve X of genus 1 can be embedded as a plane
cubic curve in P2

k.

Proof Pick a point P P X and consider the divisor D “ 3P . D has degree 3 ě 2g ` 1,
so it is very ample. Furthermore, by Riemann–Roch, h0p3P q “ 3, so there is a projec-
tive embedding ϕ : X Ñ P2

k. The image ϕpXq is a smooth curve of degree equal to
deg ϕ˚OP2p1q “ degD “ 3.

In contrast to the g “ 0 case however, there are many non-isomorphic genus 1 curves. For
instance, in the Legendre family of curves in Xλ Ă P2 given by

y2z “ xpx´ zqpx´ λzq

where λ P k, each Xλ is isomorphic to at most a finite number of other Xλ1 ’s.
Actually, these are essentially all the curves of genus 1.

Theorem 23.17. Let k be a field of char k ‰ 2, 3. Then any genus 1 curve X admits
a projective model given by an homogeneous equation

x2
2x0 “ x3

1 ` ax1x
2
0 ` bx3

0

for some a, b P k with 4a3 ` 27b2 ‰ 0.

23.4.1 Divisors on X

Let X be a curve of genus 1. We will study the divisors on X . To make the discussion a bit
more concrete, let X Ă P2 be the curve given by y2z “ x3 ´ xz2. We claim that there is an
exact sequence

0 Ñ Xpkq Ñ ClpXq
deg
ÝÝÑ Z Ñ 0

This means that the class group ClpXq is very big – its elements are in bijection with the
k-points of X , of which there might be uncountably many. (In particular, this is another
reason why X cannot be isomorphic to P1.)
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If L Ă P2 is a line, we get a divisor L|X : That is, we take a section s P OP2p1q defining
L and restrict it to X . The divisor of s P OXp1q consists of three points P,Q,R (counted
with multiplicity). In particular, since any two lines are linearly equivalent on P2, we get for
every pair of lines L,L1 and corresponding triples P,Q,R, a relation

P `Q`R „ P 1 `Q1 `R1

(where „ denotes linear equivalence).
Let us consider the point O “ r0, 1, 0s on X . This is a special point on X: it is an

inflection point, in the sense that there is a line L “ V pzq Ă P2 which has multiplicity three
at O, so that L restricts to 3O on X . This has the property that any three collinear points
P,Q,R in X satisfy

P `Q`R „ 3O

We will use these observations to define a group structure on the set of closed points Xpkq,
using the point O as the identity. The group structure will be induced from that in ClpXq.

Consider the subgroup Cl0pXq Ă ClpXq consisting of degree 0. This fits into the exact
sequence

0 Ñ Cl0pXq Ñ ClpXq
deg
ÝÝÑ Z Ñ 0

We now define a map

ξ : Xpkq Ñ Cl0pXq (23.3)

P ÞÑ rP ´Os

Lemma 23.18. ξ is a bijection.

Proof ξ is injective: ξpP q “ ξpQq implies that P „ Q. Then P “ Q (otherwise X would
be rational, by Proposition 23.11). (Alternatively, it follows because h0pX,OXpP qq “ 1).
ξ is surjective: Take a divisor D “

ř

niPi P DivpXq of degree 0. Then D1 “ D ` O
has degree 1, so by Riemann–Roch, H0pX,OCpD1qq is 1-dimensional. Hence there exists
an effective divisor of degree 1 in |D1|, which must then be of the form D1 “ Q. But that
means that D `O „ Q, or, D „ Q´O, as desired.

Using this bijection, we can put a group structure on the set Xpkq:

Theorem 23.19. The set of k-points Xpkq on a genus 1 form a group.

The group law has the following famous geometric interpretation. Given two points
p1, p2 P X , we draw the line L they span (see the figure below). This intersects X in one
more point, say p3. In the group Cl0pXq we have

p1 ` p2 ` p3 “ 3O

To define the ‘sum’ p1 ` p2 (which should be a new k-point of X), we then look for a point
p4 so that

p4 ´O “ pp1 ´Oq ` pp2 ´Oq
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or in other words, p4 ` O “ p1 ` p2. By the above, this becomes p4 ` O “ 3O ´ p3 or,
p3 ` p4 `O “ 3O. This tells us that we should define p4 as follows: We draw the line L1

from O to p3 (shown as the dotted line in the figure), and define p4 to be the third intersection
point of L1 with X . By construction, we get pp1 ´Oq ` pp2 ´Oq “ pp4 ´Oq in Cl0pXq.

Given the equation of X in P2, and coordinates for the points p1, p2, we can of course
write down explicit formulas for the coordinates of p4, and they are rational functions in the
coordinates of p1, p2. This is almost enough to justify that X is a group variety, i.e., it is an
algebraic variety equipped with a multiplication map m : X ˆX Ñ X satisfying the usual
group axioms, and m is a morphism of algebraic varieties.

23.5 Curves of genus 2

Let X be a non-singular projective curve of genus 2. We saw one example of such a curve
earlier in this chapter, namely the curve obtained by gluing two copies of the affine curve
y2 “ ppxq where ppxq is a polynomial of degree five. The condition that X is non-singular
implies that p has distinct roots.

We already saw in Chapter XX that a genus 2 curve cannot be embedded in the projective
plane P2

k (since 2 is not a trigonal number). However, we show the following:

Theorem 23.20. Any curve of genus 2 is isomorphic to a hyperelliptic curve

Here, a curve C is said to be hyperelliptic if there is a degree 2 mapX Ñ P1. Equivalently,
there is a base point free linear system of degree 2 and dimension 1. Equivalently again, there
exists points P,Q P X so that the invertible sheaf L “ OXpP `Qq is globally generated
and by two global sections.

It is classical notation that a base point free linear system of degree d and dimension r is
called a grd. So to say that a curve is hyperelliptic is to say that it has a g12 .

Example 23.21. If g “ 0, then X » P1. Let D “ 2P , then H0pDq “ kx2
0 ` kx0x1 ` x2

1,
so |D| » P2 is identified with the space of quadratic polynomials up to scaling. If we take
two quadratic polynomials q0, q1 with no common zeroes, we get a base point free linear
system g12 Ă |D|.
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Example 23.22. If g “ 1 any divisor of degree 2 gives a g12 by Riemann-Roch. Indeed, if D
has degree 2 then

h0pDq ´ h0pK ´Dq “ 2 ` 1 ´ g “ 2

and degpK ´Dq “ ´2 so h0pDq “ 2 and hence dim |D| “ 1. This D is base point free,
since D ´ p has degree 1, and hence since X is not rational, h0pD ´ pq “ 1 “ h0pDq ´ 1.

Example 23.23. Let X Ă P1 ˆ P1 be a smooth divisor of bidegree p2, g ` 1q. Then
KX » OP1ˆP1p0, g´1q andX has genus g. Moreover, the projection p2 : X Ñ P1 is finite
of degree 2, which shows that X is hyperelliptic.

The projections p1, p2 : Q Ñ P1 give rise to a degree 2 and a degree g ` 1 morphism of
X to P1. Thus there exists a 2:1 morphism f : X Ñ P1. f corresponds to a base point free
linear system on X of degree 2 and dimension 1. Thus X is hyperelliptic.

In this example, ΩX “ OQpXqbωQ|X “ OQp2, g`1qbOQp´2,´2q “ OXp0, g´1q.
The latter invertible sheaf has g independent global sections so X has genus g. Moreover
KX is base point free, but not very ample, since the corresponding morphism X Ñ Pg´1 is
not an embedding (it maps X onto a conic).

To prove the theorem, we must produce a degree two map ϕ : X Ñ P1. We have a natural
candidate: the canonical divisor KX , which has degree 2g ´ 2 “ 2. We claim that KX is
base point free.

Note that we cannot apply Proposition 23.5 directly to prove this, since the degree is too
small. However, we can use Riemann–Roch to check directly that the conditions in Theorem
23.4 apply. That is, we need to show that for every point P P X , we have

h0pX,KX ´ P q “ h0pX,KXq ´ 1 “ 2 ´ 1 “ 1

Applying Riemann–Roch to the divisor D “ P , we also get h0pP q ´ h0pKX ´ P q “

1 ` 1 ´ 2 “ 0. As P is effective, and X is not rational, we have h0pP q “ 1, and so also
h0pX,KX ´ P q “ 1, as we want.

23.6 Curves of genus 3

The case of curves of genus 3 is especially interesting. We have seen two examples of curves
of genus 3 so far:

Example 23.24. A plane curve X Ă P2 of degree d “ 4 has genus 1
2
pd´ 1qpd´ 2q “ 3.

Notice that

ΩX “ OP2pd´ 3q|X “ OXp1q

so ΩX is very ample, since it is the restriction of the very ample invertible sheaf OP2p1q on P2.
Hence KX is very ample, and the corresponding morphism is exactly the given embedding
X ãÑ P2.

Example 23.25. The curves in Section 21.5 on page 378 can be chosen to have genus g “ 3.
In this case, X admits a 2:1 map to P1, and thus X is hyperelliptic.

Example 23.26. A curve X on the quadric surface Q » P1 ˆ P1 in P3 of type (2,4) is
hyperelliptic. It is a curve of degree 6 and genus 3.
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Thus these examples are a bit different. The curves in the first example have very ample
canonical divisorKX (they are ‘canonical’) whereas the two others to do not (‘hyperelliptic’).
We show that this distinction is a general phenomenon for curves of genus three:

Proposition 23.27. Let X be a curve of genus 3. Then there are two possibilities:
(i) KX is very ample. Then X embeds as a plane curve of degree 4.

(ii) KX is not very ample. Then X is a hyperelliptic curve, and it embeds as
a p2, 4q divisor in P1 ˆ P1. Moreover, KX „ 2F , where F “ L1|X .

We will deduce this from a more general result:

Theorem 23.28. Let X be a curve of genus ě 2. Then K is very ample if and only
if X is not hyperelliptic.

Proof K is very ample if and only if h0pK ´ P ´ Qq “ h0pKq ´ 2 “ g ´ 2 for every
P,Q P X . By Riemann–Roch, we compute

h0pP `Qq ´ h0pK ´ P ´Qq “ 2 ` 1 ´ g “ 3 ´ g

Hence K is very ample if and only if h0pP `Qq “ 1 for every P,Q.
If X is hyperelliptic, then there is a map ϕ : X Ñ P1, so that ϕ˚pr1 : 0sq “ P `Q for

some points P,Q P X (possibly equal). Here the linear system |P `Q| is 1-dimensional, so
h0pX,P `Qq “ 2, and hence KX is not very ample.

If X is not hyperelliptic, we have h0pX,P `Qq “ 1 for any P,Q (otherwise it is ě 2,
and P `Q induces a map X Ñ P1 of degree two), and hence KX is very ample.

We still need to check the last part of the above theorem, namely that every hyperelliptic
curve arises as a curve of type (2,4) on Q Ă P3.

We proceed as follows. Let D “ P1 ` ¨ ¨ ¨ ` P4 denote a generic degree 4 divisor on X
(so P1, . . . , P4 are general points of X). By Riemann–Roch, we get

h0pDq ´ h0pK ´Dq “ 4 ` 1 ´ 3 “ 2

We claim that h0pK´Dq “ 0, so that h0pDq “ 2. Note thatK´D has degree 2g´2´4 “

0, so K ´ D is a divisor of degree 0. This is effective if and only if K „ D. However,
there is a 4-dimensional family of divisors of the form P1 ` ¨ ¨ ¨ ` P4, whereas the space of
effective canonical divisors has dimension dim |K| “ 2. Hence if the points Pi are chosen
generically, K ´D will not be effective, and hence the claim holds.

From this, we obtain a linear system |D| of dimension 1. We claim that D is base point
free. We need to show that

h0pD ´ P q “ h0pDq ´ 1 “ degD ` 1 ´ 3q ´ 1 “ 1

for every point P . Suppose not, and let P be a base point ofD. SinceD “ P1`P2`P3`P4

we may suppose that P “ P4.
By Riemann–Roch, we are done if we can show h0pK ´ D ` P q “ 0. However,

K ´ D ` P “ K ´ P1 ´ P2 ´ P3. There is a 3-dimensional space of effective divisors
of the form P1 ` P2 ` P3 for points Pi P X , but only a 2-dimensional linear system of
effective canonical divisors |K|. Hence K ´D ` P is not effective.
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400 Applications of the Riemann–Roch theorem

We therefore have two morphisms from our hyperelliptic curve X; f : X Ñ P1 (induced
by the g12) and g : X Ñ P1 (induced by D). By the universal property of the fibre product,
this gives a morphism

ϕ “ pf ˆ gq : X Ñ P1 ˆk P1

We claim that this is a closed immersion. Let F “ P `Q P |g12|. The map D ` F induces
the map F : X Ñ P3, which coincides with j ˝ϕ where j : P1 ˆP1 is the Segre embedding.
To prove the claim, it suffices to show that F is an embedding, or equivalently that D ` F is
very ample.

First claim thatK „ 2F . Since both of these divisors have degree 4 it suffices to show that
K ´ 2F is effective. Note that in any case h0pX, 2F q ě 3, since if H0pX,F q “ xx, yy,
then x2, xy, y2 are linearly independent in H0pX, 2F q (understand why!). Now applying
Riemann–Roch to D “ 2F , we get

h0p2F q ´ h0pK ´ 2F q “ 4 ` 1 ´ 3 “ 2

so h0pK ´ 2F q ě 1, and K „ 2F as we want.
Now, to show that D ` F is very ample, we need to show that

h0pX,D ` F ´ p´ qq “ h0pD ` F q ´ 2

for any pair of points p, q P X . By Riemann–Roch again, we can conclude if we know that
h0pK ´D ´ F ` p` qq “ 0. But since K „ 2F , we have

K ´D ´ F ` p` q „ F ´D ` p` q

These are divisors of degree 0, so if this is effective, we must have D „ F ` p` q. However,
the space of effective divisors of the form D1 ` p ` q with D1 „ F is 3-dimensional
(since |F | has dimension 1, and p and q can be chosen freely on X). On the other hand,
as we have seen, the space of divisors of the form D “ P1 ` ¨ ¨ ¨ ` P4 is of dimension 4,
so choosing D generically means that thisF ´ D ` p ` q is not effective. It follows that
h1pD ´ p´ qq “ h0pD ` F q ´ 2 and hence D is very ample.

23.7 Curves of Genus 4

Recall that curves of genus g ě 2 split up into two disjoint classes.
(i) Hyperelliptic curves: X admits a 2:1 to P1

(ii) Canonical curves: KX is very ample
Here’s an example of a genus 4 curve in P1 ˆ P1:

Example 23.29. Consider a type p2, 5q curve C on Q Ă P3. Then C has degree 7 “ 2 ` 5
and C is hyperelliptic (because of the degree 2 map coming from projection onto the first
fact p1 : Q Ñ P1). A type p3, 3q curve on Q is also of genus 4. It is a degree 6 complete
intersection of Q and a cubic surface. Curves of type p3, 3q have at least two g13’s.

In fact, using the same strategy as for g “ 3, one can show that any hyperelliptic curve of
genus 4 arises this way.
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23.7 Curves of Genus 4 401

23.7.1 Classifying curves of genus 4

We start with an abstract curve X of genus 4. We may assume that X is not hyperelliptic
(since in that case it embeds as a p2, 5q-divisor on P1 ˆ P1). So we assume that KX is very
ample. Therefore we have the canonical embedding X ãÑ Pg´1 “ P3. The degree of the
embedded curve is degωX “ 2g ´ 2 “ 6. Thus we can view X as a degree 6 genus 4 curve
in P3.

What are the equations of X in P3? To answer this question we use a very powerful
technique in curve theory, namely we combine Riemann–Roch with the sheaf cohomology
on Pn. Twisting the ideal sheaf sequence of X by OP3p2q and taking cohomology gives the
exact sequence

0 Ñ H0pP3, IXp2qq Ñ H0pP3,OP3p2qq Ñ H0pX,OXp2qq Ñ ¨ ¨ ¨

Note that OP3p1q|X “ KX . Applying Riemann-Roch states to the divisor D “ 2KX , we
get

h0pOXp2qq “ deg 2KX ` 1 ´ g ` h1pOXpDqq “ 12 ` 1 ´ 4 ` 0 “ 9.

(Note that h1pOXp2qq “ h0pKX ´ 2KXq “ h0p´KXq “ 0 since KX is effective). Since
h0pP3,OP3p2qq “ 10 it follows that the map H0pOP3p2qq Ñ H0pOXp2qq must have a
nontrivial kernel so h0pP3, IXp2qq ą 0.

The upshot of this is that we now know that X lies in some surface of degree 2. Since
X is integral, this surface cannot be a union of hyperplanes. So X lies on either a singular
quadric cone Q0 “ V pxy ´ z2q or the nonsingular quadric surface Q “ V pxy ´ zwq.

If C lies on Q then it must have a type pa, bq which must satisfy a ` b “ 6 and pa ´

1qpb ´ 1q “ 4. The only solution is a “ b “ 3. Since OQp3, 3q » OP3p3q|Q, this implies
that C is the restriction of a divisor on P3, that is, C “ QX S for a degree 3 surface S.

The other possibility is that C lies on Q0. Computing as before, we obtain

0 Ñ H0pOXp3qq Ñ H0pOP3p3qq Ñ H0pOXp3qq Ñ ¨ ¨ ¨

As before one sees that h0pOXp3qq “ 15 and h0pOP3p3qq “ 20. Thus h0pOCp3qq ě 5.
Let q P H0pOCp2qq be the defining equation of Q0. Then xq, yq, zq, wq P H0pOCp3qq.
But h0pOCp3qq ě 5 so there exists an f P H0pOCp3qq so that the global sections
xq, yq, zq, wq, f are independent. Thus there is an f not in pqq. Since f R pqq we see
that S “ Zpfq Č Q so C 1 “ S XQ is a degree 6 not necessarily nonsingular or irreducible
curve. Since C Ă S and C Ă Q it follows that C Ă C 1. Since these are both integral curves
of the same degree degC “ 6 “ degC 1, we must have C “ C 1. Thus in the case that C
lies on Q0 we see that C is also a complete intersection C “ Q0 X S for some cubic surface
S.

This proves the following theorem:

Theorem 23.30. Let X be a non-singular curve of genus 4. Then either
(i) X is hyperelliptic (in which case X embeds as a p2, 5q-divisor in P1 ˆ

P1q; or
(ii) X “ QX S is the intersection of a quadric surface and a cubic surface

in P3.
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24

Further constructions and examples

24.1 Gluing relative schemes

In this section, we explain a general procedure for constructing morphisms of schemes via
gluing. The setup is as follows:

Let X be a scheme and suppose that we are given the following data:
a) For each affine subscheme, U Ă X a scheme Y pUq and a morphism πU : Y pUq Ñ

U .
b) Whenever U, V are affine with V Ă U there is a morphism ρV U : Y pV q Ñ Y pUq

such that

Y pV q Y pUq

V U

πV

ρUV

πU
(24.1)

is Cartesian (i.e., induces an isomorphism Y pV q » π´1
U pV q).

c) If W Ă V Ă U are three affines, then ρUW “ ρV U ˝ ρWV .

Proposition 24.1 (Gluing relative schemes). Given the above data, there exists a
scheme Y pXq together with a morphism πX : Y pXq Ñ X , and isomorphisms
ιU : π´1pUq Ñ Y pUq so that for each V Ă U affine, the following diagram
commutes:

π´1pV q π´1pUq

Y pV q Y pUq

ιV ιU

ρUV

As an X-scheme, Y pXq is unique up to isomorphism.

Proof Let tUiuiPI be an affine cover ofX and cover the double intersectionsUij with affines
Uijk. The schemes Y pUiq ˆUi

Uijk and Y pUjq ˆUi
Uijk are canonically isomorphic (to

Y pUijkq). Therefore the open subschemes Y pUiqˆUi
Uij and Y pUjqˆUi

Uij are isomorphic,
and the isomorphisms satsify the cocycle conditions on the triple overlaps. The same holds
for the morphisms πUi

: Y pUiq Ñ Ui, so we get the desired morphism πX : Y pXq Ñ X .

402
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24.2 Relative Spec 403

πX : Y pXq Ñ X must be unique up to isomorphism, because it restricts to πUi
over each

Ui.

24.2 Relative Spec

Let X be a scheme and let A be a quasi-coherent sheaf of OX-algebras. This means that A
is a quasi-coherent sheaf and for each open set U Ď X , the group ApUq is an algebra over
the ring OXpUq.

Let us apply Proposition 24.1 to the case where

Y pUq “ SpecApUq

and πU : Y pUq Ñ U is the morphism induced by the ring map OXpUq Ñ ApUq. Let
us check the that the second condition in the proposition is satisfied. If V Ă U is another
affine subset, we have there is a ring map ApUq Ñ ApV q which induces a morphism
Y pV q Ñ Y pUq making the diagram (24.1) commutative. The diagram is actually Cartesian,
because ApV q “ ApUq bOXpUq OXpV q, as A is quasi-coherent.

The third condition is also satisfied, because the ring map ApUq Ñ ApW q factors via
restriction to V .

It follows that the schemes Y pUq glue together to a scheme, which we denote SpecpAq

which we call the ‘relative spectrum of A’. There is a morphism π : SpecpAq Ñ X which
satisfies

π˚OSpecpAq “ A.

The scheme SpecpAq satisfies the following universal property: For each morphism h :
Z Ñ X with a map of OX-algebras A Ñ h˚OZ , there should be a unique morphism
f : Z Ñ SpecpAq such that h “ π ˝ f .

Example 24.2. For A “ OXrt1, . . . , tns, the relative Spec coincides with the relative affine
space AnX .

Example 24.3. Let X “ Ank “ Spec krx1, . . . , xns and let f P krx1, . . . , xns be a
polynomial. Then

A “ OXrts{ptm ´ fpx1, . . . , xnqq

is an OX -algebra. The relative spec Y “ SpecA is exactly the double cover of An ramified
along f .

Example 24.4. More generally, let X be a normal integral scheme, D Ă X an effective
divisor, and let L be an invertible sheaf on X such that Lbm » OXpDq. Let s P OXpDq be
the section that defines D; we will view it as a map s : OX Ñ Lbm. Define the OX -module

A “ OX ‘ L´1 ‘ ¨ ¨ ¨ ‘ L´m`1

This becomes an OX-algebra via the multiplication

L´a b L´b » L´a´b b OX
idbs
ÝÝÝÑ L´a´b b Lm » L´a´b`m.

Let Y “ SpecA with the projection π : Y Ñ X . We call Y the ramified cyclic cover of s.
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Over an open set U where L » OU , pick a local generator s. The image sm P ΓpU,Lmq.
On such an open, we have A|U » Om

U , which is generated by 1 and f subject to the relation
zm “ f .

It is not hard to show that Z is regular if and only if X and D are.

Exercise 24.2.1. Check that the scheme SpecpAq and the morphism π satisfies the above
universal property.

Example 24.5 (Closed subschemes). An important special case is when A “ OX{I for
some quasi-coherent ideal I . In this case there is a morphism

i : Spec pOX{Iq ÝÝÑ Spec pOXq “ X

and Y “ Spec pOX{Iq is exactly the closed subscheme associated to I .

Example 24.6 (Vector bundles). Let E denote a locally free sheaf of rank r. The symmetric
algebra

Sym˚
pEq “ OX ‘ E ‘ S2pEq ‘ ¨ ¨ ¨

is naturally an algebra over OX . The corresponding relative Spec is denoted by V pEq. The
projection π : V pEq Ñ X is what’s known as a vector bundle; all the scheme-theoretic fibers
are affine spaces of dimension r. More precisely, if x P X , the fiber Epxq “ E bOX

kpxq

is isomorphic to kpxqr, and so the scheme theoretic fiber of π over x is isomorphic to the
spectrum of

Sym˚
pkpxqrq » kpxqrt1, . . . , trs

24.3 Relative Proj

Let X be a scheme and let R be a quasi-coherent sheaf of graded OX -algebras. This means
that for each open set U Ď X , the group RpUq is a graded ring with degree 0 isomorphic to
OXpUq.

For an open affine U Ă X , set Y pUq “ ProjRpUq, with projection π : Y pUq Ñ U
induced by the natural map ProjRpUq Ñ SpecOXpUq “ U . If V Ă U is another affine,
the map RpUq Ñ RpV q is a map of graded rings, this induces a map Y pV q Ñ Y pUq.
Checking that the conditions of Proposition 24.1 are satisfied is similar to the Relative
Spec-case. We call the resulting scheme ProjpRq Ñ X the ‘relative Proj of R’.

Example 24.7 (Projective bundles).

Example 24.8 (Hirzebruch surfaces).

Example 24.9 (Blow-ups).

24.4 Pushouts of affine schemes

Gluing schemes along open subschemes have been a central theme in this book. In some
cases, we can also glue two schemes along a common closed subsheme. In this section, we
explain how this can be done for affine schemes.
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24.4 Pushouts of affine schemes 405

Let A,B,C be rings and let f : A Ñ C, g : B Ñ C be surjections. From this data, we
can form the pullback ring AˆC B arising in the pullback diagram

AˆC B B

A C

g

f

Explicitly, the ring AˆC B is defined by

AˆC B “ t pa, bq P AˆB | fpaq “ gpbq u.

The diagram above induces a pushout diagram of schemes

SpecC SpecB

SpecA SpecpAˆC Bq

This means that SpecAˆC B satisfies a universal property dual to that of the fiber product:
it is universal among diagrams of the form (24.4) with SpecpA ˆC Bq replaced by some
other scheme.

Proposition 24.10. As a topological space, SpecpAˆC Bq is homeomorphic to

pSpecAq YSpecC pSpecBq (24.2)

Example 24.11. The nodal cubic curve can be obtained from this construction; it is obtained
by identifying two points of A1

k. [ADD MORE DETAILS.]

Example 24.12. Here is an example of a non-normal surface with an isolated singularity. We
let X be the scheme obtained by identifying two points in A2

k; X is the affine variety given
by the k-algebra

A “ tf P krx, ys | fp0, 0q “ fp0, 1qu.

Then the normalization X is the affine plane.

X

The algebra A is generated by the 4 polynomials

x, xy, y2 ´ y, y3 ´ y (24.3)

To see this, note that if fpx, yq is any polynomial satisfying fp0, 0q “ fp0, 1q, we may
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subtract products of the form bpxqpy2 ´ yqk or bpxqpy2 ´ yqkpy3 ´ yq until the y-degree of
f is at most 1; the remaining polynomials can be written as polynomials in x and xy.

The polynomials (24.3) define a morphism X Ñ A4, onto the closed subscheme V pIq Ă

A4, where I is the ideal of relations

I “ pz1z3 ` z2z3 ´ z1z4, z
3
3 ´ 2z23 ` 3z3z4 ´ z24 ,

z2z
2
3 ` z2z3z4 ´ z1z

2
4 ´ 2z2z3 ` z2z4,

z22z3 ` z21z4 ´ z1z2z4 ` z1z2 ´ z22q

In some cases, it is possible to glue two schemes X and Y along a common closed
subscheme Z. In this case, the gluing is represented by a pushout diagram

Example 24.13 (SpecZ
?

´3). The spectrum of the ring R “ Zr
?

´3s is rather interesting.
It can be viewed as a sort of singular curve over SpecZ. As such it shares many properties
with the nodal cubic curve of Example 13.16.

Note first that R is not a unique factorization domain. For example,

2 ¨ 2 “ p1 `
?

´3qp1 ´
?

´3q.

It is also not normal, because the element ω “ p1`
?

´3q{2 P Qp
?

´3q satisfies the monic
equation x2 ` x` 1 “ 0, but ω R R. In fact, the integral closure of R is given by the ring
the ring of Eisenstein integers Zrωs, and Zrωs is a unique factorization domain. In particular,
Zrωs is normal, and equals the integral closure of R inside the fraction field Qp

?
´3q. It

follows that the morphism

SpecZrωs Ñ SpecZr
?

´3s,

induced by the inclusion Zr2ωs Ñ Zrωs, is the normalization map.
Note that R is not a Dedekind domain: an integral domain is Dedekind if and only if each

of its localizations is a discrete valuation ring. However, the localizationRp at the prime ideal
p “ p2, 1`

?
´3q is not a discrete valuation ring; the maximal ideal requires two generators.

However the square of p is principal; it satisfies

p2 “ p2q Ă Zr
?

´3s.

There are two ring maps ϕ, ψ : Zrωs Ñ F2rxs{px2 ` x` 1q “ F4, one sending ω to
x, and the other sending ω to x ` 1. The subring of Zrωs where these coincide is exactly
Zr2ωs “ R. We get a pushout diagram

F4 Zrωs

Zrωs Zr
?

´3s

ψ

ϕ

This induces a homeomorphism between SpecZr
?

´3s and SpecZrωs with two points
identified. Thus SpecR is obtained by identifying two points in the spectrum of the Eisenstein
integers.
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24.5 Multigraded rings 407

24.5 Multigraded rings

The Proj-construction has the following multigraded analogue.
Let R “ krx1, . . . , xns be a ring graded by the group Zn. This means that each variable

xi is assigned a degree ei P Zn. Let f P R denote a homogeneous element with respect to
the Zn-grading. Let pRf q0 denote all the elements in the localization of degree 0 P Zn.

Definition 24.14. For w P Zn, we define the subring

Rpwq “
à

ně0

Rnw Ă R

The w-irrelevant ideal as the graded ideal

Iw “
à

ně0

Rnw Ă R

Note that Rpwq and Iw are graded R0-modules. In fact, Rpwq is a graded algebra over
R0.

Definition 24.15. For a given w P Zn, we define the multigraded projective spectrum
w-ProjpRq as the set of homogeneous prime ideals p that do not contain the irrelevant
ideal Iw.

As in the usual Proj-construction, the set w-ProjpRq inherits a Zariski-topology, by
declaring that the closed sets are exactly the sets V paq of homogeneous prime ideals
p Ą a (not containing the irrelevant ideal Iw). There is also the set of distinguished opens
D`pfq “ w-ProjpRq ´V pfq, defined for Zn-homogeneous f . As before, these give a basis
for the topology on w-ProjpRq.

Next, we define the structure sheaf onX “ w-ProjpRq. We define it on the basis consisting
on distinguished opens by

OXpD`pfqq “ pRf q0

and the restriction maps are as usual given by the localization maps Rf Ñ Rg for D`pfq Ą

D`pgq. This defines a sheaf of rings OX on X whose stalks at are the local rings

Proposition 24.16. The locally ringed space

24.6 Examples

Consider the polynomial ring R “ krx0, x1, x2, x3s with the grading given by the columns
of the matrix

M “

ˆ

1 1 0 0
0 0 1 1

˙
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Let us choose the vectorw “ p1, 1q as the degree vector. Then the irrelevant ideal is generated
by all monomials xa00 x

a1
1 x

a2
2 x

a3
3 of degree

e “ a0
`

1 0
˘

` a1
`

1 0
˘

` a2
`

0 1
˘

` a3
`

0 1
˘

such that e ¨ w ą 0, i.e., a0 ` a1 ` a2 ` a3 ą 0.
The multigraded spectrum is isomorphic to P1 ˆ P1.
In this case the irrelevant ideal is given by

px0, x1q X py0, y1q

The localizations are given by

kr
x1

x0

,
y1
y0

s

24.7 Toric ideals

Let A be anmˆnwith non-negative integer entries, and let the column vectors be a1, . . . ,an.
We use the multinomial notation, i.e., for a “ pa1, . . . , amq P Zm we write za for the
monomial za11 ¨ zamm .

The matrix A allows us to define a ring map

ϕ : krx1, . . . , xns ÝÝÑ krz˘1
1 , . . . , z˘1

1 s (24.4)

xi ÞÑ zai

and a corresponding morphism of schemes

f : Spec krz˘1
1 , . . . , z˘1

m s ÝÝÑ krx1, . . . , xns

We are interested in the (closure of the) image of f , i.e., the kernel of ϕ. This is described by
the following intersection

IA “ pz1 ´ xa1 , . . . , zm ´ xamq X krx1, . . . , xns

inside krx1, . . . , xn, z
˘1
1 , . . . , z˘1

m s. More concretely, we have the following description:

Proposition 24.17. The kernel of ϕ is given by the ideal

IA “ pxu ´ xv|u´ v P KerAq (24.5)

Proof It is clear that the ideal IA is contained in the kernel, so we prove the opposite
inclusion using a monomoial ordering argument. More precisely, we will consider the lexico-
graphic ordering ă on monomials in krx1, . . . , xns, so that

x2
1 ą x1x2 ą x2

2 ą x1x3 ą x2x3 ą x2
3

and so on.
If gKerϕ is any element, we can write it as

g “ cux
u `

ÿ

vău

cvx
v.
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24.7 Toric ideals 409

where cuxu ‰ 0 is the leading term with respect to ă. Applying ϕ, we get

0 “ ϕpgq “ cuz
Au `

ÿ

vău

cvz
Av.

This is an identity of polynomials in krz˘1
1 , . . . , z˘1

m s, so there must be some cancellations
between the monomials happening. In other words, there must be some v with v ă u such
that Au “ Av. But then replacing g with g ´ cupxu ´ xvq, we obtain a polynomial which
has a leading term which is strictly smaller than g with respect to ă. Note that xu ´ xv

belongs to the ideal IA. Continuing in this manner, we eventually obtain the zero polynomial,
which means that g is an element of IA.

Thus IA is a prime ideal defined by binomials. To find a finite generating set, a few more
computations are usually needed.

There is a smaller generating set of the ideal IA given as follows. Let S “ tu1, . . . , uru
be a Z-basis for KerA and let

I 1
A “ pxu` ´ xu´ | u P Sq

where we decompose u “ u` ´ u´ P Zn in terms of its non-negative and non-positive
entries. Then IA is the saturation of I 1

A with respect to the maximal ideal at the origin, i.e.,
IA “ I 1

A : px1, . . . , xnq8.

Example 24.18. For A “ p2 3q, we obtain the ideal I “ px2
2 ´ x3

1q, which is the ideal of
the cuspidal cubic, parameterized by t ÞÑ pt2, t3q.

Example 24.19. For A “ p1 2 3q, we obtain the ideal I “ px2
1 ´ x2, x

3
1 ´ x2q, which is the

ideal of the twisted cubic, parameterized by t ÞÑ pt, t2, t3q.

Example 24.20. For

A “

ˆ

0 0 1 1
0 1 0 1

˙

the corresponding morphism is the map A2 Ñ A4 given by px, yq ÞÑ p1, x, y, xyq. The
image is the quadric x1x4 ´ x2x3

Example 24.21. For

A “

¨

˝

2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

˛

‚

the corresponding toric ideal is given by

IA “ px3x5 ´ x2
4, x1x5 ´ x2x4, x1x4 ´ x2x3, x0x5 ´ x2

2, x0x4 ´ x1x2, x0x3 ´ x2
1q

This is the affine cone over the Veronese surface.

Example 24.22. For

A “

ˆ

4 3 1 0
0 1 3 4

˙
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410 Further constructions and examples

the corresponding toric ideal is given by

IA “ px2
1x3 ´ x3

2, x2x
2
4 ´ x3

3, x1x4 ´ x2x3q

This is the cone over the rational quartic curve in P3
k.
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Some results from Commutative Algebra
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412 Some results from Commutative Algebra

A.1 Direct and inverse limits

A.1.1 Direct limits

Recall that a preordered set is a set endowed with a relation i ď j which is symmetric; that
is, i ď i for all i, and transitive; that is, if i ď j and j ď k, then i ď k. A preordered set
resembles a partially ordered set, but lacks the anti-symmetry property: it might be that i ď j
and j ď i without i and j being equal. We say that a preordered set I is directed set if the
following condition holds: for any two elements i and j there is a k P I such that k ě i and
k ě j.

Definition A.1. A directed system of A-modules pMi, ϕijq is a collection tMiuiPI of
A-modules, indexed by a directed set I , and a collection ofA-linear maps ϕij : Mj Ñ

Mi, one for each pair pi, jq with j ď i, satisfying the two conditions
(i) ϕij ˝ ϕjk “ ϕik whenever k ď j ď i;

(ii) ϕii “ idMi
.

The first condition may be illustrated by the commutative diagram:

Mk Mj Mi.ϕjk

ϕik

ϕij

Definition A.2. The direct limit of the directed system pMi, ϕijq of A-modules is an
A-module lim

ÝÑ
Mi together with a collection of A-linear maps

ϕi : Mi Ñ lim
ÝÑ

Mi

which satisfy ϕi ˝ ϕij “ ϕj , and which are universal with respect to this property.

The limit having the universal property, means that for any A-module N and any given
system of A-linear maps

ψi : Mi Ñ N

such that ψi ˝ ϕij “ ψj , there is a unique map η : lim
ÝÑ

Mi Ñ N satisfying ψi “ η ˝ ϕi.

Mj

lim
ÝÑ

Mi N

Mi

ϕj

ϕij

ψj

η

ϕi

ψi

The definition of the direct limit may be formulated in any category: just replace the words
‘A-module’ with ‘object’ and ‘A-linear map’ by ‘arrow’. In general categories it may easily
happen that direct limits do not exist. However, the category of modules over a ring is a well
behaved category, and here all limits exist.
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A.1 Direct and inverse limits 413

Proposition A.3. Let A be any ring. Every directed system pMi, ϕijq of modules
over A has a direct limit, which is unique up to a unique isomorphism.

Proof We begin with introducing an equivalence relation on the disjoint union
š

iMi.
Essentially, two elements are to be equivalent if they become equal somewhere far out in the
hierarchy of the Mi’s. In precise terms, x P Mi and y P Mj are to be equivalent when there
is an index k larger than both i and j such that x and y map to the same element in Mk; that
is, ϕkipxq “ ϕkjpyq, and we write x „ y to indicate that x and y are equivalent. The first
point to verify is that this is an equivalence relation.

Obviously the relation is symmetric, since ϕii “ idMi
it is reflexive, and it being transitive

follows from the system being directed: assume that x „ y and y „ z, with x, y and z sitting
in respectively Mi, Mj and Mk. This means that there are indices l dominating i and j, and
m dominating j and k so that the two equalities ϕlipxq “ ϕljpyq and ϕmjpyq “ ϕmkpzq

hold true. Because the system is directed, there is an index n larger than both l and m.

Mn

Ml Mm

Mi Mj Mk

By the first requirement in Definition A.1 above, we find

ϕnipxq “ ϕnlpϕlipxqq “ ϕnlpϕljpyqq “ ϕnmpϕmjpyqq “ ϕnmpϕmkpzqq “ ϕnkpzq,

and so we conclude that x „ z. The underlying set of the A-module lim
ÝÑ

Mi is the quotient
š

iMi{ „, and the maps ϕi are the ones induced by the inclusions of the Mi’s in the disjoint
union.

The rest of the proof consists of putting an A-module structure on lim
ÝÑ

Mi and checking
the universal property. To this end, the salient observation is that any two equivalence
classes rxs and rys in the limit may be represented by elements x and y from the same
Mk; indeed, if x P Mi and y P Mj , choose a k that dominates both i and j and replace x
and y by their images in Mk. Forming linear combinations is then possible by the formula
arxs ` brys “ rax` bys where the last combination is formed in any Mk where both x and
y live; this is independent of the particular k used (the system is directed, and the ϕij’s are
A-linear). The module axioms follow since any equality involving a finite number of elements
from the limit may be checked in an Mk where all involved elements have representatives.

Finally, checking the universal property is straightforward. The obvious map from the
disjoint union

š

iMi into N induced by the ψi’s is compatible with the equivalence relation
and hence passes to the quotient; that is, it gives the desired map η : lim

ÝÑ
Mi Ñ N . And

as always with universal properties, it ensures that the limit will be unique up to a unique
isomorphism.

Apart from the universal property, there are two ‘working principles’, reflecting the working
principles for stalks, one should bear in mind when computing with direct limits:
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414 Some results from Commutative Algebra

‚ Every element in lim
ÝÑ

Mi is of the form ϕjpxq for some j and some x P Mj .
‚ An element x P Mj maps to zero in lim

ÝÑ
Mi if and only if ϕijpxq “ 0 for some i ě j.

Examples

Example A.4 (Union as a direct limit). If each Mi are submodules of some A-module M ,
and the maps Mj Ñ Mi are given by inclusions Mj Ă Mi, then the direct limit is simply
the union:

lim
ÝÑ
i

Mi “
ď

i

Mi.

Example A.5 (Stalks as a direct limit). Let X be a topological space, and consider the
directed set I of open neighbourhoods U of a point x P X ordered by inclusion. If F
is a presheaf on X , then setting MU “ FpUq, the above construction of the direct limit
lim
ÝÑU

MU is exactly the same as the previous definition of the stalk Fx.

Example A.6 (Localization as a direct limit). Let A be a ring and S a multiplicative subset.
We put a preorder on S by declaring s ď t when t “ us for some u P S, and this makes S a
directed set. Next, for s ď t with t “ us, there exists a ring homomorphism fts : As Ñ At,
which is defined by ftspas´nq “ aunt´n. In this way the family of rings tAsusPS forms
a directed system of rings, and one easily checks that the properties required of a directed
family hold.

For each s P S, there is a localization map As Ñ S´1A, so from the universal property
of the direct limit, we obtain a canonical A-linear map

ϕ : lim
ÝÑ
sPS

Af Ñ S´1A.

We contend this is an isomorphism. The map ϕ is surjective: any element in S´1A is of the
form as´1 with s P S; this element lies in As and hence in the image of ϕ. The map ϕ is
injective: if as´n P Af is mapped to 0 in S´1A, then for some t P S it holds that ta “ 0,
hence as´n “ 0 P Ast, and ϕ is injective.

Functoriality

The the direct limit enjoys functoriality in two ways. A subset J Ă I inherits a preorder from
I , and if additionally it is directed, there is an induced A-linear map

lim
ÝÑ
J

Mj Ñ lim
ÝÑ
I

Mi. (A.1)

This is clear since the inclusion of disjoint unions
š

iPJMi Ă
š

iPIMi respects the equiva-
lence relation, and therefore passes to the quotients and induces a map as in (A.1), which one
without much effort checks is A-linear.

One says that a directed subset J is cofinal or filtering in I if for each element i P I there
is a j in J with j ě i.
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Lemma A.7. If J is cofinal in I , the map in (A.1) is an isomorphism

lim
ÝÑ
jPJ

Mj » lim
ÝÑ
iPI

Mi.

Note that, in particular, if the index set I has a largest element i0, then lim
ÝÑiPI

Mi “ Mi0 .

Proof The map in (A.1) is surjective since any x P Mi is equivalent to an element ϕjipxq

lying in an Mj with j P J and j ě i. That some x P Mj is mapped to zero in lim
ÝÑiPI

Mi,
means that it maps to zero in some Mi1 with i1 ě i, but then it maps to zero in some Mj with
j P J and j ě i1 as well, and so is zero in lim

ÝÑjPJ
Mj .

Assume then that pNi, ψijq and pMi, ϕijq are two directed systems, both indexed by the
same directed set I . A map between them is a family tρiu of A-linear maps ρi : Ni Ñ Mi

such that ρi ˝ψij “ ϕij ˝ ρj . In a straight forward manner, these data give rise to an A-linear
map

ρ : lim
ÝÑ
i

Ni Ñ lim
ÝÑ
i

Mi,

which is compatible with he natural maps of the two limits; indeed, the family tρiu yields a
map already between the disjoint unions which respects the equivalence relations. The direct
systems of A-modules with maps as above form a category, and the induced map ρ above
depends functorialy on the family ρi.

Inverse limits

The dual concept of a direct limit is the inverse limit (also called the projective limit or just
the limit) of an inverse system tMiuiPI . These systems and their limits are defined similarly
to the direct systems, just with the arrows reversed. In fact, an inverse system indexed by I is
nothing but a direct system indexed by the opposite ordered set Iop, though the limits will
have rather different properties.

To be precise, the staging is as follows:

Definition A.8. An inverse system pMi, ϕijq of A-modules indexed by a directed set
I is a family Mi of A-modules indexed by I , and for each pair i, j from I with i ď j
an A-linear map ϕij : Mj Ñ Mi subjected to the conditions

(i) ϕii “ idMi
;

(ii) ϕik ˝ ϕjk “ ϕji whenever i ď k ď j.

Note that the maps ϕij go ‘backwards’ relatively to the order in I; or in a functorial
language, the dependence of Mi on i is contravariant. The definition of the inverse limit is
word for word the same as the definition of the direct limit except that all arrows are reversed:
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416 Some results from Commutative Algebra

Definition A.9. The inverse limit of an inverse system pMi, ϕijq is an A-module
lim
ÐÝ

Mi together with a collection of A-linear maps ϕi : lim
ÐÝ

Mi Ñ Mi so that
ϕi “ ϕji ˝ ϕj , which are universal in this respect.

The universal property is illustrated with the diagram

Mj

N lim
ÐÝ

Mi

Mi

ϕij

η

ψj

ψi

ϕj

ϕi

Proposition A.10. Every directed inverse system of A-modules has a limit.

Proof Define a submodule L of the product
ś

iMi by

L “ t pxiq | xi “ ϕijpxjq for all pairs i, j with i ď j u (A.2)

The projections induce maps ϕi : L Ñ Mi, and we claim that L together with these maps
constitutes the inverse limit of the system. A family of maps ψi : N Ñ Mi gives rise to a
map η : N Ñ

ś

iMi by the assignment x ÞÑ pψipxqq, and it takes values in L when the
ψi’s satisfy the compatibility constraints ψi “ ϕij ˝ ψj . This map is clearly unique, and
hence we get the desired universal property.

Just as for injective limits, one has functoriality both on the level of the indexing set and on
the level of modules. In deed, if J Ă I is a directed subset, there is a canonical projection

ź

iPI

Mi Ñ
ź

iPJ

Mi

that just remembers the coordinates indexed by j. The submodules L are respected, and we
get a map

lim
ÐÝ
iPI

Mi Ñ lim
ÐÝ
iPJ

Mi (A.3)

One easily proves the following along the same lines as the proof of Lemma A.7:

Lemma A.11. If J is cofinal in I , the map in (A.3) is an isomorphism.

Examples

Example A.12 (Inverse limits and intersections). If all the Mi’s are submodules of some
fixed module M , and the maps Mj Ñ Mi are the inclusions, the inverse limit will simply be
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A.1 Direct and inverse limits 417

the intersection of the Mi’s:

lim
ÐÝ
iPI

Mi “
č

iPI

Mi Ă M.

Example A.13 (The p-adic integers). An important application of inverse limits is to form
so-called ‘completions of rings’. The primary example is the p-adic numbers. Let p be a
prime number and consider the modules Z{piZ. They form an inverse system indexed by
N with ϕij being just the canonical reduction map Z{pjZ Ñ Z{piZ, that for j ě i sends a
class rnspj mod pj to the class rnspi mod pi. The system may be visualized by the sequence

. . . Z{pi`1Z Z{piZ . . . Z{p2Z Z{pZ.

The inverse limit is denoted by Zp and is called the ring of p-adic integers.

Example A.14 (Inverse limits and sections). Whereas direct limits gives us stalks, inverse
limits give a way to compute sections. In the context of sheaves, the slogan is: ‘Direct limits
have a localizing effect, while inverse limits effectuate globalizations.’

Consider an open set U of the topological space X and a sheaf F on X . Assume given
an open covering U “ tUiuiPI of U which is directed under inclusion; i.e. the intersection
of two members from U contains a third, then the restriction maps induce an isomorphism
FpUq » lim

ÐÝiPI
FpUiq. Indeed, the restriction maps ρUUi

: FpUq Ñ FpUiq comply with
the compatibility request ρUUi

“ ρUjUi
˝ ρUUj

for Ui Ă Uj , and they thus give a canonical
map FpUq Ñ lim

ÐÝiPI
FpUiq.

In view of the description in (A.2) this is an isomorphism: that s maps to zero, means that
ρUUi

psq “ s|Ui
“ 0 for each i, which by the Locality axiom entails that s “ 0. Furthermore,

sections si P FpUiq so that sj|Ui
“ si for each inclusion Ui Ă Uj may, by the Gluing

axiom, be glued together to give a section of F over U , and the map is surjective.
In fact, with slightly more care one can establish that if F is a presheaf, the sections of the

sheafification F` is given as the inverse limit

F`pUq » lim
ÐÝ
iPI

FpUiq. (A.4)

Exercise A.1.1. Convince yourself that (A.4) holds true.

Exercises

Exercise A.1.2. Show that arbitrary direct and inverse limits exist in the category Sets and
Rings of sets, respectively of rings. HINT: Adapt the proofs above.

Exercise A.1.3. Show that the inverse limits exist unconditionally in the category of topologi-
cal spaces. Show that the inverse limit of compact Hausdorff spaces is compact and Hausdorff.
HINT: Express the limit as the intersection of inverse images of graphs, and use Tychonoff’s
theorem.

Exercise A.1.4. Exhibit a directed system in the category FiniteSets of finite sets that does
not have a direct limit in FiniteSets.
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Exercise A.1.5. Exhibit a inverse system of finite sets indexed by N whose inverse limit is
empty. Show that the inverse limit of a system of compact spaces with surjective maps is
non-empty.

Exercise A.1.6. Let pMi, ϕijqiPI be a directed (respectively inverse) system of A-modules.
Assume that I is discrete; that is, that no two elements are comparable (in other words, i ď j
only when i “ j). Show that lim

ÝÑiPI
Mi “

À

iMi, respectively lim
ÐÝiPI

Mi “
ś

iMi.

Exercise A.1.7. Assume that I is a directed set in which every element is dominated by a
maximal element. Let pMi, ϕijqiPI be a direct (respectively inverse) system of A-modules
indexed by I . Show that lim

ÝÑiPI
Mi is isomorphic to the direct sum

À

Mj , respectively
lim
ÐÝiPI

Mi is isomorphic to the product
ś

Mj , where the sum (respectively the product)
extends over all maximal elements in I .

Exercise A.1.8 (Direct limits are exact). Let pMi, ϕijq, pM 1
i , ϕ

1
ijq and pM2

i , ϕ
2
ijq be three

directed systems of A-modules. Suppose given exact sequences

0 M 1
i Mi M2

i 0
αi βi

with the collections tαiu and tβiu being maps of direct systems (i.e. they are compatible
with the transition maps). Show that the induces sequence of limits

0 lim
ÝÑ

M 1
i lim

ÝÑ
Mi lim

ÝÑ
M2

i 0α β

is exact; in short, the inductive limit is an exact functor.

Exercise A.1.9 (Inverse limits are left exact). With setting as in the previous exercise except
that the systems are inverse systems, show that the sequence of inverse limits

0 lim
ÐÝ

M 1
i lim

ÐÝ
Mi lim

ÐÝ
M2

i
α β

is exact. Show by finding an example that β is not always surjective; hence the inverse limit
is merely left exact.

Exercise A.1.10. Let A be a ring and a P A an element. Let a direct system indexed by
N be given by Mi “ A for all i and ϕijpxq “ aj´ix for i ď j. Determine the direct limit
lim
ÝÑiPI

Mi.

Exercise A.1.11. Let A be a ring. Show that the inverse limit of the inverse system

. . . Arxs{mi`1 Arxs{mi . . . Arxs{m2 Arxs{m

where m “ pxq, and the maps are the canonical reduction maps, is isomorphic to the ring of
formal power series Arrxss.

Exercise A.1.12. Let p be a prime number and let Zp be the ring of p-adic integers (as in
Example A.13). Show that Zp is a Noetherian local domain with maximal ideal generated
by p. Show that Zp is compact when endowed with the limit topology. Show that the map
Z Ñ Zp sending n to prnspiqi is an injective ring homomorphism. Show that the assignment
x ÞÑ p defines an isomorphism Zrrxss{px´ pq Ñ Zp.
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Exercise A.1.13 (Alternative description of the direct limit). Let pMi, ϕijqiPI be a directed
system of modules over a ring A. Define an A-module homomorphism

ψ :
à

jPI

Mi Ñ
à

iPI

Mj

by the assignment

ψppmijqqi “

#

mi ´ ϕijmj when i ě j

0 else

Show that the cokernel Cokerψ is isomorphic to the direct limit lim
ÝÑ

Mi. HINT: Verify the
universal property.
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A.2 Localization

A nonempty subset S of a commutative ring A is called a multiplicative set if it is closed
under multiplication and contains the identity element of A.

The localization of A with respect to a multiplicative set S, denoted S´1A, is the set of
fractions a{s with a P A and s P S. There is a well-defined addition and multiplication
making S´1A into a ring. Formally, S´1A is constructed by definiing an equivalence relation
on Aˆ S by pa, sq „ pa1, s1q if there exists an element t P S such that tpas1 ´ a1sq “ 0 in
A. The elements of S´1A are denoted by a{s or a

s
.

There is a canonical localization map

ρ : A Ñ S´1A, x ÞÑ x{1

which makes S´1A into an A-module. The map ρ is injective if A contains no zerodivisors:
a{1 “ 0 means that t ¨ a “ 0 for some t P S.

The localization S´1A is the zero ring if and only if 0 P S (if 0 P S, then a{s “ 0{1 by
definition).

If M is an A-module, one also defines a localization S´1M as the set of fractions m{s,
for m P M , s P S, using the equivalence relation pm, sq „ pm1, s1q if tpms1 ´m1sq “ 0 in
M . As above, there is a canonical localization map M Ñ S´1M . Also, S´1M is naturally
an S´1A-module.

Example A.15. The first prototype example is when S “ A´ p for a prime ideal p. In this
case the localization S´1A is denoted Ap. The ring Ap is a local ring with maximal ideal
pAp. The elements not in p become units in Ap, and every non-unit in Ap is in the maximal
ideal.

Example A.16. The second prototype example is when S “ t1, f, f2, . . . u for some f P A.
In this case the localization S´1A is denoted Af . Elements of Af are of the form a{fn

where a P A and n ą 0.

Prime ideals in localizations. Note that if S is a multiplicative set and p is a prime ideal, so
that S X p ‰ H, then S´1p “ p1q in S´1A. Thus the prime ideals that intersect S map to
non-proper ideals in S´1A.

For the other prime ideals, the map p ÞÑ S´1p “ pS´1A. gives a one-to-one correspon-
dence between the prime ideals of A that do not intersect S and the prime ideals of S´1A;
the inverse is given by ρ´1pqq.

A.3 Tensor products

Let M and N be two A-modles. We define the tensor product M bA N as the quotient of
the free module AMˆN with basis pem,nq modulo the relations

em1`m2,n ´ em1,n ´ em2,n “ 0 (A.5)

em,n1`n2
´ em,n1

´ em,n2
“ 0 (A.6)

eam,n ´ em,an “ aem,n ´ eam,n “ 0 (A.7)
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for all m P M , n P N , a P A. We write mb n for the class of em,n in M bA N .
The assignment pm,nq ÞÑ mbAn defines map γ :M ˆN Ñ M bAN which is bilinar

as a map of A-modules. It satisfies the following universal property: for any bilinear map
ϕ :M ˆN Ñ P , there is a unique map ϕ :M bA N Ñ P so that ϕ “ ϕ ˝ γ.

A.4 Basic formulas

In the formulas below, M,N,L denote A-modules; S Ă A is a multiplicative set; p is a
prime ideal of A. Each equality ‘=’ between two modules means that there is a canonical
isomorphism between them.

Localization identities:
(i) S´1pM{Nq » S´1M{S´1N

(ii) If M is finitely presented: S´1 HomApM,Nq “ HomS´1ApS´1M,S´1Nq.
Tensor product identities:
(i) AbAM “ M

(ii) M bA N “ N bAM
(iii) M bA pN bA P q “ pM bA Nq bA P
(iv) p

À

iPIMiq bA N “ p
À

iPIMi bA Nq

(v) If A Ñ B is a ring map; M,N are A-modules and P is a B-module, then there
is a canonical isomorphism of B-modules

M bA pN bB P q “ pM bA Nq bB P.

(vi) HomApM bA N,P q “ HomApM,HompN,P qq.
(vii) S´1M “ M bA S

´1A.
(viii) S´1pM bA Nq “ S´1M bA S

´1N .
Exactness properties. If 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is an exact sequence, then

0 Ñ S´1M 1 Ñ S´1M Ñ S´1M2 Ñ 0

is exact for every multiplicative set S;

0 Ñ HompL,M 1q Ñ HompL,Mq Ñ HompL,M2q (A.8)

0 Ñ HompM2, Lq Ñ HompM,Lq Ñ HompM 1, Lq

are exact for every A-module L; and

M 1 bA N Ñ M bA N Ñ M2 bA N Ñ 0

is exact for any A-module N .

A.5 Noetherian rings

A.6 Dimension theory

A.7 Exactness properties

A.8 Integral Extensions

There is a collection of results, the Cohen–Seidenberg Theorems, about prime ideals in
integral extension with important applications to finite morphisms. We summarize them here
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without proofs. They are formulated with the more general hypothesis that the extension is
integral, but finite ring extensions are integral.

Theorem A.17. Let A Ă B be an integral extension of rings.
(i) (Lying–Over) If p prime ideal in A, there is prime ideal q in B so that

q XA “ B;
(ii) If q Ă q1 are prime ideals in B such that q XA “ q1 XA, then q “ q1;

(iii) (Going–Up) If p Ă p1 are two prime ideals in A and q P SpecB with
q XA “ p, there is a q1 P SpecB with q1 XA “ q;

(iv) (Going–Down) Assume that A is integrally closed and that p1 Ă p are
two prime ideals. If q P SpecB is such that q XA “ p, then there is a
q1 P SpecB such that q1 XA “ p1.

A.9 Normal rings

An integral domain A is said to be normal if it is integrally closed in its fraction field
K “ kpAq. In other words, any element z P K which satisfies a monic equation with
coefficients in A, is already contained in A.

The following is a non-trivial result from commutative algebra about the integral closure:

Theorem A.18 (Finite generation of integral closure). Let A be an integral domain,
K “ KpAq its fraction field, and let K Ą L be a finite separable field extension. Let
B be the integral closure of A in L (that is, the elements of L which are integral over
A). Then

(i) If A is integrally closed, then B is a finitely generated A-module
(ii) If A is finitely generated as a k-algebra, then B is a finitely generated

A-module.

The second part does not hold in general: there are non-noetherian rings where the integral
closure is not finitely generated.

A.10 Regular local rings

A Noetherian local ring A with dimA “ n and with maximal ideal m is said to be regular
if the maximal ideal can be generated by n elements. Nakayama’s lemma implies that the
minimal number of generators of m equals the dimension of the cotangent space m{m2 as a
vector space over dimA{m. A general ring A is regular if all the local rings Ap are regular.

Discrete valuation rings

When it comes to one-dimensional rings, A is regular if and only if m is principal. This has
many equivalent formulations, and we list the few we shall need.

https://tinyurl.com/yc5y6dwp


Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015–2024

A.10 Regular local rings 423

Proposition A.19. Let A be a Noetherian local domain with maximal ideal m of
dimension one. Then the following are equivalent

(i) The maximal ideal m is principal;
(ii) A is a PID and all ideals are powers of m;

(iii) A is integrally closed.
(iv) A is regular, i.e., dimk m{m2 “ 1.

Proof i)ñ ii). Let x a generator for the maximal ideal m and let a Ă A be a non-zero
ideal. Let n be the largest integer such that a Ă mn. Krull’s intersection theorem asserts that
Ş

im
i “ 0, and the ideal a is therefore not contained in all powers of m and such an n exists.

Since a Ę mn`1, there is an a P ab such that a “ bxn with b R m; that is, b is a unit since
the ring is local. It follows that pxnq Ă a, and we are done.

ii)ñ iii). Every PID is a UFD and all UFD’s are integrally closed.
iii)ñ i). Finally, assume that A is integrally closed and let x P m be any non-zero element.

SinceA is Noetherian and of dimension one, the maximal ideal m is associated to pxq (indeed,
m is the only non-zero prime ideal in A), and we conclude by Lemma A.20 below.

piq ô pivq. If m “ pxq, then m{m2 is generated by the class of x modulo m2. We also
have m ‰ m2 (since A has dimension 1), so dimk m{m2 “ 1. The converse implication
follows by Nakayama’s lemma.

Lemma A.20. Let A be a Noetherian local normal domain and assume that the
maximal ideal m is associated to a principal ideal. Then m is principal.

Proof Let x P A be such that m is associated to pxq. This means that there exists an z P pxq

so that p0 : zq “ m.
some y P A with y R pxq it holds that ym Ă pxq. Then myx´1 Ă A, but yx´1 R

A. If myx´1 Ă m the element yx´1 would be integral over A by the third criterion of
Proposition ?? on page ?? (because A is Noetherian, m is finitely generated, and it is faithful
as all ideals are). But this is impossible because A is normal and yx´1 R A. We deduce
that myx´1 “ A, and consequently there is a relation zyx´1 “ 1 with z P m. Then
w “ pwyx´1qz for all w P m (note that wyx´1 lies in A), and hence m “ pzq.

A ring as in the proposition is also a discrete valuation ring. If t is a generator for the
maximal ideal m, one calls t a uniformizing parameter of A. In fact, the above proof shows
that any element of m ´ m2 is a uniformizing parameter.

In a discrete valuation ring A, all non-zero ideals are of the form ptνq with ν P N0, and
therefore any non-zero element in the fraction field K “ KpAq may be written as αtν with
α a unit in A and ν an integer. Indeed, if f P A and f ‰ 0, we let vpfq be the unique
non-negative integer such that pfq “ mνpfq, then f “ αtvpfq with α being a unit, and for a
general non-zero element fg´1 of the fraction field, one finds fg´1 “ αtνpfq´νpgq with α a
unit.

The function v : A ´ t0u Ñ Z sending f to the unique integer such that f “ αtvpfq

with α a unit, is called the valuation associated to A. It resembles the well-known order
function from complex analysis (recall that every meromorphic function has an order at a
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point, positive if its a zero and negative in case of a pole), and it share several of its properties.
For instance, the two following identities hold:

‚ νpfgq “ νpfq ` νpgq;
‚ νpf ` gq ě mintνpfq, νpgqu,

with equality in the latter when νpfq ‰ νpgq. Any function A´ t0u Ñ Z satisfying these
two properties is called a discrete valuation on A. We sometimes extend this definition to
include 0, by assigning vp0q “ 8; in that case v is a map from v : A Ñ Z Y 8. We will
also sometimes extend the valuation to the whole fraction field K “ KpAq by defining
vpa{bq “ vpaq ´ vpbq.

Given the valuation v : K Ñ Z Y 8, we can recover the valuation ring as the subring of
K given by

A “ tx P Kˆ|vpxq ě 0u Y t0u

and the maximal ideal is given by

m “ tx P Kˆ|vpxq ě 1u Y t0u

The group of units in A is given by the subgroup

Aˆ “ tx P K|vpxq “ 0u.

Note also that for any x P K, either x P A or x´1 P A.

Example A.21. LetK “ kpxq be the field of rational functions in one variable. Let f P krxs

be an irreducible polynomial. Then any element y P K can be written as y “ fdg{h where
d P Z; and g, h are coprime to f . We can define a valuation vf : Kˆ Ñ Z by setting
vpyq “ d. In this case, the valuation ring is the localization of krxs at f :

A “ krxspfq

Example A.22. Let K “ kpxq be the field of rational functions in one variable. Define the
valuation v8 : KˆZ by setting

v8p
f

g
q “ deg g ´ deg f

One can check that this defines a valuation on kpxq. The valuation v8 is supposed to measure
the order of a pole ‘at infinity’. The corresponding valuation ring is

R “ tf{g P kpxq|deg f ď deg gu.

with maximal ideal m “ tf{g P kpxq|deg f ă deg gu.

Example A.23. Let K “ Q be the field of rational numbers, and let p be a prime number.
Any y P Q can be expressed as y “ pda{b where d P Z and a, b are coprime to p. We can
define the p-adic valuation vp : Qˆ Ñ Z by setting vpyq “ d. In this case, the valuation ring
is the localization of Z at ppq:

A “ Zppq “

!m

n
P Q | gcdpp, nq “ 1

)
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A.11 Unique factorization domains 425

Exercise A.10.1. Assume that ν is a discrete valuation on a field K. Show that the set
A “ tx P K | νpxq ě 0 u is discrete valuation ring by showing that tx P K | νpxq ą 0 u

is a maximal ideal generated by one element.

A.11 Unique factorization domains

Lemma A.24. Let A be a noetherian domain. Then A is a UFD if and only if every
height 1 prime ideal is principal

Proof Suppose that A is a UFD. Let p be a height 1 prime ideal. Take x P p non-zero and
let x “ x1 ¨ ¨ ¨xn be a factorization into irreducible elements. Since p is prime, we must have,
say, x1 P p. However, also px1q is prime (since A is UFD), so since p has height 1, we must
have p “ px1q.

Conversely, suppose that every height 1 prime is principal. Since A is noetherian, every
non-zero non-unit x has a factorization into irreducible elements. It suffices to prove that an
irreducible element is prime. Let pxq Ă p be a minimal prime over pxq. Then p has height 1
(localize at p and use minimality to see why).

A.12 Normal domains

Seidenberg’s criterion

The criterion we are about to give seems first to have been published by Seidenberg, so we
name it after him. It is closely related to the more famous Serre’s R1-S2-criterion, but there
is a more geometric flavour to it.

The proof does not require much preparation; it relies only on the simple lemma below.
Before stating the lemma, let us recall that a ideal quotient pb : aq “ tx | xa P pbq u

equals the annihilator of the class of a in A{pbqA, and a basic result from the theory about
primary decomposition in Noetherian rings asserts that each proper annihilator is contained in
a maximal annihilator, and in the present case, these are precisely the prime ideals associated
to pbq. Here comes the lemma:

Lemma A.25. A Noetherian domain A equals the intersection
Ş

pAp where p runs
through the prime ideals associated to principal ideals.

Proof Seeking a contradiction, we assume there is an element ab´1 in the fraction field of
A that lies in

Ş

pAp, but not in A. The transporter ideal pb : aq “ tx P A | xa P pbq u is a
proper ideal since ab´1 R A, and so pb : aq is contained in a maximal transporter; that is, a
prime p associated to pbq. Then ab´1 P Ap by assumption, and we may write ab´1 “ cd´1

with c, d P A but with d R p. Hence ad “ bc, and so d P pb : aq Ă p, which is absurd.

Recall that an ideal is said to unmixed if all its associated primes are of the same height.
Krull’s Hauptidealsatz states that primes minimal over a principal ideal pfq are of height one,
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so in that case the common height must be one, and moreover, if the ideal is not unmixed,
any associated prime of larger height must be embedded.

Theorem A.26 (Seidenberg). Let A be a Noetherian domain. Then A is normal if
and only if the two following conditions are are fulfilled:

(i) The local ring Ap at each height one prime ideal p is a DVR;
(ii) Each principal ideal is ‘unmixed’; i.e. it has no embedded components.

Proof We begin with observing thatA is normal when the two conditions are fulfilled: DVR’s
are normal and intersections of normal rings are normal, and the second condition combined
with Krull’s Principal Ideal Theorem ensures that all primes associated to a principal ideal
are of height one, and we conclude by the lemma.

As to the other implication: The local rings at height one primes are one dimensional and
normal since being integrally closed is a local property, hence they are DVR’s. Let then p be a
prime in A associated to a principal ideal pbq. Consider the local ring Ap. Its maximal ideal
m “ pAp persists being associated to pbqAp, and citing Lemma A.20 above, we conclude
that the maximal ideal m is principal. Then Ap is a discrete valuations ring; consequently p is
of height one, and therefore it can not be embedded.

The first condition of the criterion, has when fulfilled, the consequence that the p-primary
ideals of height one are rather well understood (at least in principle). The only ones are the
symbolic powers ppνq “ A X pvAp. Indeed, if q is p-primary, it holds that q “ A X qAp,
and Ap being a DVR, all ideals in Ap are powers of the maximal ideal.

Secondly, when a principal ideal is unmixed, all the primary components are of height one,
and hence in a normal ring the primary decomposition takes the form

pfq “ p
pν1q

1 X ¨ ¨ ¨ X ppνrq
r .

The exponents νi completely determine pfq; that is, they determine f up to an invertible factor.
In a domain that is not normal, two principal ideal pfq and pgq whose primary decompositions
have the same height one part, might have different embedded components, and so f and g
would not be related by a unit. If vi denotes the valuation on fraction field of A attributed to
the valuation ring Api

, it holds that νi “ vipfq.

Exercises

Exercise A.12.1 (Primary decomposition and quartic space curves). We keep the notation
from Example ??. Let p Ă A be the ideal p “ pt0, t1, t3q.

a) Show that p is a prime ideal and that Zppq Ă A4
k is the line connecting the

point p0, 0, 0, 1q to the origin.
b) Show that the symbolic power pp4q is given as

pp4q “ pt0, t1t
3
2q “ pu4, u6u10q.

c) Show that pt0, t
3
1, t

3
4q is m-primary and that a primary decomposition of t0 is

given as

pt0q “ pp4q X pt0, t
3
1, t

3
4q.
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Exercise A.12.2 (Serre’s R1 and S2 conditions). Let A be a Noetherian domain. Show
that condition (ii) in Seidenberg’s criterion is fulfilled if and only if for each non-unit
f P A the quotient A{pfqA has no associate primes of height two or more. Readers
aquatinted with the concept of depth, should recognize this as equivalent to saying that
depthAp ě minp2, dimApq for all p P SpecA, which is just the S2 criterion of Serre. The
R1 condition is identical to condition (i) in A.26.

Exercise A.12.3 (Eben Matlis). Let A be a Noetherian domain. Show that every prime ideal
in A associated to a principal ideal is of the form pa : bq. HINT: Start with a primary
decomposition of pfq.

Hartog’s theorem

The Seidenberg criterion has a corollary important in geometry, which in a geometric parlance
loosely says that rational functions on normal varieties can be extended over codimension two
subsets; or equivalently, that the loci where they are not defined, are of codimension one. It is
commonly referred to as Hartog’s Extension Theorem, even though it merely is an algebraic
reflection of a much deeper result from complex function theory proved by FriedrichHartogs.

Theorem A.27 (Hartogs’ extension theorem). A normal Noetherian domain A
satisfies A “

Ş

pAp where the intersection extends over all prime ideals p of height
one.

Proof According to Lemma A.25 tells us that A “
Ş

pAp with p running through the
primes associated to principal ideal, but according to Seidenberg’s criterion, those are pre-
cisely the height one primes.

A.13 Projective modules

Lemma A.28. LetA be a local ring with maximal ideal m andM a finitely generated
projective A-module. Then M is free.

Proof This is a standard application of Nakayama’s lemma. Let k “ A{m denote the
residue field, and consider the module M bA k “ M{mM . Since M is finitely generated,
this is a finite dimensional vector space over k. Let m1, . . . ,mr P M denote a collection of
elements in M that map to a basis for M bA k. We obtain a map ϕ : Ar Ñ M sending the
standard basis vector ei to mi for each i “ 1, . . . , r. Note that ϕb idk is an isomorphism,
so by Nakayama’s lemma ϕ is surjective. We thus get a short exact sequence

0 Ñ K Ñ Ar
ϕ
ÝÑ M Ñ 0,

where K “ Kerϕ. When M is a projective module, this sequence splits ?. Hence it stays
exact when tensorized by k. Again, since ϕbidk is an isomorphism, we get thatKbAk “ 0,
and hence K “ 0, once more by Nakayama’s lemma (note that K is finitely generated, being
a direct summand of a finitely generated module). It follows that M » Ar is free.
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A.14 Dimension theory

A.14.1 The length of a module

A.14.2 Krull’s Principal Ideal Theorem

Theorem A.29 (Krull’s Principal Ideal Theorem). Let A be a Noetherian ring and
I “ pf1, . . . , frq a proper ideal of A. Then each minimal prime ideal over I has
height at most r.

In the special case when A is a finitely generated k-algebra, ..
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430 More on sheaf cohomology

In Chapter ??, we introduced the Cech cohomology of sheaves, which is well suited
for computations, and in an fact is most efficient road (if not the only) to find the explicit
necessary results on cohomology. There is however another standard way of introducing
cohomology which works in greater generality. It goes by the so-called derived functors, in
our case the right derived functors (there is also the notion of left derived functors).

The idea is to approximate an object A (in any abelian category) by ‘cohomologically
trivial objects’. Such an approximation, or a acyclic resolution as it is called, is an exact
complex pC ‚, d‚q with an isomorphism A Ñ Ker d0; it displays as

0 A C 0 C 1 C 2 . . . (B.1)

and, the key point, the C i are ‘cohomologically trivial’ (we’ll come back with what that
means in our concrete situation, typically the C i will be so-called ‘injective’ objects ). 1[2cm]
Then one applies the functor F to C ‚ and thus obtains the complex F pC ‚q, which displayed
appears as

F pC 0q F pC 1q F pC 2q . . .

The value of the (right) derived functor (or the i-cohomology group) of F at A will be the
homology of that complex; that is, for each i P N0 one has RiF pAq “ H ipF pC ‚qq.

There is a serious issue brought on by the choices involved in this process. The homology
H ipF pC ‚qq must be well-defined so it must, in some sense, be independent of the choice
of the complex (B.1), and the precise condition is it be unique up to a unique isomorphism.
Uniqueness of the isomorphism is required to have the necessary functorial properties, one
wants equalities between induced maps.

We shall not dive into the deep see of abelian categories and homological algebra, but
merely concentrate on our present interest, the global section functor. And we shall circumvent
the unicity issues by using so-called flabby sheaves as resolving objects; with those there is a
completely canonical resolution of any abelian sheaf, which also depends functorially on F .

Part of the story is also to show that the two definitions of cohomology coincide in most
situations. In the case of general (separated) schemes this hinges on a theorem of Henri
Cartan with a longish proof, which we refrain from giving. We contend ourselves with a
proof for Noetherian seperated schemes; then things are considerably much easier.

B.1 Flabby sheaves

Let X be a topological space and F a sheaf X . One calls F as flabby if the restriction map

FpXq Ñ FpUq

is surjective for every open subset U Ă X . Flabby sheaves are quite different from the
coherent sheaves one usually encounters in algebraic geometry, and they tend to be rather
large and ‘formless’. Here are two prototypical examples:

Example B.1 (Godement sheaves). Back in Chapter ??, we constructed the Godement

1 Recall that a complex is exact if the kernel of each map is equals the image of the preceding one; that is
Im di “ Ker di`1.
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sheaves A. They were constructed by choosing an arbitrary family of abelian groups Ax, one
for each point x P X , whose group of sections over an open U is

ApUq “
ź

xPU

Ax

and whose restriction maps are induced appropriate projections. These sheaves are obviously
flabby. Indeed, the restriction map ApXq “

ś

xPX Ax Ñ
ś

xPU Ax “ ApUq is just the
projection that keeps the components of paxq with indices x P U and throws the others away.

In particular the Godement sheaf ΠpFq associated to an abelian sheaf F belongs to the
class of flabby sheaves; just let the family of abelian groups be the family of stalks Fx.

Example B.2. If X “ SpecA is affine and M is a divisible A-module (that is, all multipli-
cation maps x ÞÑ fx with f ‰ 0 are surjective), then ĂM is flabby. Indeed, the localization
maps M Ñ Mf are surjective. In particular, this applies to injective modules over an integral
domain.

So to the words ‘cohomologically trivial’. Heuristically, the origin of cohomology of
sheaves is that taking global section does not preserve surjections, and the next lemma may
be view as an indication that flabby sheaves are ‘cohomologically trivial’:

Lemma B.3. Given an exact sequence

0 F G H 0

of sheaves F , G and H on the topological space X . If F is flabby, the corresponding
sequence of global sections

0 FpUq GpUq HpUq 0

is exact for every open set U Ď X .

Proof By restricting F , G and H to U , it suffices to prove the statement for U “ X . The
global section functor is left exact, so we only need to check that the sequence is exact on
the right. Let σ P HpXq. Consider the family Σ of pairs pU, sq of open subsets U of X and
sections s P GpUq that maps to σ|U . The set Σ has a partial order for which pU, sq ď pU 1, s1q

if U Ă U 1 and s “ s1|U , and it is quite clear that under this ordering every ascending chain
in Σ is bounded. So Zorn’s lemma ensures there is a maximal pair pU0, s0q.

Aiming for a contradiction, assume that U0 is not the entire space X and pick a point
x P X ´U0. Let U1 be an open neighbourhood of x small enough that σ|U1

lifts to a section
s1 in GpU1q. On the intersection V “ U0 X U1 both sections s0|V and s1|V maps to σ|V ,
and hence their difference s0|V ´ s1|V belongs to FpV q. Now F is flabby, so the difference
is the restriction of a section t P FpXq. Then s1 ` t|U1

maps to σ|U1
and coincides with

s0 on V . Hence the two can be glued together to a section of G over U0 Y U1 that maps to
σ|U0YU1

, contradicting the maximality of pU0, s0q.
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Lemma B.4. Suppose we are given an exact sequence of sheaves

0 // F // G // H // 0.

If F and G are flabby, then so is H.

Proof Let U Ă X be a subset of X . Then each section h P HpUq is represented by a
section g P GpUq by the previous lemma. Since G is flabby, g can be extended to a section g1

of GpXq. Then g1 maps to an element h1 P HpXq extending h; that is, h1|U “ h.

Lemma B.5. Suppose we are given an exact complex of flabby sheaves

0 F0 F1 ¨ ¨ ¨ F i F i`1 . . .d0 d1 di (B.2)

Then for each open set U Ă X , the complex

0 F0pUq F1pUq ¨ ¨ ¨ F ipUq F i`1pUq . . .
d0pUq d1pUq dipUq

(B.3)
is exact.

Proof One chops the complex (B.3) up into short exact sequences

0 Im di F i`1 Im di`1 0.

Bearing the two preceding lemmas in mind, we see by induction that each Im di is flabby
(the base of the induction follows as Im d0 “ F0 which is flabby by assumption) and that
each sequence

0 Im dipUq F i`1pUq Im di`1pUq 0

is exact.

B.2 The Godement resolution

Given a sheaf F on a topological space X , we are about to construct a resolution of F in
terms of flabby sheaves which we shall use to define the cohomology of F . There are no
choices involved, so the construction is canonical, and moreover it has the virtue of being
functorial (in every conceivable way) so we get unambiguously defined cohomology groups,
and all their functorial properties come almost for free.

To explain how this works, recall the Godement sheaf ΠpFq with sections over U being

ΠpFqpUq “
ź

xPU

Fx

and restriction maps the appropriate projection, and the canonical inclusion κF : F Ñ ΠpF q

which over an open set U sends a section s P FpUq to the element psxqxPU . Defining
C 0F “ ΠppqFq and Z 1F as the cokernel of κ, we get a canonical exact sequence

0 F C 0F Z 1F 0.
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Remember that Π is a functor AbShX Ñ AbShX which is compatible with κ; that is, it
holds true that Πpαq ˝ κF “ κG ˝ Πpαq for each map α : F Ñ G. Thus Πpαq passes to the
quotient, and we have commutative diagrams

0 F C 0pFq Z 1F 0

0 G C 0pGq Z 1G 0.

α C 0α Z 1α

This makes Z 1 a functor.
The Godement functor ΠpFq is even an exact functor. This hinges on the fundamental

quality that being exact is a local property of sequences of sheaves; so if the sequence

0 F G H 0

is exact, the sequence of sections over an open U

0
ś

xPU Fx
ś

xPU G
ś

xPU H 0

is exact for all U ; indeed, it is obtain by taking the product (which preserves exactness) of
the stalk-wise sequences (which are exact). The snake lemma then shows that also Z1 is an
exact functor.

We now iterate this construction and recursively put C i`1F “ C 0Z iF and Z i`1F “

Z 1Z iF . These sheaves all fit into short exact sequences, one for each i, shaped like

0 Z iF C iF Z i`1 0.

Proceeding to assemble the Godement resolution we splice these sequences together to a
complex C ‚F . The sheaves in this complex will of course be the C iF ’s, and the differentials
di : C i Ñ C i`1 will be the compositions C i Ñ Z i Ñ C i`1:

Proposition B.6. Given a topological space X and an abelian sheaf F on X .
(i) The Godement complex C ‚F is a flabby resolution of F .

(ii) The complex C ‚ depends functorially on F , and the functor
C ‚ : ShAbX Ñ CpxShAbX is an exact functor.

Proof Most has already been done. By construction the sheaves C iF are flabby and C ‚ is
exact in positive degrees. For i “ 0 it holds, also by construction, that Ker d0 » F . This
takes care of (i).

Claim (ii) is an immediate consequence of C i and Z i being exact functors.

B.3 Sheaf cohomology

We are now ready for defining the cohomology of an abelian sheaf F . The procedure is: first
form the Godement resolution

C ‚F : C 0F C 1F C 2F . . . (B.4)
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434 More on sheaf cohomology

then take global section of C ‚F , which yields a complex of abelian groups

C ‚FpXq : C 0FpXq C 1FpXq C 2FpXq . . . (B.5)

and finally, take the homology of that complex:

Definition B.7. Let F be an abelian sheaf on the topological space X . We define the
i-th cohomology group H ipX,Fq by the formula

H ipX,Fq “ H ipC ‚FpXqq.

For each map α : F Ñ G we define H ipX,αq : H ipX,Fq Ñ H ipX,Gq by the
formula

H ipX,αq “ H ipC ‚αpXqq.

The notation H ipX,αq is exceptionally cumbersome and one usually abbreviats it to αi˚
or sometimes even to α˚ with the index i being tacitly understood. The cohomology is a
functor in that pα ˝ βq˚ “ α˚ ˝ β˚ whenever α and β are composable maps between abelian
sheaf and of course id˚ “ id.

Recall that any short exact sequence of complexes of groups induces a long exact sequence
in homology. And for any functor to have the right to bear the title ‘a cohomology theory’ an
absolute requirement is similarly to induce long exact sequences from short ones:

Proposition B.8 (Long exact sequence). With each short exact sequence

0 F G H 0α β

of abelian sheaf on the topological space X and each non-negative integer i is
associated a connecting map δ : H ipX,Fq Ñ H i`1pX,Hq so that the long sequence

. . . H ipX,Gq H ipX,Hq H i`1pX,Fq H i`1pX,Gq . . .
β˚ δ α˚

is exact. Moreover, the connecting map δ depends functorially on the sequence.

Again, including the dependence on the sequence and on i in in the notation δ would
make it unnecessarily cluttered; but of course, when needed any appropriate decoration is
possible. That δ depends functorially on the sequence means that for any map between two
exact sequence, that is a set up like

0 F G H 0

0 F 1 G1 H1 0

α β γ

with squares commuting, it holds true that αi`1
˚ ˝ δ “ δ ˝ γi˚; or for lovers of diagrams, that
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for all i the middle red square in the following diagram commutes:

. . . H ipX,Gq H ipX;Hq H i`1pX,Fq H i`1pX,Gq . . .

. . . H ipX,G1q H ipX,H1q H i`1pX,F 1q H i`1pX,G1q . . .

βi
˚

δ

γi
˚ αi`1

˚ βi`1
˚

δ

The other squares commute as well simply because the cohomology H‚pX,Fq is functorial
in F .

Proof Proposition B.6 tells us that the sequence

0 C ‚F C ‚G C ‚H 0

formed from (B.8) is an exact sequence of complexes. In each degree there is an exact
sequence of sheaves which is exact and consists of flabby sheaves, and by Lemma B.3 it
follows that it persists being exact after global sections are taken. But that means precisely
that the complex

0 C ‚FpXq C ‚GpXq C ‚HpXq 0

of abelian groups is exact, and taking homology yields a long exact sequence of homology
groups (see Chapter ??).

The second statement about functoriality follows from the corresponding property of
complexes of abelian groups since both C ‚ and ΓpX,´q are functors.

Proposition B.9. If F is flabby all higher cohomology of F vanish; i.e.H ipX,Fq “

0 for i ě 1.

Example B.10. Flabby resolutions furnish good tools for establishing general formal state-
ments, but in concrete situations they are usually rather difficult to study in an explicit manner.
There are however a few exceptions, and here comes one:

Let X “ SpecA be a reduced and irreducible affine scheme; that is, the ring A is an
integral domain. The field of fractions K of A induces the sheaf rK on X , and since K is
divisible, this sheaf is flabby. One effortlessly checks that also the quotient K{A is divisible,
hence ĆK{A is flabby, and we have the flabby resolution

0 OX
rK ĆK{A 0.

It follows using acyclicity of flabby sheaves and the long exact sequence thatH ipX,Oxq “ 0

for i ą 1, and H1pX,OXq “ 0 since the global section of the map rK Ñ ĆK{A is just the
surjection K Ñ K{A.

Example B.11. Let X be an integral scheme, In Chapter ?? we defined the group of CaDiv
as ΓpX,K ˚{O˚

Xq where KX is the constant sheaf with value the function field KpXq of
X , and Cartier divisor class group as the cokernel of the mapK Ñ ΓpX,K ˚{O˚

Xq induced
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436 More on sheaf cohomology

from the exact sequence

1 O˚
X K ˚

X K ˚
X {O˚

X 1

We saw that K ˚
X is a flabby and hence it follows that CaClpXq » H1pX,O˚

Xq “ PicpXq.

Exercise B.3.1. Let X be a topological space and let ι : Z Ñ X be the inclusion of a subset.
Show that for a sheaf F on Z,

H ipX, i˚Fq “ H ipZ,Fq (B.6)

for all i.

B.3.1 Acyclic sheaves

Since the Godement resolution often is difficult to handle and the involved sheaves are both
rather enormous and structureless, one looks for other and more workable resolutions. The
following proposition, where resolutions by so-called acyclic sheaves are used, gives this
flexibility.

Definition B.12. A sheaf F on the topological space X is called acyclic if
H ipX,Fq “ 0 for all i ą 0.

Consider a resolution C ‚ of F ,

0 F C 0 C 1 C 2 . . . ,

(which by definition means that the sequence is exact), and the resulting complex C ‚pXq of
abelian groups

C 0pXq C 1pXq C 2pXq . . .

Of course, this may in general fail to be exact. Our main goal now is to show that if the Ci’s
are acyclic, we get back the cohomology of F :

Lemma B.13. If the sheaves C i in (B.3.1) are acyclic, then there is a natural isomor-
phism

H ipX,Fq » H ipC ‚pXqq

Proof Define K´1 “ F , and Ki “ KerpC i`1 Ñ C i`2q for i ě 0. By exactness of the
complex C ‚, we have for each i ě 0 an exact sequence

0 Ñ Ki´1 Ñ C i Ñ Ki Ñ 0.

Taking the long exact sequence, we get

0 H0pKi´1q H0pC iq H0pKiq H1pKi´1q H1pC iq “ 0 (B.7)

where the right-most group it zero because C i is acyclic. Also, the same sequence shows that
HppKiq “ Hp`1pKi´1q for every p ě 1. The maps in these sequences fit into the diagram
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0

H0pKiq

H0pC i´1q H0pC iq H0pC i`1q

H0pKi´1q H0pKi`1q

0

From this, we see that

Im
`

H0pC iq Ñ H0pKiq
˘

“ Im
`

H0pC iq Ñ H0pC i`1q
˘

and that

H0pKi´1q “ Ker
`

H0pC iq Ñ H0pC i`1q
˘

.

In particular,

H0pFq “ Ker
`

H0pC 0q Ñ H0pC 1q
˘

“ H0pC ‚pXqq,

and the theorem holds in degree i “ 0. By the same token, we have

H0pKiq “ Ker
`

H0pC i`1q Ñ H0pC i`2q
˘

.

From (B.7), and the isomorphisms HppKiq » Hp`1pKi´1q we therefore get

H i`1pC ‚pXqq “ Ker
`

H0pC i`1q Ñ H0pC i`2q
˘

{Im pH0pC iq Ñ H0pC i`1qq(B.8)

“ H0pKiq{Im pH0pC iq Ñ H0pKiqq (B.9)

“ H1pKi´1q (B.10)

“ H2pKi´2q (B.11)

“ ¨ ¨ ¨ (B.12)

“ H i`1pK´1q (B.13)

“ H i`1pFq.

B.4 Cech vs sheaf cohomology

We have introduced two definitions of sheaf cohomology, one given by the Godement
resolution and then Cech cohomology. In this section we shall show that they coincide for
quasi-coherent sheaves on Noetherian separated schemes. The Noetherian hypothesis is in
fact not necessary, but disposing of it requires a rather long proved result of Henri Cartan,
which we will merely state for reference.

Note the important point that in Leray’s theorem, only uses a fixed cover - this is indis-
pensable when it comes to concrete calculations.
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438 More on sheaf cohomology

The tactic in the proof of Leray’s theorem is to first exhibit a resolution of the sheaf in
question by making a complex of sheaves out of the Cech resolution associated with an affine
cover. Then we verify the salient point that these Cech sheaves will be acyclic, once we know
that affine schemes are cohomologically trivial.

B.4.1 The Cech resolution

We start by introducing the sheafy version of the Cech complex. The setting is a scheme X
with a quasi-coherent sheaf F . We are further given an finite open affine cover U “ tUiuiPI
of X , and if α “ pi0, . . . , iqq is a sequence of indices from I we use the notation Uα “

Ui0...iq “ Ui0 X ¨ ¨ ¨ X Uiq . These are all affine because X is separated. Moreover, we let
ια : Uα Ñ X be the open inclusion of Uα into X .

The covering U “ tUiuiPI induces a covering UV “ tUi X V uiPI of each open subset
V in X , and with it is associated a Cech complex C ‚pUV ,F |V q as in Section 17.2 on
page 283. Furthermore there are for each open subset V 1 Ă V obvious restriction maps
C ppUV ,F |V q Ñ C ppUV 1 ,F |V q (they are simple cases of the refinment maps described in
(??)), and these make each C ppUV ,F |V q a sheaf; which we shall denote by ČppU ,Fq. The
sections over an open V are given as

ČppU ,FqpV q “
ź

pi0,...,ipqPIp`1

FpV X Ui0 X ¨ ¨ ¨ X Uipq

and with a few moments of reflection, one convinces oneself that this means that

ČppU ,Fq “
ź

α“pi0,...,ipqPIp`1

ια˚F |Ui0
X¨¨¨XUip

.

The restrictions of the sheaves ČppU ,Fq are compatible with the coboundary maps of the
Cech complexes, and hence we obtain a complex Č‚pU ,Fq of sheaves. The sheaf version of
the formula given in Chapter ?? for the coboundary map reads

pdσqi0...ip “

p`1
ÿ

j“0

p´1qjσi0...îj ...ip |VXUi0
X...Uip

where σ is a section in ČppU ,FqpV q.

Lemma B.14. This gives a resolution

0 F Č0pU ,Fq Č0pU ,Fq Č0pU ,Fq ..d0 d1 d2 (B.14)

Moreover, ΓpX, Č‚pU ,Fqq “ C ‚pU ,Fq.

Proof The second statement and that B.14 is a complex, follow from the the definition of
Č‚pU ,Fq.

So the main content is that — contrary to the ordinary Cech complex — the sheafy version
of the Cech complex is exact. Since this is a sequence of sheaves, we may check exactness
on on stalks.
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The proof consists of writing down a homotopy operator on the complex Č‚pU , F qx of
stalks at a point x P X . For a general complex C ‚ with differential d, a homotopy operator is
a map k : C ‚ Ñ C ‚ of degree ´1 (that is, a bunch of maps kp : C p Ñ C p´1, one for each
p ą 0 so that kd` dk “ idC ‚ ). Having such a homotopy operator forces the complex to be
exact in positive degrees; indeed, if dσ “ 0, one has σ “ dhσ ` kdσ “ dkσ, and so σ is a
coboundary.

We are about to define a map kp : ČppU ,Fqx Ñ Čp´1pU ,Fqx: An element in the stalk
ČppU ,Fqx is induced from a section pσαq over an open neighbourhood V of x, and we can
assume that some r P I it holds that V Ă Ur (just shrink V if needed). Then V XUi0...ip´1

Ă

V X Uri0...ip´1
, and there is a restriction map

ρ : ČppU ,FqpV X Uri0...ip´1
q Ñ ČppU ,FqpV X Ui0...ip´1

q

which allows us to define

pkpσqi0...ip´1
“ ρpσri0...ip´1

q.

Now the crux is that k is a homotopy operator on the complex Č‚pU ,Fqx of stalks; that is,

dk ` kd “ id.

Establishing this is just a matter of writing down the definitions: on the one hand we have

pdkσqi0...ip “

p
ÿ

j“0

p´1qjpkσqi0...îj ...ip “

“

p
ÿ

j“0

p´1qjσri0...îj ...ip ,

and on the other hand

pkdσqi0...ip “ dσri0...ip “

“ σi0...ip `

p
ÿ

j“0

p´1qj`1σri0...îj ...ipq,

and adding the two yields the formula.

Theorem B.15 (Leray). Assume that X is a topological space with a sheaf F on
X and let U “ tUiuiPI be an open covering of X . If all sheaf cohomology groups
HppUi0 X ¨ ¨ ¨ X Uiq ,Fq “ 0 for all p ą 0 and all sequences pijq of indices, then
the Cech cohomology and the sheaf cohomology of F coincide; more precisely,
ȞpU ,Fq “ HppX,Fq.

There two comments to make: firstly, the conclusion is that actually Cech cohomology of
just one covering gives the sheaf cohomology, a property important for the computations.
Secondly, we underline that it is the sheaf cohomologyHppUi0 X . . . Uiq ,Fq that is supposed
to vanish as opposed to the Cech cohomology. As mentioned in the introduction, there is a
related result:
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Theorem B.16 (Cartan). Let X be a topological space and F an abelian sheaf on
X . If there is a set of open subsets B, forming a basis for the topology and being
closed under finite intersections, and is such that ȞppU,F q “ 0 for all U P B and
all p ą 0, then Cech and sheaf cohomology of F coincide.

Proof The sheaves ČppU ,Fq will be acyclic and we can activate Lemma B.13 on page 436.
Indeed, in view of Exercise B.3.1, this ensues from the expression in (B.4.1) for the Cech
complex.

The affine case

Theorem B.17. Assume that X “ SpecA is Noetherian affine scheme and F is a
quasi-coherent sheaf on X . Then H ipX,Fq “ 0 for i ą 0.

The condition that F be quasi-coherent is essential. For instance, as we observed in
Example B.11 in good cases one has PicX » H1pX,O˚

Xq, and rather many affine schemes
have a non trivial divisor class group. Examples can be SpecA for any Dedekind ring that is
not a UFD (e.g. any affine elliptic curve).

As mentioned above, the result holds true without the Noetherian hypothesis (see EGA III
1.3.1??):

Corollary B.18. Let X be a Noetherian scheme and F a quasi-coherent OX -module.
(i) If X is separated, sheaf- and Cech cohomology on X agree: it holds that

Ȟ ipX,Fq » HpX,Fq for all i ą 0;
(ii) If U “ tUiuiPI is an open affine covering so that any finite intersec-

tion Ui1 X ¨ ¨ ¨ X Uir of members of U is affine, then H ipX,Fq “

Ȟ ipX,Fq “ H1pU,Fq.

If there is a covering Ui of affines closed under finite intersections, the result still is true
(and the proof still holds water.).

Example B.19. Glue the spectrum X “ SpecA of a DVR A to it self at the generic point η.
Then X is covered by two open affine subsets Ui “ SpecA whose intersection is the open
affine tηu “ SpecK. Sheaf- and Cech cohomology coincide, and to compute H ipX,OXq

we have the sequence Cech complex.

0 H0pX,OXq AˆA K H1pX,OXq 0α

where αpa, bq “ a´ b. Thus H0pX,OXq “ A, and H1pX,OXq “ K{A. This is a rather
large module. For instance, in case A “ Zp for a prime p, it equals the group Zp8 of roots of
unity a power of p.

There are three parts, in the first we establish the theorem for the special case of the
structure sheaf F “ OX of an integral scheme, subsequently for coherent sheaves and finally
reduce it to that case.
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To begin with we assume X integral and F “ OX “ Ã. If K is the fraction field of A,
the sheaf K “ K̃ is constant and therefore flabby. One easily see that the quotient K{A is
divisible that sheaf is flabby as well, and we have the flabby resolution

0 OX K K{OX 0

of OX . The globale sections of K Ñ K{OX is surjective so H1pX,OXq “ 0, and the long
exact sequence yields H ipX,OXq “ H i´1pX,K{OXq “ 0.

Secondly we consider any coherent sheaf F and write F “ ĂM withM a finitely generated
A-module (A is Noetherian). A result from commutative algebra (xxxx) tells us there is a
descending sequence tMju of submodules of M such that each subquotient Mj´1{Mj “

A{pj with pj’s being pime ideals. Hence

0 Fj Fj´1 OX| 0

where Fi “ M̃i and Xi “ V ppiq. Induction on i and the first point above yields that
H ipX,Fiq “ 0 for all i and j, and this establishes the theorem for coherent modules.

Finally we treat the case that F is quasi-coherent, and to reduce the proof to the previous
case, we write M as the union

Ť

jMj “ M of its finitely generated submodules Mj .
Quite generally, if F is the union of a bunch of subsheaves tFiu, one readily verifies that

the Godement resolution ΠpFq is the union of the ΠpFiq’s ΠpFiq{Fi (the sections of Π‚pF q

over opens are just products of stalks, and forming stalks is an exact operation). Hence the
Godement resolution Π‚pF q has sub complexes ΠpFiq such that each ΠjpF q “

Ť

iΠ
jpFjq.

In our case, the subsheaves Fi “ M̃j are coherent and each a Π‚pFiq is exact by the
second point above, and so we may finish the proof by the following little observation:

Lemma B.20. If pC‚, dq is a complex with subcomplexes pC‚
j , djq and each C i “

Ť

j C i
j is exact for i ą 0, then C ‚ is exact for i ą 0.

Proof Indeed, if x is a cocycle in C ‚, that is dx “ 0. For some index j the element x
belongs to C‚

j and persists being cocycle, so because C ‚
j is exact, it is coboubdary dy “

djy “ x.

Proposition B.21. If F is flasque, then so are the sheaves ČppU ,Fq for p ą 0.
Hence (??) is an acyclic resolution for F and

HppX,Fq “ HppČ‚pU ,Fqq

Proof If F is flasque, then so is each restriction to each Ui0X¨¨¨XUp
, and products of flasque

sheaves are flasque, so
ś

i0ă¨¨¨ăip
i˚F |Ui0X¨¨¨XUp

is flasque.

B.5 Godement vs. Cech

It remains to see why these two definitions are equivalent. So let U “ tUiu be a covering for
F . We will assume that this is Leray in the sense that H ipUI ,Fq “ 0 for all multi-indices I
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and i ą 0. We claim that there is a natural isomorphism

H ipX,Fq » Ȟ ipU ,Fq,

where we, in order to avoid confusion, let Ȟ ipU ,Fq denote the Cech cohomology group.
The statement is clearly true for i “ 0, since both coincide with ΓpX,Fq.

Lemma B.22. Let 0 Ñ F Ñ G Ñ H Ñ 0 be an exact sequence. If U is Leray,
there is a long exact sequence

0 Ȟ0pU ,Fq Ȟ0pU ,Gq Ȟ0pU ,Hq

Ȟ1pU ,Fq Ȟ1pU ,Gq Ȟ1pU ,Hq ÝÑ ¨ ¨ ¨

Proof Since U is Leray, we have H1pUI ,Fq “ 0 for all multi-indexes I (in fact, this is the
only property we need from the covering U ). Hence the following sequences are exact:

0 Ñ FpUIq Ñ GpUIq Ñ HpUIq Ñ 0

Then applying the Cech complex, we get an exact sequence of complexes

0 Ñ Č‚pU ,Fq Ñ Č‚pU ,Gq Ñ Č‚pU ,Hq Ñ 0

Now the claim follows from Proposition 17.1.

Hence we get our desired theorem:

Theorem B.23 (Leray). Suppose U is a cover ofX andHqpU1 X ¨ ¨ ¨ XUp,F q “ 0
for all p, q ą 0 and all U1, . . . , Up P U . Then there is a natural isomorphism between
cohomology and Čech cohomology:

HppX,Fq » ȞppU ,Fq

Proof We use induction on p. For p “ 0, the claim is clear. Note that we have the exact
sequence

0 Ñ F Ñ ΠppqFq Ñ Z 1 Ñ 0

and H1pX,Fq “ CokerpΓpX,ΠppqFqq Ñ ΓpX,Z 1Fqq, and

HppX,Fq “ Hp´1pX,Z 1Fq

for p ě 2. On the other hand, we also have the corresponding result for Cech cohomology:

0 Ȟ0pU ,Fq Ȟ0pU ,ΠppqFqq Ȟ0pU ,Z 1q

Ȟ1pU ,Fq Ȟ1pU ,ΠppqFqq “ 0
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where Ȟ1pU ,Fq “ 0 by Lemma ??, since ΠppqFq is acyclic. Hence also

Ȟ1pX,Fq “ CokerpΓpX,ΠppqFqq Ñ ΓpX,Z 1Fqq “ H1pX,Fq

Hence the theorem also holds for p “ 1.
We continue by induction on p. Since also Ȟ ipU ,ΠppqF qq “ 0 for all i ą 0, same long

exact sequence of Cech cohomology also shows that ȞppU ,Fq “ Ȟp´1pU ,Z 1q. Moreover,
the cover U is also Leray with respect to Z 1: H ipUI ,Z 1q “ H i`1pUI ,Fq “ 0). Hence
replacing F with Z 1, we get the desired conclusion.
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