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Notation

N = {1,2,3,...} is the set of positive integers.

C means ‘is subset of’, i.e., the same thing as =

All rings are commutative with 1.

Ring maps are required to send 1 to 1.

The zero ring is not an integral domain (and therefore not a field).

For aring A, we write A, and A, for the localizations in the multiplicative sets S = A — p
and S = {1,z,2?%, ...} respectively. Thus Z, = Z[%] and Zgy = {§ |p 1 b}.
A ’map’ is a morphism in the relevant category, e.g., a ‘'map of rings’ is ring homomorphism.

We will occasionally write A = B if there is a canonical isomorphism A ~ B. So for
instance, Z ®y 7. = 7.
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1

Varieties

We begin by discussing varieties, which will serve as the main motivating example in
the theory of schemes. We will contend ourselves to presenting the basic definitions and
fundamental properties of the two most important classes of varieties, namely the affine
varieties and the projective varieties. As we move forward in the book, we will develop the
theory of varieties in greater depth.

Varieties are defined over a fixed ground field &, and in this chapter we shall assume that
k is algebraically closed. It is useful to keep some specific fields in mind, e.g. the field of
complex numbers C, the field of algebraic numbers Q or perhaps the algebraic closure ]Fp of
a finite field.

For reasons that will become clear when the notion of ‘ring-valued points’ is introduced,
we shall write A" (k) for the set k", and refer to it as the affine n-space. The change in
notation from k™ to A" (k) is meant to underline that there is more to A" (k) than just the set
of its elements; it will soon be equipped with a topology, and ultimately, it will be a scheme,
denoted by A}.

1.1 Algebraic sets

We begin by introducing the algebraic sets. These are the subsets of the affine space A" (k)
whose points are the common solutions of a set of polynomial equations:

Definition 1.1. If S is a subset of polynomials in k[x1, ..., x,], we define their zero
set as

Z(S)={xzeA™(k)| f(x) =0forall fe S}.

An algebraic set is a subset of A" (k) of this form.

If fi,..., f, are elements of S, each expression Y,;_, b; f; with the b;’s being polynomials,
also vanishes at the points of Z(.S). This means that the zero set of the ideal a generated
by the elements of S is the same as Z(S); that is, Z(S) = Z(a). We will therefore almost
exclusively work with ideals and tacitly replace a set of polynomials by the ideal they generate.
Hilbert’s basis theorem tells us that any ideal in k[x1, . .., z,] is finitely generated, so that an
algebraic subset is always described as the set of common zeros of finitely many polynomials.
Note the two special cases Z(1) = J and Z(0) = A" (k).

The more constraints imposed, the smaller the solution set will be, so if a and b are two
ideals with a b, one has Z(b) = Z(a). Sending a to Z(a) therefore gives an inclusion-

3
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4 Varieties

reversing map from the partially ordered set of ideals in k[z1, . . ., x,,] to the partially ordered
set of subsets of A" (k).

The map sending a to Z(a) is not surjective. A polynomial can only have finitely many
zeros, so any proper infinite subset of A'(k) is not algebraic. To give an example in A" (k)
for any n, just take an infinite proper subset of one of the coordinate axes.

Neither is the map injective. Different ideals can define the same algebraic set. For instance,
the ideals (¢) and (¢?) in k[t], both have the origin in the affine line A'(k) as their zero set.
More generally, any power a” of an ideal a will have the same zeros as a; indeed, since a” < a,
it holds that Z(a) < Z(a"), and the other inclusion holds as well because a polynomial f
vanishes at the same points as the power f”. To deal with this ambiguity, we resort to the
radical /a of a, which we recall is defined as

Va={f]|f €aforsomer >0}.

Then the argument above yields that Z(a) = Z(4/a). Indeed, the radical is finitely generated,
so some power (4/a)” is contained in a. Two ideals with the same radical thus have coinciding
zero sets, and Hilbert’s Nullstellensatz, which we shortly shall see, tells us that the converse
is true as well.

The product of two ideals a and b is generated by the products f - g with f € a and
g € b, and hence Z(a - b) = Z(a) U Z(b). For the sum a + b one checks that Z(a + b) =
Z(a) n Z(b), and in fact, this holds for sums of any cardinality (For a proof, see Lemma
2.2).

Proposition 1.2 (Properties of algebraic sets). Let a and b be two ideals and {a; };c;
a family of ideals in the polynomial ring k[z1, . .., x,]. Then:
(i) Ifa < b, then Z(b) < Z(a);
(i) Z(Xierai) = Nies Z();
(iii) Z(ab) = Z(anb) = Z(a) U Z(b);
(iv) Z(a) = Z(Va).

The identities (ii) and (iii) tell us that finite unions and arbitrary intersections of algebraic
sets are again algebraic. Furthermore, as A" (k) = Z(0) and § = Z(1), the algebraic sets
constitute the closed sets of a topology on the affine space A" (k). It is called the Zariski
topology.

If X < A™(k) is any subset, we get an induced Zariski topology on X, by declaring that
the open sets of X are of the form X n U, where U is an open set in A" (k).

Example 1.3 (The Zariski topology on the affine line A'(k)). Each non-zero and proper
ideal a in the polynomial ring k[t] is generated by a single element, say a = (f). As
the ground field k is algebraically closed, f factors as a product of linear terms f =
(t —ay)™---(t —a,)" with a; € k. Hence Z(f) = {a1,--- ,a,}, and apart from the
entire line A (k), the closed sets are just the finite sets.

In other words, the Zariski topology on A (k) is the finite complement topology, in which
the proper open sets are those whose complement is finite. In particular, note that the Zariski
topology on A'(C) behaves very differently than the usual topology on C; there are much
fewer open sets.
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1.1 Algebraic sets 5

There is a partial converse to the construction of the zero locus Z(a) of an ideal. One may
consider the set of polynomials vanishing on a given subset of A™(k), which actually is an
ideal.

Definition 1.4. For a subset X of A™(k), we let I(X') denote the ideal consisting of
polynomials in k[z1, . .., x,] that vanish along X; that is,

I(X)={feklz:,...,z,] | f(x) =0forallz e X }.

This gives an inclusion-reversing map X +— I(X) from the set of subsets of A"(k) to the
set of ideals in the polynomial ring k[z1, ..., z,].

Examples

Example 1.5. The linear polynomial x; + 2z5 + 5x3 defines an algebraic set in A®(k)
which can be identified with a 2-dimensional plane. More generally, any linear subspace of
A" (k) is defined by linear equations and is therefore an algebraic set.

Example 1.6. Another classical examples are the conic sections. They are the closed algebraic
sets in the affine plane A?(k) given by quadratic equations. Three familiar examples include
the circle 2% + y? = 1, the parabola y = 22 and the hyperbola xy = 1. If k is algebraically
closed of characteristic # 2, any conic section can be reduced via a linear change of
coordinates to one of these types.

Example 1.7. A more interesting example is the so-called Clebsch cubic surface; a surface
in A®(C) defined by the equation

Py + 2 l=(z+y+z+1)>

The real points of the surface, i.e. the points in A*(R) satisfying the equation, is depicted
below. This surface contains 27 lines, all defined over the real numbers.

4 N

N

The Clebsch cubic surface

Example 1.8. Algebraic sets can show a high degree of complexity. The Barth sextic in
A3(C) is the zero locus of the degree 6 polynomial

4(¢*2* —y*)(9%y" — 2°) (972" — 2%) — (1 + 20)(2” + y* + 2° = 1)°

where ¢ = (1++/5)/2. This remarkable surface has 65 singular points, which is the maximal
number for a degree 6 surface. A plot of the real points of the surface is depicted below.
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The Barth Sextic with 65 singular points

Hilbert’s Nullstellensatz

For an algebraic subset X it holds true that Z(I(X)) = X. Hilbert’s Nullstellensatz is about
the composition of I and Z the other way around, namely about I (Z(a)). Polynomials in the
radical 4/a vanish along Z(a) (if a power of f vanishes on a set, f vanishes there as well),
and therefore 4/a < I(Z(a)). The Nullstellensatz tells us that this inclusion is an equality.

Theorem 1.9 (Hilbert’s Nullstellensatz). Assume that % is an algebraically closed
field and that a is an ideal in k[z1, . .., x,]. Then one has

I(Z(a)) = Va.

A proof will be given in Section 12.2.
The Nullstellensatz has the following fundamental consequences.

Theorem 1.10 (Weak Nullstellensatz). Let k be an algebraically closed field and a
an ideal in the polynomial ring k[x1, ..., Z,].
(i) Z(a) is non-empty if and only if a is not the unit ideal;
(ii) The maximal ideals in k[z1,...,x,]| are precisely those of the form
(x1 —aq,...,x, —ay,) for (ay,...,a,) € A" (k).

Proof 1Ttis clear that Z(1) = (J. If Z(a) = (&, requiring a polynomial to vanish along
Z(a) imposes no constraint, so 1 € I(Z(a)), and the Nullstellensatz gives that 1 € a. This
shows (i).

As to (ii), note that the ideal (x; — a4, ..., x, — a,) is maximal being the kernel of the
evaluation map k[z1,...,2,] — k (which sends f to its value at (a1, ...,a,)). If mis
a maximal ideal, the Nullstellensatz yields that Z(m) # (J. So take a point (a1, ..., a,)
in Z(m). Then (z; — ay,...,2, — a,) < m, and as the ideal (1 — a,...,2, — a,) is
maximal, we must have equality. O

Example 1.11. It is important to note that Hilbert’s Nullstellensatz only holds when the
ground field is algebraically closed. A simple example of a proper ideal with empty zero
locus is the ideal (z? + 1) in R[z].

Exercise 1.1.1. In any ring, the radical of an ideal a equals the intersection of the prime ideals
containing it. Using the Nullstellensatz, show that in the polynomial ring k[x1, ..., z,], the
radical 4/a equals the intersection of all the maximal ideals containing a.
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1.1 Algebraic sets 7

Exercise 1.1.2. Show that the Zariski topology on A?(k) is not the product topology on
A%(k) = A'(k) x A'(k).

Irreducible sets and varieties

Irreducibility is a notion from point set topology which plays a fundamental role in algebraic
geometry.

Definition 1.12. A topological space X is said to be irreducible if it can not be
written as the union of two proper closed subsets; that is, if X = Z U Z’ with Z and
7' closed, then either Z = X or 7/ = X.

Equivalently, the space X is irreducible if and only if the intersections of any two non-
empty open subsets is non-empty. Indeed, to say that U n'V = (& with U and V open, is
to say that U¢ U V¢ = X. And so if X is irreducible, either U¢ = X or V¢ = X that is,
either U = J or V = . A third way of expressing that X is irreducible, is to say that
every non-empty open subset is dense.

For an algebraic set X, being irreducible means that the ideal (X)) is prime:

Proposition 1.13. An algebraic set X = Z(a) < A" (k) is irreducible if and only if
the ideal I(Z(X)) = 4/a is prime.

Proof Because Z(y/a) = Z(a), it suffices to treat the case when a is radical. Assume
that Z(a) = Z(b) u Z(b') with radical ideals b and b’ both containing a. By (iii) of
Proposition 1.2, it holds that Z(b) U Z(b") = Z(b n b’), and since the intersection of two
radical ideals is radical, we get that b N b’ = a by the Nullstellensatz. So if a is prime, then
either b < a or b’ < a. That is, either b = a or b’ = a.

The implication the other way is easier: if a is not prime, it is the intersection of several
different prime ideals. Dividing these into two groups and letting b and b’ be the corresponding
intersections, one obtains a decomposition Z(a) = Z(b) U Z(b') of Z(a) into distinct closed
subsets. O

Let us give the following preliminary definition of a variety:

Definition 1.14. An affine variety is an irreducible algebraic set in A" (k).

The mappings X — I(X) and a — Z(a) give mutually inverse one-to-one inclusion

reversing correspondences between the objects in columns of the following table, where
A= k[xl, .. .,xn].
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8 Varieties

ALGEBRA GEOMETRY

maximal ideals of A points of A" (k)

prime ideals of A irreducible algebraic sets in A" (k)
radical ideals of A closed subsets of A™ (k)

maximal ideals of A/a | points of Z(a)

An irreducible component of a topological space X is a maximal closed irreducible subset.
Every algebraic set can be written as a finite union of its irreducible components; this follows
from the Lasker—Noether theorem, which implies that any radical ideal is the intersection
of finitely many prime ideals. The affine varieties therefore constitute the building blocks of
all algebraic sets in affine space. We will give a general treatment of decompositions into
irreducibles in Chapter ??. For now, let us give two examples illustrating how to find these
components.

Example 1.15. Consider the algebraic set X = Z(I) in A*(k), where I is the ideal
I=(zz—y* 2" —y).

Let us find the irreducible components of X. Let p = (a,b,c) € X be a point. Then the
second equation implies that b = a?. Plugging this into the first equation, we get ac—a* = 0,
which implies that either a = 0 or ¢ = a>. Thus p lies in one of the irreducible subsets
X, = Z(x,y) or Xo = Z(y — x?, 2 — 2%). Conversely, a point in X clearly lies in X, and
if p = (a,b,c) € Xs, itholds that b = a? and ¢ = a® so that ac — b*> = a* —a* = 0, and p
lies in X. Hence we find that

X =Z(z,y)uZ(ly—2*z—1z%.
In geometric terms, X is the union of the z-axis and a curve called ‘the twisted cubic’ (which
we shall meet at several later occasions).
Example 1.16. Consider the algebraic set Z(I) < A?(k), where I is the ideal
I=(y—a*2>+(y—172-1).

Over the real numbers, we recognise the points of Z(I) as the intersection points of the
parabola y = 22 and the circle of radius 1 with centre in (0, 1). To find these intersection
points, we compute a primary decomposition of the ideal:

I=(y—2%2>+ (2> —1)*-1)

=(y—2%2%(x —1)(z + 1))

=(y—a2* ) ny—a2z—-1)n(y—2*,2+1)

=) ny—Lz—1)n(y—1,z+1).
Thus Z () consists of the three points (0,0), (1,1), and (—1,1).

The primary decomposition of an ideal I gives important information about the algebraic

set Z(I). In particular, it describes Z (1) as the union of its irreducible components. Even in
the present example, the decomposition gives more refined information than just the set of

points of Z(I); it reflects that (0, 0) is different to the two others (the primary component
being (y, z%) shows that it has ‘multiplicity 2°).
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1.2 Polynomial functions and polynomial maps 9

Exercises
Exercise 1.1.3. Show that the algebraic set Z(y*> — z® — 1) < A?(k) is irreducible.

Exercise 1.1.4. For each of the following ideals a find a decomposition of Z(a) into irre-
ducible components.

a) (z°, 2%y, zy°);

b) (yz,zz,9% 2%y);

o) (2* —y,xz —y* 2% — x2).
Exercise 1.1.5. Identify A" (k) with the space of m x n-matrices over the field k. Show
that the set of matrices of rank less than a given number is an algebraic set.

Exercise 1.1.6. Let us continue the previous exercise with m = n.

a) Show that the set of symmetric matrices, i.e. matrices such that AT = A isan
algebraic set in A" (k);

b) Show that the set G L, (k) of invertible matrices is Zariski open in A" (k);

¢) Show that the set SL,,(k) of matrices with determinant one is an algebraic set
in A" (k);

d) Show that the set X of matrices A such that A" = 0 for a given natural number
r, form an algebraic set in the affine space A" (k). Compute the ideal 1(X)
forn =2andr = 2.

1.2 Polynomial functions and polynomial maps

A polynomial function on algebraic subset X < A™(k) is simply the restriction of a poly-
nomial in k[x1, ..., x,] to X. Two polynomials f and g restrict to the same function on X
precisely when their difference f — g vanishes on X, so the set of polynomial functions on
X can be identified with the quotient ring

AX) = k[zy, ..., 20]/I(X).

This ring is called the affine coordinate ring of X, and carries essentially all information
about the set X . It has no nilpotent elements since I(X) is a radical ideal and it is an integral
domain if and only if X is irreducible.

The correspondence between prime ideals and irreducible closed subsets shows that the
Krull dimension of A(X) equals the dimension of the topological space X ; that is, the length
of the longest chain Xy < X; < --- < X, = X of distinct irreducible closed sets in X.

Example 1.17. The square root 1/ is not per se a polynomial function on A*(C) (it is not
even a well-defined function), but it defines a polynomial function on the parabola

X =Z(x—y)

in A?(C). Indeed, there the sign ambiguity is resolved, and the square root is simply given by
(x,y) — y. Note that the coordinate ring of X is

A(X) = Clz,y]/(x — y*) ~ C[y],

which is an integral domain of Krull dimension one, in accordance with the intuition that X
is irreducible and of dimension one.

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

10 Varieties

The notion of a ‘polynomial function’ can be extended to the notion of ‘polynomial maps’
between algebraic sets; these are maps that under composition carry polynomial functions to
polynomial functions.

Definition 1.18 (Polynomial maps). Let X and Y be two algebraic sets. A map
f: X — Y is called a polynomial map if the composition g o f is a polynomial
function whenever g is a polynomial function on Y.

The composition of two polynomial maps is again a polynomial map, so the algebraic sets
form a category AlgSets with the polynomial maps as morphisms. We say that a polynomial
map is an isomorphism when it has an inverse map that is also a polynomial map.

When f: X — Y is a polynomial map and g € A(Y"), the composition g o f is again a
polynomial map X — A!(k), which we denote by f#(g) = g o f. This gives us a map

D AY) — A(X) (1.1)
g — gof.

The map f* is a map of k-algebras since sums and products of polynomial functions on Y’
are computed pointwise, and constants clearly map to constants. It is a fundamental property
of affine algebraic sets that all morphisms of k-algebras are realized in this way.

It also follows from the definitions that Z(f*(g)) = f~'Z(g). In particular, this shows
that polynomial maps are continuous in the Zariski topology.

Theorem 1.19 (Main theorem of affine algebraic sets). Let X and Y be two
algebraic sets. The map

HomAIgSets(X) Y) = HomAlg/k(A(Y)v A(X))

that sends f to f¥, is a bijection from the set of polynomial maps to the set of maps
of k-algebras.

Proof The map in the theorem is injective: assume that f; and f, are two different polyno-
mial maps from X to Y. Then there is is a point € X with f;(x) # f2(x), and so there is
a polynomial function g on Y with g(f1(z)) # g(fo(z)); thatis, ff(g) # fi(g).

To prove that the map is surjective, we begin with treating the case that Y = A" (k).
In this case, giving a map f: X — Y amounts to giving n functions fi,..., f, on X
so that f(z) = (fi(z),..., fu(z)), and f is a polynomial map precisely when the f;’s
are polynomial functions. Indeed, if uy, ..., u, are coordinates on A"(k), a polynomial
function g on Y is just a polynomial in the ;. Hence the composition g o f becomes a
polynomial in the f;’s, which clearly is a polynomial function on X when the f;’s are. Now,
if : A(Y) = k[uy,...,u,] — A(X) is a map of k-algebras, we may use the images
fi = ¢(u;) as components for a function f as above. Then f* = ¢ because the two maps
agree on the generators ;.

In the general case, we assume that Y < A" (k). Note that amap f: X — A" (k) takes
values in Y precisely when f#(g) = go f = 0forallge I(Y).Soif ¢: A(Y) — A(X)
is given, the composition k[uy, ..., u,] — A(Y) — A(X) of ¢ with the restriction map
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1.2 Polynomial functions and polynomial maps 11

is a ring map that vanishes /(Y'). Hence by the first case, it yields a map X — A"(k)
with components f; = ¢(u;), and this map factors through Y because g o f = ¢(g) = 0
whenever g € I(Y). O

From a categorical angle, the theorem says that the category of algebraic sets is equivalent
to the the category of finitely generated, reduced k-algebras (with arrows reversed). The
subcategory of varieties; that is, the full subcategory with irreducible algebraic sets as objects,
is then equivalent to the category of integral domains finitely generated over k (with arrows
reversed).

Examples

Example 1.20. Any linear map f: A"(k) — A™(k) is a polynomial map. Indeed, the
components f; of f are linear polynomials f;(z) = >, ; @i T

Example 1.21. Consider the algebraic set X = Z(y* — 2*) in A?(k). The affine coordinate
ring of X is given as

A(X) = klz,y]/(y* — 2?),

which is an integral domain because the polynomial y? — x* is irreducible.

Consider the polynomial map f: A'(k) — AZ?(k) given by ¢t — (¢?,¢). The image
of f is contained in X < AZ?(k), and, in fact, f is a bijection between A'(k) and X.
Indeed, observe that f(¢) = (0,0) only for t = 0, and if (x,y) # (0,0) lies in X, the
assignment ¢ = y/x defines the inverse. However, f is not an isomorphism. As f ﬁ(x) =12
and f*(y) = t°, the induced map

SP K[z, ]/ (v — %) — k[t]

has image k[t?, ¢3] and so is not surjective.
Note that the ‘same’ X can be embedded into different A" (k)’s. For instance, the above
X can be embedded in A®(k) as the zero set Z(y? — x®, 2) oras Z(y? — 23, z — zy).

Example 1.22 (The Frobenius map). In this example, we assume that k is of positive
characteristic p. The map ¢: k[t] — k[t] given by t — ¢, is a map of k-algebras, and the
corresponding polynomial map F': A'(k) — A'(k) acts on points by sending a point a to
aP. The map F' is bijective because every a € k has a unique p-th root. However it is not an
isomorphism, because the ring map F* = ¢: k[t] — k[t] is not surjective.

Regular and rational functions

The coordinate ring A(X) of an affine variety X being an integral domain has a fraction
field k(X), which is called the function field or field of rational functions on X . Elements of
k(X)) can be interpreted as functions on open sets in X; indeed, a fraction f = a/b yields a
well defined function on the open set where b does not vanish.

One says that a rational function f € k(X) is regular at a point x € X if it can be
expressed as a fraction f = a/b with b(x) # 0. Such a function will automatically be regular
in a neighbourhood of x: it is regular in the complement of the proper closed set Z(b). Such
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12 Varieties

complements are called distinguished open sets, and the standard notation is D(b); that is,
D) ={zxe X |blz)#0}.

It is easy to check that sums and products of rational functions regular at x, are again
regular at . Thus the functions regular at  form a subring of k(X ). This ring is called the
local ring of X at the point = and is denoted by Ox .

Proposition 1.23. The set O ,, of rational functions which are regular at z is a local
ring whose maximal ideal m,, consists of the functions vanishing at z.

Proof Recall that a ring is local if it has just one maximal ideal m, or equivalently, it has
a maximal ideal m such that elements not in m are invertible. In our case, the ideal m,, is
precisely the kernel of the evaluation map Ox , — k, and so m,, is maximal since £ is a field.
An element f € O, which does not vanish at x, can be expressed as f = a/b with both
a(x) # 0 and b(z) # 0. Hence the rational function 1/f = b/a is regular at x and belongs
to Ox ;. Thus elements not in m,, are invertible in Oy ,, and we conclude that Ox , is a
local ring. O

Note that a rational function a,/b may be regular in a larger set than the distinguished open
set D(b). The standard example is as follows.

Example 1.24. Consider the variety X < A*(k) whose equation is xy — zw = 0. In the
function field k(X ) the equality z/w = z/y holds, and the corresponding rational function
is thus regular in the open set U = D(w) u D(y). Now, the point is that U is strictly larger
than both D(w) and D(y), just consider the points (0, 1,0,0) and (0,0, 0, 1).

Exercise 1.2.1. With notation as in the example above:
a) Verify that zy — zw is an irreducible polynomial;
b) Verify that the rational function x/w is not regular in any open set containing
the locus where y = w = 0.

Proposition 1.25. Let X be an affine variety. If a rational function f € k(X) is
regular at all points of X, then f is a polynomial function. In other words,

AX) =[] Ox.-

zeX

Proof Consider the ideal ay = {b € A(X) | bf € A(X)}. It has the property that a
rational function f is regular at x if and only if x ¢ Z(ay); indeed, x ¢ Z(ay) if and only if
some b € a; does not vanish at 2, which in turn is equivalent to f being on the form f = a/b
for some b with b(z) # 0. So when f is regular everywhere, it follows that Z(a;) = ¢, and
the Nullstellensatz yields that 1 € ay; thatis, f € A(X). O

We shall need the following result later on.

Proposition 1.26. When n > 2, a rational function which is regular on the open set
A" (k) — {0} is the restriction of a polynomial function.
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1.3 Projective varieties 13

Proof Let f be regular in A" (k) — {0}. Viewing f as an element of the function field of
A"(k), we may express it as f = a/b with a and b polynomials. As polynomial rings are
UFD’s, we may chose a and b without common factors, and then they are unique (up to units).
Hence a/b is not regular along Z(b). By Krull’s Principal Ideal Theorem , Z(b) is either
empty (and b is constant), or it has dimension n — 1; that is, if not empty, Z(b) will be a
larger set than {0} when n > 2. Thus b is either constant, in which case f is a polynomial,
or f is not regular along Z(b). O

Example 1.27. Let X = Z(zy — 1) < A?(k) and consider the first projection
f: X — A'(k) — {0}

The map f is actually an isomorphism; an inverse is given by g(z) = (z,z~!) (note that
x~! is indeed a regular function on A'(k) — {0}). This means that regular functions on

A'(k) — {0} are given by polynomials in 2 and =~

Exercises

Exercise 1.2.2. Let x, . .., z, be coordintes on the affine (n + 1)-space A""!(k) and let
f = f(x1,...,z,) be apolynomial in z1, . .., ,.
a) Show that the algebraic set X = Z(xo — f) is isomorphic to A" (k);
b) For which f’s is the algebraic set X = Z (a3 — f) irreducible?
¢) Find a bijection between the open set A™ (k) — Z(f) in A™ (k) and the algebraic
set Z(zof — 1) in A" (k).
Exercise 1.2.3.
a) Let ¢: A — B be a map of rings. Show that ¢~'p is a prime ideal if p = B is
one;
b) Assume further that A and B are finitely generated k-algebras. Show that ¢~ 'm
is a maximal ideal if m < B is one. HINT: Use the Nullstellensatz to see that

A/¢p~'m = k (remember that k is assumed to be algebraically closed in this
chapter).

Exercise 1.2.4. Let X = Z(f) and Y = Z(g) be two algebraic sets in A?(k) with X
irreducible. Show that either X N Y is a finite set,or X < Y.

1.3 Projective varieties

Having defined affine varieties, we move on to introducing projective space and projective
varieties, and we continue working over an algebraically closed ground field k.

Definition 1.28. The projective n-space P" (k) is the quotient of A"**(k) — {0} by
the equivalence relation

(agy-.-,a,) ~ (tag,...,ta,),

where ¢ € k is non-zero.
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14 Varieties

Two points in A" ™! (k) are equivalent precisely when they lie on the same line through the
origin, so one may think about P" (k) as the set of lines in A" ™! (k) through the origin; or if
you want, the set of one-dimensional linear subspaces of k"1

The equivalence class of a point a = (ay, . . ., a,) in A" (k) — {0} will be denoted by
(ag : -+- : ay,). The a;’s are called the homogeneous coordinates of a. Note that they are
not coordinates in the usual strict sense of the word; they are not even functions on P"(k),
only their ratios are well defined. Note also that no point in P" (k) has all homogeneous
coordinates equal to 0; the tuple (0 : - - - : 0) is forbidden.

The Zariski topology on P™ (k)

Just like the affine spaces, the projective space P" (k) comes equipped with a natural Zariski
topology. It is best described by the quotient map

m: A"t (k) — {0} —— P(k),

which sends (ag,...,a,) to (ag : -+ : a,). This allows us to define the topology by
declaring a subset V' < P"(k) to be closed if and only if the inverse image 7! (V') is closed.
There is a construction, similar to Z(a) in the affine case, that describes all closed sets in
P"(k) in terms of certain ideals in a polynomial ring. However, it is slightly more delicate as
polynomials are not functions on the projective spaces. They are not invariant under scaling of
the arguments and so not constant on equivalence classes. The solution is to use homogeneous
polynomials; that is, polynomials such that for some natural number d one has

fltzo, ... tx,) =t f(zo,...,x,)

for all t. The values of f still depend on ¢, but the point is that whether the value of f is zero
or not, is independent of ¢. So we may define the zero set of f in P"(k) as

Z(f) ={xeP"(k)| f(z) =0}
More generally, for each set S of homogeneous polynomials, one may put
Z.(S)={xeP"(k)| f(z) =0forall fe S}

These sets are Zariski closed; indeed, a homogeneous polynomial f vanishes at a point
x € P"(k) precisely when it vanishes along the whole line 77! () in A™(k); in other words,
7 1Z,(S) = Z(S) n A" (k) — {0}.

Ideals a whose zero-set equals a Zariski closed inverse image, are characterised by the
property that if a € Z(a), then the entire fibre 7~ '7(a) lies in Z(a), in other words, the
inclusion 777 (a) < Z(a) holds. These ideals are precisely the homogenous ideals.

Recall that an ideal is said to be homogeneous if for each element f € a all homogeneous
components of f lie in a. In other words, if f = >, f; is the decomposition of f into a
sum of homogeneous polynomials, then f € a if and only if f; € a for all ¢. An ideal is
homogeneous if and only if it is generated by homogeneous polynomials.

Being a homogeneous ideal is equivalent to Z(a) containing the line through the origin
and each point x € Z(a); indeed, if a is homogeneous, x € Z(a) implies that ¢ - x € Z(a)
for every t € k. The following lemma shows that the converse holds as well.
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1.3 Projective varieties 15

Lemma 1.29. Let a € A"*'(k) — {0} be a point. A polynomial f vanishes at
all points on the line through a and the origin if and only if all the homogeneous
components of f do.

Proof Developing f in terms of the homogeneous components f;, we find

fltz) =t fa(x) + - + tfi(z) + fo(a).

For x = a fixed, this is a polynomial in ¢. Since f is assumed to be zero on the entire line
through a, it has infinitely many zeroes and hence must be the zero polynomial in ¢. It follows
that f;(a) = 0 for all . 0O

We have thus established the desired description of the closed sets in projective space:

Proposition 1.30. The Zariski closed sets of P (k) are precisely those of the form
Z . (a) where a is a homogeneous ideal.

Example 1.31 (The irrelevant ideal). The ideal m, = (xy, ..., x,) is called the irrelevant
ideal. It is certainly homogeneous, but its zero locus is empty (no point has all homogeneous
coordinates equal to zero). Similarly, any m, -primary ideal q has empty zero set because
Z(q) = Z(my). so that Z(q) n (A" (k) — {0}) = &.

Example 1.32 (The complex projective spaces). The complex projective spaces P"(C)
(which topologists usually write as CIP") are also equipped with a Euclidean topology. It is
just the quotient topology inherited from the standard Euclidean topology on C"*!. With
this topology they are compact manifolds. Every one-dimensional subspace of C"*! meets
the unit sphere S along a unit circle, so the restriction 7 |sz»+1 is a continuous surjection
|s2n+1: §*"H — P"(C). Since the unit sphere S** ! is compact, if follows that P"(C) is
compact as well. It is noteworthy that 7|sz«+1 is a fibre bundle with unit circles as fibres.

The projective Nullstellensatz

The usual operations on ideals, like sums, products, intersections and the formation of radicals,
yield homogeneous ideals when applied to homogeneous ideals. Moreover, the equalities
between the associated closed sets, as stated in Proposition 1.2 in the affine cases, are still
valid.

Proposition 1.33. Let a and b be two homogeneous ideals and let {a; };c; be a family
of homogeneous ideals in the polynomial ring k[zo, . . ., Z,].
(i) If a < b, then Z,(b) < Z, (a);
(i) Z1 (s @) = Nics Z+ (@3);
(iti) Z,(ab) =Z,(anb) =2 (a)u Z,.(b);
(v) Z4(a) = Z. (/).

Proof The proposition follows directly from the affine case (Proposition 1.2) by intersecting
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16 Varieties

with A" (k) — {0} and pushing down by 7. For instance, the last equality in (iii) follows
by the following equalities:

Z.(a) U Z,(b) = ((Z(a) L Z(v)) n A" (k) — {0}) =

=T
=7(Z(anb) n A" (k) —{0}) = Z (anb).

O
There is also a projective version of the Nullstellensatz. The statement is very similar to
the one in the affine case, but there are two notable differences. First of all, the irrelevant
ideal m, = (zo,...,x,) and all primary ideals with radical equal to m have empty zero
locus. Secondly, one must be careful when defining the vanishing ideal I(S) for a subset
S < P"(k) and let it be the ideal generated by the homogeneous polynomials which vanish
along S. Note that this ideal is only generated by homogeneous polynomials, not every
element is homogeneous.

Theorem 1.34 (Projective Nullstellensatz). Let a be a homogeneous ideal in the
polynomial ring k[xg, . .., Z,].

(i) The zero locus Z, (a) is empty if and only if either 1 € a or y/a = m,;

(i) If Z, (a) # ¢, it holds true that I(Z . (a)) = +/a.

Proof To prove (i), note that the set Z, (a) is non-empty if and only if Z(a) A" ™! (k)—{0}
is non-empty. There are two ways in which the inrtersection can be empty: either Z(a) = &,
and1 € a,or Z(a) = {0}, and \/a = m,.

To prove (ii), we observe as in Lemma 1.29 that /(Z(a)) equals the ideal generated by
all homogeneous polynomials in a, which by definition is equal to I(Z, (a)). By the affine
Nullstellensatz, I(Z(a)) = 1/a, and we are done. O

As in the affine case, the maps [ and Z, give a way to translate between algebra and
geometry.

Proposition 1.35. The maps a — Z,(a) and S — I(S) are mutually inverse
inclusion reversing bijections between the set of proper radical homogenous ideals in
k[zo, ..., x,] and the set of closed subsets of P" (k).

Again one should note that the irrelevant ideal is special: a proper homogeneous ideal
corresponds to the empty set if and only if its radical equals the irrelevant ideal.

Example 1.36 (The ideal of a point in P"(k)). In the affine case the maximal ideals in
k[zy,...,x,] correspond exactly to the points of A™(k). In projective space the points
correspond to lines in A"**(k), so their ideals are homogeneous, but they are not maximal.

A convenient set of generators (certainly not minimal) for the ideal of a point (ag : - - - : a,),
are the 2 x 2-minors of the matrix
ag a; ... a
( 0 1 n> (12)
o L1 ... Tp
Indeed, a variable point (zg : - - - : x,,) lies in in the same one-dimensional linear subspace
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1.3 Projective varieties 17

as (ag : -+ - : a,) precisely when the two corresponding vectors are dependent, i.e. precisely
when the matrix in (1.2) has rank one.

There is also a projective analogue of Proposition 1.13, and the proof is essentially the

same as in the affine case; it relies on (iii) in Proposition 1.33.

Proposition 1.37. A closed subset Z (a) is irreducible if and only if the radical y/a
is prime.

This leads us to give the following definition.

Definition 1.38. A projective variety is a closed irreducible subset of a projective
space P" (k).

Exercise 1.3.1. Write out the details of the proof of Proposition 1.33.

Distinguished open sets

On the affine spaces A”(k) one has coordinates x4, . . ., x, so that any regular function is a
polynomial in the x;. A projective space P" (k) do not have such global coordinates, but there
is a class of standard open subsets where we have good coordinates. These are the so-called

distinguished open sets. A point a = (ag : --- : a,) in P"(k) has at least one non-zero
homogeneous coordinate, say a; # 0, and then a belongs to the set
D (x;))={(zo: - :2,) | x; #0} < P"(k).

On this set the ratios x;/x; are well defined functions and can be used as coordinates.
There are two standard ways of transition between the homogenous coordinates and the

coordinates in a distinguished open set D (x;), homogenization and dehomogenization. With

any homogenous polynomial £ one associates a dehomogenized polynomial £'¢ simply by

setting z; = 1; thatis, F* = F(zo,...,1,...,z,), and for any homogeneous ideal a one
lets a? be the ideal a® = { F* | F € a}.

With any polynomial f of degree d in the n variables ty,...,t;_1,t;11,...,t,, One
associates the homogeneous polynomial f* = x¢f(zo/x;,...,2,/x;). And for an ideal a,

we let a” denote the homogeneous ideal generated by the f” for f € a.

Example 1.39. The practical recipe to find f” is as follows. Fill up each term of f with a
power of x; whose exponent makes the degree become d. For instance, when homogenizing
f = x3 + T 129 + T3 With respect to z, one obtains f" = w3z} + xiri70 + T3,

One has a pair of maps ®: D, (z;) — A"(k) and ¥: A" (k) — D, (x;) given by
D: (xg - 1py) = (To/xiy ooy 1y @y /)
U (tgy...y Ly yty) > (tg oo i 1ot ty,),

where the 1 appears in the i-th slot. (To avoid tortuous notation, we here consider A" (k) as
being the linear subspace Z(x; — 1) of A"*1(k) where the i-th coordinate equals one.)
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18 Varieties

Lemma 1.40. The maps ® and V is a pair of mutually inverse homeomorphisms
between A" (k) and D, (z;) equipped with the subspace topology.

Proof Itis easy to check that the two maps are mutually inverse, so the main claim is that
they are continuous, and this follows from the two identities

U (Zy(a) n Dy (2)) = Z(a?)

(1.3)
' Z(a) = Z:(a") 0 D ().

O

Exercise 1.3.2. Verify the identities in (1.3) above.

Examples

Example 1.41 (The Quadratic surface). Consider two copies of P! (k), one with homoge-
neous coordinates (ug : u;) and the other with (¢ : ;). There is a map P*(k) x P*(k) —
P3(k) defined by the assignment

(to : tl) X (UO . ul) —> (toUO . t0u1 : t1u0 : tlul).

This is well defined, because scaling (o : 1) and (ug : u;) by respectively A and p, scales
(touo s touy ¢ tiug : tyug) by A\u, and since at least one of the ¢;’s and one of u;’s are
non-zero, at least one of the products ¢;u;’s is non-zero as well.

The image is closed in P?(k), being equal to the zero locus of wows — wiw, with w;’s
being homogeneous coordinates on P2 (k). For instance, in the open affine piece D, (wy) it
holds that toug = wy # 0, so the inverse image equals D, (ug) X D, (u;). Normalizing,
i.e. setting wy = to = ug = 1, the map takes the form (1 :¢) x (1:u) — (1:¢: w: tu),
and it becomes clear that the image equals w3 = w;ws.

Example 1.42 (Rational normal curves). Consider the map
p: P(k) — P"(k) (1.4)
(to 1 t1) — (t) 1ty Mty oo st o t]).

This is well defined because when ¢, and ¢, are scaled by ), the products ¢~ ‘¢! are all scaled
by A", and of course, these products are never all zero. The image C,, is called a rational
normal curve of degree n.

The map p is injective. Indeed, observe first that the image of p is contained in the
union D, (z¢) v D, (z,). For points in the image lying in the distinguished open subset
D, (z,), one recovers the ratio to/t; as x,,_1/x,, and for image points in D (x) one finds
tl/t() = 1,'1/130.

The image C,, is a closed subset of P (k). It equals the common vanishing locus of the
2 x 2-minors of the matrix

(IL‘O 1 .. Tp—2 .fL‘n1> (15)

r1 Lo ... Tp-1 Tp

When n = 2, we just get the conic section zozy — 22 = 0 in the projective plane P?(k). The
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1.4 Regular functions on projective spaces 19

curve (Y is called the twisted cubic curve, ‘twisted’ because it does not lie in any plane in

P3(k).

Example 1.43 (The Veronese surface). The projective plane P?(k) can be embedded in a
natural way in the projective space P°(k) using all the quadratic monomials as coordinate
functions:

P2 (k) — P°(k) (1.6)
(to ity s ta) > (13t toty : toty : 5 1 Lty 1 £3).

The image is called the Veronese surface. Note that the definition makes sense, because a
simultaneous scaling of the ¢;’s by \ simultaneously scales the monomials by A2, and they
do not all vanish at the same time. In homogeneous coordinates (g : - - - : x5) on P°(k), the
homogeneous ideal of the the surface is given by the 2 x 2-minors of the matrix

To X1 T2
Ty X3 Ta
Ty Ty Ts

Exercise 1.3.3. With reference to Example 1.41:
a) Show that closed sets in P* (k) x P!(k) induced by the Zariski closed sets
in P?(k) are given by the vanishing of hihomogeneous polynomial. Here a
polynomial F'(xg, x1, Yo, y1) is said to be bihomogeneous of bidegree (a, b) if
F(sw,ty) = s*t"F(z,y) forall s,t € k.
b) Show that the subspace topology on P* (k) x P*(k) is not the product topology.

Exercise 1.3.4. Show that the rational normal curve C', equals the zero locus of the minors
of the matrix (1.5). Hint: Consider distinguished open sets.

1.4 Regular functions on projective spaces

As we already observed, homogeneous polynomials do not define functions on the projective
spaces. However, some quotients of homogeneous polynomials do give rational functions.
These quotients must be invariant under scaling of the variables, and are consequently of the
form g/h where g and h are homogeneous polynomials of the same degree, and then the
quotient g/h is a well-defined function on the distinguished open set D (h).

As in the affine case, a function f is said to be regular throughout an open set U < P (k)
if each point = in U has a neighbourhood over which f = g/h with h(z) # 0, and where g
and h are homogeneous polynomials of the same degree. The functions regular at a point
x form a ring Opn (1) », Which is a local ring whose maximal ideal consists of the regular
functions vanishing at x.

However, contrary to the affine case, there are not many global regular functions on P" (k).
In fact, they are all constant. This statement is true for any projective variety, but for the sake
of brevity we contend ourselves to proving it only for projective space itself.

Theorem 1.44. The only global regular functions on the projective space P" (k) are
the constants.

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

20 Varieties

Proof Let f be a global regular function on P"(k), and consider the composition f o 7 of
f with the canonical projection 7m: A" ! (k) — {0} — P"(k). Itis a global regular function
on A"*! — {0}, so by Proposition 1.26 on page 12, it is given by a polynomial. However,
since this polynomial comes from a function on P"(k), it must be constant on lines through
the origin. This means that it must have degree 0, that is, it is constant everywhere. 0

The fact that there are so few global regular functions basically forces us to instead work
with regular functions f: U — k that are defined on open sets U < X. This is one of the
reasons to introduce sheaves in the next few chapters.
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2

The Prime Spectrum

In this chapter we make the first step towards the notion of a scheme, by defining the
spectrum of a ring. The spectrum of a ring A is a topological space, denoted by Spec A, with
a Zariski-like topology whose closed sets are formed from the ideals of A.

To motivate the definition, assume for a moment that A = A(X) is the coordinate ring
of an affine variety X. By Hilbert’s Nullstellensatz the points of X are in bijection with
the set of maximal ideals in A: a point x = (ay,...,a,) corresponds to the maximal
ideal m, = (x; — aq,...,x, — a,) of regular functions on X vanishing at x, and every
maximal ideal is of this form. Thus there is no loss of information in replacing X with the
set {m | m — A isamaximal ideal }. Note that a point € X lies in Z(a) if and only
if @ < m,. Therefore, under this identification, the closed sets Z (a) from Chapter 1 now
take the form Z(a) = {m | m © a }. Thus the ring A determines the topological space X .
Moreover, maps from X to other affine varieties are determined by A as well: according to
Theorem 1.19, polynomial maps f : X — Y correspond bijectively to maps of k-algebras
¢ AY) - A(X).

The rings that appear in the setting of varieties are rather special. They are integral domains
and finitely generated k-algebras over an algebraically closed field &, and the assumption
that k be algebraically closed, is essential in order to have the above correspondence between
points and maximal ideals.

There is a natural way of generalizing this to all rings, which involves including all prime
ideals, instead of just the maximal ideals. Given a ring A, the spectrum Spec A of A is simply
the set of prime ideals of A. This set is then equipped with a topology, called the Zariski
topology, whose closed sets are the sets of the form V'(a) = {p € Spec A | a < p } where a
is any ideal in A.

The idea of replacing maximal ideals by prime ideals is fundamental in scheme theory.
From a categorical perspective this is a good choice, since inverse images of prime ideals under
ring maps are prime ideals, and thus a ring map A — B induces a map Spec B — Spec A.
When X and Y were affine varieties, we were lucky that the induced map A(Y') — A(X),
in fact, pulls maximal ideals back to maximal ideals, but this is no more true for general ring
maps (a simple example is the inclusion Z — Q).

2.1 The spectrum of a ring

Let A be aring. As usual we assume that A is commutative with 1.

21
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22 The Prime Spectrum

Definition 2.1. The prime spectrum of a ring A, or simply the spectrum is defined as
the set of prime ideals in A.

Spec A = {p | p < Aisaprime ideal }.

There is a topology on Spec A which generalizes the Zariski topology on a variety and
which is also called the Zariski topology. The definitions are very similar; the closed sets in
Spec A are those of the form

V(a) ={peSpecA|p2a},

where a is any ideal in A. Of course, one has to verify that the axioms for a topology are
satisfied. These require that the union of two closed sets, and the intersection of any number
(finite or infinite) of closed sets, is closed. And of course, both the whole space and the empty
set must be closed. The following lemma tell us that the closed subsets V' (a) indeed satisfy
these axioms:

Lemma 2.2. Let A be a ring and assume that {a, };c; is a family of ideals in A. Let a
and b be two ideals in A. Then the following three statements hold true:
i) V(anb)=V(a) uV(b) =V(ab);
() V(X @) =), V(w);
(iti) V(A) = & and V(0) = Spec A.

Proof Prime ideals are by definition proper ideals, so V (A) = . Also, the zero ideal (0)
is contained in every ideal, so V(0) = Spec A. This proves (iii), and (ii) follows just as
easily, because the sum of a family of ideals is contained in an ideal if and only if each of the
ideals in the family is.

For statement (i): the inclusion V' (a) U V(b) < V(a n b) is clear, so we need only to
show that V(a n b) < V(a) u V(b). Let p be a prime ideal such thata n b < p. If b & p,
there is an element b € b with b ¢ p. If @ € a, then ab € a N b < p, and so a € p because p
is prime. Consequently, one has the inclusion a < p. O

Corollary 2.3. The collection of sets of the form V' (a) constitute the closed sets a
topology on Spec A.

The next lemma is about inclusions between the closed sets of Spec A, and we recognise
them as analogues of some of the statements about subset of varieties in Proposition 1.2.

Lemma 2.4. For two ideals a,b — A we have
(i) V(a) =V (ya);
(i) V(a) = V(b)if and only if vb = +/a;
(iii)) V(a) = ¢ if and only if a = A;
(iv) V(a) = Spec A if and only if a < 4/(0).
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2.1 The spectrum of a ring 23

Proof Recall the following identity for the radical of an ideal:

Va=]». @.1)

acp

From this, we see that a and \/E are contained in the same prime ideals, and we infer that
V(a) = V(4/a). To show (ii), let us assume that V' (a) < V' (b). From (2.1) we then obtain

Vo= (] rc () p=va

peV(e)  peVi(a)

Conversely, assume that v/b  /a. If p € V(a), then y/a < p, and we deduce from the
chain of inclusions b = v/b = y/a < p that p € V(). This proves (ii).

Statement (iii) follows from Lemma 2.2 because V' (a) = V(1) = Spec A if and only if
y/a = (1), which happens if and only if a = (1). Similarly, (iv) holds because V (a) = V'(0)
if and only if a = 4/(0). O

Corollary 2.5. The assignment a — V' (a) gives a one-to-one correspondence be-
tween radical ideals of A and closed subsets of Spec A.

Residue fields

Contrary to elements in the coordinate ring of a variety, elements in a general ring A cannot
be interpreted as functions on Spec A into some fixed field. However, there still is an analogy
between elements f of A and some sort of functions on Spec A. If x is a point in Spec A
which corresponds to p, the localization A, is a local ring with maximal ideal pA,, and
one has the field k(p) = A,/pA,, which will also be denoted by k(x). It is canonically
isomorphic to the fraction field of the domain A/pA. The residue class of an element f
modulo p gives an element f(x) € k(p), which may be considered as the ‘value’ of f at x. It
is important to note that these values lie in different fields which might vary with the point.

Definition 2.6. The field k(p) is called the residue field of Spec A at p.

For each f € A, we may also speak of its ‘zero set’, i.e. the points z € X such that
f(z) = 0in k(z). By definition f(x) = 0 if and only if f € p, so the ‘zero set’ is exactly
the closed set

V(f)={peSpecA| fep}.

Furthermore, a closed set V' (a) may be written as

V(a) ={xeSpecA| f(x) =0forall fea}.

First examples

Example 2.7 (Fields). If K is a field, the prime spectrum Spec K has only one point, which
corresponds to the only prime ideal in K, the zero ideal.
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24 The Prime Spectrum

Example 2.8 (Artinian rings). The ring A = C[t]/(¢?) is not a field, but has only one prime
ideal, namely the ideal (). Note that the ideal (0) is not prime as t* = 0, but ¢ ¢ (0).

The ring A = C[¢t]/(¢t(t — 1)) has a spectrum which consists of two points. By the Chinese
Remainder theorem,

A~ C[t]/t x C[t]/(t—1) ~C x C,

which has exactly two prime ideals, namely 0 x C and C x 0.
More generally, an Artinian ring A has only finitely many prime ideals which are all
maximal, so Spec A is a finite set, and the topology is the discrete topology.

Example 2.9 (The spectrum of the integers). In the ring of integers Z, there are two types of
prime ideals: the zero-ideal (0) and the maximal ideals (p), one for each prime number p.
The latter correspond to closed points in Spec Z, and one has V' (0) = Spec Z.

2 ) 6) (7 @11 (13) A7) (19) (23) --- (0)
O 0 0O O O O O O O < >

The spectrum of the integers

As Z is a principal ideal domain, any ideal is of the form (n) for some integer n. It follows
that the closed subsets are of the form V' (n) = V(p;) n -+ n V(p,) where the p; are the
prime factos of n. In other words, the closed sets are either finite sets of closed points or the
whole space. Dually, the non-empty open sets are the complements of finite sets of closed
points. In particular, this means that Spec Z is not Hausdorff, as any open set must contain
(0).

The residue field at a closed point (p) is equal to k(p) = Z,/pZ, = F,, whereas the
residue field at (0) is equal to Zy = Q. Each element f of the ring Z gives rise to a function
on Spec Z with values in the various residue fields. For instance, the integer f = 17 takes
the values f((0)) = 17, f((2)) = 1, £((3)) = 2, f((5)) = 2, f((7)) = 3,..., in the
fields Q, Fy, F3, F5, F7, . . ., respectively, where the bar indicates the residue class modulo
the relevant prime.

Example 2.10 (Discrete valuation rings). Consider a discrete valuation ring A, such as the
series ring C[[¢]}, or one of the localizations k[t] ) or Z,). (See Appendix A for background
on discrete valuation rings). The ring A has exactly two prime ideals, the maximal ideal
m and the zero ideal (0), and Spec A consists of just two points: Spec A = {n, z} with =
corresponding to the maximal ideal m and {n} to (0). The closed sets are ¢f, {x} and {z, n}.
Therefore {n} = Spec A — {x} is open; so 7 is an open point!

The open sets are (J, Spec A and {n}. Again Spec A is not Hausdorff, as there is too few
open sets to separate x and 7.

The spectrum of a DVR
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Exercises

Exercise 2.1.1. Describe Spec Z(210).

Exercise 2.1.2. Let p be a prime ideal in a ring A. Show that there is a canonical inclusion
A/p — A,/pA, and that this yields an identification of A, /pA, with the fraction field of

Alp.

Exercise 2.1.3. Let a < A be an ideal. Show that \/a = (), p. HINT: If f ¢ \/a the
ideal a A is a proper ideal in the localization A, hence contained in a maximal ideal.

2.2 Generic points

The Zariski topology on Spec A is very different from the Euclidean topology on manifolds
that we are used to. In fact, the topology can exhibit surprising behaviour, even compared to
the usual Zariski topology on varieties. For instance, points can fail to be closed. In fact, the
next proposition implies that a point & € Spec A is closed if and only if the corresponding
ideal is maximal.

Proposition 2.11. The closure of a set S = Spec A is equal to S = V (a) where

a= ﬂpe s b. In particular, the closure @ of the one-point set {p} equals the closed
set V(p).

Proof Let b be the radical ideal with V' (b) = S. Then every p € S contains b, and hence
b < a. On the other hand, V'(a) is closed, and S < V'(a), so it follows that S < V' (a).
Hence V(b) < V(a), and a < b by Lemma 2.4. We conclude that a = b. O

This leads to the following definition:

Definition 2.12 (Genric points). A point z in a closed subset Z of a topological space
X is called a generic point for Z if {x} = Z,

In our context, each point p € Spec A is the generic point of the closed set V' (p).

Example 2.13. When A is an integral domain A, the zero ideal (0) is prime, and as V' (0) =
Spec A, it is the generic point of all of Spec A. This explains the ‘fat’ points in the pictures
in Examples 2.9 and 2.10, their closures are the whole space.
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26 The Prime Spectrum

2.3 Affine spaces

The most important examples of prime spectra are the affine spaces.

Definition 2.14. For each natural number n, we define the affine n-space as
A" = SpecZ[ty, ..., t,].
More generally, for a ring A, we define the affine n-space over A by

Ay = Spec A[tq, ..., t,].

When £ is an algebraically closed field, then A} is the scheme analogue of the affine
n-space A" (k) (as defined in Chapter 1). In this setting, Hilbert’s Nullstellensatz tells
us that the points of A" (k) are in one-to-one correspondence with the maximal ideals in
A = k[ty,...,t,] (which all are of the form (t; — a4, ...,t, — a,) with a; € k). Thus
A" (k) occurs naturally as a subset of the spectrum A7, and moreover, the old Zariski topology
on the variety A" (k) is the one induced from the Zariski topology on A}. However, there
are other prime ideals in A than just the maximal ideals; the zero ideal for instance. So A}
is strictly larger than A" (k). The differences between A} and A" (k) become even more
apparent if k is not algebraically closed.

Example 2.15 (The affine line). The prime spectrum A} = Spec k[t] is called the affine line
over k. The polynomial ring k[t] is a principal ideal domain, so the prime ideals are either of
the form (f(¢)) where f(t) is an irreducible polynomial, or the zero ideal (0). In the first
case the ideals are automatically maximal, so it follows that A} has two types of points: the
closed points and the generic point 7).

If we assume that k is algebraically closed, then the maximal ideals are all of the form
(t — a) for a € k. The residue fields at the corresponding points are of the form

k(a) = k[t]i-a)/(t — a)k[t]i—a) = k-

Thus for instance, Af. consists of the generic point 77 and one point for each complex number.

When £ is not algebraically closed, there can be other closed points than the ones of the
form (¢ — a). An interesting special case is when k = R. Then A}, is called the real affine
line. By the Fundamental Theorem of Algebra, a non-zero prime ideal p of R[¢] is of the
form p = (f(t)) where either f(t) is linear; that is, f(t) = t — a foran a € R, or f is
quadratic with two conjugate complex non-real roots; that is, f(t) = (t — a)(t — a) with
a € C but a ¢ R. This shows that the closed points in Spec R[¢] may be identified with the
set of pairs {a,a} with a € C.

In the non-algebraically closed case, the residue fields of the ‘extra’ non-closed points can
be more interesting. For instance, the maximal ideal (¢* 4+ 1) defines a closed point in A}
with residue field C. In general, if a maximal ideal m in k[¢] is generated by the irreducible
polynomial f(t), the residue field at the corresponding point in A} is the extension of k
obtained by adjoining a root of f.

Example 2.16 (The affine plane). When k is algebraically closed, the maximal ideals of
k[t1,12] are all of the form (¢; — ay,t2 — ay), and these constitute all the closed points of
AZ. There are also the prime ideals of the form p = (f) where f is an irreducible polynomial
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2.4 Irreducibility and connectedness 27

from k[t,, to]. The prime ideal p is the generic point of the closed subset V' ( f). In addition to
the point p, the points of V' ( f) are the closed points corresponding to ideals (t; — a1, t2 — az)
containing f. This condition is equivalent to f(a;, as) = 0, so the closed points of V'( f)
correspond to what one in a variety setting would call the curve given by the equation

f(ty,ta) = 0.
° [ ]
° °
(] (] °
Closed points Generic points of curves Generic point of X

2.4 Irreducibility and connectedness

Recall from Chapter 1 that a topological space X is irreducible if it cannot be written as the
union of two proper closed subsets. From Proposition 1.13, we know that the coordinate ring
of an affine variety is an integral domain, and very simple examples indicate that reducibility
of Spec A is closely linked to zero divisors in A (see Example 2.21 below). In general, we
have the following:

Proposition 2.17. Let A be aring. Then the following statements hold:
(i) If p c A is a prime ideal, it holds that {p} = V'(p), and p is the only

generic point of V' (p);

(ii) A closed subset Z < Spec A is irreducible if and only if Z is of the
form Z = V (p) for some prime ideal p;

(iii) The space Spec A itself is irreducible if and only if A has just one
minimal prime ideal; in other words, if and only if the nilradical \/@ is
prime.

Proof Statement (i) is just Proposition 2.11 on page 25. For the uniqueness part, when
V(p) = V(q), it holds by Lemma 2.4 on page 22 that both p  q and q < p.

Proof of (ii): As the closure of any singleton is irreducible, and since we just showed that
V(p) = {p}, we conclude that V (p) irreducible. For the reverse implication, let V' (a) <
Spec A be a closed subset. Recall that /a = ) acp P If y/a is not prime, there are more
than one prime involved in the intersection. We may divide them into two different groups
thus representing 4/a as an intersection 1/a = b N b’ where b and b’ are the intersections
of the primes in the two groups, and hence are different radical ideals. One concludes that
V(a) = V(b) U V(b), and V(a) is not irreducible.

The third statement follows from the second, because Spec A = V(\/@) (again by
Lemma 2.4). L]

A consequence of the proposition is that Spec A is irreducible whenever A is an integral
domain, as in that case (0) is a minimal prime ideal. However, Spec A may well be irreducible
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28 The Prime Spectrum

for other rings as well. The ring A = C[t]/(¢?) is a simple example: it is not an integral
domain, and has only one prime ideal, namely the principal ideal (¢). Statement (iii) above
tells us that this example is typical for such rings: every zerodivisor in the ring is nilpotent. Or,
in the spirit of the analogy with functions, there are non-zero functions vanishing everywhere.

Example 2.18. Let R = C[z,y]/(y* — 2® — 2?) and X = Spec R. Then X is irreducible
and is called the nodal cubic curve over C. There are two types of points in X:
(i) Closed points p € X. These correspond to maximal ideals m = (z — a,y — b)
where a, b satisfy b* = a® + a®. The residue fields equal k(p) = R/m ~ C.
(i1) The generic point 1. This corresponds to the zero ideal. The residue field equals
the fraction field of R, which is isomorphic to C(¢) (via the substitution z =
t2—1,y =t3—1).

TN
Spec C . Ry Spec <”2 ?[:;1/7] ,1-2>

Recall that a topological space is connected if it cannot be written as a disjoint union of
two proper open subsets. All of the examples we have seen until now, with the exception of
Example 2.8, are connected.

Example 2.19 (A disconnected spectrum). Suppose that A = A; x A, is the direct product
of two non-trivial rings A; and A,. In A we have the two orthogonal idempotents e; = (1,0)
and e, = (0, 1); they satisfy the relations ef =ey,e169 =0, eg =egande; + €9 = 1.

The spectrum Spec A decomposes as the disjoint union Spec A = V(e;) u V(ey) of
the two closed sets V'(e;); indeed, since e; + ex = 1, it holds that V(e;) n V(eq) =
V(ei,es) = . And since eje, = 0, either e; € p or e, € p for each prime p € Spec A, so
the V'(e;)’s cover Spec A.

In fact, there is a converse to this example.

Proposition 2.20. A spectrum Spec A is disconnected if and only if A is isomorphic
to a direct product A = A; X A, of non-trivial rings A; and A,.

While it would certainly be possible to give a direct proof of this proposition at the present
stage, we wait until the next chapter; there is a much more conceptual proof using the
structure sheaf (see Example 4.9 on page 57). For reduced rings however, the argument is
straightforward (see Exercise 2.4.1)

Connectedness is a weaker topological condition than irreducibility in the sense that an
irreducible space is also connected. However, it is possible to be connected yet reducible, as
the following example shows:
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2.5 Distinguished open sets 29

Example 2.21. The prime spectrum X = Spec k[x, y]|/(zy) is a good example of a space
which is connected but not irreducible. The coordinate functions = and y are zero-divisors in
the ring k[x, y]|/(xy), and their zero-sets V' () and V' (y) show that X has two components.
Since these two components intersect at the origin, X is connected.

Exercise 2.4.1. Let A be a reduced ring. Show that Spec A is not connected if and only if
A = A, x A, for two non-trivial rings A; and A,. HINT: If Spec A is the disjoint union
V(a) u V(b), it holds true that a + b = A. Use this to find two non-trivial idempotents.

Exercise 2.4.2. Assume that X is a topological space that is not connected. Exhibit two non-
constant orthogonal idempotents with sum unity in the ring of continuous functions on X.
HINT: The characteristic functions of two disjoint open sets whose union equals X, will do.

2.5 Distinguished open sets

There is no way to describe the open sets in Spec A as simply and elegantly as the closed
sets can be. However there is a natural basis for the topology on Spec A whose sets are easily
defined, and which turns out to be very useful. For an element f € A, we let D(f) be the
complement of the closed set V'(f); that is, we set

D(f)={peSpecA| fé¢p}=V(f)

These are clearly open sets; we call them distinguished open sets.

Lemma 2.22. For aring A and elements f, g € A, we have

() D(f) nD(g) = D(fg);
(i) D(g) < D(f) if and only if g" € (f) for some natural number n. In
particular, one has D(f) = D(f™) for all n.

Proof Statement (i): if p is a prime ideal, then f ¢ p and g ¢ p hold true if and only if

faép.
Proof of (ii): the inclusion D(g) < D(f) holds if and only if V/(f) < V(g), and by

Lemma 2.4 on page 22 this is true if and only if (¢) < +/(f); in other words, if and only if
g™ € (f) for a suitable n. O

Lemma 2.23.
(1) The collection of distinguished open sets form a basis for the topology
of Spec A;
(i) A family {D(f;)}icr forms an open covering of Spec A if and only if
the f; generate the unit ideal, i.e. if and only if there is a relation

l=aify, + - tanfi, (2.2)
where iq,...,1, € I.

Proof Statement (i): we need to show that each open subset U of Spec A can be written as
the union of distinguished open sets. Observe that, by definition, the complement U° of U is
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30 The Prime Spectrum

of the form U¢ = V' (a) with a — A an ideal, and choose a set { f;} of generators for a (not
necessarily a finite set). Then we have

U=V(e)r=V(3() = (Vi) =Upw. (2.3)

Statement(ii): from the identity (2.3) with U = Spec A, it follows that the open sets D( f;)
constitute a covering of Spec A if and only if V' (3},(f;)) = &, which happens if and only
if >..(f;) = (1). But this is the case if and only if 1 is a combination of finitely many of the
fi’S. O

The lemma tells us that the D( f)’s form a basis for the topology: any open set U < Spec A
can be written as a union of D( f)’s. Moreover, we deduce that any open cover may be refined
to one whose members all are distinguished, and hence it can be reduced to a finite covering.
A topological space with this property is said to be quasi-compact. *.

Example 2.24. In the affine line A, over a field, every closed set is of the form V ( f) for some
polynomial f, so every open set is a distinguished open set D(f). In AZ = Spec k[u, v], the
setU = AZ — V(u,v) is open, but not of the form D( f). Still, we have U = D(u) u D(v).

Example 2.25 (The circle). Consider the unit circle X = SpecR[z,y]/(z* + y* — 1).
The maximal ideal m = (x,y — 1) defines the point (0, 1) on X . Note that this ideal is not
a principal ideal. Nevertheless, the complement X — {(0, 1)} is a distinguished open set.
Indeed, it coincides with D(y — 1) because modulo the ideal (2% + y? — 1), it holds true that

(z,y—1)* = (2®,2(y—1),(y = 1)*) = (y — 1).

With the subspace topology inherited from Spec A, the distinguished open sets are them-
selves prime spectra:

Lemma 2.26. A distinguished open subset D( f) is homeomorphic to Spec Ay.

Proof Recall that for a multiplicative set S — A, the map p — pS—1 A gives an inclusion-
preserving bijection between the prime ideals of S~! A and the prime ideals p of A satisfying
pn S = . Applying thisto S = {1, f, f?,...}, we get the lemma. O

For two open sets D(f) and D(g), we have the following implications:

D(f) > D(g) = V(f) =V(g)
— V() >/(9)
— ge/(f)

— ¢" =cfforsomereN,ce A

L The terminology is a little bit unfortunate; spaces in which every open cover has a finite subcover are usually
called ‘compact’. However, some authors reserve the term ’compact’ for quasi-compact and Hausdorff, and this
jargon has caught on in the algebraic geometry literature.
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2.6 Maps between prime spectra 31

If follows that there is a canonical localization map

Prgt Af > A,
a ac”

— s
fn grn

24)

which is a ring map factoring A — A,. From this we deduce that D(g) may be identified
with a distinguished open subset in Spec(Ay).

Exercises

Exercise 2.5.1. Show that the ideal m = (z,y — 1) in A = R[z, y|/(2® + y*> — 1) is not
principal.

Exercise 2.5.2. Show that D(f) = (J if and only if f is nilpotent. HINT: Use that

\/@ = ﬂpESpccA p.

Exercise 2.5.3. Show that D(f) = D(g) if and only if there are integers m, n such that
g™ = wu - f™ for some unit u € A.

Exercise 2.5.4. Check that for a nested inclusion D(h) < D(g) < D(f), we have p), =
Pgh © Pfg-

Exercise 2.5.5. Let A be aring, let a be an ideal in A and let {f;}c; be elements from a.
Show that the open distinguished sets D( f;) cover Spec A — V' (a) if and only if some power
of each element f € a lies in the ideal generated by the f;’s.

Exercise 2.5.6. Let k be a field and let A = k[to, ¢y, . .. | be a polynomial ring in countably
many variables. Let m be the maximal ideal m = (¢o, 1, ...). Show that U = Spec A —m
is not quasi-compact. Conclude that U is not the spectrum of a ring. HINT: Consider the
open covering {D(t;)}i>o-

2.6 Maps between prime spectra

Let A and B be two rings and let ¢: A — B be a map of rings. The inverse image ¢~ 'p of
a prime ideal p — B is a prime ideal: that ab € ¢~'p means that ¢(ab) = ¢(a)p(b) € p, so
at least one of ¢(a) or ¢(b) has to lie in p. Hence sending p to ¢~'p gives us a well-defined
map

f = Spec(¢): Spec B —— Spec A. (2.5)

This map is continuous in the Zariski topology, because preimages of closed sets are closed
by item (i) in the next proposition.
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32 The Prime Spectrum

Proposition 2.27. Let f : Spec B — Spec A be induced by the ring map ¢ : A —
B.
i) [~V (a)
(i) f'D(g)
(iii) f(V(b))

V(¢(a)B) for each ideal a = A.
D(¢(g)) foreach g € A;
V(¢ 'b) for each ideal b of B.

Proof To prove (i), let a © A be an ideal. Then we have

fTV(e)={pcBlac¢ 'p}={pcBl¢(a)cp}=V(p(a)B).

Indeed, as a = ¢~ '¢(a), the inclusion ¢(a) < p holds if and only if a = ¢~ 'p. In particular,
the inverse image of any closed subset is again closed, so f is continuous.
For (ii), note that for each element g € A we have the following equalities:

f7D(g)={pc=Blgé¢o'pt={pcBlolg) ¢p}=D(¢(g))

Finally we prove (iii): according to Corollary 2.11 on page 25, the closure f (V' (b)) equals
V (a) with a the ideal given by

a= ) »p=()o"a
pef(V(B)  bea

The equality holds because p € f(V (b)) implies that p = ¢~'q for some g, with b < g. So

we get that
a=[1oa=0""([)a) =6 (Vo) = /o 0.
bcq bcq
Hence V (a) = V(¢ ~'b), which gives the desired identity. O
p
o

Spec B
qa=9¢""(p)
’\_/ Spec A

Proposition 2.28. With notation as in Proposition 2.27, if ¢ is surjective, then f
induces a homeomorphism from Spec B onto the closed subset V' (Ker ¢) < Spec A.
In particular, if a — A is an ideal, the quotient map A — A/a induces a homeomor-
phism

f: Spec(A/aA)

V(a) < Spec A

Proof 1f ¢: A — B is surjective, we may assume B = A/a, where a = Ker ¢. The map
p — ¢~ p gives is an inclusion preserving one-to-one correspondence between prime ideals
in A/a and prime ideals in A containing a (with inverse given by q — ¢/a). This shows that
f is a continuous bijection onto the closed subset V' (a). To show that f is a homeomorphism,
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2.6 Maps between prime spectra 33

it suffices to show that it is closed; this follows from the equalities
f(V(b/a)) = {p € Spec A|b/a < p/a € Spec(A/a)} = V(b). O

The map Spec(A/a) — Spec A is the standard example of a closed embedding. We will
discuss these in more detail later.

Proposition 2.29. With notation as in Proposition 2.27, if ¢ is injective, then
f(Spec B) is dense in Spec A. In fact, the image f(Spec B) is dense in Spec A if

and only if Ker ¢ < 4/(0).

Proof Again, by (iii) of Proposition 2.27, the closure of f(Spec B) = f(V(0)) equals
V(¢~1(0)) = V(Ker ¢). So f(Spec B) is dense if and only if V (Ker ¢) = Spec A. But
this happens exactly when Ker ¢ — p for all p, or equivalently when Ker ¢ = 4/(0). O

Examples

Example 2.30 (Reduction modulo a prime p). The reduction mod p-map Z — [F,, induces a
map Spec F, — Spec Z. The one and only point in SpecF,, is sent to the point in Spec Z
corresponding to the maximal ideal (p). The inclusion Z < Q of the integers in the field of
rational numbers induces likewise a map Spec Q — Spec Z, that sends the unique point in
Spec Q to the generic point 77 of Spec Z.

Example 2.31 (The circle). Consider X = Spec R[z,y]/(z? + y* — 1). The ring map

¢: Rlz, y]/(u? +v* — 1) = Rlz, y]/(2® + y*> — 1) (2.6)
u— % — > 2.7)
v — 2xy

(originating from the ‘squaring map’ z + 22) induces a map of spectra f: X — X.
Example 2.32 (The twisted cubic). Let k be a field. The ring map ¢: k[x,y, z] — k[t]
given by x — t,y — t2, z — 3 defines a map of prime spectra
fiAp — A3

The image of f is the twisted cubic curve V (a) < A} defined by the ideal a = Ker ¢ =
(y — 22 2z — x*).
Example 2.33. Let k be a field. The ring map ¢: k[z] — k[z,y]/(zy — 1) induces a
morphism

Speck[z,y]/(xy — 1) —— Aj.
On the level of closed points, when k is algebraically closed, this maps (a,a™!) to a. Since
k[z,y]/(xy — 1) is an integral domain, it has a unique generic point 7, and this is mapped to

the generic point of A}. Note that Spec k[x, y]/(zy — 1) ~ D(x) < A}, via this morphism.
In particular, the image is not closed in A}

Exercise 2.6.1. Let ¢ : A — Bandv : B — C be two ring maps. Show that, with the
notation of (2.5), Spec(v) o ¢) = Spec(¢) o Spec(v)).
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34 The Prime Spectrum

Figure 2.1 The twisted cubic curve

2.7 Scheme-theoretic fibres I

To understand a map of spectra f : Spec B — Spec A, it is often useful to understand the
inverse images of points, the fibres of f.

Let ¢ : A — B be the ring map that induces f and let y € Spec A be a point, correspond-
ing to a prime ideal p in A. We would like to understand the fibee f~'(y), i.e., the set of
prime ideals q in B such that p = ¢~(q).

If y € Y is a closed point, that is, p is a maximal ideal, then we saw in Proposition 2.27
that the inverse image 'V (m) is equal to the closed set V (mB). In other words, the fibre
f~*(y) is homeomorphic to Spec (B/mB).

In general, the fibre f~!(y) may or may not be closed in Spec B. The inverse image of
the closure V' (p) of y still equals V' (pB), but this set may contain other primes than the ones
mapping to y. For instance, in the sitation when p = (0) is prime, then V (pB) = Spec B.

To remedy this, we consider the localization (B/pB), of the A-module B/pB in the
multiplicative set S = A — p. Note the general equality (B/pB), = B,/pB,, and that we
have canonical ring maps B — B/pB — (B/pB),. These induce maps of spectra:

t: Spec B, /pB, —— Spec B/pB —— Spec B. (2.8)

Proposition 2.34. The map (2.8) induces a homeomorphism between Spec By, /p B,
and the fibre f~'(p) < Spec B. In particular, if p € Spec A is a closed point, then
f~%(p) is homeomorphic to Spec (B/pB).

Proof Note the equalities
{qeSpecB|pcd g} ={qeSpecB|[pBcq}=V(pB).

In the particular case that p is a maximal ideal, the inclusion p < ¢~'q must be an equality,
and the sets above describe the fibre

S (p) = {q€eSpecB |pB cq} =V (pB).

The closed subset V (pB) of Spec B with induced topology from Spec B is canonically
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2.7 Scheme-theoretic fibres I 35

homeomorphic to Spec(B/pB). Thus we have a homeomorphism between Spec (B/pB)
and the fibre f~*(p).

If p is not a maximal ideal, the set Spec (B/pB) might, as we observed above, be bigger
than the fibre. The extra prime ideals are those q for which the inclusion p < ¢~1q is strict.
That means that there exist elements s € S = A — p so that ¢(s) € q. It follows that if we
localize with respect to S, these extra prime ideals will cease being proper, because they
contain invertible elements. It follows that the points in the fibre f~*(p) correspond exactly
to the primes in the localized ring B, /pB,. Since this correspondence respects inclusions,
the Zariski topology on the spectrum Spec(B,/pB,) coincides with the one induced from
the Zariski topology of Spec(B/pB), and hence we get the statement in general. O

Example 2.35. Consider the map
f: SpecClz,y, z]/(xy — z) —— SpecC|z],

induced by the canonical map ¢: C[z] — Clz,y, z]/(xy — z) = B. Let us compute the
fibres £~ (p) over the maximal ideals p = (z — a). Note that

B/pB = Clz,y,z]/(vy — 2,2 — a) ~ Clz,y]/(zy — a).

There are two cases. If a # 0, then y — a is an irreducible polynomial, and so Spec B/pB
is irreducible. This is intuitive, as it corresponds to the hyperbola V (zy — a) in AZ. If a = 0,
we are left with Spec C[z, y]/(zy), which is not irreducible; it has two components, the two
coordinate axes V' (z) and V (y).

Let us also consider the fibre over the generic point 7 of Spec C[z], which corresponds
to p = (0). In this case, the ring (B/pB), is the localization of B with respect to the
multiplicative set S = C[z] — {0}; that is, the ring

C)[z, yl/(zy — 2).

This is again an integral domain, so the fibre f~*(7) is irreducible. This fibre may be regarded
as a hyperbola in the affine plane A?C(Z) over the field C(z).

Example 2.36. Let k be a field and consider the map
f: X = Speck|z,y]/(x — y*) —— Speck[z]

induced by the injection k[x] — k[z,y]/(x — y?). Geometrically one would say this is just
the projection of the ‘horizontal’ parabola onto the x-axis.
If a € k, the fibre f~'(p) over the maximal ideal p = (2 — a) is the spectrum of the ring

B/pB = klz,y]/(x — v,z — a) ~ k[y]/(y* — a).
Let us first assume that & has characteristic different from 2. Several cases can occur:
(i) If @ # 0 and has a square root in k, say b? = a, the polynomial 3> — a factors

as (y — b)(y + b), and by the Chinese Remainder theorem, the fibre becomes
the product

Spec (k[yl/(y —b) x k[y]/(y + b)),

which is the disjoint union of two copies of Spec k.
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36 The Prime Spectrum

(ii) If @ # 0, but does not have a square root in k, then the fibre equals Spec k(+/a),
where k(y/a) is a quadratic field extension of k. The fibre is a single point,
but with ‘multiplicity two’ (in the sense that the degree of the field extension
k < k(y/a) is 2).

(iii) The final case is when @ = 0. The fibre then equals Spec k[y]/(y?), which
is just a single point, but again there is a ‘multiplicity two’, accounted for by
the presence of nilpotent elements in the ring (as vector space over k the ring
k[y]((y*) has dimension two).

Example 2.37 (The Mébius Strip). Consider the R-algebra A = R[z,y]/(z? + y? — 1) and
the circle S = Spec A. There is a map

f: Spec Alu,v]/(ve —uy) —— S.

Let us compute the scheme theoretic fibres of f. Note that S is covered by the two affine
subsets D(z) and D(y). If p € D(x), then x is invertible in A,, and so, writing B =
Alu,v]/(ve — uy), we find

By/pBy = (Ap/p)[u, v]/(v — 27 uy) ~ k(p)[u].

Hence the scheme theoretic fibre is isomorphic to A,{:(p). A similar argument works when
p € D(y). Hence all fibres are isomorphic to affine lines.

Example 2.38. Consider the map
7 : Spec C[t] — SpecR|[t]

induced by the inclusion R[¢] = C[¢]. By Example 2.15 there are three cases to consider for
the fiber 7 (y) of a point y € Af.

i) y corresponds to the maximal ideal (¢ — a) where a € R. Then the fiber is given
by
7 (y) = Spec (C[t]/(t — a)) ~ SpecC.

Therefore the fibre is a single closed point with residue field C.
ii) y corresponds a closed point corresponding to p = (f(t)) where f € R[¢] has
two conjugate complex roots a, a. Then

m ' (y) = Spec (C[t]/(f(t))) ~ Spec (C[t]/(t — a) x C[t]/(t + a))

Thus the fibre consists of two closed points, with residue fields C.
iii) y = 7 is the generic point. Then f~!(7n) is given by the spectrum of the localiza-

tion ST'C[t] = C(t) where S = C[t] — (0). In other words, 7' (C(t)) = Ag,

is the affine line over C(¢).
The Galois group G = Gal(C/R) ~ Z/2Z acts on the fibres of this example. More precisely,
consider the conjugation map on the polynomial ring C[t] given by conjugating the coeffi-
cients of the polynomials; that is, sending a polynomial a;t' to > a;t’. This defines an
automorphism

¢ : Spec C[t] — Spec C[¢]
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2.7 Scheme-theoretic fibres I 37

Note that the sub-ring R[¢] < C[t] is unaltered by the conjugation map, so the following
diagram commutes:

Spec C[t] ‘ Spec C[¢]

\ /
Spec R[¢]

Thus G = (id,t) ~ Z/2Z acts by automorphisms on the fibres of 7. From this we see
that Spec R[¢] can be viewed as the quotient space of Spec C[t] by G, i.e., the space that
parameterizes G-orbits. Indeed, by Example 2.15, the closed points of Spec R[¢] correspond
exactly to the orbits of G and the generic point of Spec C[¢] is invariant and corresponds to
the generic point of Spec R[¢].

Example 2.39 (The Gaussian integers). The inclusion Z  Z[i] induces a morphism
f: SpecZ[i] — SpecZ.

We will study Spec(Z[i]) by studying the fibres of this map. If p € Z is a prime, the fibre
over (p)Z consists of those primes that contain (p)Z[:]. There are three cases:
(i) p stays prime in Z[i], and the fibre over (p)Z has one element, namely the prime
ideal (p)Z[¢]. This happens if and only if p = 3 mod 4; 2
(i1) p splits into a product of two different primes, and the fibre consists of the
corresponding two prime ideals. This happens if and only if p =1 mod 4;
(iii) p factors into a product of repeated primes (such a prime is said to ‘ramify’).
This happens only at the prime (2):

(2)Z[i] = (20)Z[i] = (1 +4)*Z][i].

This is not radical, and the fibre consists of the single prime (1 + 7)Z[i].
The following picture shows Spec Z[i]:

(3 + 29) (4+1)

(R T LI 0)
Q o o o © Spec Z[i]
O
2-1) (3 —OQi) ?4 — i)
(o) ) (o) (o) (o) o o © SpecZ
2) 3) (5) (7) (11) (13) (17 (0)

The spectrum Spec Z[i]

The Galois group G = Gal(Q[i]/Q) ~ Z/2Z acts on Spec Z][i]. This group is generated
by the complex conjugation map, which permutes the prime ideals in Spec(Z[i]) sitting over
any (p) in Spec(Z). So for instance, if you look at the primes sitting over say (5), namely

2 This is related to being able to write p as a sum of squares; if p = 2 + y2, then p = (x + iy)(z — iy), so it is
not prime in Z[4].
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(2 + i) and (2 — i), you see that complex conjugation maps one into the other. Thus we
picture Spec(Z[i]) as some curve lying above Spec(Z), with G permuting the points in each
fibre (though some are fixed by G).

Example 2.40 (The affine line A}). Consider the affine line A} = SpecZ][t] and the
morphism f: SpecZ[t] — SpecZ induced by the inclusion Z < Z[t].

There are two cases for a fibre f~(y) of a point y € Spec Z. If y corresponds to the closed
point (p) € Spec Z, the fibre f~*(y) consists of all primes p < Z[¢] such thatp N Z = (p).
According to Proposition 2.34, it is given by

V((p)Z[t]) = Spec (Z[t]/pZ[t]) = As, .

Likewise, if y = 7 is the generic point of Spec Z, corresponding to (0), Proposition 2.34
tells us that the fibre f~*(n) is the Spec of the localization S Z[t] = Q[t], where S = Z—0.
In other words,

f71(m) = Spec Q[t] = Aq.
The situation is shown in the figure below:

1 1 1 1 1
AH‘-Q \ I A]pa AlFr, AFv AQ

(6z + 1)
/ Q
5,z + 1) P
O 0-------
,//’ (7,6.’L’+1) ©(0>
(2) (3) (5) 7) o )
——————— V(6z +1) — V(2%+3)

In the figure, we have depicted the two closed sets V (62 + 1) and V' (2% + 3). Note that
V(6x + 1) is disjoint from the fibres above the primes 2 and 3 (why?). The closed subset
V(22 + 3) should be compared to Example 2.39).

Example 2.41 (The polynomial ring over a DVR). Let A be a discrete valuation ring, such as
the localization Z,). As in Example 2.10, we have Spec A = {x, n} with x a closed point
(corresponding to a maximal ideal m) and 7 an open point (corresponding to (0)).

Consider the map f: Spec A[t] — Spec A corresponding to the inclusion A < A[t].
There are two fibres to consider, a closed fibre f~*(x) and an open fibre f~!(n).

The closed fibre consists of the primes p < A[t] such thatp N A = m. Writing k = A/m
for the residue field at x, we find using Proposition 2.34, that f~!(x) equals

V(mA[t]) = Spec (A[t]/mA[t]) ~ Spec k[t].

Hence the fibre f~' () is homeomorphic to the affine line A}, = Spec k[¢].
Using Proposition 2.34 again, we find that the open fibre is equal to Spec S~! A[t] where
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2.7 Scheme-theoretic fibres I 39

S = A — (0). If we write K = S~' A for the fraction field of A, we have S~ A[t] = K[¢]
and so f~*(n) is isomorphic to the affine line AJ,.

Exercises

Exercise 2.7.1. In the same vein as Example 2.30, show that a ring A is a Q-algebra (that is,
it contains a copy of Q) if and only if the canonical map Spec A — Spec Z factors through
the generic point Spec Q — Spec Z.

Exercise 2.7.2. Show that the Zariski topology on Spec A is Hausdorff if and only if every
prime ideal p is maximal.

Exercise 2.7.3. Show that the closed points in Spec A form a dense set if and only if /0
equals the intersection (1) _, m of all maximal ideals in A. HINT: Corollary 2.11 on
page 25.

Exercise 2.7.4. Let A be an integral domain and U < Spec A an open non-empty subset.
Show that there is no closed point in U if and only if there is an f € A such that A is a field.
HINT: Consider distinguished open subsets D(f) < U.

Exercise 2.7.5. Let {A;};c; be an infinite sequence of non-trivial rings, and let X be the
disjoint union of the spectra Spec A;. Show that X is not homeomorphic to a spectrum of a
ring.

Exercise 2.7.6 (Local rings). Recall that a local ring is a ring A with only one maximal ideal.

a) Show that A is local if and only if Spec A has a unique closed point.

b) Give examples of local rings A so that Spec A consists of (i) one point; (ii) two
points; (iii) infinitely many points.

¢) A map of rings ¢: A — B is said to be local if ¢(m,4) < mp. Show that ¢ is
local if and only if the induced map f: Spec B — Spec A maps the unique
closed point of Spec B to that of Spec A.

d) Give an example of a map of rings f: A — B which is not local. Describe
your example in terms of the corresponding map on spectra.

Exercise 2.7.7. Show that Spec A has just one element if and only if A is a local ring
all whose non-units are nilpotent, i.e. the radical 4/(0) of the ring is a maximal ideal. For
Noetherian rings this is equivalent to the ring being an Artinian local ring.

Exercise 2.7.8. Perform the analysis of the fibres of the map in Example 2.36 on page 35
when the field & has characteristic two.

Exercise 2.7.9.
a) Let A be a Noetherian ring such that Spec A is a finite set. Show that A is
Artinian.
b) Show that the ring A = C[ty,ta,...]/m? where m = (¢1,¢s,...) is not
Noetherian, but that Spec A is a single point.

Exercise 2.7.10. With reference to Example 2.39 on page 37:
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40 The Prime Spectrum

a) Show that the fibre of ¢ over a prime ideal (p) is homeomorphic to
SpecF,[z]/(z* + 1)

and that dimg F,[2]/(2* 4+ 1) =2. HINT: Use that Z[i] = Z[z]/(z* + 1).
b) Show that F,[z]/(2? + 1) is a field if and only if 2% + 1 does not have a root
inlF,.
c) Show that F,[x]/(2? + 1) is a field if and only if (p)Z[:] is a prime ideal.

Exercise 2.7.11. Consider the ring map

¢Z C[l‘,y] - (C[xv% Z]/(QS‘Z - y)

which induces f: SpecC|z,y, z]/(xz — y) — AZ. Show that the map f on the level of
closed points sends (a, ab, b) to (a, ab), and the generic point to the generic point. Show that
in this example, the image is neither open nor closed: it equals D(z) u V(x,y).

Exercise 2.7.12. Let p and g be two different prime numbers and consider the morphism
¢: A — A% induced from the map k[z,y] — k[t] which is defined by the assignments
x — tP and y — t%. Determine all scheme theoretic fibres of ¢.

Exercise 2.7.13. Let k an algebraically closed field. Consider the k-algebra A = k[z,y, z]/(zy, xz,yz)
and let X = Spec A. Consider the map f: X — A! dual to the k-algebra homomor-

phism k[t] — A that sends ¢ to z + y + z. Determine all scheme theoretic fibres of f.

HINT: Heuristics: X (C) is the union of the three coordinate axes in C*, and the map sends

points in X (C) to the sum of their coordinates.

Exercise 2.7.14. Describe the scheme theoretic fibres in all points of the following mor-
phisms.

a) f: SpecClz,y]/(zy — 1) — SpecClz];

b) f: SpecClz,y]/(x* — y*) — Spec C[z];

¢) f: SpecClz,y]/(xzy) — SpecClx];

d) f: SpecZ|x,y]/(zy* — m) — SpecZ, where m is a non-zero integer.

Exercise 2.7.15. Determine all the scheme theoretic fibres of the morphism
Spec Z[(1 + +/5)/2] —— Spec Z[+/5]

induced by the natural inclusion Z[+/5] < Z[(1 + v/5)/2].

Exercise 2.7.16. Let R = Z[z,y|/(2z* —y* —5) and consider the morphism f: Spec R —
Spec Z. Compute the fibres over (0), (2), (3) and (5). What happens if you replace R with
the ring Z[z, y]/(32* — 3y* — 15)?

Exercise 2.7.17. For every ring A, there is a canonical map Z — A which sends 1 to 1.
Hence there is a canonical map Spec A — SpecZ. Show that map factors through the
canonical map Spec F,, — Spec Z if and only if A is of characteristic p,

Exercise 2.7.18. Describe the following prime spectra
a) SpecC[z]/(z® + z?)
b) SpecR[z]/(z® + z?)
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2.7 Scheme-theoretic fibres I 41

Exercise 2.7.19. Study the fibres of the morphisms
a) SpecZ[t]/(t* +t+ 1) — SpecZ
b) SpecQ(t)[z]/(z* + 3z + 1) — Spec Q(¢).
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3

Sheaves

The concept of a sheaf was conceived in the German camp for prisoners of war called Oflag
XVII, where French officers taken captive during the fighting in France in the spring 1940
were detained. Among them was the mathematician and lieutenant Jean Leray. In the camp he
gave a series of lectures on algebraic topology(!!) during which he introduced some version
of the theory of sheaves. In modern terms, Leray was aiming to compute the cohomology of a
total space of a fibration in terms of invariants of the base and the fibres and the fibration itself.
To achieve this, in addition to the concept of sheaves, he also invented ‘spectral sequences’.

After the war, the theory of sheaves was developed further by Henri Cartan and Jean-Pierre
Serre, and finally the theory was brought to the state as we know it today by Alexander
Grothendieck.

3.1 Sheaves and presheaves

A common theme in mathematics is to study spaces by describing them in terms of their
local properties. A manifold is a space which looks locally like Euclidean space; a complex
manifold is a space which looks locally like open sets in C"; an algebraic variety is a space
that looks locally like the zero set of a set of polynomials. Here it is clear that point set
topology alone is not enough to fully capture the essence of these three notions. However, in
each case, the spaces come equipped with a distinguished set of functions that adequately
define them, respectively the C'°-functions, the holomorphic functions, and the polynomials.

Sheaves provide a general framework for discussing such functions; they are objects that
satisfy basic axioms valid in each of the examples above. To explain what these axioms are,
let us consider the primary example of a sheaf: the sheaf of continuous maps on a topological
space X . By definition, X comes with a collection of ‘open sets’, and these encode what
it means for amap f: X — Y to another topological space Y to be continuous: for every
open U < Y, the set f~!(U) should be open in X. For two topological spaces X and Y,
we can define, for each open U < X, a set of continuous maps

CU,Y)={f:U—Y | fiscontinuous }.

Note that if V' < U is another open set, then the restriction f|y to V of a continuous function
f is again continuous, so we obtain a map

Puv: C(Uv Y) - C(V7Y) (3.1
f=flv.

Moreover, note that if W < V' < U, we can restrict to W by first restricting to V, and so

42
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3.1 Sheaves and presheaves 43

puw = pvw © puy- The collection of the sets C'(U, Y') together with their restriction maps
puv constitutes the sheaf of continuous maps from X to'Y .

An essential feature of continuity is that it is a local property; f is continuous if and only if
it is continuous in a neighbourhood of every point, and of course, two continuous maps that
are equal in a neighbourhood of every point, are (tautologically) equal everywhere. A second
property is that continuous functions can be glued together: given an open covering {U, };c1
of an open set U, and continuous functions f; € C (Ui7 Y) that agree on the intersections
U; n U; (formally: f;(x) = f;(x) for all i and j and all x € U; n Uj), we can patch the
maps f; together to form a continuous map f: U — Y, which satisfies f|y, = f; for each i;
we simply define f(x) = f;(x) for any i such that z € Uj.

Essentially, a sheaf on a topological space is a structure that encodes these properties. In
each of the examples above, there is a corresponding sheaf of C*-functions, respectively
holomorphic functions, and regular functions .

One may think of a sheaf as a collection of distinguished sets of functions, but they can
also be much more general mathematical objects, which in a certain sense behave as sets of
functions. The main aspect is that we want the distinguished properties to be preserved under
restrictions to open sets, that the objects are determined from their local properties, and that
‘gluing’ is allowed.

Presheaves

The concept of a sheaf may be defined for any topological space, and the theory is best
studied at this level of generality. We begin with the definition of a presheaf.

Definition 3.1 (Presheaf). Let X be a topological space. A presheaf of abelian groups
JF on X consists of the following two sets of data:

(i) For each open U < X, an abelian group F(U);

(ii) For each pair of nested opens V' < U, a map of groups

puv: F(U) — F(V);

These are called restriction maps and must satisfy the following two conditions:
(iii) For any open U < X, we have pyy = idru);
(iv) For any three nested open subsets W < V < U, one has pyy =
Pvw © puv-

We will usually write sy for pyy(s) when s € F(U). The elements of F(U) are usually
called sections (or sections over U). The notation I'(U, F) for the group F(U) is also
common usage; here I is the ‘global sections’-functor (it is functorial in both U and F).
The notion of a presheaf is not confined to presheaves of abelian groups. One may speak
about presheaves of sets, rings, vector spaces etc. Indeed, for any category C one may define
presheaves with values in C. The definition is essentially the same as for presheaves of abelian
groups, the only difference being that one requires that the F(U) are objects from C, and of
course, that restriction maps are all morphisms in C. We are certainly going to meet sheaves
with more structure than the mere structure of abelian groups, e.g. sheaves of rings, but they
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will usually have an underlying structure of abelian group, so we start with these. We will
also encounter sheaves of sets. Most of the results we establish for sheaves of abelian groups
can be proved for sheaves of sets as well, as long as they can be formulated in terms of sets,
and the proofs are essentially the same.

Sheaves

We are now ready to give the main definition of this chapter:

Definition 3.2 (Sheaf). A presheaf F is a sheaf if it satisfies the two conditions:

(1) (Locality axiom) Suppose U < X is an open set with an open covering
U = {U,}ier- If s,t € F(U) are sections such that

S

u. = tlu,

for all ¢, then s = ¢;
(ii) (Gluing axiom) If U and U are as in (i), and if s, € F(U;) is a collection
of sections that satisfy

Si|U;nU; = S5|UnU;

for all 4, j € I, then there exists a section s € F(U) so that s|y, = s;
for all 4.

These two axioms mirror the properties of continuous functions mentioned in the introduction.
The Locality axiom says that sections are uniquely determined from their restrictions to
smaller open sets. The Gluing axiom says that you are allowed to patch together local sections
to a global one, provided they agree on overlaps.

A presheaf G is a subpresheaf of a presheaf F if G(U) < F(U) for every open U < X,
and such that the restriction maps of G are the restrictons of those of F. If F and G are
sheaves, G is naturally called a subsheaf.

There is a convenient way of formulating the two sheaf axioms at once. For each open
cover U = {U,} of an open set U — X, there is a sequence

0 —— FU) 2= [[,FO) —2= 1., FU A U;), (3.2)

where the maps « and 3 are defined by the two assignments «(s) = (s, );, and S(s;) =
(s UinU; = SjlUinU; )i,j- Then F is a sheaf if and only if these sequences are exact. Indeed,
exactness at F(U) means that « is injective, i.e. that sy, = 0 for all 7 implies that s = 0
(this is equivalent to the Locality axiom). Exactness in the middle means that Ker 8 = Im o
that is, elements s; satisfying s;|v, ~v, — Sj’UimUj come from an element s € F(U) (the
Gluing axiom).

This reformulation is sometimes handy when proving that a given presheaf is a sheaf.
Moreover, since F(U) = Ker /3, we can often use it to compute F (U) if the F(U;)’s and
the 7 (U; n U;)’s are known.

Example 3.3 (The empty set). There is a subtle point about taking U to be the empty set
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3.1 Sheaves and presheaves 45

in the definition of a sheaf. If F is a sheaf, we are forced to define F () = 0. Indeed, the
empty set is covered by the empty open covering, and since the empty product equals 0, the
sheaf sequence (3.2) takes the form 0 — F () — 0 — 0.

Morphisms between (pre)sheaves

A morphism (or simply a map) of (pre)sheaves ¢: F — G is a collection of maps of abelian
groups ¢y : F(U) — G(U), one for each open set in X, which are required to be compatible
with the restriction maps. In other words, the following diagram commutes for each inclusion
V < U of open sets:

FU) —— 9U)

lpw lpuv (3.3)
FV) -2 g(v).

In this way, the sheaves of abelian groups on X form a category, AbShy, whose objects
are the sheaves and whose are morphisms the maps between them. The composition of two
maps of sheaves is defined in the obvious way, as the composition of the maps on sections.
Likewise, we have the category AbPrShy with the presheaves of abelian groups as objects
and morphisms the maps between them.

As usual, a map ¢ between two (pre)sheaves F and G is an isomorphism if it has a
two-sided inverse, i.e. amap ©: G — F such that ¢ o i) = idg and ¢y o ¢ = id£.

Examples

Example 3.4 (Continuous functions). Take X = R"™ and let C'(X, R) be the sheaf whose
sections over an open set U is the ring of continuous real valued functions on U, and whose
restriction maps pyry- are just the good old restriction of functions. Then C'(X, R) is a sheaf
of rings (functions can be added and multiplied), and both sheaf axioms are satisfied. Indeed,
any function f: X — R which restricts to zero on an open covering of X is the zero function.
Also, given continuous functions f;: U; — R that agree on the overlaps U; n U;, we can
form the continuous function f: U — R by setting f(z) = f;(x) for any ¢ such that x € U,.

In fact, the argument from the beginning of this chapter shows that for any two topological
spaces X and Y, the presheaf F(U) = C(U,Y') of continuous maps f: U — Y forms a
sheaf (they are sheaves of sets, because we cannot in general add or multiply maps).

Example 3.5 (Differential operators). Let X = R and let C" (X, R) be the sheaf of func-
tions f: U — R which are r times continuously differentiable (note that this is a sub-
sheaf of C'(X,R)). The differential operator D = d/dx defines a morphism of sheaves
D: C"(X,R) - C" X, R).

Example 3.6 (Holomorphic functions). For a second familiar example, let X < C be an open
set. On X one has the sheaf &7y of holomorphic functions. That is, for any open U < X,
the sections o7x (U) is the ring of complex differentiable functions on U. Just like in the
example above, one checks that &7y forms a sheaf. In fact, @7 is a subsheaf of the sheaf of
continuous functions U — C.
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One can relax the condition to get a larger sheaf J#% of meromorphic functions on X
(these are functions holomorphic on all of U except for a set of isolated points, where they
have poles). This sheaf contains 27y as a subsheaf, and the sections over an open U are the
meromorphic functions on U.

In a similar way, one can get smaller sheaves contained in 27 by imposing vanishing
conditions on the functions. For example if x € X is any point, one has the sheaf denoted m,,
of holomorphic functions vanishing at x. This is an example of an ideal sheaf: for each open
U c X, m,(U) is an ideal of the ring </x (U).

One of our main interests in this book will be the following:

Example 3.7 (Algebraic varieties). Let X be an algebraic variety (e.g. an irreducible algebraic
set in A" (k) or P"(k)) with the Zariski topology. For each open U — X, define the presheaf

Ox(U)={f:U— k| fisregular}

where f is said to be regular if for each point z € U there is an affine neighbourhood in
which f can be represented as a quotient of polynomials g/h with h(x) # 0.

This is a sheaf: locality holds, because if f: U — k restricts to the zero function on an
open covering, it is the zero function. If we are given regular functions f;: U; — k on the
members of an open overing {U;} of U that agree on the overlaps, they certainly glue to a
continuous function f: U — k; just define f: U — k by f(x) = fi(x) whenever x € U,.
This function f is also regular because it restricts to f; on U;, and f; is locally expressible as
g/h there.

/% can be

defined locally

..but the square roots do not glue

Example 3.8 (A presheaf which is not a sheaf). Let us continue the set-up in Example 3.6 to
exhibit an example of a presheaf which is not a sheaf. Let X = C — {0}, and let x denote
the sheaf of holomorphic functions. Inside <7y we find a subpresheaf given by

FU)={fedxU)|f=g*forsomege x(U)}.

This is not a sheaf, because the Gluing axiom fails: the function f(z) = z is holomorphic,
and has a holomorphic square root near any point x € X, but it is not possible to glue these
together to a global square root function 4/z on all of X. Note however, that the Locality
axiom holds, because F is a subpresheaf of the sheaf <7y (which does satisfy Locality).
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3.1 Sheaves and presheaves 47

Example 3.9 (Constant presheaves). For any space X and any abelian group A, one has the
constant presheaf defined by A(U) = A for any nonempty open set U (and A(F) = 0).

This is not a sheaf in general. For instance, if X = U; u U, is a disjoint union, and
A = Z, then any choice of integers a;, as € Z will give sections of A(U;) and A(U,), and
they automatically agree over the intersection, which is empty. But if a; # a», they cannot
be glued to an element in A(X) = Z. In fact, the constant presheaf is a sheaf if and only if
any two non-empty open subsets of X have non-empty intersection. Algebraic varieties with
the Zariski topology are examples of such spaces.

There is a quick fix for this. We can define the following sheaf A x by letting

Ax(U)={f:U — A| f is continuous }

where we give A the discrete topology. As before, we also must put Ax () = 0. For a
connected open set U, we then have Ax (U) = A. More generally, since f must be constant
on each connected component of U, it holds true that

Ax(U)= [T A (3.4)
mo(U)

where 7y (U) denotes the set of connected components of U.

The new presheaf A is called the constant sheaf on X with value A. It is a sheaf (e.g. by
the final paragraph of Example 3.4). That being said, the sheaf Ax is not quite worthy of its
name, as it is not quite constant.

Example 3.10 (Skyscraper sheaves). Let A be a group. For = € X, we can define a presheaf
A(x) by

A ifxel,

A U) =
<$)( ) 0  otherwise.

It is straightforward to check that this is a sheaf. It is called the skyscraper sheaf of A at x.

Exercises

Exercise 3.1.1. Let X be the set with two elements with the discrete topology. Find a presheaf
on X which is not a sheaf.

Exercise 3.1.2. In the notation of Example 3.6, the differential operator gives a map of sheaves
D: ofx — ofx, where as previously X < C is an open set. Show that the assignment

A U) ={fedx(U)|Df =0}

defines a subsheaf .7 of .@7x. Show that if U is a connected open subset of X, one has
&/ (U) = C. In general for a not necessarily connected set U, show that &/ (U) =[], 1, C
where the product is taken over the set 7o (U) of connected components of U. So, in fact, </
is the constant sheaf with value C.

Exercise 3.1.3. Let X < C be an open set, and assume that a4, . .., a, are distinct points
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in X and ny, ..., n, natural numbers. Define F(U) to be the set of those functions mero-
morphic in U, holomorphic away from the a;’s and having a pole order bounded by n; at a;.
Show that F is a sheaf of abelian groups. Is it a sheaf of rings?

Exercise 3.1.4 (The sheaf of homomorphisms). Given two presheaves F and G, we may
form a presheaf J#om x (F,G) by letting the sections over an open U be given by

Hom(F,G)(U) = Hom(F|y,Glv), (3.5)

and letting the restriction maps be the restrictions: if V' < U is another open set and
¢: Fly — G|u is a map, the restriction of ¢ to V' is simply the restriction ¢|y : Fl|y — G|y
Show that .#om (F, G) is a sheaf whenever G is a sheaf.

3.2 Stalks

Suppose we are given a presheaf F of abelian groups on a topological space X. With every
point x € X there is an associated abelian group F, called the stalk of F at x. The stalk
can be thought of as a way of keeping track of the behaviour of the sections of F in small
neighbourhoods around x (regardless of how they may differ on different open sets of X.)
The elements of F,. are called germs of sections or just germs, near x; they are essentially
the sections of F defined in some sufficiently small neighbourhood of z. The group F,, is
formally defined as the direct limit of the groups F(U) as U runs through the directed set of
open neighbourhoods U of z (ordered by inclusion)!:

F, = lim F(U).

zeU

More concretely, the group JF,, can be defined as follows. We begin with the disjoint union
[ 1,ci F(U) whose elements we index as pairs (s, U) where U is an open neighbourhood
of = and s is a section in F(U'). We want to identify sections that coincide near x; that is, we
declare (s,U) and (s’, U’) to be equivalent, and write (s, U) ~ (s’, U’), if there is an open
V < U n U’ with z € V such that s and s’ coincide on V; that is, if one has

S|V = SI|V.

This is clearly a reflexive and symmetric relation, and it is transitive as well: if (s, U) ~
(s',U’) and (s',U’") ~ (s”,U"), one may find open neighbourhoods V' < U n U’ and
V' < U n U” of x over which s and s, respectively s’ and s”, coincide. Clearly s and
s” then coincide over the intersection V' n V. The relation ~ is therefore an equivalence
relation.

Definition 3.11. The stalk F, at x € X is defined as the set of equivalence classes

F=][F@)/ ~.

zeU

In case F is a sheaf of abelian groups, the stalks JF, are all abelian groups. This is not

1 For background on direct limits, see Appendix A
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3.2 Stalks 49

a priori obvious, because sections over different open sets can not be added. However, if
(s,U) and (s',U’) are given, the restrictions s|y- and s|y to any open V' < U n U’ can be
added, and this suffices to define an abelian group structure on the stalks.

The germ of a section

For any neighbourhood U of = € X, there is a natural map F(U) — JF, sending a section
s to the equivalence class where the pair (s, U) belongs. This class is called the germ of s
at x, and a common notation for it is s,.. The map is a homomorphism of abelian groups
(rings, modules, or whatever) as one easily verifies. One has s, = (s|y ), for any other open
neighbourhood V' of x contained in U, or in other words, the following diagram commutes:

FU) —— F,
v / (3.6)
FV).

When working with sheaves and stalks, it is important to remember the three following
working principles. The two first follow right away from the definition, and the third is easily
deduced from the two first.

o The germ s, of a section s vanishes if and only if s vanishes on some neighbourhood of x,
i.e. there is an open neighbourhood U of = with s|; = 0.

o All elements of the stalk F,, are germs, i.e. they are all of the form s, for some section s
over some open neighbourhood of z.

e The sheaf F is the zero sheaf if and only if all stalks are zero, i.e. F, = 0 forall x € X.

Example 3.12. Let X = C, and let &7y be the sheaf of holomorphic functions in X . What
is the stalk .7y, at a point 2? Let f and g be two sections of .oy over a neighbourhood U of
the point  having the same germ at x; that is, two functions holomorphic in neighbourhoods
of . The fact that f and g both admit Taylor series expansions around x, implies that f = ¢
in the connected component containing z of the set where they both are defined. The stalk
x ., is therefore identified with the ring of power series that converge in a neighbourhood
of z.

A map ¢: F — G of presheaves induces for every point € X a map between the stalks

Indeed, one may send a pair (s, U) to the pair (¢ (s), U), and since ¢ behaves well with
respect to restrictions, this assignment is compatible with the equivalence relations; if (s, U)
and (', U’) are equivalent and s and s’ coincide on an open set V- < U n U’, the diagram
(3.3) gives

du(s)lv = dv(slv) = ov(s'lv) = duv(s)]v.

One checks that (¢ 0 1), = ¢, 01, and (idx), = idx,, so the assignments F +— F, and
¢ — ¢, define a functor from the category of sheaves to the category of abelian groups.
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Exercise 3.2.1. Let F be a sheaf and let s,t € F(U) be two sections. Show that s = t if
and only if s, = ¢, forevery x € U.

Exercise 3.2.2. Let ¢, : F — G be maps of presheaves and assume that G is a sheaf. Prove
that ¢ = 1) if and only if ¢ and %) induce the same maps on all stalks, i.e. ¢, = 1), for every
z € X. HINT: : Use Exercise 3.2.2.

3.3 The pushforward of a sheaf

If F is a sheaf on a topological space X, and f : X — Y is a continuous map, we can define
a sheaf fyF onY by defining

(f«F)U) = F(f70),
and the restriction maps F(f~'U) — F(f~'V) to be those coming from F.

Definition 3.13. The sheaf f,F is called the pushforward or the direct image of F.

It is straightforward to verify that f,.F is a sheaf and not merely a presheaf. Indeed, if
{U;} is an open covering of U, then { f ~'U;} is an open covering of f~'U. A set of gluing
data for f,JF and the given covering consists of sections s; € I'(U;, fo F) = I'(f~'U;, F)
that agree on the intersections. This means that they coincide in I'(U; n U, f.F), which
equals I'(f~'U; n f~'U;, F), and they may therefore be glued together to a section in
D(f~'U,F) = T(U, f4F), as F is a sheaf. The Locality axiom follows for f,J, because it
holds for F.

Example 3.14. Let ¢: {x} — X be the inclusion of a closed point in X. If A is the constant
sheaf of a group A on {x}, then ¢,.A is the skyscraper sheaf A(x) from Example 3.10 on
page 47.

The pushforward also depends functorially on the map f:

Lemma 3.15. If g: X — Y and f: Y — Z are continuous maps between topologi-
cal spaces, and F is a sheaf on X, one has

(f 0 9)sF = fu(gsF).

(This is indeed an equality, not merely an isomorphism.)
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Exercise 3.3.1. Prove Lemma 3.15.

Exercise 3.3.2. Denote by {:} a one point set. Let X be a topological space and f: X — {x}
be the one and only map. Show that f,F = I'(X,F) (where strictly speaking I'( X, F)
stands for the constant sheaf on {*} with value I'(X, F)).

Exercise 3.3.3. Let X be a topological space and x € X a point that is not necessarily closed.
Lete : {x} — X be the inclusion. Let A be the constant sheaf on {x} with value the group
A. Show that the stalks of ¢,.A are

A ifye {z};
0  otherwise.

(L*A)y =

3.4 Sheaves defined on a basis

Recall that a basis for the topology on X is a collection of open subsets & such that any
open set of X can be written as a union of members of Z. In many situations, it turns out to
be convenient to define a sheaf by saying what it should be over the open sets in a specific
basis for the topology on X . The following definition makes this more precise.

Definition 3.16. A %B-presheaf F consists of the following data:

(i) Foreach U € 4, an abelian group F(U);

(ii) For all pairs U > V with U and V from 4, a restriction map
As before, these are required to satisfy the relations pyy = idz) and pyw =
pvw © pyy for each sequence W < V < U of opens of &. A HB-sheaf is a
PB-presheaf satisfying the Locality and Gluing axioms for open sets in 2.

Since the intersections V' n V’ of two sets V, V' € £ need not lie in %, we need to
clarify what we mean in the Gluing axiom. Given a cover of U € % by subsets U; € A. If
s; € F(U;) are sections such that s;|y, = s;|v for every 4, j and every V < U; n U, such
that V' € 4, then the s; should glue together to an element in s € F(U).

The whole point with the notion of Z-sheaves is expressed in the following proposition.
This construction will be used when we define the structure sheaf in Chapter 5.

Proposition 3.17. Let X be a topological space and let 2 be a basis for the topology
on X. Then:
(i) Every %B-sheaf I extends to a sheaf F on X, which is unique up to
unique isomorphism (which is the identity on Jy);
(ii) If ¢g: F' — G is a morphism of Z-sheaves, then ¢, extends uniquely
to a morphism ¢: F — G between the corresponding sheaves;
(iii) The stalk of the extended sheaf F at a point = can be computed as
F.= lim F(U).

UeAB, xeU
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Proof Let U — X be an open set. The basic idea is to write U as a union of opens
U= U 1 Vi» Where V; € 2, and consider the set of ‘compatible sections’ (s;);er, that is,
sections s; € F'(V;) such that s;|w = s;|w whenever W is contained in V; n V.

To define the group F(U) without reference to a choice of covering V;, we consider all
possible coverings at once, and define F(U) as the inverse limit of the £'(V'), when V' runs
through the ordered set Z;; of members of Z contained in U,

F(U) = lm F(V),

Bu

Concretely, an element of F(U) is given by a collection (sy )y, one for each V' € Ay, such
that whenever W < V, we have sy |y = sw.

The claimed properties follow from general functorial properties of the inverse limit. We
begin with establishing (i). Observe that if the open set U is in %, it will be a largest element
in #y, and consequently we have the first equality in

F(U) =lm F(V) = F(U).

By

Hence F coincides with F' on open sets in 4.

Secondly, if U' < U, clearly By < Ay, and because inverse limits are functorial in the
indexing set, we obtain maps F(U) — F(U’), which serve as restriction maps.

Let us check that F is a sheaf. Locality: Suppose s = (sy) € lim a0 F (V) is a collection

of compatible elements and {U, },c; is a covering of U such that s|;;, = 0 for every 7. Let
V' € Ay be any subset. Since 4 is a basis, we can find a covering V of V' consisting of open
sets B € 4 such that each B is contained in some U;. Now, s|y, = 0 means that sz = 0
forevery B < U, and so sy|p = sp = 0 for every B € V. In particular, by Locality for F,
we get that syy = 0. Since this happens for any V', we get that s = 0 as well.

Gluing: Let {U; }ic; be a cover of U and let s* € F(U;) be a collection of compatible
elements so that s'|y, v, = 8’|v,~v, for all 4, j. This means that si; = s for every
B c U, nU;in B.Fix V € % contained in U and let V be a cover of V' by open sets
B € % so that B c U; for some i. First we claim that the elements s € F(B) for Be V
glue to an element sy, € F(V'). So let B € V, and suppose B is contained in U; n B, and
let sy, = sﬁ'/. We note that this is independent of i, because if V' is also contained in U ;, then
VcU,nU;and 3{'/ = si,, by the above. Now for the gluing: f W < V AV’ and V < U,
V' c U, then

$V|W = S%/V = S{/V = SV/|W.

Hence, since F' is a Z-sheaf, the elements sy glue to an element sp € F(B).

These elements are compatible, so it makes sense to define s = (sp) € lim F'(B) =
F(U). 1t is clear that s|y, = s; for every i. The presheaf F therefore satisfies the Gluing
axiom.

The claim (iii) follow because we may use open sets from 28 when computing stalks.

Proof of (ii): saying ¢g: F© — G is a map of HB-sheaves amounts to saying that the
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3.4 Sheaves defined on a basis 53

following diagram commutes for each pair V' < V of opens in %:

]:(V) (¢0)v G(V)

| |

FV') — = G(V")

o)y’
Taking the inverse limit over all open subsets V' from % contained in U, we obtain a natural
map F(U) — G(U) which extends ¢g. These maps are moreover compatible with the
restriction maps, so we get a map of sheaves ¢ : F — G. Once again this must be unique, as
it is completely determined by ¢ on stalks. 0

In the special case when B n B’ € & for every B, B’ € A, a 8-presheaf F' is a #-sheaf
if and only if the following sequence

0— F(U) — [[F(U:) — [[ FWU:nU)) (3.7)
el i,7€l
is exact for every U € 2 and covering {U, },c; with U; € A.
Exercise 3.4.1. Let F and G be two sheaves on a space X and assume there is an open
covering U of X and isomorphisms 0y : F|y ~ G|y that match on intersections; i.e.

Ov|lv~vr = Our|u~vr. Show that there is an isomorphism 6: F ~ G extending the 0;’s.
HINT: F and G define coinciding B-sheaves.
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4

Affine Schemes

In this chapter, we make one more step towards the general definition of a scheme, by defining
affine schemes. Affine schemes serve as the building blocks for schemes in general, as every
scheme has a open covering of affine schemes, and understanding the mechanics of affine
schemes is essential for understanding schemes in general.

As any scheme, an affine scheme has two components: a topological space and a sheaf of
rings. For the topological part, we use the spectrum of a ring Spec A, and for the sheaf of
rings, we use the structure sheaf, which define in Section 4.1. The definition of the structure
sheaf is inspired by the sheaf of regular functions on an affine variety, so before giving the
main definition, let us revisit the analogous concept in the setting of affine varieties.

Let A = A(X) be the coordinate ring of an affine variety X, that is, A is the ring of
globally defined regular functions on X . The fraction field K of A is the field of rational
functions on X, i.e. the functions which are regular in some open subset U < X. For each
open set U, the set of functions which are regular in each point of U forms subring Ox (U) of
K.If V < U is an open contained in U, the ring of regular functions Ox (V') in V, contains
the ring O x (U) of those regular in the bigger set U. The restriction map Ox (U) — Ox (V)
is nothing but the inclusion Ox (U) < Ox (V); it simply considers functions in Ox (U) to
liein Ox (V).

Regular functions on the distinguished open set D(f) = {z € X | f(x) # 0} are
allowed to have powers of f in the denominator, and so they lie in the subring Ay < K of
elements of the form a f ~" with @ € A and n a non-negative integer. As explained in (2.4),
if D(g) is another distinguished open set with D(g) < D(f), one may write g™ = cf for
some ¢ € A and some suitable m € N, and hence there is an inclusion Ay < A, (since
f~' = cg™™). Moreover, if U < X is any subset, we have

Ox(U)= (] Ox(D(f)) (4.1)

D(f)cU

If one tries to carry out the above construction for a general ring A, one quickly runs
into a few obstacles. For instance, there is no natural field K in which the rings Ox (U ) lie
as subrings. More critically, the localization maps Ay — A, may fail to be injective. This
happens already in the case X = Spec A with A = k[z, y]/(zy), which corresponds to the
union of x-axis and the y-axis in the affine plane. Since xy = 0, the element & maps to 0 via
the localization map A — A,,. Geometrically, this reflects the fact that the regular function
x becomes zero over the open set D(y) where y # 0, and similarly, the regular function y
vanishes on D(z). So this is by no means a big mystery; it naturally appears once we allow
reducible spaces into the mix.

54
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4.1 The structure sheaf on the spectrum of a ring 55

4.1 The structure sheaf on the spectrum of a ring

Motivated by the above discussion, it makes sense to define the sections of the structure
sheaf over D(f) to be the localized ring A . There is a small subtlety here, because different
f’s might give identical D(f)’s, and to avoid choices, we prefer to use a more canonical
localization. Still, in the end, Ogpec 4(D(f)) will be isomorphic to A;.

Let Z be the collection of distinguished open sets D(f). For U € £, we define the
multiplicative system

Sy={seA|s¢pforallpe U} (4.2)
={seA|s(p) #0forallpe U}

If U o V are two distinguished opens, then Sy < Sy, so there is a canonical localization
map

puv i SgtA — SyTA (4.3)

With these ring maps, we have defined a Z-presheaf of rings on Spec A. We will show below
that it is in fact a Z-sheaf.

Lemma 4.1. For U = D(f), there is a canonical isomorphism

S;tA = Aj.

For V. = D(g) < D(f), the map pyy is identified with the localization map

Prg Ay = Ay
Proof Note that by assumption, f € Sy, so there is a canonical localization map

T:Ap —> SptA.

The main observation is that for an element s € Sy, we have s ¢ p for every p € D(f), so
D(f) = D(s) This is equivalent to A/(f) = +/(s), so one may write f* = cs for some
ce Aandn € N,

T is injective: Suppose that a f =™ € Ay maps to zero in SB%f)A. This means that sa = 0
for some s € Sp(y). But then f"a = csa = 0, and therefore @ = 0 in Ay.

T is surjective: take any as~! in ngf)A and write itas as™ = ca(f")™' = caf™". O

The notation S, % f)A will only be present in the definition of 0. From now on, we will
write O(D(f)) = Ay, bearing in mind that it is defined in terms of a canonical localization.

Proposition 4.2. O is a A-sheaf of rings.

Proof Let D(f) e % andlet D(f) = J,.; D(f;) be a covering with open sets in %. We
need to show that the #-sheaf sequence (3.7)

0— 0(D(f) — [[OW(1)) — [[OD(:1)

is exact. By Lemma 2.23, we may reduce this covering to a finite one, so that D( f) is covered
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by the sets D(fo), ..., D(f). It is then enough to show that the following sequence is exact

« s B s
0 Af Hi:1 Afi ’ 1_.[1'73':1 Afifj (4.4)
where o) = <fan,...,f‘.1n) and
ay ag a; a;
ﬁ<n ) = - — o7 (4.5)
1 fsng i,j fz ' fj

We will show that this is exact by a series of reductions. As a sequence of A-modules, (4.4)
is exact if and only if it is exact after being localized at every prime ideal p € Spec A. Using
the isomorphisms (Ay,), = (Ap)y, and (Ay,f,)p = (Ap) 7. s, the localized sequence takes
the form

o n B n
0 Ap Hi:O(AP)fi — Hi,j=0(AP)f1‘,fj'

Up to reordering the indexes, we may assume that p € D(f), i.e. that f; is a unit in A,.
Replacing A by A, we reduce to showing that (4.6) below is exact when f; is a unit.

0 —— A" " Ay 2= 10 Ay, (4.6)

Now the injectivity of « is clear, as the first component of « is the localization map p;: A —
Ay = A, which is an isomorphism, as f; is a unit. Moreover, given a sequence (a;) €
Ker 5 with $(a;) = 0, it holds that a; = a; in Ay y, ~ Ay, for ¢ > i. We deduce that
a = p;'(a;) € Ais an element satisfying a(a) = (a;). Therefore Ker 3 = Im c, and the
sequence is exact. O

Using Proposition 3.17 on page 51 we may now make the following definition:

Definition 4.3. The structure sheaf Ogpec 4 on Spec A is the unique sheaf extending
the %-sheaf O.

The proof above tells us how to compute Ogpe. 4(U) for any open set: cover U by finitely
many distinguished opens D(f1), ..., D(fs); then the sheaf sequence (3.2) shows that
Ospec 4(U) can be identified with the group

a; - a _ a; . -
Ospec a(U) = (f;“) € HAfi ‘ i = Fj] in Ay, s, forall i, j

That being said, we will basically never need to know the group Ogpec 4(U) for U other than
a distinguished open set U = D( f). All that matters is that Ogc 4 is the unique sheaf that
satisfies the two main properties we want:
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4.1 The structure sheaf on the spectrum of a ring 57

Proposition 4.4 (Key properties of the structure sheaf). The sheaf Ogpc. 4 on
Spec A as defined above is a sheaf of rings satisfying the following two properties.
(i) Sections over distinguished opens:

F(D(f)v OSpecA) = Af
for every f € A,
(i1) Stalks:
OSpecA,a: = AP?

where p — A is the prime ideal corresponding to x € Spec A.
In particular, it holds that I'(Spec A, Ogpec 4) = A.

Proof We defined Ogp.. 4 so that the first property would hold. For the second, we may
compute the stalk using distinguished open sets:

lim O(D(f) = lim Ay = A,.
zeD(f) fép

(See also Example A.6 on page 414.) The last statement follows by taking f = 1in (i). [

Examples

Example 4.5 (Spectrum of a field). For a field K, the structure sheaf Ogy,. i is a constant
sheaf with the value K at the single point of Spec K.

Example 4.6. The structure sheaf of SpecZ satisfies Ogpecz(D(n)) = Z[+] for each
natural number 7. The stalks of Ogp..7 at the closed point (p) is equal to Ospecz,, = ZLp)
and at the generic point the stalk equals Ogpecz,(0) = Z(o) = Q.

Example 4.7. Let X = Spec C[t]. Then the stalk of Ox at the generic point 7 = (0) is
equal to Ox ,, = C(t). Each closed point p € X corresponds to a maximal ideal (¢ — a), and
the stalk of Ox at p is equal to Ox , = C[t];_q).

Example 4.8. We continue Example 2.10 about spectra of DVR’s. The spectrum X =
Spec A = {x,n} of a DVR A has three open sets (J, 17, and X, and the structure sheaf takes
the following values at these opens:

OX(@):O’ OX(X):Av OX(n):Aa::Ka

where K denotes the fraction field of A. The stalks are given by Ox , = Ay = A and
OXJ, = A(O) =K.

Example 4.9 (Disconnected spectra). The structure sheaf may be used to prove that a ring
A whose spectrum Spec A is not connected, decomposes as the direct product of two rings.
Suppose X = U; u U,, where U; and U, are open and closed subsets with U; n Us = .
The sheaf exact sequence takes the form

0 —— OX(X) =4 — OX(UI) X OX(UQ) —_— OX(UI N Uz) =0,
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58 Affine Schemes

and we deduce that A ~ Ox (U;) x Ox(Us).

Example 4.10. It is worthwhile to consider the special case when A is an integral domain.
Then all the localizations A are subrings of the fraction field /& of A, and the localization
maps Ay — A, for D(g) < D(f) are simply inclusions of subrings of K. The intuitive
picture from varieties is then correct: we may think of elements in Ogpe. 4(U) simply as
fractions a/b in K and

Ospeca(U) = [ 4p < K (4.7)

peU

In the general case, the intersection (4.7) is replaced by an inverse limit (Exercise 4.1.1).

Exercise 4.1.1. Show that the sections of Ogp.. 4 over an open set U — X = Spec A, are
given by the inverse limit of the localizations

Ox(U)= lm O(D(f)) = lm A, (48)
D(f)cU D(f)cU

Exercise 4.1.2 (A-module structure on Ogpec 4(U)). Let a € A, show that there is a map of
sheaves [a]: Ospec 4 — Ospec 4, inducing multiplication by a both on Ogpec a(D(f)) =
Ay and on the stalks A,. HINT: For each distinguished open subset D( f) of Spec A define
[a]: Ospec a(D(f)) = Ap = Ospec a(D(f)) = Ay as the multiplication by a map; verify
that this is a map of Z-sheaves.

4.2 Locally ringed spaces

We would like to define a scheme to be a space which is ‘locally affine’; that is, one that looks
like the spectrum of a ring near each point. To be able to make such a definition precise, we
need a suitable category of spaces to work with. To this end, we use the two pieces of data we
have in the affine case: the topological space Spec A together with its sheaf of rings Ogpec 4.

Definition 4.11 (Locally ringed spaces). A locally ringed space is a pair (X, Ox)
where X is a topological space and Oy is a sheaf of rings on X such that all the
stalks Ox , are local rings.

To make this into a category, we need to specify what a morphism between two locally ringed
spaces is. Reflecting the above definition, a morphism betwen (X, Ox ) and (Y, Oy ) should
have two components, one map between the underlying topological spaces X and Y and one
on the level of sheaves. Note that it does not make sense to talk about morphisms Oy — Oy,
as these sheaves are defined on different spaces. Instead, once a continuous map f: X — Y
is specified, the sheaf map should be a map Oy — f,Ox of sheaves of rings on Y. This
means that that for all open subsets U < Y, one has to specify ring maps

fh Oy (U) — Ox(f7'U),
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4.2 Locally ringed spaces 59

compatible with the restriction maps; that is, such that the following diagrams commute:

O () — s O (F10)

pwl lpflu,ﬂv (4.9)

Oy(V) T Ox(f_1V).

The intuition again comes from the theory of varieties, where we would like to think of f* as
a way of ‘pulling back’ functions on Y to X . If X and Y are affine varieties with sheaves of
regular functions Ox and Oy (as defined in Chapter 1), and f : X — Y is a polynomial
map, there is an induced morphism f*: A(Y) — A(X) which sends a regular function
h:Y — ktoho f: X — k.If his only regular on some open set U < Y, we may still
define a pullback f#(h) = h o f, but this is only regular on f~*(U). In other words, f*(h)
defines a section in f,Ox (U) = Ox(f'U).
If x € X is a point, there is also an induced map between the localizations

(4.10)

T x

[ AQY ), — A(X),.

where y = f(x). It sends a rational function g defined at y = f(x), to g o f, which is regular
at x. Moreover, if h vanishes at y, the corresponding pullback f ﬁ(h) = h o f vanishes at x.
This means that fg maps the maximal ideal m,, into m,; or in other words, it is a map of local
rings.

For a general locally ringed space, we do not have the luxury of speaking about functions
into some fixed field k, so the ring maps f[ﬁ] have to be specified as part of the data. We do
not allow these to be completely arbitrary ring maps; there is a last condition saying that the
induced map on stalks should have similar properties as the map (4.10).

First of all, for a point € X and y = f(z), the map in question is a map of rings

fi: Oy, — Ox., 4.11)

which is defined as follows: pick an element from Oy, and represent it as the germ s, of a
section s € Oy (U) over some open set U < Y. Then the section t = f*(s) is a section of
Ox(f*U). We define f¥(s) to be the germ of this section at , i.e. f*(s,) = t, € Ox.,.
This makes sense because f~1U contains z. Moreover, by the properties of direct limits, it is
clear that this does not depend on the choice of U containing x.

The requirement we make on f* is that the induced maps on stalks (4.11) is a map of local
rings, i.e., f* maps the maximal ideal m,, into the maximal ideal m,. Equivalently, h € Oy,
satisfies g(y) = 0 in k(y) if and only if f#(h)(z) = 0 in k(z). This is a natural choice in
light of (4.10), but it is in no way automatic when starting from a general map of sheaves
Oy — f +Ox.
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Definition 4.12 (Morphisms of locally ringed spaces). A morphism, or simply map,
of locally ringed spaces, is a pair

(fvfﬁ>: (X,Ox) - (Y:OY)

where
(1) f: X — Y is acontinuous map;
(i) f*: Oy — f.Ox is a map of sheaves of rings on Y, so that for each
x € X, withy = f(x) the induced map on stalks

fﬁi Oy,y = OX,:c

is a map of local rings; that is, f#(m,)  m,.

A second reason to include the requirement (ii) will appear in the proof of Proposition 4.17
below. Here is an example illustrating what can go wrong without it:

Example 4.13. Let X = SpecC(¢) and Y = A{ = Spec C[t]. There is a natural map
f: X — Y induced by the inclusion C[t] < C(t). Note that on the level of topological
spaces, X consists of a single point v, and f maps v to the generic point 1 of Y. The
corresponding stalk map fg : Oy, — Ox,, is the identity map

Oy, = Clt]o) = C(t) — C(t) = Ox.,,

which is certainly a map of local rings.

On the other hand, we could try to define a strange map g: X — Y by sending v to some
other point y € A} corresponding to a maximal ideal (t — a) < C[¢t]. The map g is clearly
continuous, because X consists of a single point. However, the induced map

Oy’y = C[t](t,a) i (C(t) = OX,I/

sends the maximal ideal to the unit ideal in C(t), so it is not a map of locally ringed spaces.
This is as it should be, as the function t — a vanishes at y € Y, but its pullback, the image of
t — ain Ox ,, does not vanish at v € X. (In fact, it maps to itself via the evaluation map
Ox ., — k(v) = C(t)).

Maps between locally ringed spaces can be composed: given (f, f*): (X,0x) —
(Y,0y) and (g, g%): (Y,Oy) — (Z,0y), the map X — Z given by the composition
g o f on the level of topological spaces, and for the sheaf map we define (g o f )ﬁ over an
open set U < Z as the composition

04(U) —~ Oy (g1U) —L Ox((go £)~'U) = (g o £)Ox.

An isomorphism of locally ringed spaces is a morphism f: X — Y which admits an
inverse morphism. In other words, there is a morphism g: Y — X suchthat g o f = idx
and f o g = idy. In more concrete terms, this boils down to f being a homeomorphism such
that f%: Oy (U) — Ox(f~'U) is a ring isomorphism for every open U < Y.
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4.2 Locally ringed spaces 61

Prime spectra are locally ringed spaces

For a ring A, the pair (Spec A, Ospec 4) is by design a locally ringed space. Indeed, the
stalks of Ogpec 4 are localizations of A at prime ideals so they are local rings. In this section,
we show that ring maps induce morphisms of locally ringed spaces.

Recall that a map of rings ¢: A — B induces a continuous map f: Spec B — Spec A
that sends p to ¢! (p). This will be the topological part of the induced map on locally ringed

spaces

Spec(<f>) = (f7 fﬁ) : (Spec B, OSpecB) I (Spec A7 OSpecA) (412)
To specify the map f* between the sheaves Ospec 4 and f,Ogpec 4, We use the HB-sheaf
construction.

Consider a distinguished open set D(g) in Spec A. We have Ogpec a(D(g)) = A,. By
Proposition 2.27 (ii), the inverse image of D(g) in Spec A equals D(¢(g)). Therefore, we
have

F+Ospec 5(D(9)) = Ospec 5(f ' D(9)) = Ospec 5(D($(9))) = Buy(q)-
Now, there is a canonical localization map
Ay — By(y)
a/g" — ¢(a)/d(g)" (4.13)

and this will be the desired ring map

qu(g): OSpecA(D(g)) - f*OSpecB(D(g))-

In this way, we obtain a map of Z-sheaves, which then extends to a map of sheaves by
Proposition 3.17 (ii). To summarize, we have:

Proposition 4.14. Any map of rings ¢: A — B induces a map of locally ringed
spaces

Spec(¢) = <f7 fﬁ) : (Spec B7 OSpecB) = (Spec Aa OSpec A)v

which satisfies the following properties:
(i) (Distinguished open sets) The map flﬁj(g) is the natural localization map

Ospec a(D(9)) = Ay —— By(g) = Ospec 5(D(¢(9))

given by the assignment (4.13).
(ii) (Stalks) The map induced by f* between stalks at p € Spec B and
¢~ (p), is the localization map Ag-1(,) — By, of ¢.

Proof The first point is just a rephrasing of the definition of f¥, and the second follows from
Proposition 4.4 since we may use distinguished opens to compute stalks. Indeed, the map in
(4.11) is a limit of localization maps of the form

A

g B¢(9) Bpa
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62 Affine Schemes

where g € A runs over elements such that ¢~ (p) € D(g). These maps send a/s € A, to
¢(a)/¢(s) € By, and in the limit we get the localization map A4-1(¢,) — B. O

The proposition reflects the statements in Proposition 4.4 on page 57 about sections
and stalks of the structure sheaf Ogj,ec 4. To summarize, for affine schemes, both Ox and
f*: Oy — f.Ox are determined by the localizations of the rings involved.

Example 4.15 (The cuspidal cubic). Let k be an algebraically closed field, and let A =
k[u,v]/(u* — v*). The assignments u — t%, v — t* define a ring map

o A — k[t],
and hence a morphism of locally ringed spaces
f: A; — Spec A.

We claim that this is a homeomorphism, but not an isomorphism.

To see this, note that f sends a maximal ideal (f — a) € Spec k[¢] to the maximal ideal
(u—a? v — a®) € Spec A. So f is clearly injective on k-points. By the Nullstellensatz
every maximal ideal of A is of the form (u — o, v — 3), and since v> — u?® vanishes at the
corresponding point, setting a = Sa~!, we find « = a? and 3 = a?. Therefore, it is also
surjective.

Hence, since f maps the generic point of A}, to the generic point of Spec A, the map
f is a bijection. Each proper closed subset of A} is finite, so f is closed, and hence a
homeomorphism.

To see that f is not an isomorphism, let z € A}, be the origin corresponding to the ideal (t).
Then f(z) is given by the ideal (u,v), and the induced stalk map f£ : Ox f(a) = Ou1 4 i
equal to the map of localizations

(ku,v]/(u* - v?’))(u,v) — k[t] - (4.14)

This map is not surjective (¢ is not in the image), and hence f is not an isomorphism. This
moreover confirms our intuition that the cuspidal cubic is not even ’locally isomorphic’ to
A} near the origin.

Exercise 4.2.1. Show that if f: X — Y is a morphism of locally ringed spaces, the stalk
maps f?: Oy, ;) — Ox,, induce maps between the residue fields & ( f(x)) and k(). What
happens when X and Y are affine varieties?
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4.3 Affine schemes

‘We have now come to the definition of an affine scheme.

Definition 4.16. An affine scheme is a locally ringed space (X, Ox) which is iso-
morphic to (Spec A, Ogpec 4) for some ring A.

Affine schemes form a category AffSch, a subcategory of the category of locally ringed
spaces. This category is closely linked to the category of rings, as we will see next.

In (4.12) we defined, for each ring map ¢ : A — B, a map Spec(¢) of locally ringed
spaces between Spec B and Spec A. Note that we have Spec ¢ o Spec = Spec) o ¢,
whenever ¢ and 1) are composable ring maps. This follows by the identity ¢~ 1)~ 1p =
(tb¢)~'p. And of course it holds that Specids = idgpec 4. This shows that the assignment
A +— Spec(A) defines a contravariant functor from the category of rings Rings to the
category of affine schemes AffSch.

There is also a contravariant functor I" going the other way: taking global sections of
the structure sheaf O gives us a ring Ox (X). Furthermore, a map of affine schemes
f: X — Y comes equipped with a map of sheaves f*: Oy — f,Ox, which on global
sections yields a map

fir: Oy (Y) — (Y, f2O0x) = Ox(X).
We therefore have a canonical ‘global section map’
I': HOmAffsch (X, Y) — HomRings(Oy (Y), OX (X)) (4 15)

which sends a map (f, f*) to the ring map f%: Oy (Y) — Ox(X). It is functorial in the

sense that (g o f)uZ = ff, o g% whenever f: X — Y and g: Y — Z are two scheme maps.

Proposition 4.17. If X and Y are affine schemes, the map I" in (4.15) is bijective.

Proof 'We may assume that X = Spec B and Y = Spec A, and then A = Oy (Y) and
B = 0x(X).

If $: A — B is a map of rings, it follows from Proposition 4.14 (i), that I'(Spec ¢) = ¢.
To establish the bijection, we just need to show that Spec (I'(f)) = f for a given a morphism
f: X —>Y. Welet¢ =T(f): A— B, thatis, ¢ = f.

Let x € X be a point which corresponds to the prime ideal ¢ — B, and let p < A be the
prime ideal corresponding to f(x) € Y. The sheaf map f* gives the following commutative

diagram
i
Oy (Y) —— Ox(X) A—%,B
l £t l l l
Oyvfz) — Oxz Ay 7 B,

We claim that (A — p) < B — q. Indeed, B — q is exactly the subset of elements in B that
become invertible in B,,. By the diagram, this certainly happens to elements from ¢(A — p),
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because elements of A — p become invertible in A,. Hence we have ¢(A —p) € B —q,
and consequently, ¢~!(q) < p.

Next we use the assumption that the stalk map f# is a map of local rings, so that f(pA,)
qB,. By the diagram, this implies that ¢(p) < q. We conclude that ¢~ *(q) = p, and so
Spec ¢ induces the same map as f on the underlying topological spaces.

Finally, we have two morphisms of sheaves Oy — f,Ox, one induced by f and one
induced by Spec ¢. For each , the induced stalk maps f* and (Spec ¢)¥, are both equal to
the map A, — B, above, and from this it follows as well that f* = (Spec ¢)*, since maps
of sheaves are detemined on stalks (see Exercise 3.2.2 on page 50). 0

We have established the following important theorem, which is the scheme version of the
Main Theorem of Algebraic Sets (Theorem 1.19 on page 10).

Theorem 4.18 (Main Theorem for Affine Schemes). The two functors Spec and I’
are up to equivalence mutually inverse and give an equivalence between the categories
Rings®” and AffSch.

Proof Note that there is an equality I" o Spec = idgings. Conversely, for each X, there is
unique map Spec Ox (X) — X corresponding to the identity in Homgings (O x (X ), Ox (X)).
Therefore Spec o I is equivalent to id agsch. O

In summary, affine schemes X are completely characterized by their rings of global sections
Ox(X), and morphisms between affine schemes X — Y are in bijective correspondence
with ring homomorphisms Oy (Y) — Ox(X). In particular, a map f between two affine
schemes is an isomorphism if and only if the corresponding ring map is an isomorphism.

Example 4.19. Maps between affine schemes can very well have a homeomorphism as
underlying topological map without being isomorphisms. The easiest examples are the
spectra of fields: being sets with one element, they are all homeomorphic, but two are
isomorphic as schemes only when the fields are isomorphic. For another example, closer to
the world of varieties, see Example 4.15.

Example 4.20. There is one and only one morphism of schemes Spec Z — Spec Z. Indeed,
ring maps are required to send 1 to 1, so there is only one ring map Z — Z.

Example 4.21 (Maps to A' and Ox (X)). If A is aring, then there is a bijection between
ring maps ¢ : Z[t] — A and elements of A (¢ is determined uniquely by the image of ¢).
Therefore, by Theorem 4.18

Homsch(X, Al) = Ox(X)
In clear text: an element of Ox (X)) is the same thing as a map
f: X — Al

Thus the global sections the structure sheaf Oy do indeed correspond to some sort of
‘regular functions’ on X — not into a field k — but into the affine line over Z. We will see a
generalization of this for general schemes in Example 6.8.
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4.4 The sheaf associated to an A-module

The construction of the structure sheaf Ogp,c. 4 Works more generally. For each A-module
M there is a parallel construction of a sheaf M on Spec A. Over the distinguished open sets
D(f), the sections of M are given by

~

M(D(f)) = My,

and the restriction maps are the canonical localization maps described as follows: when
D(g) < D(f), it holds true that ¢" = af for some a € A and some n € N, and the
canonical localization map M; — M, sends bf ~" to a"bg~"". The same proof as for the
structure sheaf (Proposition 4.2 on page 55), but with obvious modifications, shows that
this is actually a Z-sheaf. Hence it gives rise to a unique sheaf on Spec A, which we will
continue to denote by M.

This tilde-construction is functorial in M. For any A-linear map ¢: M — N, there
is an induced map 5: M — N. Indeed, according to Proposition 3.17 to define gg it
suffices to say what ut should be over each distinguished open set D( f). Here we simply
define dp(j): M (D(f)) — N(D(f)) to be the induced map between the localizations
¢p: My — Ny, given by mf~" — ¢(m)f~". This is a map of H-sheaves because the
following diagram commutes for each f and g with D(g) < D(f):

L

Mq L Nq

Indeed, writing g" = af as above, and denoting the two localization maps respectively by
tys and ¢, we find:

Pgtar(mf™") = gg(a"mg™") = a"¢p(m)g™™" = in(¢(m)f™7) = ingp(m).

Clearly one has m = 5 o 1;, whenever ¢ and v are composable A-linear maps and
consequently the ‘tilde-operation’ is a covariant functor from the category Mod of A-
modules to the category AbShgp.. 4 of sheaves on X = Spec A.

The sheaves M are rather special sheaves, and they play an important role in algebraic
geometry. In particular, they are what one calls O x-modules. For each open set U < X, the
group M (U) is an Ox (U)-module in a natural way, and the restriction maps are module
homomorphisms in the sense that if V < U, it holds that as|y, = a|y - s|y, where s € M (U)
and a € Ox(U). This is at least clear for the distinguished open sets U = D(f): then
M(D(f)) = M 7 is a natural module over Ogpec 4(D(f)) = A, and the restrictions are
just localization maps. For a general U, it follows from the fundamental sequence for M U)
as described in part (iii) of Proposition 4.22 below.

The three main properties of the sheaf M are listed in the proposition that follows.
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Proposition 4.22. Let A be aring and M an A-module. The sheaf M on Spec A
has the following properties.
(i) Stalks: let z € Spec A be a point whose corresponding prime ideal is p.
Then the stalk M, of M at x € X is
Mm = M,;
(ii) Sections over distinguished open sets: if f € A, one has
I'(D(f), M) = M.

In particular, I'(Spec A, ]\7) = M,;

(iii) Sections over arbitrary open sets: for any open subset U of Spec A
covered by the distinguished open sets {D(f;)}ics, there is an exact
sequence

0 —— F(Ua ]Tj) — Hz Mfi i) Hi,j Mfifj7

where [ is given by

mq mg m; m;
[ i i i

1 J

Proof The properties in the proposition are completely analogous to the ones in Proposi-
tion 4.4 on page 57 about the structure sheaf Og,e. 4, and the proofs are very similar.

The first property follows because the stalks ]\795 and the localizations M, are direct limits
of the same modules over the same directed system; the second follows from the way we
defined M , and the third follows from the sheaf exact sequence (3.2). I

Example 4.23. Let A be aring and let [ < A be an ideal. Then I is an ideal sheafin Ogpec 4,

~

i.e. for each U < Spec A, the space of sections I (U) is an ideal of Ox (U). For U = D(f),

~

it holds that I (D(f)) simply is the ideal A in A;.

Example 4.24. Let A = k[u,v]/(u? + v* — 1) and X = Spec A. Consider the A-module
M given by the quotient

M = Ae; @ Aey/(ue; + vey).

Let us determine stalk M at the point x € X corresponding to the prime ideal p = (u,v —
1).Since v is invertible in A,, we can replace the relation ue; + vey = v(uv*161 + es) by
uv~le; + ey, which allows us to eliminate the factor Apes. We find:

]\71 =M, = Aye; @ Apea/(uv ey + €3) ~ Ay = Ox .

Similar arguments show that (M), ~ A, for every p, indeed, given p, either u ¢ p or v ¢ p.
Therefore M and Oy have the same stalks at every point.
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5

Schemes in general

Finally, we can give the definition of a scheme:

Definition 5.1 (Schemes). A scheme is a locally ringed space (X, Ox) which is
locally isomorphic to an affine scheme. In other words, there is an open cover {Ui}ie I
of open subsets of X such that each (U;, Ox|y,) is isomorphic to some affine scheme
(Spec Aia OSpec A; )

Note that (U;, Ox|y,) is naturally a locally ringed space, as Ox
rings as O for points in Us.
As for affine schemes, a scheme has two layers: a topological space X covered by open
sets of the form Spec A;, and a structure sheaf O which restricts to the structure sheaves

v, has the same local

OSpeC A

If x € X is a point, the stalk Ox , is called the the local ring at x. Note that x is contained
in some open subset U = Spec A, and corresponds to some prime ideal p in A, and then
Ox,, = A,. As before, we think of elements in Ox , as ‘rational functions defined at x”,
even if this is strictly true only for well-behaved schemes (see Proposition 5.27).

In the local ring Ox , we also have the maximal ideal m,, which in the setting above is
equal to pA,, and the corresponding residue field k(x) = Ox ,/m,, which equals A, /pA,.

A morphism, or map for short, between two schemes X and Y is simply a map f between
X and Y regarded as locally ringed spaces. This also has two components: a continuous map,
which we shall denote by f as well, and a map of sheaves of rings

fﬁi Oy —‘*f*o)o

with the additional requirement that the induced map on stalks f* is a map of local rings, i.e.,
takes the maximal ideal m,, into m,.

In this way the schemes form a category, which we shall denote by Sch. It contains the
category of affine schemes AffSch as a subcategory.

5.1 Relative schemes

There is also the notion of relative schemes where a base scheme S has been chosen. A
scheme over S, or an S-scheme, is a scheme X together with a morphism f: X — S, which
we call the structure map or the structure morphism. A map between two schemes over .S,
say X —» SandY — S,isamap X — Y of schemes compatible with the two structure
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68 Schemes in general
maps; that is, a map such that the diagram

X\7Y

is commutative. The schemes over S form a category Sch/S, and the set of morphisms, as
defined above, is denoted by Homg(X,Y").

When the base scheme S is affine, say S = Spec A, we say that X is a scheme over A,
and we write Sch/A for the category Sch/Spec A. To say that an affine scheme Spec B is a
scheme over Spec A is the same thing as saying that B is an A-algebra: giving the structure
map f: Spec B — Spec A is equivalent to giving the map of rings f*: A — B. The Main
Theorem of Affine Schemes (Theroerem 4.18 on page 64) has the following relative version.

Theorem 5.2. Let A be a ring. Then the category AffSch/A of affine schemes over
A is equivalent to the category Alg/A of A-algebras (with the arrows reversed).

Note that each affine scheme X = Spec A has a canonical map X — Spec Z, induced
by the canonical ring map Z — A. In Example 6.7 we will show that the same holds for any
scheme, so every scheme is a Z-scheme.

The concept of relative schemes can be thought of as a vast generalisation of the concept
varieties over k’. However, the extension to more general rings or even schemes turns out to
be conceptually very fruitful, e.g. when discussing properties of morphisms (Chapter ??) or
fibre products (Chapter 10).

3

Example 5.3. The Mobius strip scheme
X = SpecR[z,y,u,v]/(ve — uy,2* + y* — 1)

from Example 2.37 can be viewed as a 2-dimensional scheme over R, but one can also view
it as a 1-dimensional scheme over S = Spec R[z, y]/(2? + y? — 1). The latter perspective
offers extra geometric insight, as all the fibres of X — S are affine lines.

5.2 Open embeddings and open subschemes

If X is a scheme and U < X is an open subset, the restriction Ox ]U is a sheaf on U making
(U, Ox|y) into a locally ringed space. This is even a scheme, because if X is covered by
affines V; = Spec A;, then each U n V; is open in V, hence can be covered by distinguished
open subsets, which are all affine schemes. Therefore there is a canonical scheme structure on
U, and we call (U, Ox|y/) an open subscheme of X and say that U has the induced scheme
structure. Moreover, a morphism of schemes ¢: V' — X is an open embedding if it is an
isomorphism onto an open subscheme of X.

When referring to ‘an open affine’ in X or ‘an open affine covering’ of X, we shall tacitly
assume that the open sets involved are given the canonical scheme structure, and so are open
subschemes. Thus Spec k = Spec k[z]/(x?) is not an open affine of Spec k[z]/(2?) even
though the subset is open and the scheme is affine.
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5.3 Closed embeddings and closed subschemes 69

Example 5.4. The open set U = A} — V(x) is an open subscheme of the affine line
A}, = Spec k[z]. Note the isomorphism U ~ Spec k[z,z'] = Speck[z,y]/(zy — 1) of
schemes.

Example 5.5 (Distinguished open subsets). More generally, each distinguished open set
D(f) in an affine scheme Spec A is an open subscheme. It is affine, isomorphic to Spec A;.
Indeed, by Lemma 2.26 the map ¢: Spec Ay — Spec A corresponding to the localization
map A — Ay is a homeomorphism onto D( f), and it follows readily from the definition of
the sheaf O that the restriction Ox |p(s) coincides with the structure sheaf on Spec A;.

A word of warning: an open subscheme of an affine scheme might not itself be affine.

Example 5.6. The open subset U < A? — V (u,v) of A? = Spec k[u, v] is not an affine
scheme. This is a consequence of the restriction map ¢*: Oz (A7) — Oz (U) being an
isomorphism: if U were affine, the inclusion ¢: U — A2 would be an isomorphism according
to the Main Theorem of Affine Schemes (Theorem 4.18), but obviously it is not. To see
that the restriction is an isomorphism, we resort to the sheaf sequence (??) on page ?? for
the covering {D(u), D(v)} of U. In view of the equalities Oz (D(u)) = k[u,v], and
Opz(D(v)) = k[u,v],, the sheaf sequence takes the form

0 —— Op(U) —2 k[, v]w @ k[u, v]o, —— k[u, v]u

klu,v]

where also the restriction map «¥ is indicated. Note that a(¢#(c)) = (c, ¢). The map 3 sends
anelement f = (au™"™,bv™") to au™"™ —bv~™, and f lies in the kernel of /3 precisely when
au™" = bv™™; or in other words, when av™ = bu™. As the polynomial ring is a UFD, we
conclude that @ = cu™ and b = cv™ for some ¢ € k[u, v], so that f = (c, ¢). That is, ¢ is
surjective, and since it is clearly injective, it is an isomorphism.

Exercise 5.2.1. Consider the ring R = Z[t] and let X = Spec R.
a) For a prime number p, show that m = (¢, p) is a maximal ideal of R.
b) Let U = X — {m}. Show that U = D(p) u D(t) and that

Ox(U) = Z[t]

¢) Deduce that U is not affine.

5.3 Closed embeddings and closed subschemes

In this section, we explain what it should mean to be a closed subscheme of a scheme.
Intuitively, a closed subscheme is given by a scheme 7, which is embedded as a closed
subset Z < X. Given that there are many possibilities for choosing the scheme structure on
the same underlying closed set, and this makes the definition slightly more subtle than the
one for open subscheme. The prototypical example to have in mind is Spec(A/a), which as
we have seen, embeds naturally as the closed subset V'(a) of Spec A (Proposition 2.27 on
page 32). In general, a closed subscheme is a scheme (Z, Q) with a morphism ¢: Z — X,
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70 Schemes in general

which locally looks like the map Spec(A/a) — Spec A. We formalize this in the next two
definitions.

Definition 5.7 (Closed embeddings and closed subschemes). A morphism¢: Z — X
is called a closed embedding if there is an affine cover {U, };c; of X such that
() ¢ H(U;) is affine for every i € I;
(i1) the ring map
Lﬁ & Ox(Ul) E— Oz(L_lUi)

is surjective for every 4.
We say that Z is a closed subscheme of X. Two closed subschemes Z, Z’ are said to
be equal if there is an isomorphism ¢ : Z — Z’ such thatt = ¢/ o ¢.

In other words, X and Z are covered by affine schemes U; = Spec(A4;), and .~ (U;) =
Spec B;, so that for each i, the induced ring map A; — B; is surjective, which means
that B; = A;/a; for some ideal a;. Moreover, the morphism +~'U; — Uj is given by the
canonical morphism Spec(A4;/a;) — Spec(A;).

Even if a closed subscheme Z is defined as an abstract scheme which maps into X, we
usually think of it as a closed subset of X. This is reasonable because the image V' = +(Z) is
a closed subset (the U;’s form an open cover of X, and each subset ¢(Z) N U, is closed being
equal to V'(a;)). Moreover, we may put a structure sheaf on V' by defining Oy to be ¢, O .

Example 5.8. The schemes Spec k[z]/(z™) with n € N and k a field, give different
subschemes of A} . Still, the underlying topological spaces are the same (a single point), and
these spectra are homeomorphic. However, having non-isomorphic structure sheaves, they
are not isomorphic as schemes.

Example 5.9. Consider the affine 4-space A} = Spec A, with k afieldand A = k[z,y, z, w].
Then the three ideals

Il = (xay)v I2 = (:U27y) and IB = (5U27$y73/2a$w - yZ),

have the same radical (z,y), and thus give rise to the same closed subset V' (z,y) < A%, but
they give different closed subschemes of A}.

Classifying closed subschemes according to the above definition is not so easy, even for
affine schemes. Of course, each ideal a A, yields the closed subcheme Spec(A/a) —
Spec A, but because the definition refers to a specific affine covering, it is a priori not obvious
that all closed subschemes arise in this way, or even if every closed subscheme of Spec A
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5.4 R-valued points 71

is an affine scheme. This is nevertheless true, but we will need to postpone the proof until
Chapter ??, where we give a more systematic treatment of closed subschemes in terms of
ideal sheaves.

Proposition 5.10. Let X = Spec A be an affine scheme. The map a — Spec(A/a)
is a one-to-one correspondence between the set of ideals of A and the set of closed
subschemes of X. In particular, each closed subscheme of an affine scheme is also
affine.

For later use, we include the following definition, which combines the two types of
embeddings we have seen:

Definition 5.11 (Locally closed embeddings). A morphism f: Z — X is said to be
a locally closed embedding if it is the composition of an open and a closed imbedding.
That is, if f = g o h with g: U — X an open embedding and h: Z — X a closed
embedding.

Exercises

Exercise 5.3.1. Show that being a closed embedding is a property which is ‘local on the
target’. In clear text: given a morphism f: Z — X and an open cover {U;} of X. Let
V; = f~'U; and assume that each restriction f|y,: V; — Uj is a closed embedding. Prove
that then also f is a closed embedding.

Exercise 5.3.2. Show that being a locally closed embedding is ‘local on the image’. Assume
that f: Z — X is a morphism and that {U;} is a family of open subsets of X covering
the image f(Z). Assume further that each restriction f|;-1y,: f~'U; — Uj is a closed
embedding, then f is a locally closed embedding.

Exercise 5.3.3. Let f: X — Y and g: Y — Z be two morphisms of schemes. Prove that if
both f and g are closed embeddings, then g o f is one as well.

5.4 R-valued points

A point in an affine variety X over an algebraically closed field & can be viewed as a solution
in k to a finite set of polynomial equations. This perspective is lost when transitioning to
spectra of general rings. Still, given a scheme such as

X=SpeCZ[tl,...,tn]/(fl,...,fr), (51)

we can still talk about solutions to the defining equations, but there are many choices of
fields where to consider solutions. In fact, since the polynomials have integer coefficients, the
equations f(t) = --- = f,.(r) = 0 are meaningful over any ring R. This leads to the notion
of an ‘R-valued point’ of a scheme.

Formally, an R-valued point, or an R-point, of a scheme X is simply a morphism
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Spec R — X. The set of all such morphisms will be denoted by X (R); that is, we de-
fine

X (R) = Homs,(Spec R, X).

Note that if f: X — Y is a map of schemes, composition gives an induced map of sets
X (R) — Y (R). The sets X (R) also depend functorially on R. To every ring map R — S
there is a corresponding map of schemes Spec .S — Spec R, which induces a map of sets
X (R) — X (S). Therefore the scheme X determines a functor X : Rings — Sets. We will
explore the link between a scheme and its associated functor in Chapter 10.7.

Example 5.12. The R-points of the affine space over Z, A" = SpecZ[t1, ..., t,], is just
R"™. Indeed, elements f € A™(R) are by definition maps of schemes

Spec R —— A",

which according to Theorem 4.18 on page 64 correspond bijectively to ring maps
¢: Z[ty,...,t,] — R. (5.2)

.., ¢(t,)) in R™.
, which explains the notation A™ (k)

These in turn, are in bijection with the n-tuple (¢(t
In particular, for fields k it holds that A" (k)
used in Chapter 1.

1)7
kn

Example 5.13. Going one step further, given anideal a = (g1, ...,g,) < Z[ty, ..., t,], con-
sider the corresponding affine scheme X = SpecZ[ty,...,t,]|/a. Scheme maps Spec R —
X are in a one-to-one correspondence with ring maps

¢: Z[tr, ... t,]/a —— R,

again according to Theorem 4.18. Such maps are in turn in bijection with ring maps ¢ as in
(5.2) that vanishes on the ideal a; that is, they are in bijection with n-tuples (ay, ..., a,) €
R™ = A™(R) such that g;(a;) = 0.

Example 5.14. For a specific example, consider the scheme
X = Spec Z[u,v]/(u® + v* — 1).

Then the set X (R) of R-points consists of the points of the unit circle in R?; the Z-points
X (Z) consists of the four points (+1,0) and (0, £1), while one may verify that the rational
points; that is, the Q-points, are given by

x@ - { (13 15 lteeuto.-vy

In Exercise ?? you are asked to verify this.

Example 5.15 (A conic with no real points). Let X = Spec A, where A is the algebra
A = R[u,v]/(u? + v* 4+ 1). The equation u? + v*> + 1 = 0 has no real solutions, so
X(R) = . However, the set X (C) is infinite because the equation has infinitely many
complex solutions (two for each choice of v € C). Note also that A has infinitely many
maximal ideals, so that the underlying topological space of X is infinite.

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

5.4 R-valued points 73

The sets X (R) of R-points are clearly important in number theory. A rather extreme
example of this is Fermat’s Last Theorem, which asks about the set X (Q) where X =
SpecZ[x,y, z]/(z™ + y™ — z™). This example shows that even when R is a field, it can
be very difficult to describe the set X (R) of R-valued points, or even determining whether
X (R) # . However, sometimes scheme theory can shed light on this problem, e.g. showing
that X (K') # (J provided, say X (L) # (J for some suitable field extension K < L.

Example 5.16 (Non-existence of Z-points). The equation 3z — 7y* = 1 has no solution in
integers x and y. Indeed, modulo 3, the equation reduces to 2y> = 1 mod 3, but 2y* must
be 0 or 2 modulo 3. In geometric terms, the scheme

X = SpecZ[z,y]/(32* — Ty* + 1)

has no Z-points; any Z-point of X would survive via the map X (Z) — X (F3) induced by
the reduction mod 3 map Z — .

Likewise, X (R) # (¥ is a necessary condition for the existence of Z-points.

One says that a scheme X satisfies the Hasse principle if these conditions are also sufficent,
that is, if X (R) # 0 and X (F,) # O for all primes p implies X (Z) # 0. The Hasse principle
holds in some cases, e.g., when X is defined by a quadratic polynomial, but it fails in general.
The Selmer curve

X = SpecZ[z,y]/(32° + 4y® + 5)
has points over R and every IF,,, but none over Z.

In the examples above, the sets X (R) are rather manageable. However, the sets X (R) can
in fact be enormous even when K is a field. For instance, the next example shows that the set
X (C) is uncountable, even for X = Spec C.

For this reason it is important to consider the relative situation. When X is a scheme over
some base ring A, and R is an A-algebra, one has the sets

X4(R) = Homsen/a(Spec R, X))

of relative morphisms over A. These satisfy the same functorial properties as the sets X (R)
above, but in many cases they will be more manageable.

Example 5.17. We have
(i) Homsen/c(Spec C, Spec C) = {idspecc};
(i) Homscn/r(Spec C, SpecC) = {idspecc, ¢}, where ¢: C — C is complex con-
jugation map;
(iii) Homs,(Spec C, Spec C) is the set of all field automorphisms of C, or in other
words, the Galois group of C over Q. This is an uncountable group.

Points in schemes

A single scheme X gives rise to many sets of R-valued points X (R). For instance, A™
simultaneously gives rise to all the possible A™(k)’s from Chapter 1, by varying the field k.

For a scheme X, looking at maps from spectra of fields into X help us understand the
points of X. Every point of X is a K -point for some field K.
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74 Schemes in general

The residue fields play an important role here. If 2 € X is a point, there is a canonical map
Ly : Speck(x) - X

which maps the only point of Spec k(x) to z. To see this, suppose z is contained in an open
affine subset U = Spec A and corresponds to a prime ideal p < A. Then the residue field
is given by k(z) = A,/pA,, and there is a morphism ¢, : Spec k(z) — X defined by the
composition

Speck(xz) — Spec(4,) - U — X.

It is not hard to see that this is independent of the choice of U (see Exercise 5.4.6).

Thus this is a way to organize the points of X according to their residue fields.

The residue field k() and the morphism ¢, : Spec k(z) — X satisfy a certain universal
property for K -points in general:

Lemma 5.18. Let X be a scheme and let x € X be a point. For a field K, there are
natural bijections between:
(i) K-valued points f : Spec K — X with image z;
(ii) Maps of local rings Ox , — K;
(iii) Maps of fields k(z) — K;

Proof ()= (ii). If f : Spec K — X is a morphism which maps the point y € Spec K to
x, the sheaf part of the morphism gives a map of local rings fg : Ox,5 — Ospeck,y = K.
(ii)= (iii). If Ox , — K is a map of local rings, it maps the maximal ideal of Ox , to the
maximal ideal of K, namely (0), and hence it induces a map between the fields k(x) — K.
(ili)= (i) Let k(z) — K be a map of fields. Let U = Spec A be an affine open set
containing z, so that x corresponds to a prime ideal p in A. Then composing k(z) — K
with the map ¢,, we get a map of schemes Spec K — X, i.e., a K-point with image z. [

Corollary 5.19. Let X be a scheme and let K be a field. Then there is a bijection

X(K) = {(@,0)

x € X is a point;
a: k(z) — K is a field embedding |

Exercises
Exercise 5.4.1. Let X = Spec Z. Compute X (F,), X (Q) and X (C).

Exercise 5.4.2. Verify the claim about X (Q) in Example 5.14. HINT: Compute the second
intersection point a general line trough (0, 1) has with the unit circle.

Exercise 5.4.3. With reference to Example 5.14, show that one may interpret X (Q) as the
set of Pythagorean triples:

X(Q) = {(a,b,c) € Z* | a® + b* = ¢ and a, b, c relatively prime }.

Exercise 5.4.4. With reference to Example 5.14, let p be a prime such that p 22 1 mod 4.
Show that the description in Example 5.14 also is valid for X (FF,).
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Exercise 5.4.5. With reference to Example 5.15, consider the natural inclusion
A = R[u,v]((v* + v* + 1) < Clu, v]/(u® + v* + 1) = Ac.

For each point z = (a, b) € X (C) consider the ideal n, = m, n A. Show that n, is maximal
and that n, = n,, if and only if w = (@, b) with z = (a, b). Conclude that A has infinitely
many maximal ideals.

Exercise 5.4.6. Let X be a scheme and let z € X be a point.
a) Show that there is a canonical morphism

f:SpecOx, — X

b) Show that the map ¢, : Spec k(z) — X definied in the text factors via f.
¢) Show that on the level of topological spaces, the image of f is the intersection
of all open neighbourhoods containing x.
d) Compute the image of f when:
(1) z is the generic point of an irreducible scheme;
(ii)  is a closed point of AZ.

5.5 Basic geometric properties of schemes

There are a few basic properties of schemes that only concern the underlying topological
space. We have seen some of these already:

o X is irreducible if it cannot be decomposed as X =Y U Z where Y, Z are proper closed
subsets.

o X is connected if it cannot be decomposed as X = U U V where U, V are disjoint open
sets.

o X is quasi-compact if any open cover has a finite subcover.

We have already studied these notions for affine schemes. Here Spec A is irreducible if and
only if A has a unique minimal prime, i.e., if \/@ is prime (Proposition 2.17). Spec A
is connected if and only if A # B x C for two non-trivial rings B, C' (Proposition 2.20).
Spec A is always quasi-compact (see page 30). (See Exercise 2.5.6 for a scheme which is
not quasi-compact.)

Exercise 5.5.1. Find an example of a connected scheme X with a disconnected open subset

UcX.

Reduced schemes and integral schemes

Recall that a ring A is said to be reduced if it has no non-zero nilpotent elements. We define
a scheme (X, Ox) to be reduced if for every x € X, the local ring O, is reduced.

Lemma 5.20. A scheme X is reduced if and only if for every open U < X, the ring
Ox (U) has no non-zero nilpotents.
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Proof Assume first that X is reduced. Any non-zero nilpotent element in one of the rings
Ox (U) would have a non-zero germ in at least one local ring O x ., which would then not be
reduced. For the reverse implication, let € X be a point and let s € O , be any element.
We may write s as the germ of some section ¢t € Ox (U ), which can not be nilpotent; hence
s is not nilpotent either. 0

Example 5.21. An affine scheme X = Spec A is reduced precisely when A is a reduced
ring. Thus A} is reduced, but Spec k[z]/(z™) for n = 2, is not.

One says that a scheme is integral if it is both irreducible and reduced. An affine scheme
Spec A is integral if and only if A is an integral domain. Indeed, Spec A is reduced if
and only if A has no nilpotents; that is, if and only if the nilradical vanishes, and Spec A
is irreducible if and only if the nilradical is prime. These two statements imply that the
zero-ideal is prime, and so A is an integral domain.

Moreover, it is not hard to prove the following:

Proposition 5.22. A scheme X is integral if and only if Ox (U) is an integral domain
for each open U c X.

One important fact about integral schemes is that they have a function field, k(X), which
contains all the rings Ox (U) as subrings.

To define k(X), recall that any integral scheme has a unique generic point 7). The generic
point is the only point which is dense, i.e., belongs to every open non-empty subset of X. If
U = Spec A is an open affine, 1) corresponds to the zero ideal (0) of A, and the local ring
Ox, is equal to the field of fractions K (A) of A. We define the function field k(X') of X to
be K (A). Thatis, k(X) is the local ring O, at the generic point.

Example 5.23. The function field of Spec Z equals Ogpecz,(0) = Zo) = Q.

Example 5.24. The function field of A} = Spec k[z1, ..., z,] equals the field k(x1, . . ., x,,)
of rational functions in 1, ..., Z,.

Example 5.25 (The quadratic cone). The quadratic cone QQ = Spec k[, y, z]/(z* — yz) is
integral being the spectrum of an integral domain (22 — yz is irreducible), and the function
field of @ is equal to

K(k[z,y,2]/(a* — yz)) ~ k(z,y)
since we can eliminate z using that z = y~'2? (note that y is invertible in k(Q)).

We showed in Example 4.10 that each Ox (U) is a subring of k(X ) when X was an
integral affine scheme. The same argument as in the example works more generally. For any
non-empty open U the ring Ox (U) is an integral domain with fraction field (Ox (U))o =
Ox,, = k(X), and the canonical germ map Ox (U) — Oy, is identified with the inclusion
Ox(U) < k(X). These inclusions are moreover compatible with restrictions, i.e., all
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diagrams

S

x(U) — k(X)

w7

x(V)

)

S}

where V' < U are two open subsets, commute. This shows that we may view Ox (U) as a
subsheaf of the constant sheaf k(X') on X.

Taking direct limits, we see that also all the local rings Ox . lie as subrings of k£(.X'). We
say that an element f € k(X)) is defined at the point z if f € Ox ;.

Lemma 5.26. Let X be an integral scheme and let f € k(X ). The set
Uy ={aeX|feOx.}

is open.

Proof Let x € Uy and let Spec A be an affine neighbourhood of x. Consider the ideal
a;={be A|bf e A}.If pisaprimein A, then f € A, if and only if a; & p; that is,
V (ay) is the complement of U; n Spec A in Spec A. O

Proposition 5.27. Let X be an integral scheme with function field k(X ) and let
U < X be open. Then

for each point x € U, f can be

Ox(U) = ﬂ Oxe = {f € k(X) represented as g/h where h(z) # 0} S o)

zeU

Proof There are two equalities to prove here. To prove the first, assume first that U is affine,
say U = Spec A. Then the first equality amounts to the equality A = (] A, where the
intersection extends over all prime ideals in A. The inclusion A < () A, is trivial. To verify
the other, assume that the ideal a; is proper. It will then be contained in a maximal ideal
m, and consequently f ¢ A,. If U is a general open subset, the equality follows from the
equality Ox (U) = () Ox(V'), where the intersection extends over all non-empty open affine
subsets V' < U. This holds because Ox (U) equals the inverse limit Ox (U) = lim Ox (V),
and this inverse limit becomes the intersection when all the rings are identified with subrings
of k(X).

To prove the second equality, let € X be a point, and let Spec A be an open affine
subset containing x. Then k(X') equals the fraction field K of A. An element f € K lies in
Ox, = A, < K if and only if it can be expressed as a quotient f = a/s where s ¢ p. [

Example 5.28. Non-reduced schemes appear frequently when two schemes X and Y
intersect. For instance, consider the parabola X = Spec k[x,y]/(y — 2?) and the line Y =
Spec k[, y]/(y). The intersection of these is given by the ideal I = (y — 22, y) = (z?%,y),
which is not a radical ideal. The nilpotent elements of k[z, y]/(2?,y) = k[z]/(«?) in some
sense account for the ‘tangency’ of the intersection X N'Y.
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Y

Example 5.29. Here is a similar example in A}. Consider
X = Speck[z,y, 2]/(z — zy*)
which is a closed subscheme of A? (a cubic surface). The intersection of X with the plane of
equation z = 0 is given by the ideal I = (z, zy?), whose primary decomposition is
(z,29%) = (2,9%) N (2, 2).

The intersection Spec k[z,y, z]/I therefore is the union of the lines y = z = 0 and
x = z = (. Being defined by the non-radical ideal (z, y?), the component along the former
has ‘multiplicity 2’, which reflects the fact that the plane is tangent to X along that line. So
the intersection is neither irreducible nor reduced.

Example 5.30 (Schemes of matrices). Consider the scheme
M, = AY = SpecZ[x;;|1 < 1,7 < n]

As the notation suggests, the k-points of this scheme parameterize n x n-matrices with
entries in k. The scheme M, contains several interesting subschemes:

The general linear group GL,, is the subset of M, consisting of invertible matrices. It is
an open subscheme, in fact, it equals the the distinguished open set D(det M), where det M
is the determinant of the matrix of variables M = (z;;);;.

There is also the the special linear group SL,, consisting of matrices of determinant one,
is the set of closed points in V' (det M — 1) < M, .

The orthogonal group O(n) corresponds to the matrices such that MM is the identity
matrix. It a closed subscheme, defined by the ideal I generated by the entries in n X n
matrix M*M — I (which are polynomials in the x;;’s). If we further impose the condition
det M = 1, we obtain the special orthogonal group SO(n).

Example 5.31 (Nilpotent matrices). Particularly interesting examples of subschemes of M,
are the set of nilpotent matrices, i.e. matrices A such that A* = 0 for some k£ > 0.
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We continue working with the matrix M of variables from the prevous example. The
equation M" = 0 gives n? degree n polynomial relations in the variables z;;, and the ideal
J they generate define a closed subscheme N = Spec(Z[x;;]/J) of M,,. Bearing in mind
that an n X n-matrix A is nilpotent if and only if A™ = 0, the k-points of IV is the set of
nilpotent matrices in k.

Interestingly, the subscheme N is typically non-reduced. Indeed, recall that the characteris-
tic polynomial det(¢I,, — A) of a matrix A equals ¢" if and only if A is nilpotent (equivalent
to all eigenvalues being zero), so in particular the trace Tr A (the sum of the eigenvalues
or the subleading coefficient) of A vanishes. This means that Tr M = )’ x;; vanishes in
all closed points of N. So Tr M induces a nilpotent element in k[x;;]/J, but being linear,
Tr M does not lie in J.

One may put a different scheme structure on the set of nilpotent matrices, using the fact
that a matrix A is nilpotent if and only if it has characteristic polynomial equal to t". Note
that the coefficients of the characteristic polynomial

det(tI — M) =t" —c;(M)t" ' + - + (=1)"c, (M)

are polynomials in the entries of M, so we see that we get n equations ¢; (M) = -+ =
¢n (M) = 0, that define a subscheme in M, with the same underlying topological space as
N. In fact, it is not too hard to check that the ideal I generated by the ¢;(M)’s is radical, so
that Spec (k[x;;]/I) is reduced.

Exercise 5.5.2. Describe X = SpecZ[x]/(5z — 15).Is X irreducible? Reduced? What are
the fibres of the canonical map X — Spec Z?

Exercise 5.5.3. Let X be an integral scheme and U < X an open subset. Show that x € U
if and only if Ox (U) < Ox_, inside k(X).

5.6 Affine varieties and integral schemes

We have mentioned a few times that schemes are generalizations of algebraic varieties. On
the other hand, we have also seen that even the simplest schemes, e.g. Ai = Spec k[a:, y],
behave differently than varieties in the sense that they have many non-closed points. Thus for
this statement to make sense, we should expect there to be a natural way to ‘add non-closed
points’ to an algebraic variety so that the resulting topological space has the structure of a
scheme. Let us explain what this means more precisely.

Let k be an algebraically closed field and let X be an affine variety over k. Let A = A(X)
denote its affine coordinate ring; it is canonically attached to X, being the ring of regular
functions on X . From A, we can build the affine scheme X* = Spec A. Note that the closed
points of X ® are in bijection with the points of X (thatis, X *(k) = X) by the Nullstellensatz.
In particular, there is a natural injection X < X°®. Thus as a set, X* is obtained by adding to
X the non-maximal prime ideals p in A; there is one for each subvariety of X of positive
dimension. Note that V' (1) n X = Z(I), so the classical Zariski topology on X is simply
the induced topology from X*° = Spec A.

The ring A is a finitely generated k-algebra with no zerodivisors. This means that X * is
an integral scheme over k.
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80 Schemes in general

The structure sheaf O - on X* is also constructed via the ring A via the various localiza-
tions. Proposition 5.27 tells us that the elements of Ox(U) over an open set U < X* can
be identified with the ring of regular functions f : U (k) — k

Associating X with X also behaves well with regard to morphisms. The fundamental
theorem of affine varieties tells us that maps ¢: X — Y between two affine varieties
are in one-one-correspondence with k-algebra homomorphisms ¢*: A(Y) — A(X). This
exactly parallels our Theorem ?? for schemes. Hence putting ¢* = Spec ¢*, we obtain a
morphism ¢°: X* — Y which extends ¢. As ¢ is a map of k-algebras, the morphism ¢°
is a morphism of schemes over Spec k. Moreover, any morphism of schemes X°® — Y*
arises in this way. This means that there is a functorial bijection

HomAlgSets/k (X7 Y) = HomSch/k (Xsa Yé)

In particular, the assignment X +— Y ® gives a fully faithful functor from affine varieties to
affine schemes over k. In particular, two varieties give rise to isomorphic schemes over k
if and only if they are isomorphic as varieties, and each scheme isomorphism is uniquely
determined by the variety isomorphism. In particular, this tells us that the category of varieties
Var/k is equivalent to a full subcategory of Sch/k. We have already seen that this is a strict
subcategory, e.g. Spec k[z]/(2?) does not come from a variety.

5.7 Exercises

Exercise 5.7.1. Which of the topologies on a set with three points is the underlying topology
of a scheme?

Exercise 5.7.2. Let X be a scheme.

a) Show that any irreducible and closed subset Z < X has a unique generic point.
HINT: Reduce to the affine case.

b) Show that in general schemes are not Hausdorff. What are the possible underly-
ing topologies of affine schemes that are Hausdorff?

¢) Show that X satisfies the zeroth separation axiom (they are Tj); that is, given
two points x and y in X, there is an open subset of X containing one of them
but not the other.

Exercise 5.7.3 (The sheaf of units). Let X be a scheme with structure sheaf O y. We say
that s € Ox (U) is a unit if there exists a multiplicative inverse s 7' € Ox (U).
a) Show that s € Ox (U) is a unit if and only if for all z € U, the germ s,, is a
unit in the ring Ox ,; that is, if and only if s, does not lie in the maximal ideal
of (,))(7z .
b) We let O% (U) denote the subgroup of units in O x (U'). Show that O% (U) is a
subsheaf of Ox.

Exercise 5.7.4 (The Frobenius morphism). Let p be a prime number and let A be a ring of
characteristic p. The ring map Fy : A — A given by a — a? is called the Frobenius map on
A.

a) Show that F'4 induces the identity map on Spec A;

b) Show that if A is local, then F4 is a map of local rings;
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5.7 Exercises 81

c) For a scheme X over FF,,, define the Frobenius morphism F'x : X — X by the
identity on the underlying topological space and with F’ }ﬁ( : Ox — Ox given
by g — g”. Show that F'y is a morphism of schemes;
d) Show that F'y is natural in the sense that if f : X — Y is a morphism of
schemes over I, we have f o Fx = Fy o f.
In particular, this exercise shows that for a morphism of schemes f : X — Y, in order to
check that f is an isomorphism, is not enough to check that f is a homeomorphism; also the
map f¥ must be an isomorphism.

Exercise 5.7.5. Let X an integral scheme over aring A, and let f € k(X ). Show that there
is a morphism ¢: U; — Al such that ¢#: A[t] — ['(U;, Ox) is given by t — f.

Exercise 5.7.6. Prove Proposition ??. That is, prove that a scheme X is integral if and only
if Ox (U) is an integral domain for each open U < X.

Exercise 5.7.7. Let X be a scheme and let x € X be a point. Show that x is a closed point if
and only if the corresponding morphism Spec k(z) — X is finite.

Exercise 5.7.8. Let X = Speck[z,y, z,w]/(zw — yz) and consider the open set U =
X — V(x,y). Use the above strategy as in Example 5.6 to compute Ox (U). Conclude that
U is not affine.

Exercise 5.7.9. Prove Corollary 5.22.

Exercise 5.7.10. Prove that a composition of two closed embeddings is a closed embedding.
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6

Gluing

It is sometimes said that ‘algebraic geometry is the study of the geometry of zero sets of
polynomials’. After Grothendieck, perhaps a more precise slogan would be that ‘algebraic
geometry is the geometry of rings’.

While this certainly has an amount of truth to it, the theory of schemes is much richer than
just the spectra of rings. This is essentially due to the enormous flexibility gluing gives: we
are allowed to glue together new schemes out of old ones, as well as sheaves on them, and
also morphisms between these. The aim of this chapter is to explain the conditions under
which this can be done. We begin with gluing together sheaves and maps between them
(which is the easiest case and which works for any topological space), and then move on to
schemes and morphisms. In the final part of the chapter we outline some applications of these
constructions to the study of schemes.

6.1 Gluing of sheaves

In this section, X will be a topological space and {U, }c; will be an open cover of X . We will
write U;; and U, respectively, for the intersections U;; = U;nU; and U, = U;nU;nUy,
where ¢, j, k € I.

Gluing maps of sheaves

Gluing maps of sheaves is the simplest gluing situation we will encounter. The following
proposition gives the precise conditions under which this can be done:

Proposition 6.1 (Gluing conditions for maps for sheaves). Let F and G be two
sheaves on X. Let {U, };c; be an open cover of X and assume that we are given a
map of sheaves ¢;: F|y, — G|u,, so that forall i, j € T

bilv; = b5lus; (6.1)
Then there exists a unique map of sheaves ¢: F — G such that ¢|y, = ¢;.

Proof Take a section s € F(V') where V' = X is open. Then over V; = U; n V, the
section ¢;(s|y,) is a well defined element in G(V;), and we have ¢;(s|v,,) = ¢;(s|v,,) by
the compatability assumption (6.1). Hence the sections ¢;(s|y,)’s of the G|y, s glue together
to a section of G over V, which we define to be ¢(s). It is clear that this association is
additive, and compatible with restrictions, so we have the desired map of sheaves.

82
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6.1 Gluing of sheaves 83

The uniqueness also follows: if ¢ and v/ are two morphisms of sheaves so that ¢(s)|y, =
Y(s)|y, for all i € I, then ¢(s) = 1(s) by the Locality axiom for G, and consequently
¢ =1 O

Gluing Sheaves

For gluing sheaves, the setting is as follows: for each open set U; in the covering, we have a
sheaf F; on U;, and our goal is to construct a global sheaf F on X that restricts to F; for every
U;. A necessary condition for such an JF to exist is that the J;’s should be isomorphic over
the intersections U;;. In fact, by specifying the precise conditions that these isomorphisms
must satisfy (the ’gluing data’), we get not just a necessary but also a sufficient condition.

O

F

Proposition 6.2 (Gluing conditions for sheaves). Let {U,};c; be a covering of X
and suppose we have, for each ¢, a sheaf F; on U;. Suppose we are given isomorphisms

it Filoyy = Filvy)
satisfying the three conditions
(1) 7 = idF,
00 1
Gi) 75 = 7
(111) Tki = Tkj © Tji
(where (iii) takes place over the triple intersection U, ). Then there exists a sheaf F
on X, unique up to isomorphism, such that there are isomorphisms v; : F|y, — F;

satisfying v; = 7;; o v; over each intersection U;;.

Observe that the three conditions (i)—(iii) parallel the three requirements for a relation to
be an equivalence relation; the first reflects reflectivity, the second symmetry and the third
transitivity.

To motivate these a bit further, note that if we have managed to construct F and v;, the
isomorphisms 7;; = v; o v ! appear as the composition

‘Fj‘Ui,j = ‘F|U1ij = E|U1ij
But isomorphisms of this form naturally satisfy (i)—(iii). For instance, to verify (iii):
-1 -1 -1
Thj O Tji = (Vpov; )o(yjovy ) = oy, = Ty

In terms of diagrams, the requirement v/; = 7;; o v; means that each of the small triangles
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84 Gluing

in the figure below commute, and therefore the outer triangle commutes as well, which is
exactly the condition (iii).

Fily

Filv

Proof If W < X is an open set, we will write W; = U; n W and W;; = U;; n W.

The construction of F is conceptually straightforward: the sections over an open set V'
is given by the collection of sections s; € F;(V;), chosen so that for each i and j, s; and 5;
agree over V;;, meaning that 7;; maps s; |Vij to s |Vu' In other words, we define

Tji(Si Vij) = Sj

F(V) = {(Si)iel

v} S\ (6.2)
i€l

The 7;; are maps of sheaves and are therefore compatible with all restriction maps. Therefore,

if W < V is another open set, we have 7;;(s;|w,,) = s;|lw,, if 7ji(silvi,) = 8;lv,,-

The defining condition (6.2) is compatible with componentwise restrictions, and these can

therefore be used as the restriction maps F (V') — F (). We have thus defined a presheaf

on X and proceed to check the two sheaf axioms.

Locality: let s = (s;) € F(V) be a section, and let {V,,},ca be an open cover of V. If
sy, = 0in F(V,,) for every c, we must have that s;|y,~v., = 0in F;(V,, n U;) for all «
and 7. But as V, n U, forms a cover of V n U,, and F; is a sheaf on U,, this means that
s; = 0in F(V n U;). And since this holds for every 7, we get s = 0.

Gluing: Let s* € F(V,,) be compatible sections over the opens of a covering {V,,},ea
of V. This means that s* and s” are equal when restricted to V5 = W,, " Ws. Fori € I
fixed, we then have a compatible family of sections s € F(U; n V,,), which, since F; is a
sheaf, glue to an element s, € F(U;). We have 7;;(s;) = s; in F(V n U; n U;) because
this holds when restricted to V,, n Uj;, since s* € F(V,,). The section s = (s;) therefore
defines an element of F(V), which by construction restricts to s on each W;.

Note that we haven’t used the third condition yet. It will be neeed in order to construct the
isomorphisms v;: F|y, — F;. To avoid getting confused by the names of the indices, we
shall work with a fixed index «v € I. Suppose V' < U,, is an open set. Then naturally one has
V' =V, and projecting from the product [ [, F;(V;) onto the component 7, (V') = F,(V,,)
gives us a map

Vg o ]:’Ua - fa.

We proceed to show that the v/,,’s give the desired isomorphisms.
To begin with, we note that on the intersections V,, 3 the requirement in the proposition,
that vg = T4 O V4, is fulfilled. This follows directly from the definition in (6.2) that

58|V = Ta(Salvas)-
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6.2 Gluing schemes 85

v, is injective: this is clear, since if s = (s;) € F(V) is a section such that s, = 0 €
Fo(V), it follows that s; = s;|y,. = T;a(Ss) = 0 forall i € I, and hence s = 0.

v, is surjective: take any section o € F, (V) over some V < U, and define s =
(Tia(0|v,. ) )ier- Note that

Tji (Tia (O—‘ij )) = Tja(U‘ij )

for every ¢, 7 € I. Therefore, we see that s satisfies the condition in (6.2), and defines an
element of F (V). As T, (0|v,, ) = o by the first gluing condition, the element s projects
to the section o of F,,. O

6.2 Gluing schemes

The ability to glue different schemes together along open subschemes is a fundamental
property in the theory of schemes. As we will see in Chapter 7, this gives a plethora of
new examples of schemes. The gluing of schemes is also an important part in many general
existence proofs, such as the construction of the fibre product.

When we talk about gluing schemes, we are given a family { X };c; of schemes indexed
by a set /. In each of the schemes X; we are given a collection of open subschemes X;;,
one for each 7 € I. The goal is to produce a new scheme X by gluing together all the
X;’s along these open subschemes. This is done by identifying the open sets X;; < X;
and X;; © X using scheme isomorphisms 7;;: X;; — Xj;. If we let X, = X, n X5
(these are the various triple intersections before the gluing has been done), we require that
7;i(Xijk) = X, Notice that X, is an open subscheme of X;.

X

Xia X1
Tﬁ Xi2s \Tﬁ
Xo1 X3
KXoz Xao
X
X

X. 23
X2 = \_/ X32

There are three gluing conditions, similar to the ones we saw for sheaves, which must be
satisfied for the gluing to be possible.
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86 Gluing

Proposition 6.3 (Gluing conditions for schemes). Suppose that we are given: a
collection of schemes {X;};cs; for each 4, j an open subschemes X;; < X; and
scheme isomorphisms 7;; : X;; — X; satisfying

(1) 7 = idy,

(i) 7 = 75;"

(iii) 7;; takes X;ji into X, and 7y; = 75, o 7;; over X .
Then there exists a scheme X with open embeddings g;: X; — X onto an open
subscheme U; = g;(X;) < X such that

e {U,}ic; forms an open cover of X.
e Foreachi,je I, g;(X;;) = U; n U; and the following diagram commutes:

Tij

X..

ij

UiﬁUj

X..

jt

The scheme X is uniquely characterized by these properties up to a unique isomor-
phism.

Proof To construct the scheme X, we first build the underlying topological space X and
then equip it with a sheaf of rings. For the latter, we rely on the gluing technique for sheaves
explained in Proposition ??. The fact that X is locally affine will follow immediately once
the embeddings g; are in place, because the X;’s are schemes and therefore locally affine.

To constructing the underlying topological space, we introduce an equivalence relation
on the disjoint union [ [, X; by declaring two points « € X;; and 2’ € X; to be equivalent
when 2’ = 7;;(x). Note that if the point  does not lie in any X;; with i # j, we leave it
alone; it will not be declared equivalent to any other point.

The three gluing conditions imply readily that this is an equivalence relation. The first
requirement means that the relation is reflexive, the second that it is symmetric, and the third
ensures it is transitive. The topological space X is then defined to be the quotient of | [, X;
by this relation equipped with the quotient topology. That is, if 77: | [, X; — X denotes the
quotient map, a subset U of X is open if and only if 7~ (U) is open.

Topologically, the maps g;: X; — X are just the maps induced by the open inclusions

X; Al X;. They are clearly injective, because a point x € X; is never equivalent to another
point in X;. Now, with the quotient topology on X, a subset U of X is open if and only if

g;"(U) = X; n 7~ 1(U) is open for all i. In view of the formula

7 (g:(U)) = Usz‘(U N Xij),

we conclude that each g; is an open map, hence a homeomorphism onto its image.

We write U; for g;(X;) so that U;; = ¢g(X;) n g(X;) and U5, = U; n U; N Uy. On
X, we have the isomorphisms T}ii : 0 X; \ X, Ox, x,, > the sheaf maps of the scheme
isomorphisms 7;;: X;; — Xj;. In view of the third gluing condition 74; = 7, o 7;;, valid
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6.2 Gluing schemes 87

on X, we obviously have T,ﬁi = T}i o r,ﬁj. The two first gluing conditions translate into
Tfi = id and Tfi = (Tf-)*l. Consequently, the gluing properties required to apply Proposition
?? are satisfied, and we are allowed to glue the different Oy, s together and thus to equip
X with a sheaf of rings. This sheaf of rings restricts to Ox, on each of the open subsets X;,
and therefore its stalks are local rings. So (X, Oy ) is a locally ringed space which is locally
affine, hence a scheme.

We leave it to the reader to prove the uniqueness statement in the proposition. O

Exercise 6.2.1. Prove the uniqueness part in the above proposition.

Gluing morphisms of schemes

Finally, we consider conditions under which we can glue morphisms of schemes

Proposition 6.4 (Gluing conditions for morphisms of schemes). Let X and Y be
a schemes and let {U, };c; be an open cover of X. Suppose we are given scheme
morphisms

fi: U —Y

satisfying f;

U.~U, foreach i and j. Then there is a unique map of schemes

f: X—Y

vini = Ji

such that f|y, = f; for every i.

Proof On the level of topolofical spaces, we define f(x) = f;(x) if € U,. This is
well-defined because f;(x) = f;(x) for z € U; n Uj, and it is clear that it is continuous.

Next, we define the sheaf map f*. If V' — Y is an open set, we need to define a ring map
[ Oy (V) — Ox(f~1V). To do this, take any section s € Oy (V). Using the sheaf maps
f over U;, we get sections t; = f(s) in Ox (f~'V n U;). But since f/ and ff restrict to
the same map on Uy, it holds that t;| -1y ~u,, = tj|f-1vau,, in Ox(f~'V N Uy;). The t;
therefore patch together to a section t € Ox (f~!V), and we can define f*(s) to be ¢. It is
clear that f* is a ring map, and that f* = ff(s) when V' < Uj. The pair (f, f*) is therefore
a map of locally ringed spaces because it is locally given by the f;.

Proving the uniqueness statement is left to the reader. O

Jo

fi
Uy

<

Exercise 6.2.2. Let X and Y be schemes and let & be a basis for the topology on X.

f2 Y
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88 Gluing

Suppose that there is a collection of morphisms fr;: U — Y, one for each U € 4, such that
if V € % satisfies V < U, we have

fU|V = fV‘

Show that there exists a unique morphism of schemes f: X — Y such that f|y = fr.

6.3 Maps into affine schemes

As a first application of the gluing theorems in this chapter, we prove the following important
theorem about morphisms of schemes into affine schemes, which generalizes The Main
Theorem for Affine Schemes (Theorem 4.18).

Theorem 6.5 (Maps into affine schemes). For any scheme X, the canonical map
¢ : Homsp, (X, Spec A) — Hompgings(A, Ox (X))
given by (f, f¥) — f% is bijective.

Proof Let {U,}.c; be an open affine cover of X. By the affine case, (Theorem 4.18), we
know that each @y, is bijective. We first claim that ® x is injective. Given two morphisms
f,g: X — Spec A that induce the same ring map 5: A — Ox (X), their restrictions are
morphisms f;: U; — Spec A and g;: U; — Spec A. For each 7 these both correspond to
the ring map A — Ox(X) — Ox (U;) obtained by composing (3 with the restriction; thus
g; = fi, because @, is bijective. It follows that f = g by the uniqueness part of Proposition
6.4, so @y is injective.

Next we show that @ x is surjective. Let 3: A — Ox(X) be a ring map. Composing /3
with the appropriate restriction maps, one obtains ring maps

,Bii A g Ox(X) g Ox(Ul),

and these induce morphisms f;: U; — Spec A. We claim that the f;’s may be glued together
to amap f: X — Spec A. For this, we need to show that they agree over the overlaps
U, n U;. The latter intersection might not be affine, however, it is enough to show that
filv = f;|v for every affine V' < U; n Uj. For this, consider the diagram

A —— Ox(X)

[
R

Ox UJ)

X(Uz N Uj) —_— OX(V)

b
B

S/

Ox(U;)

The diagram tells us that the restrictions f;|y and f;|y induce the same ring map A —
Ox (V) and we conclude that they are equal by The Main Theorem for Affine Schemes
(Theorem 4.18). As this is true for any V, the f;’s are equal on all of U; n U,. Hence the
fi can be glued together to a morphism f: X — Spec A. It must hold that ®x (f) = £,
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6.3 Maps into affine schemes 89

because P x is injective (which we just proved) and since f|;, maps to 3; via @y, for each i.
This completes the proof. O

For a general scheme X, it is natural to consider the affine scheme Spec(Ox (X)). This
is in general very different from X, as the examples of Chapter 7 will show. There is however
always a canonically defined morphism X — Spec(Ox (X)), which satisfies a universal
property with respect to morphisms into affine schemes:

Corollary 6.6. Let X be any scheme. Then there is a canonical map of schemes
f: X — Spec(Ox (X))

so that f* induces identity on global sections. It is universal among morphism from
X to affine schemes, that is, given a morphism g: X — Spec A, it holds that

g = Spec (g%) o f.

Proof The first part follows by applying the theorem to A = Ox(X), and the second
follows, again from the theorem, in view of the equality

(Spec(gﬁ) o f)ﬁ — fﬁ o gﬁ _ ide(X) Ogu _ gﬁ.

Example 6.7. As a special case, we note that there is a canonical bijection
Homs, (X, Spec Z) = Homgings(Z, Ox (X)).

Since ring maps always preserve the unit element, the set on the right is clearly a one-point
set. This means that there exist one and only one morphism of schemes X — SpecZ. In
categorical terms this means that Spec Z is a final object in the category of schemes Sch.

The category Sch also has an initial object, the empty scheme; it equals the spectrum of
the zero ring, Spec 0, which has the empty set as underlying topological space. Given any
scheme X there is clearly a unique morphism Spec 0 — X, which on the level of sheaves
sends every section of Ox to zero.

Example 6.8 (Maps to A' and Ox (X)). In the special case when A = Z][t], any morphism
of rings Z[t] — Ox(X) is determined uniquely by the image of ¢. Thus by Theorem 6.5,
we have

HOmsch (X, Al) = OX (X)
Hence for any scheme, there is a bijection between the elements f € Ox (X ) and scheme
maps
f: X — Al
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7

Examples constructed by gluing

7.1 Gluing two schemes together

To make the gluing techniques introduced in Chapter 6 a bit more concrete, we will study in
detail the simple case of schemes obtained by gluing together just two schemes.

We start out with two schemes X; and X, with respective open subsets X5 < X,
and X5; < X,; these are open subschemes equipped with their canonical induced scheme
structures obtained by restricting the structure sheaves. Furthermore, we assume we are
given an isomorphism 7: X5; — Xj,. For just two schemes, the gluing conditions are
automatically fulfilled, and these data allow us to glue together X; and X, along X5 and
X5, to construct a new scheme X.

Xo

On the level of topological spaces, X is obtained from the disjoint union X [ [ X5 by
forming the quotient modulo the equivalence relation with x ~ 7(z) for z € X5, € X, and
giving X the quotient topology.

Each of the open embeddings g;: X; — U; < X (where ¢ = 1 or 2) allows us to view
each X as an open subset of X, providing an open cover of X. For an open subset V' < X,
we may identify the sheaf sequence

0— Ox(V) — Ox(v N Ul) X Ox(v M UQ) — Ox(v M U1 N U2>
with the following sequence
0= Ox(g7'V) = Ox,(97'V) % Ox(95'V) = Oxia(977'V 1 Xoo)
where a(s) = (¢ (s|v ), 65(slvae)) and B(s1, 82) = s1]x, — 7%(52]x20).

90
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7.2 The projective line 91

The main example to keep in mind is when X; and X, are both affine, say X; = Spec R
and X, = Spec S, and they are glued together along two distinguished open subsets D ()
and D(v) for some v € R and v € S. The gluing map 7 is induced from a ring isomorphism
between the localizations

¢: R, —> 5,.

We picture this by the following diagram of schemes
Spec R o Spec R, = D(u) +—— D(v) = Spec S, < Spec S
To compute Oy (X), the sheaf exact sequence takes the form
0 — I'(X,0x) — Rx S 2> 5,. (7.1)

Here p(r, s) = s/1 — ¢(r/1) with s/1 and r/1 denoting the images of s and r respectively
in S, and R,. In other words, elements in Ox (X ) correspond to pairs (7, s) € R x .S such
that s/1 = ¢(r/1) in the localized ring S,,.

We can also study sheaves on the glued scheme X. Proposition ?? tells us that giving a
sheaf F on X is equivalent to specifying (i) a sheaf F; on X7; (ii) a sheaf F5 on Xj; (iii) a
sheaf isomorphism

Vit -7:2|D(v) - f1|D(u),

where we use the isomorphism 7 to identify D(u) and D(v). In the special case that F; = M

and F, = N for modules M and N over S and R respectively, it is equivalent to specify an
isomorphism of I,,-modules

V12 Nu D Mv‘

(See Section 4.4 for the construction of M'). Many important examples arise from this basic
construction. We will now survey a few of these.

7.2 The projective line

The Riemann sphere CP! is the complex plane C with one point added, the point at infinity.
As a complex manifold, it is covered by two charts, both isomorphic to C. There is a complex
coordinate z centred at the origin, and its inverse w = 2! serves as the coordinate centred
at infinity.

The construction of CP! can be vastly generalized to work over any ring A. Let u be
a variable (‘the coordinate at the origin’) and let Uy = Spec A[u]. The inverse u ™" is a
variable as good as u (‘the coordinate at infinity’), and we let U; = Spec A[u~']. Both are
copies of the affine line A, over A.

Inside Uy, we have the distinguished open set Uy; = D(u), which is canonically iso-
morphic to Spec A[u,u '], and the open embedding Uy; — U, comes from the inclusion
Alu] © AJu,w™]. Similarly, inside U, there is the distinguished open set Uyo = D(u™'),
which is also identified with Spec A[u !, u] by the inclusion A[u~'] < A[u~?, u]. Hence
Uy and U, are isomorphic schemes, and we may glue Uy to U; along Up;. The result is
called the projective line over A and is denoted by P,.
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92 Examples constructed by gluing

The projective line over A indeed is a scheme over A. Indeed, there are canonical maps
7o: Uy — Spec A and 7, : Uy — Spec A, which are induced by the inclusions A < A[u]
and A = A[u~'], respectively. Over the intersection Uy n Uy, these morphisms agree, since
both are induced by the inclusion A © A[u, u™!]. Therefore, they can be glued to define a
morphism 7: P! — Spec A.

U (1:0)
Uy = Spec Afu] 0
Pl
U, = Spec A[u™!] U,
(0:1)

Gluing two affine lines to get P

If Spec A is irreducible, then so is PY;. This is because P!, contains U ~ A, as a dense
open subset and A[u] is an integral domain if A is. Likewise, P is reduced if A is, because
it has the same local rings as U and U, which are reduced. Hence P!, is integral if Spec A
is.

Note that the complement of U, equals V (u) < Uy = Spec A[u], which is isomorphic
to Spec A. So when A = k is a field, P}, is A}, with a single point added. In particular, when
k is algebraically closed, the set of k-points P! (k) coicides with the projective line defined
in Chapter 1.

The following computation is very important.

Proposition 7.1. We have I'(P};, Op ) = A.

Proof The projective line P, is covered by the two open affines Uy and U, and the standard
exact sequence (7.1) above takes the form

0—> F(P}q,opg) E— F(UO,O]P’i‘) X F(UhO]PﬂA) E— F(Um,(/)%)

l? | l?l

Alu] x Alu™'] ———— Alu,u'],

where the map p sends a pair (f(u), g(u™")) of polynomials with coefficients in A, one in
the variable v and one in u™?, to the difference g(u™') — f(u).

The group I'(PY,, Op ) is therefore identified with the kernel of p. But this kernel consists
of elements (a,a) where a € A: if f(u) — g(u™") = 0in AJu,u"!], then both f and g
must have degree 0 as polynomials in . 0

In particular, for a field k, the group of global sections of Op: (P}.) is just the ‘constants’,
k, as in Theorem 1.44 on page 19. Over the complex numbers, this can be seen as a special
case of Liouville’s theorem, that the only global holomorphic functions are the constants.
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7.2 The projective line 93

We note that we also have got yet another example of a scheme which is not affine: if P&
were affine, it would have to be isomorphic to Spec C according to Theorem 4.18 on page 64.
But this is clearly not the case, as P contains infinitely many closed points. Another morale
to extract is that the group Ox (X)) does not give much information about X for general
schemes.

The projective line IF’}4 as a quotient

P, is in fact related to the first example of a non-affine scheme of Example ?? on page ??,
namely the affine plane A% = Spec A[u, v] with the ‘origin’ V' (u, v) removed. In fact, there
is a natural morphism between them:

7 A% —V(u,v) — PL.

On the level of closed points, when A = k is an algebraically closed field, the morphism 7
is exactly the morphism used in the construction of the projective line as a quotient space
in Chapter 1. V(u,v) is the origin, and 7 collapses each line through the origin to its
corresponding point in P! (k).

The map 7 is constructed by gluing together the two morphisms

fi: D(u) = Spec A[u,u™",v] — Spec A[vu™!]
fa: D(v) = Spec A[u,v,v"'] — Spec A[uv™]

which are induced from the inclusions A[vu™!] € A[u, v, v] and A[uv™'] < AJu, v,v™].
Note that the two targets, Spec A[vu~'] and Spec A[uv™'], are two copies of Al; which
glue to the projective line P!, (using uv~" as the variable).

The union of the sources equals D(u) U D(v) = A% — V(u,v) and D(u) n D(v) =
D(uv) = Spec Alu,u*, v,v!]. Applying Spec to the following commutative diagram
then shows that f; and f; satisfy the gluing condition:

Alu,u™t v] +——— Afu'v]

\\

Lo o] +—— Aflu'v,uv™!]

//

Alu,v,v7] +———— Aluv™1].

Exercise 7.2.1. Let K be a field. Show that the K -points of the projective line P! are in
bijection with the set of lines in K2 passing through the origin (0,0) HINT: Any map
Spec K — P! must factor via either Uy or U;.

Exercise 7.2.2. Let X = Spec A be an affine scheme over a field k. Show that every
morphism P, — X is constant, i.e. it factors through some k-valued point of X.

Exercise 7.2.3. Show that PY; is not affine for any ring A. HINT: The canonical map
P!, — Spec A is never an isomorphism (restrict to U).
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A family of sheaves on ]P’k

The projective spaces, in particular the projective line P!, carry a family of sheaves, which
play an important role in algebraic geometry. There is one for each integer m, and the sheaves
will be denoted by Op1, (m). We shall construct these sheaves using the gluing theorems for
sheaves.

Let Uy = Spec A[u] and U; = Spec A[u"!] be the usual cover of P, and consider the
intersection Uy N U; = Spec A[u, u~!]. Multiplication by u™ gives an isomorphism

Alu,u™'] 5 Afu,ut.

and by Exercise 4.1.2 on page 58, this induces an isomorphism of sheaves

T OU1|Uof\U1 OUO’UoﬁUl'

Now we define a sheaf Op1 () by gluing Oy, to Oy, along Uy nU, using this isomorphism.
Note that the direction of 7 matters; we could of course have used the multiplication map in
the reverse direction, but this would have yielded a different sheaf, namely Oﬂ”h (—m)

By construction, the sheaf Op:, (m) restricts to the structure sheaf on both open subsets
Uy and Uy; that is, Op1 (m)]y, ~ Oy, and O(m)p: |y, =~ Oy, (in the jargon of Chapter ??
it is a locally free sheaf). However, when m # 0, the sheaf Op1 (m) is not isomorphic to the
structure sheaf Opi‘. As we shall see, their global sections are different. In particular, this
gives another illustration that a sheaf is not determined by its stalks alone.

To compute the global sections of Opy (m), we use the the standard sheaf sequence applied
to Uy, Uy. With Ox (Uy) = Alu], Ox(Uy) = A[u~'], and Ox(Up) = Alu,u'], the
sequence takes the form

0 —— T'(Opy, Op (m)) —— Alu] ® Alu'] — s Alu,u™],

where p(p(u),q(u)) = u™q(u™t) — p(u). If m < 0, then there are no non-trivial
polynomials p and g such that u"q(u~") = p(u), and we infer that T'(P}, Op1 (m)) =
Ker p = 0. For m > 0 however there are solutions. Indeed, every polynomial p(u) of degree
at most m is of the form u™q(u '), and where g is uniquely determined by p. We have
shown the following:

Proposition 7.2. The global sections of Op1, (m) are given by

ADAUD® - D Au™ whenm = 0;

I'(PY, Op =
(P2 P“‘(m)) 0 when m < 0.

Closed subschemes of ]P’Il4
Let us have a closer look at the sheaf Op:, (—1) on PY;. We claim that there is a sheaf map
¢: O, (=1) = Opy,

which makes Ops, (—1) into a subsheaf of Op1. We construct ¢ by defining it on each of the
open sets Uy and U; and then make sure that the maps glue using Lemma ??. On the open set
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7.3 The affine line with a doubled origin 95

Uy = Spec A[u] we define ¢g: Oy, — Oy, by multiplying sections by u. On U, we let
¢1: Oy, — Oy, be the identity map. To see that the two maps glue, we need to check that
they agree on the intersection Uy n U; = Spec A[u, u™!]. But this follows directly from
the commutativity of the following diagram:

u
OUU‘UoﬁUl OUU‘UoﬁUl

] i

OUl ‘Uof'\Ul ;> OUI |U0ﬁU1'

The four sheaves are all equal to Oy, ~y, . The right vertical map is the gluing map for the
sheaf Op1 and the left one that for Op:, (—1). The horizontal maps are the restrictions of the
local maps to ¢o|v, v, and ¢1|u,~v, - Thus we have the desired map ¢: Opt (—1) — Op.
More generally, any non-zero section of ¢: Op: (m) gives rise to a map Ops (—m) —
Oph. In the previous section, we showed that such a section is determined by a pair of
polynomials p(u) and q(u~") satisfying p(u) = u™q(u"").The map is obtained by gluing
together maps defined over Uj and U, and the key point is the commutative diagram

p(u)
OU0|U00U1 OUO‘UOﬁUl

o] J

( —1
OU1|U0ﬂU1 L; 0U1|U0ﬁU17

where the left vertical arrow is gluing map for O]}»i‘(*m) and the horizontal ones are
restrictions of the multiplication maps to Uy n U;. As above, the right vertical map is just
the gluing map for Op: .

Exercise 7.2.4. This exercise indicates how a non-zero section o gives rise to a closed
subscheme V(o) of PY,. (This is part of a more general story, explored in Chapter 18.)

a) Show that the image of the map ¢: Opy (—m) — Opy, associated with a
section o of Op1 (m) is a principal ideal in each ring Opy, (U), and thus defines
closed subscheme Z; < U,.

b) Show that the two ideals become equal in the ring Op:, (Uy N Uy ), and that the
Z;’s can be glued together to a closed subscheme V (o) < P.

Exercise 7.2.5. Suppose A = k is a field and let o be a non-zero section of Op1, (m). Show
that V' (o), as defined in the previous exercise, consists of m points counted with multiplicity,
thatis, m = >} i,y dimy Oy () .. HINT: Show that deg p(u) = m —deg q(u™'), where
deg q(u~") is the degree of g(u~") as a polynomial in u ™.

7.3 The affine line with a doubled origin

The next example is obtained by gluing together two copies X; and X of the affine line
A}, = Spec k[u] over a field k along their common open subset X, = Spec k[u, u™'] with
the identity morphism ¢ : k[u,u™'] — k[u, u™"] on the open set. The resulting scheme X
is covered by two A}’s which overlap outside the origin. However, as the gluing process does
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96 Examples constructed by gluing

nothing over the origins of each Aj, there are now two points in X that replace the origin. X
is called the affine line with two origins.

Al

Al Q)

> o 0o
L
>

This scheme is not affine. Indeed, the sheaf sequence from before takes the form

O —_— F()(7 Ox) E— F(Ai7OAi)®F(Ai;OA;) E— F(X1270X12)

| r'

k[u] ® k[u] ———— E[u,u™']

where now p(p(u), q(u)) = p(u) — q(u), and it follows that either open inclusion ¢: A} —
X induces an isomorphism I'(X, Ox) ~ I'(Ay, Ou1) = k[u]. However, the open inclusion
t: A = Speck[u] — X is not an isomorphism (it is not surjective, since the image misses
one of the two origins).

Note that the scheme X is both irreducible and reduced, with function field equal to
K = k(u). The two local rings Ox o, and Ox o, both lie as subrings of K; they are both
equal to k[u](,). This is somewhat unsetteling: any rational function which is regular at 05 is
automatically regular at 0, and it takes the same value there. This is related to the property of
‘separatedness’, which we will discuss in Chapter 11.

Exercise 7.3.1. Let X be the affine line with two origins, as defined above.
a) Imitate the construction of the sheaves Op: (1) on P} to form a family of
sheaves Ox (m) on X, one for each integer m.
b) Show that Ox(m) and Ox(n) are not isomorphic unless m = n. HINT:
Consider the behaviour of sections at the two origins.

7.4 Semi-local rings

Semi-local rings are rings with finitely many maximal ideals. In the next two examples we
give a few examples of such rings and how they can be described as local rings glued together.

Example 7.3 (Semi-local rings). Consider the two rings Z) and Zs). These are both
discrete valuation rings with with a common fraction field Q and maximal ideals (2) and
(3) respectively. Their prime spectra X; = Spec Z») and X, = Spec Zs) consist each of
two points; the maximal ideal and a generic point 7; = (0) which are open. (as described in
Example 2.10 on page 24). The generic points given the open embeddings Spec Q — X;
fori = 1, 2. Hence we can glue together X; and X, along the two generic points and thus
obtain a scheme X with one open point 77 and two closed points. Let us compute the global
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7.5 The blow-up of the affine plane 97
sections of Ox using the sheaf sequence for the open cover { X, Xo}:

00— F(X, Ox) —_— F(Xl,OX) X F(XQ,Ox) —_— F(Xl N XQ,Ox)

| !

Z(g) X Z(g) I Q

The map p sends a pair (an~!, bm 1) to the difference an~! —bm ™!, hence the kernel equals

the the set (a, a) with a € Z2) N Zs). This is a semi-local ring with the two maximalideals
(2) and (3). By the Main Theorem of Maps into Affine schemes (Theorem 4.18) there is a
map X — Spec Z) N Zs), and it is left as an exercise to show that this is an isomorphism.

«(3)

Example 7.4 (More semi-local rings). More generally, if P = {p;,...,p,} is a finite set
of distinct prime numbers, one may let X, = SpecZ, for p € P. There is, as in the
previous case, a canonical open embedding Spec Q — X, for each p. Let the images be
{n,}. Obviously, the conditions for gluing the 7),’s together are all satisfied (the transition
maps are all equal to idgpec g, and X, = {1, } for all p), and we may glue the X; together
to a scheme X. Again, the global sections of the structure sheaf are found using the sheaf
sequence

0— F(X, Ox) E— HpGPF(XT”OX) — Hp,qu F(Xp M Xq,Ox)

| !

HpGP Z(P) P ]._[p,qep Q

The map p sends a sequence (a,),cp to the sequence (a, — a,)p 4ep, and it follows that
the kernel of p equals the intersection Ap = ﬂpe p L(py- This is a semi-local ring whose
maximal ideals are the (p) Ap’s for p € P. There is a canonical morphism X — Spec Ap,
and again we leave it to the reader to verify that this is an isomorphism.

Exercise 7.4.1. Verify the claims in Examples 7.3 and 7.4 above that X is isomorphic
respectively to SpecZ, N Z3 and to Spec Ap. HINT: Use the uniqueness statement in
Proposition 6.3 on page 86.

Exercise 7.4.2. Glue Spec Zy) to itself along the generic point to obtain a scheme X . Show
that X is not affine. HINT: Show that Ox (X)) = Z).

7.5 The blow-up of the affine plane

In this section we will construct the blow-up of A at the origin, by gluing together two affine
schemes. We begin by recalling the classical construction for varieties. As in Chapter 1, we
write A?(k) for the variety, and A? for the scheme, etc.
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98 Examples constructed by gluing

The blow-up as a variety

Let k be an algebraically closed field, and consider the affine plane A%(k). There is a
morphism f: A?(k) — {(0,0)} — P'(k) that sends a point (z, y) to the point (z : y) (in
homogeneous coordinates on P! (k)). This map is not defined at the origin (0, 0), but we can
still consider the closure of the graph {(z, f(z))} which is a subset of A%(k) x P*(k).

To describe the graph in more detail, we write (s : t) for homogenous coordinates on
P! (k). Points in the product are then of the form (x,y) x (s : t), and those in the graph
satisfy (z : y) = (s : t). This means that z = s and y = at for some non-zero scalar a,
and by eliminating c, we find the relation zt —ys = 0. Hence X is defined in A%(k) x P! (k)
by that single equation, and we have:

X = Z(xt —ys) < A%(k) x P' (k).

We also have two projection maps p: X — A?(k) and ¢: X — P'(k). Let us analyze the

Figure 7.1 The blow-up of the plane at a point

fibres of the two maps. The fibres of p are easy to describe. If (x,y) € A%(k) is not the
origin, then p~!(z, y) consists of a single point: the equation zt = ys allows us to determine
the point (s : t) uniquely since either = # 0 or y # 0. However, when (z,y) = (0,0), any
choices of s and ¢ satisfy the equation, so p~*(0,0) = (0,0) x P!(k). In particular, this
inverse image is one-dimensional; it is called the exceptional divisor of X, and is frequently
denoted by F.

Similarly, if (s : t) € P! (k) is a point, the fibre

g Hs:t)={(z,y) x (s:t) |t =ys} < A(k)? x (s: 1)

is the line in A%(k) with sz — ty = 0 as equation, s and ¢ being the coefficients. The map g
is an example of a line bundle; all of its fibres are affine lines; that is, A (k)’s. We will see
these again later on in the chapter.

Using the standard cover of P! (k) as a union of two A’(k), we can give a a cover of X
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7.5 The blow-up of the affine plane 99

consisting of two affine planes. For points in the open set U < P*(k) where s # 0, we
can normalize the coordinates by setting s = 1, and the equation &t = sy then becomes
y = tx. Hence = and ¢ may serve as affine coordinates on ¢~ *(U), and it follows that
¢ *(U) ~ A*(k). In these normalized coordinates, the morphism p: X — A7 restricts to
the map A*(k) — A?(k) given by (z,t) — (z,xt). Similarly, if V denotes the open set
where ¢ # 0, it holds that ¢~' (V') = A?(k) with affine coordinates y and s, and the map p
is given there as (y, s) — (sy,y).

The blow-up as a scheme

Inspired by the above discussion, we proceed to define the scheme-analogue of the blow-up
of A? at a point. It will be defined as a scheme over Z rather than over a field k (we get a
blow-up of A? for any ring A by replacing Z in everything below by A). Also, in addition to
the scheme X, we want two morphisms of schemes p: X — A? and ¢: X — P! having
similar properties to the morphisms in the example above.

Consider the affine plane A> = SpecZ[x,y]. The prime ideal p = (z,y) < Z|z,y]
corresponds to the origin of A?(k) in the analogy with varitities. Consider the diagram

Zlz,y]

Z|x,t] Zly, s]

/\
\/

R =Z[z,y, 5,1)/(xt — ys, st — 1),

where the two skew maps in the upper part are given by z — x,y — atand y — y, x — ys
respectively, and the two others are induced by obvious inclusions.

Note that the ring R is isomorphic to Z[z, s,t]/(st — 1) = Z|z,t,t7*] as well as to
Zly, s, t]/(st — 1) = Z[y,s,s *]. Since this ring is a localization of both Z[x,¢] and
Zly, s], we can identify its spectrum both as an open subscheme of Spec Z[x, t] and as an
open subscheme of Spec Z[y, s]. From this we get a diagram

Spec Z[z, y]

\
:

U = SpecZ|x, t] SpecZly,s]| =V

/
\

Spec R,

where the bottom skew maps are open embeddings. Hence we can glue the two affine
schemes U and V together along Spec R to obtain a new scheme X . By construction, the
restrictions of the maps Spec Z[x, t] — Spec Z[z, y] and Spec Z[y, s] — Spec Z[z, y] to
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100 Examples constructed by gluing

Spec R coincide with the map Spec R — Spec Z[x, y|, which is induced by Z[z, y] — R.
Therefore they may be glued together to a morphism (the ‘blow-up morphism’)

p: X — A? = SpecZ[z,y].

To complete the discussion, we should define the corresponding morphism ¢: X — P!
Again we work locally. On the affine open U = Spec Z[x, t] we have amap U — A' =
Spec Z[t] induced by the inclusion Z[t]  Z[x, t]. Similarly, on V' = Spec Z[y, s] we have
amap V — A' = SpecZ][s]. Checking if they can be glued together, amounts to seeing
what happens on the overlap U n V = Spec R. However, on Spec R it holds that t = 571,
so using the standard description of P! as being glued together of two affine lines, we see

that the maps Z[t] — R and Z[s] — R induce the desired morphism ¢: X — P'.

Exercise 7.5.1. Compute the space Ox (X)) of global sections of the blow-up X and describe
the canonical map X — Spec Ox(X).

Exercise 7.5.2. Imitate the construction above to define the blow-up of A™ along a codimen-
sion 2 linear space V (z, ).

7.6 Projective spaces

In Chapter 1, we defined the projective spaces P (k) as varieties. In this section, we will
construct the projective spaces as schemes over any ring A. In contrast to what we did before,
when P (k) was constructed as a quotient space, we will construct P’ by gluing together
n + 1 copies of the affine space A’;. The gluing process resembles the one used for the
projective line in Section 7.2.

Fix a ground ring A and variables x, ..., z,. Foreachi = 0, ..., n, define the ring
R =A [@ i”]
;= w e |

This is a polynomial ring over A in n variables, so each U; = Spec R; is isomorphic to A’;.
Note that each R; is a subring of the ring

Alzo,zt, .o w0, 2t

n

For each pair of indices ¢ and j, there are equalities of subrings

R; [”‘"—] =R, [ﬁ] (7.2)

T T;
which follows from the identities x;/x; = x;/x; - x;/x;, valid for all 4, j and [. The ring
R;[z;/x,] is a localization of R; in z;/x;, so we may identify U,; = Spec R;[z;/x;] with
distinguished open subscheme D(z;/x;) < U,. Then, using the equality (7.2), and the
identity maps 7;; : U;; — U}, as gluing maps, the gluing conditions are clearly satisfied. The
resulting scheme, is called the projective n-space over A, and is denoted by P;.

Note that all rings R; are A-algebras, so each U, is a scheme over A and comes with a
structure map U; — Spec A. These structure maps agree on U,; and glue together to a map
P — Spec A, making P”; an A-scheme.

In analogy with Theorem 1.44 for P"(k), and Proposition 7.1 for P};, we have the following
result about global sections of the structure sheaf.
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7.6 Projective spaces 101

Proposition 7.5. Let A be a ring. Then
(P, Opn ) = A.

Hypersurfaces in P}

Let G € Alxo,...,x,] be a nonzero homogeneous polynomial of degree d. G determines a
closed subscheme of P’} as follows. In the affine space U; = Spec R;, we can consider the
’dehomogenization’ of G with respect to the variable x;, given by

g :G(”i0 21 ‘L”) € R, :A[ﬂ,...,ﬂ].

z; x;’ z; z; z;

We can consider the affine subscheme of U; given by

X; = Spec (R;/(g:)) -

Note that if g; and g; denote the dehomogenizations of a polynomial g with respect to x; and
x;, it holds that g; = (z;/x;)%g;. The ideals (g;) and (g;) therefore become equal in the
localization R;; = R;[x;/x;] = R;[z;/x;]. This means that the subschemes X; coincide in
the intersections U, ;, and consequently they may be glued together to a closed subscheme
X < P7. We call this the projective hypersurface defined by G.

More generally, any homogeneous ideal I < A[z, ..., z,] determines a closed sub-
scheme of P"}. We will explore this in greater detail in Chapter 9.

The projective plane

The projective plane P% deserves special attention. It is constructed by gluing together the
three affine planes U; = D, (x;) = Spec R; fori = 0,1, 2.

It is sometimes helpful to rewrite these charts using the ‘Uj-coordinates’, i.e., writing
x = x1/xo and y = xy/xy. We can then express the other ratios in terms of x and y. For
instance xo/1 = 2~ 1. With this convention, the three affine opens become

Uy = Speck[z,y], U, = Speck[z™",yx~"'], U, = Speck[y ", xy'].

Consider the hypersurface given by the homogeneous polynomial G = 5. In the open set
Uy = Spec Ry the the ideal (x2) becomes the ideal (y) < A[x,y], and so

Spec Ry/(go) ~ Spec A[z] ~ Al,.
In Uy, the ideal (z5) dehomogenizes to (z5/x;' = 271y, so that
Spec R, /(g1) = Spec A[z™'] ~ Al,.

In Ry = Aly~ ', zy '], o dehomogenizes to x5/x5 = 1, and so it defines the empty
subscheme of Us,.

The hypersurface given by x5 is therefore obtained by gluing two copies of Al using the
gluing map x — ! over the overlaps, and so it is isomorphic to the projective line P;. As
the subscheme is locally defined by a linear equation, and is isomorphic to P!, it deserves the
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102 Examples constructed by gluing

name ‘a line’. In a completely symmetric way we find two other lines in P4 given by x, and
x1. Thus we picture P as U with the ‘line at infinity” given by the subscheme 5.

If we choose a polynomial of higher degree, say G = x¢ + z{ + x2, we obtain more
complicated subschemes X of P%. We think of them as ‘plane curves of degree d’, although
the geometry as a scheme might be quite intricate if A is a general ring.

e N
[ 1
! I
I a2 |
! |
I 2 N S
7z N
\ , I \
N e e e - I
I
I It |
s T T T N : I
I \ I I
! I \ ’
I AQ I N e e e -
! |
! I
\ ’

_—_ - = =

Exercises

Exercise 7.6.1. Prove Proposition 7.5. (A more general result will be proved in Chapter ??).

7.7 Line bundles on P!

The sheaf Op: (m) on the projective line P}, which we constructed in Example 7.2, has a
geometric alter ego, the so-called line bundle L,,, which is a scheme with a morphism

7 Ly —— P,

Each fibre of 7 is an affine line; hence the name ‘line bundle’. In this section we shall
construct these schemes explicitly and study some of them in detail.

For simplicity, we will work over a field k and will keep the convention that U, =
Spec k[u] and U; = Spec k[u~"] denote the standard affine cover of IP}.. Their intersection
is equal to Uy n U; = Spec k[u, u™"].

Recall that the sheaves Op: (m) are obtained by gluing Oy, and Oy, together by means
of the multiplication by 4™ map on Oy, ~v,. The new schemes L,, will be constructed
essentially by the same gluing process, but schemes and not sheaves, will be glued together.
Two copies of A2, Vi = Spec k[u, s] and V; = Spec k[u~?, ], will be glued together using
the isomorphism

D(u) = Spec k[u,u~",t] —— Speck[u,u"",s] = D(u™),

which is induced by the isomorphism of k-algebras p: k[u,u™',s] — k[u,u™',t] that
sends s to u™t and u to u. (The attentive reader will observe a change of sign in the exponent
compared to the sheaf case.)
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7.7 Line bundles on P! 103
The situation is described with the following commutative diagram of ring maps:

E[u,s] — k[u,u™', s] —= k[u,u™",t] < k[u™", 1]

T / T

klu] ———— k[u,u™ ] +—— k[u™'],

where the maps other than p are the inclusions. Applying Spec, we get the following diagram
of affine schemes:

A=V, +— D(u) ~D(ut) —— V, = A2

J | |

U0<—’UO0U1‘—>U1.

The gluing conditions are trivially fulfilled (only a single morphism is involved), and hence
we obtain a scheme L,,. It admits a morphism 7: L,, — P! since the lower row gives the
gluing data for ;. Note that if 2z € P! is a closed point, say = € Uy, then the fibre 7~ () is
isomorphic to the affine line A} (z)- As noted at the top, this is the reason for the term ‘line
bundle’: intuitively L, is a family of affine lines parameterized by the base space P}.

Pl

There is a copy of P, embedded in L,, which is called the zero section of L,,; that is, there
is a closed embedding ¢: P} — L,,, whose image is a closed subscheme C' < L, that meets
each fibre 77! (z) = Ai(w) in the origin. Intuitively, this subscheme is defined by one of
the equations s = 0 or ¢t = 0 in each fibre. More precisely, C'is given by C' n V = V()
and C V) = V(t). Inthe ring I'(Vy n Vi, Oy, ), the relation s = u™t holds, and as w is
invertible in I'(Vy n V3, Oy, ), the principal ideals (s) and (¢) are equal. The two closed
subschemes V' (s) n Vo n V; and V() n Vo n V; coincide, and V(s) and V' (¢) can be
patched together to a subscheme C.

We claim that C' is a section of the morphism 7; that is, it holds that 7 o ¢ = idﬂ»}c. As
V(s) = Spec k[u, s]/(s) = Spec k[u] as a subscheme of Vj, and V' (t) = Spec k[u*,t]/(t)
Spec k[u~"] inside V;, we infer that C' ~ ;.. Consider the composition of the maps

klu] — k[u,s] —— k[u, s]/(s) = k[u],

where the first map is the canonical inclusion andcorresponds geometrically to 7|y, and the

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

104 Examples constructed by gluing

second is the canonical quotient map and corresponds to the inclusion ¢: V(s) = Cn'Vy —
V. Clearly, it holds that 7 o ¢y = idy,. In a similar manner, it follows that 7|y, o ¢; = idy,,
hence m ot = id]p)le and C is a section.

A few particular cases

The schemes L,,, give a rich source of examples in algebraic geometry, and we will come
back to them several times in the book. For now let us study some of them in more detail.

Example 7.6 (The line-bundle L;). The scheme Ly is glued together of two copies of A2
with the help of the inclusions

klu,t] —— klu,u™t,t] +— k[u™',t].

In addition to 7, the bundle L, admits a morphism Ly — A} obtained by gluing together the
two maps Spec k[u, t] — Spec k[t] and Spec k[u~',t] — Spec k[t]. The scheme Ly is
identified with the “fibre product’ P* x;, A} (fibre products will be study in detail in Chapter
10), and is the scheme associated with the product variety P! (k) x A*(k).

Example 7.7 (The line-bundle L;). The scheme L is isomorphic to the complement of
a closed point P in the projective plane, i.e. Y = P{ — { P}. Indeed, choose coordinates
T, x1 and 5 in the projective plane and consider the two distinguished open subschemes
Vo = Speck|z,/xg, xa/z0] and V; = Spec k[xo/x1, 22/21]. Their union in P? equals
the complement of the closed point P = (0 : 0 : 1). Renaming the variables u = zo/x,
s = xp/xy and t = xo/wo, we find that V) = Spec k[u, s] and V; = k[u~",¢], and the
identity x2/x1 = xo/T1 - T2/ turns into the equality s = wt, which is precisely the gluing
data for L.

Geometrically the morphism P? — { P} — P} is given by ‘projection from the point P’.
The fibres are the lines in ]P’i through P (with the point P removed), and the zero section
equals the line ‘at infinity’; i.e. the line V' (x5).

Example 7.8 (The line-bundle L_;). We have in fact seen the scheme L _; before: it is
isomorphic to the blow-up of A? at the origin. Recall that the blow-up X comes equipped
with a map ¢: X — [P}, which is described in detail at the end of Section 7.5. One checks
without much difficulties that the gluing maps used for forming q are the same as for making
L_ 1. The zero-section C' corresponds to the exceptional divisor F in the blow-up. See also
Exercise 7.7.1 below.

Example 7.9 (The line-bundle L_5). The scheme L _ is quite interesting. It is the so-called
desingularization of a quadratic cone. The quadratic cone is the subscheme Q = V (y? —x2)
of A3, which is equal to Spec R with R = k[z,y, z]/(y* — xz). We claim that there is a
surjective morphism ¢ : L_y — Spec R, which is an isomorphism outside the curve C'. (The
morphism ¢ is helpful for understanding the quadratic cone. In the terminology of Chapter
13, @) has a ‘singularity’ at the origin, whereas L_, is ‘non-singular’.)

We shall construct o by giving the restrictions o; to each of the two opens V; and V; that
make up L_,. Recall that V; = Spec k[u, s] and V; = Spec k[u™!, ] with gluing map
Spec k[u,u™!, s] ~ Speck[u,u"!,t] given by the assignment s +— u~2t. The maps o;
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7.7 Line bundles on P* 105

|

IPl

are Spec’s of the ring maps ¢o: R — k[u,s] and ¢,: R — k[u™!,t] coming from the
assignments

bo: T > S, Y > us, 2 — u’s;

b1z u ity u 2t

It holds that ¢ (y* —22) = (us)?—u(us) = 0and ¢; (y> —xz) = (v ')?—u (u™'t) =
0, so the ¢;’s are well defined. The o;’s are compatible with the transitions function and
can be glued together to the desired mapo: L_5 — ]P’,lg; indeed, one easily verifies that the
diagram

R
2N
klu,u™, 8] ——— k[u,u",]

commutes; for instance, p(do(z)) = p(s) = u™2t = ¢1(z).

L_,

Let us analyse the fibres of the morphism o. We begin by figuring out what happens over the
open set Vy = Spec k[u, s], where o restricts to the map

0o Specklu,s] — Q

corresponding to ¢y. Consider the maximal ideal m = (z,y, z) € R of the origin. The fibre
over m corresponds to prime ideals in p < k[u, s] containing mk[u, s] = (s, su, su?) =
(s); that is, the fibre equals the closed set o' (V' (m)) = V (s). This means that the whole
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106 Examples constructed by gluing

‘u-axis’ V (s) in A = Spec k[u, s] is collapsed onto the origin in ). Likewise, the *u~!-

axis’ in A? = Spec k[u™!, t] is collapsed to the origin; in oher words, the whole zero-section
C'in L_, is mapped to the origin. In fact, the C is the only subscheme of L_, which is
contracted; o is an isomorphism outside C":

Proposition 7.10. The map o restricts to an isomorphism L_, — C' > Q — {p},
where p is the origin in Q).

Proof The complement (Q — {p} of the origin is covered by the two distinguished open
sets D(z) and D(z) (note that D(y) = D(y*) = D(xz) by the quadratic relation defining
R).Likewise, the complement L._, — C' of the zero-section is covered by the distinguished
open subsets D(s) < Vi = Speck[u,s] and D(t) < V; = Speck[u?,t]. It holds
that o, ' (V(2)) = V(s) = Speck[u, s], and this means that the restriction oy, = o
maps D(s) onto D(z). In fact, using the identification D(x) = Spec R,, and the identity
R, = (k|z,y, 2]/(y* — x2)), ~ k[x, y].,we see that o is the map

Spec k[u, s]. — Spec k[z, y].

induced by the ring map such that z — s and y — us. This is an isomorphism because we
have inverted s. Hence o|y, is an isomorphism over D(x). A symmetric argument shows
that o |y, is an isomorphism over D(z); all together, o is an isomorphism outside C'. 0

Exercises

Exercise 7.7.1. Check that L_; is indeed the blow-up constructed in Section 7.5.

Exercise 7.7.2. Show that for m > 0, the scheme L _,, admits a morphismo: L_,, - Y
contracting the zero-section C' to a point.

Exercise 7.7.3. For the canonical morphism 7: L,,, — P}, show that
TF*OL"L = @ Olpllc (—Zm)
>0
Exercise 7.7.4 (A variety perspective). When k is an algebraically closed field the k-points

of L,, are described by expressions resembling homogeneous coordinates.
a) Show that the k-points of L,, are precisely the equivalence classes of triples

(xg: 1 | 1),
where o, z1,t € k, with (2o, z1) # (0,0) under the relation
(o : 21 | t) = (axo : axy | ™),

for o € k a non-zero scalar.

b) Show that the zero section is the the set of points of the form (zq : x; | 0), and
that if m > 0 and p(xo, x;) is a homogeneous polynomial of degree m, then
the map P*(k) — L,,(k) given by the assignment

(zo:x1) — (20 : x| q(x0,21))
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7.8 Double covers of projective space 107

is a well defined section of L,,, (k) — P*(k) (at least in a set-theoretic sense).

Exercise 7.7.5 (A variety perspective). Define f: L_,,(k) — A" (k) by
m—1

(o 2wy | t) > (tal tay oy, ... oo M, )

Show that this map is well defined and collapses the zero-section to the origin. Define and
describe a scheme version of this map.

7.8 Double covers of projective space

Consider a polynomial in n variables over a base ring A, f € R = A[zy,...,x,]. This
defines a closed subscheme X of the affine space A" = Spec R[y] given by

X = Spec R[y]/(y* — f)

There is a morphism o : X — A" induced by the ring map R — R[y]/(y? — f). We call
X, with the map o, the double cover of A”; = Spec R associated to f. The name comes
from the following example:

Example 7.11. Let A = k be an algebraically closed field, and let p € A} be the closed
point corresponding to the maximal ideal m = (z; — ay, ..., x, — a,) in R. By Proposition
2.34, the fibre ! (p) is given by

Spec(R[yl/((y* — f) + m)) = SpecCly]/(y* = f(ar, ..., an)).

If f(ai,...,a,) # 0, the fibre consists of two points, and if f(ay,...,a,) = 0, the fibre
has one (it is given by Spec C[y]/y?).

We will also consider double covers of projective spaces by gluing together the double
coverings we just constructed. We begin with the case of P!,

Hyperelliptic curves

Let k be a field and consider a polynomial
p(z) = agg 12 + -+
of degree 2g + 1 in k[z].
Consider the two affine schemes X; = Spec A and X, = Spec B, where
A = k[z,y]/(y* — p(x)) and B = k[u,v]/(v* — w**?p(u™")).

Note that u*™?p(u™') = agy1u + -+ + a;u?9*! indeed is a polynomial in u. The
two distinguished open sets D(x) = Spec A, and D(u) = Spec B, are isomorphic: the
assignments ¢(u) = ™' and ¢(v) = 279 'y define an isomorphism ¢: B, — A,. The
map is well defined, as the little calculation

¢(0* — w2 p(ut)) = a2y — pm o p(r) = 27 G (y? — p(x))

shows that the defining ideal for B, maps into the one defining A, and one verifies easily
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108 Examples constructed by gluing

that the maps o — u ! and y — vu 97! define the inverse. We can therefore glue X; and
X, together along the open subsets D(x) and D(u).

The resulting scheme X is called a hyperelliptic curve, and it is a double covering of P;.
In the case g = 1, the curve X is an example of an elliptic curve. Below is an illustration of
the real points of one ofthe distinguished opensfor g = 2:

The scheme X admits a morphism 7 to P}.: consider the two inclusions k[z] < A and
k[u] = B. Under the identification map ¢: B, — A, above, k[u] is mapped into k[z] and
w maps to x 1, as in the commutative diagram:

E[u] =2 k[z]

| |

B, LN A,.
The two inclusions yield maps X; — U, = Spec k[z] < P} and X, — U; = Speck[u]
P}, where Uy and U, are joined together to a P}, according to the rule x <> u~'. By the
observation above, this is compatible with the way X; and X5 are joined together, and so we
get the desired morphism.
Observe that 7 is a double cover. Consider for instance the open set X;. If z € Uy <
Spec k[x] is a closed point with maximal ideal m < k[z], the fibre over z is equal to

7! (p) = Spec A/mA = Spec K[y]/(y* — a),

where K = k[x]/m and a is the residue of p in K = k[z]/m. If the characteristic of k
is not two and a € k with a square root b € k, then K[y]/(y* — a) = k[y]/(y — b) x
k[y]/(y + b) ~ k x k, and the fibre has two points. In the other cases, there is just one point
in the fibre, but the vector space dimension of K[y]/(y? — a) over K is still two, and the
moniker *double cover’ persists being meaningful.

Notice that the construction of X is very similar to how the schemes L,,, from Section 7.7
were made. In fact, X is a closed subscheme of L_,_; in a natural way. Indeed, L_,_, is
the union of of U = Spec k[, y] and V' = Spec|u, v] and they are glued together with the
maps defined by the same assignments as ¢ and ¢, and as these pass to the quotients A, and
B, we infer that X; and X, patch together to a closed subscheme of L_,_;.

Higher-dimensional double coverings

The above construction generalizes in a straightforward manner to higher-dimensional pro-
jective spaces. We will even consider projective spaces over any ring A.
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7.9 Hirzebruch surfaces 109

Let A be aring and let R = A[xo,...,x,] with the usual grading. Let f € R be a
homogeneous polynomial of degree 2d, and for each 0 < i < n let

Si:A[@v"wx 7%]/((:%)2_f(@’”"@))

n
Ty Ty T Ty

For each pair ¢, j letting S;; = S; [xile], one checks that S;; = S};; indeed, this reduces
to the identity

X 2d Yy 2 X X y 2 X xr

7 0 n 0 n

() <d> _f<7'”7> _(d> _f<’.”’>'
Ly €T; Z; Z; T T x;

It is then straightforward to verify that the Spec .S;’s glue together along the open subschemes
Spec S;;’s to a scheme X. Moreover, keeping the notation R; from the previous section,
the morphisms Spec S; — Spec R;, induced by the inclusions R; — .5;, glue together to a
morphism 7: X — P’}

—

X

T

Exercise 7.8.1. Assume that £ is algebraically closed. Let asg; = 1 and a; = —1 and
a; = 0 for the other indices. Determine the image of D(z) and D(u) in P}. Find all points
in P}, where the fibre of the double covering f does not consist of exactly two points. How
many are there?

7.9 Hirzebruch surfaces

The Hirzebruch surfaces form a family of schemes showing several similarities with the line
bundles in Section 7.7. There is one Hirzebruch surface IF,,, for each natural number m, and
like the L,,’s, they are fibrations over a P!; that is, they come equipped with morphisms

7: F,, — P.

The fibres, however, are not affine lines A!’s, but projective lines P!.

The construction of the Hirzebruch surfaces is very similar to how the L,,’s were made,
the difference being that the fibres of 7 are projective lines instead of affine lines. It works
over Z as base ring, but to aid the intuition and ease notation, we shall work over a field k.

We begin with describing what kind of isomorphisms will constitute the gluing data.
Consider two copies of the projective line P, where A is a ring. The standard cover of one of
the copies will be Uy = Spec A[s] and U; = Spec A[s™!], and the other has standard cover
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110 Examples constructed by gluing

formed by V;, = Spec A[¢] and V; = Spec A[t™!]. Now, each invertible element a € A
gives rise to two ring maps

Als] — A[t] s +— at;
AlsT' ] = A[t™'] st alt,

which clearly agree on the overlap (that is, they induce the same map on A[s, s7']), and so
we can patch them together to get a morphism f, : P}, — PL. The map f, is an isomorphism
because a is invertible. Since the maps above do not affect elements from A, the map f, is
compatible with the structure maps of the PL,’s:

py, — 7 pL

NS

Spec A.

We are now ready to construct the Hirzebruch surfaces. We view the base PP}, as the union
of the two affine pieces U = Spec k[u] and V' = Spec k[u~'], whose intersection equals
Spec A with A = k[u,u™']. We work with two copies P}, and P}, of projective lines, the
first one over U = Spec k[u] and the second over V' = Spec k[u~']. The structure maps
are p and g respectively. Coordinates will be u, s and v, t on P}, and PP}, respectively, so they
come with covers {Uy, Uy } and {V},, V}} as described above.

Inside the base P, we have the intersection U n V' = Spec A, and the idea is to glue
together Py |y v = p (U n V) and P}, |p~v = ¢ (U n V). Note that both of these are
copies of P, as above, and the gluing map p will be of the form f, given there with a = u™.
The following diagram gives the situation map:

1 1 P 1 1
Py < Pylvav = Pyluav — Py

| N A
U—UnV &SUnNV —V

The gluing conditions are trivially fulfilled, and the result is the Hirzebruch surface . The
maps p and q are joined together to yield 7w : F™ — P
The gluing data is given by the maps:

Elu,u™, s] — k[u,u™" ] s~ u"t

Klu,u™, s = klu,u™", 7] st u !

Relation with the line bundles L.,

The similarities between the construction of the line bundles L,,, and the Hirzebruch surface
suggest a close relationship, and indeed there is one. The map p: P, — P respects
the standard covers; it takes Spec k[u, s] into Spec k[u, t] where it acts like © — u and
s — ut. This is exactly the gluing for the line bundle L,,, and we recognize L,, an open
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7.9 Hirzebruch surfaces 111
subset of IF,,, respecting the morphisms to P; :

L, ——TF

N/

In the same vein, p maps Spec k[u, u™!, s7'] into Spec k[u, u™!,¢7!] by the assignments
u — wand s~! — u~™¢ ! which is the transition function for the line bundle L_,, (note
that here the ’fibre coordinates’ are s~! and ¢t~ 1).

Note further that the complement of L,, is the zero-section C'_,, in L_,, and the comple-
ment of L_,, is the zero-section C,,, in L,,.

Example 7.12. In Example 7.7, we explained that L, is isomorphic to P — P with P = (0 :
0 : 1). In this continuation we shall see that the isomorphism in fact extends to a morphism
[F; — P2 and that this map collapses the zero section C_,, to the point P; it is the blow-up
of P? in P.

We choose homogeneous coordinates z, 1 and z5 on IP’% and write
Vo = Speck [i—:}, z—z] ~ Spec k[u, s]

V, = Speck [%‘; %] ~ Spec k[u, ]

by setting u = xo/x1, s = xa/x; and t = x5/x0. Together they give an open embedding
L, — P2 with image V;, U V.

We want to extend this over the open subscheme W = Spec k[u~!,¢7!] in ;. This is
done using the map ring map k[zo/xq, x1/22] — k[u™',t7!] given by the assignments
xo/xy — t1 and z, /x5 — u~'t~1. These are compatible with the above settings, and so
the corresponding map Spec k[u™',t™'] — Spec k[zq/z2, 21/x2] < P can be patched to
the one above, to yield a map L,, v W — P?

Exercises
Exercise 7.9.1 (F,, as a variety). Let k be an algebraically closed field. Show that the k-points
of F,,, (k) are in a one-to-one correspondence with the equivalence classes of quadruples
(@o : @1 | Yo : Y1)

where equivalence means

(o @1 [ Yo :y1) ~ (xo : amy | @™ Byo : By1)
for non-zero scalars « and 3.

Exercise 7.9.2. The different Hirzebruch surfaces are closely related, as this exercise shows.
a) Show that for some point P there is a map F,,, — P — F,,_; that induces an
isomorphism on the complement of two fibres.
b) Show that for some point P there is a map F,,_; — P — I, that induces an
isomorphism on the complement of two fibres.

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

112 Examples constructed by gluing
HINT: The ‘variety versions” are (o : 21 | Yo : y1) — (2o : 21 | Yo : x1y;) with P = (1 :
0]0:1)and (zo:21 | Yo:v1)— (To: 1 | Z1yo : y1) with P =(1:0]1:0).

Exercise 7.9.3. Show that the open subschemes L,, — C_,, and L,,, — C,, of respectively
L,, and L_,, are isomorphic over IP;. Show that gluing them together gives F,,,.

Exercise 7.9.4. The construction of IF,,, does not require that m is positive. Show that using
—m would yield a scheme isomorphic to [F,,,.

Exercise 7.9.5. Let X = P}. Show that any element Ox (X) corresponding to a map
X — A! factors via a “constant map” Spec k — A
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8

Finiteness coditions and dimension

8.1 Noetherian schemes

Recall that a ring A is Noetherian if every ideal is finitely generated. This is a strong
requirement for the ring, which has many important consequences. An equivalent condition
is that any ascending chain of ideals eventually stabilizes. Note that an ascending chain of
ideals {a;} in A corresponds to a descending chain {V'(a;)} of closed subsets of Spec A,
which will be eventually constant when A is Noetherian.

This inspires the notion of a Noetherian topological space. These are spaces that satisfy
the descending chain condition on closed subsets: every descending chain

e X X,aa, c XX, (8.1)

of closed subsets stabilizes. Or in other words, X;, 1 = X for sufficiently large i.

Another aspect of Noetherian rings is that any non-empty collection of ideals has a maximal
element (ordered by inclusion). Noetherian spaces have the analogous property that every
non-empty collection of closed subsets has a minimal element.

Lemma 8.1.
(i) A topological space X is Noetherian if and only if every non-empty
collection of closed subsets has a minimal element.
(i1) A Noetherian space is quasi-compact;
(iii) Every subspace Y of a Noetherian space X is Noetherian.

Proof Proof of (i): assume we have a non-empty set 3 of closed subsets that does not have
a minimal element. Selecting any element V; € 3, we find that it must strictly contain an
another element V5 from 3. This second element V5 must in turn contain yet another element
V5 from X2 as a strict subset, and the process continues indefinitely. In this way, we construct
an infinite strictly descending chain V; © V5, © V3 o ... closed subsets of X, contradicting
the assumption that X is Noetherian. The opposite implication follows by the definition of
Noetherian space.

Proof of (ii): Let {U; }ic; be an open cover for X. Start with any U;,, and pick U;, so
that U;;, < U;, u U,,. Then pick U,, so that U;, v U;, < U;, v U;, u U, and so on. This
produces a strictly increasing chain of open subsets of X, which must stabilize because X is
Noetherian. Since every point of X is contained in some U}, we find that X is expressed as a
finite union of the subsets U, , ..., U, , and hence it is quasi-compact.

‘n

Proof of (iii): let Y < X be a subspace of X and consider a non-empty collection > of
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114 Finiteness coditions and dimension

closed subsets of Y. We define a corresponding collection ¥ in X as follows:
Y ={W |Wisclosedin X and W nY € X}.

This is also non-empty because in the subspace topology the closed sets in Y are exactly
the intersections with Y of closed sets in X . Since X is Noetherian, there exists a minimal
element W, in X/, We claim that W, n Y is minimal in 3. For any closed subset Z’ in Y’
that is contained in W, N 'Y, there exists some closed set W’ in X suchthat W' n'Y = 7.
Now W' n Wy is also in X and contains W’ n Wy, n'Y = Z'. Minimality of W in ¥
implies W’ n Wy = W), and thus Z' = Wy n Y. Therefore, Wy N Y is indeed minimal in
3. Therefore Y is Noetherian by (i).

O

The prototype example of a Noetherian space is Spec A where A is a Noetherian ring.
However, Spec A can be Noetherian even without A being Noetherian; the condition is
equivalent to the weaker condition that ascending chains of radical ideals eventually stabilize,
and there are many rings which satisfy this without being Noetherian. Here is a simple
example:

Example 8.2. Consider the polynomial ring k[ty, t2, t3, ... | and the maximal ideal m =
(t1,t2,...). Thering

A= k)[tl,tg,tg, .. ]/m2

has only one prime ideal, the maximal ideal m. Therefore, Spec A consists of a single point,
and is therefore Noetherian as a topological space. The ring A however is not Noetherian, as
m requires infinitely many generators, namely all the ¢;’s.

In light of this example, we take a different route to define Noetherian schemes (we want
Spec A to be a Noetherian scheme precisely when A is a Noetherian ring):

Definition 8.3.
(i) A scheme is locally Noetherian if it can be covered by open affine
subschemes Spec A; with each A; being a Noetherian ring;
(i) A scheme is Noetherian if it is both locally Noetherian and quasi-
compact.

Note that a scheme is Noetherian if and only if it can be covered by finitely many open
affines Spec A; where each A; is Noetherian.

Proposition 8.4. The spectrum Spec A is a Noetherian scheme if and only if A is a
Noetherian ring.

Proof The ‘if’-direction is clear, so assume that Spec A is Noetherian, which means that
it may be covered by finitely many open affine subschemes Spec A; with A; Noetherian.
Refining the cover using distinguished open sets, we may assume that each A; is of the form

A

gi*
We want to show that each ideal a in A is finitely generated. By assumption, the ideals
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8.1 Noetherian schemes 115

aA,, are all finitely generated, and since g, is a unit in A,,, we can find generators which are
images of elements a;; from A.

Consider then the A-linear map ¢: @ i A — a that sends the standard basis vector e;; to
a;;. Since the D(g;)’s cover Spec A, the localization ¢, is surjective for every p € Spec A,
and from this follows that ¢ is surjective as well. Consequently, a is finitely generated. [

Proposition 8.5. If X is a Noetherian scheme, its underlying topological space is
Noetherian.

Proof Since X is quasi-compact, it may be covered by a finite number of open affine subsets.
A descending chain stabilizes if the intersection with each of those open sets stabilizes, so we
reduce the proof to showing the proposition for X = Spec A with A a Noetherian ring. But
that case is clear by the previous proposition. O

Proposition 8.6. Let X be a (locally) Noetherian scheme. Then any open or closed
subscheme of X is also (locally) Noetherian.

Proof 1t will suffice to treat the case that X is Noetherian. Let {Spec A, }.c; be a finite
affine cover with each A; Noetherian. It suffices to prove that if Y < X is a closed or open
subscheme, then Y n Spec A; is Noetherian. In particular, since Y n Spec A; is closed or
open subscheme of an affine scheme, it suffices to consider the case where X = Spec A and
A is Noetherian.

When Y is an open open subscheme: then there are elements g1, . .., g, € A such that we
have Y = (J;_, Spec A,,. If A is Noetherian, then so is each of the localizations A,,, and
consequently Y is Noetherian.

When Y is a closed subscheme. Y = Spec(A/a) for some ideal a — A. If A is Noetherian,
then so is A/a, and again Y = Spec A/a is Noetherian. O

Examples

Example 8.7. All of the examples from Chapter 7 are Noetherian. They are all glued together
by finitely many schemes of the form Spec A where A is a Noetherian ring.

Example 8.8. For a field k, the disjoint union X = H:il Spec k is not Noetherian. In fact,
it is not even quasi-compact.

Example 8.9. The scheme X = Spec (l—[il k:) is affine, hence quasi-compact. However it
is not Noetherian, because the ring is not Noetherian.

In fact, the set of prime ideals in infinite products of fields is remarkably complicated: it
is described by the set of so-called ‘ultrafilters’ on N. (See also Exercise 8.1.9 for a related
example).

Example 8.10. In Example 7.4 on page 97 we glued together schemes X, = Spec Z,) with
p from a finite set of primes P. However, in the gluing conditions for schemes, there are no
restrictions on the number of schemes to be glued together, and we are free to take P infinite;
for example, we can use the set P of all primes.
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116 Finiteness coditions and dimension

The resulting scheme X is rather peculiar: it is neither affine nor Noetherian, but it is
locally Noetherian. As a scheme over Z, the canonical map 7: Xp — SpecZ is bijective
and continuous, but it is not a homeomorphism. Moreover, for all open subsets U < Spec Z
the map induced on sections 7°: T\(U, Ogpecz) — (771U, Ox,,) is an isomorphism; in
other words, 7! : Ospecz. — T+(Ox,,) is an isomorphism of sheaves!

As in Example 7.4 the scheme Xy is constructed by gluing the different Spec Z,)’s
together along the generic points. However, when computing the global sections, we see
things changing. As in Example 7.4 the global sections are computed with the help of the
sheaf sequence

0—TI'(X,0x) — HpePI‘(Xp,OX) — Hp,qepr(x,, N X,, Ox)

| I

HpGP Z(ZD) P ]._[p,qEP Q’

and the kernel of p is still ﬂ P Z(p), but now this intersection equals Z; indeed, a rational
number a = a/b lies in Z, precisely when the denominator b does not have p as factor, so
lying in all Z,), means that b has no non-trivial prime-factor. That is, b = +1, and hence
«a € Z.

One can understand the canonical map 7 : X — Spec Z as follows. Each of the schemes
Spec Z,y maps in a natural way into Spec Z, by the map induced by the inclusion Z < Zj).
Here the generic point of Spec Z, map to generic point of Spec Z, and the closed point
maps to (p) € Spec Z. As the maps agree on the generic points, they glue to the canonical
map 7 : Xp — SpecZ. This is a continuous bijection by construction, but it is not a
homeomorphism. Indeed, the subsets Spec Z,,) are open in X by the gluing construction,
but they are not open in Spec Z, as their complements are infinite.

The underlying topological space of X is not Noetherian, as the subschemes Spec Z,)
form an open cover that obviously cannot be reduced to a finite cover. However, it is locally
Noetherian as the open subschemes Spec Z,) are Noetherian. The sets U, = Xp» — {(p)}
map bijectively to D(p) < SpecZ and I'(U,,Ox,) = Z,, but U, and D(p) are not
isomorphic.

Decomposition into irreducibles

A fundamental result about Noetherian rings is the Lasker—Noether theorem stating that every
ideal a in a Noetherian ring A admits an irredudant primary decomposition; in other words, a
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8.1 Noetherian schemes 117
can be expressed as an intersection
a=qrNqgz N N4qp, (8.2)

where the q;’s are primary ideals with no inclusion relation among them. Such a decomposi-
tion is not always unique, but there are partial uniqueness results. The associated prime ideals
pi; = 4/4; are unique, as are the primary components q; whose associated prime ideals p; are
minimal among the associated primes.

Geometrically, the decomposition (8.2) means that the closed subset V' (a) < Spec A can
be written as a finite union of irreducible closed subsets:

V(a)=V(p1) v V(pa) u--- v Vi(p,) (8.3)

Of course, only minimal primes matter. If p; < p;, then V (p;) is contained in V' (p;), and
we can disregard it. Since these embedded components do not show up for radical ideals
and since V' (1/a) = V'(a), we get a clear and clean uniqueness statement. The closed sets
appearing in (8.3) are unique up to ordering.

In general, if Y < X is a closed subset of a topological space X, a decomposition

Y=Y u---UY, (8.4)

into irreducible closed subsets is said to be irredundant if Y; ¢ Y; for every ¢ # j. Or
equivalently, no Y; can be dropped without changing the union. The Lasker—Noether theorem
has the following analogue:

Theorem 8.11. Every closed subset Y of a Noetherian topological space X has
an irredundant decomposition into closed and irreducible subsets. Furthermore, the
subsets appearing in the decomposition are unique up to order.

The irreducible closed subsets in the decomposition are the irreducible components of Y.

Proof Consider the family Y of those closed subsets of X that cannot be decomposed
into a finite union of irreducible closed subsets; or phrased in a different way, the set of
counterexamples to the assertion. If the theorem does not hold, > # . By assumption X is
Noetherian, so 2 has a minimal element Y, which can not be irreducible. Hence Y = Y; U Y,
where both Y] and Y5 are proper subsets of Y and therefore do not belong to 3. Either is
thus a finite union of closed irreducible subsets, and the same is then true for their union Y.
We have a contradiction, and 3 must be empty, and the theorem holds.
As to uniqueness, assume there are two irredundant decompositions such that

YooY, =2Z,0-UZ,

and such that one of the Y;’s, say Y7, does not equal any of the Z,’s. Since Y] is irreducible
andY; = Uj (Zj N Yl) it follows that Y; < Z; for some index j. A similar argument gives
Z; = UZ. (Zj N K) and Z; being irreducible, it holds that Z; < Y; for some 7. Therefore
Y, ¢ Z; c Y. Since the union of the Y;’s is irredundant, we infer that Y; = Y;, and hence
that Y; = Z;. Contradiction. O
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118 Finiteness coditions and dimension

Example 8.12. Consider the closed set Y = V(a) < A? given by the ideal
a=(2°—y,xz—y* 2° —x2).

A primary decomposition of a is given by a = q; N q2 N g3, where

ql:('ray)u q2=($—1,y—172—1), q3:(x2_yaxyay27z)'

Taking radicals, we find that the primes associated to a are the following:

pl:(x?y)a p2:(‘r—17y—172_1)7 pSZ(xayaz)'

Note that p; < p3, and p3 is thus an embedded component, which does not show up in the
decomposition above. We therefore have V(a) = V(z,y) v V(z — 1,y — 1,z — 1).

Exercises

Exercise 8.1.1. Show that in a topological space the closure of a singleton is irreducible.

Exercise 8.1.2 (Properties of irreducible subsets). Let X be a topological space.
a) Show that if a subset Z — X is irreducible, then so is the closure Z;
b) Show that X is irreducible if and only if every non-empty open subset is dense;
¢) If f: X — Y is a continuous map, show that f(X) is irreducible if X is.

Exercise 8.1.3 (Irreducible components). The maximal closed irreducible subsets of a
topological space X are called the irreducible components of X .
a) Prove that any irreducible subset of a topological space X is contained in an
irreducible component. HINT: Zorn’s lemma;
b) Prove that X is the union of its irreducible components;
¢) If X is Noetherian, prove that the irreducible components are precisely the sets
appearing in the Lasker—Noether decomposition of X .

Exercise 8.1.4. Let X be a topological space and let Z < X be an irreducible component of
X. Let U be an open subset of X and assume that U n Z is nonempty. Show that Z n U is
an irreducible component of U.

Exercise 8.1.5. Let X be a topological space. Show that the following two conditions are
equivalent.

(i) X is Noetherian;

(ii) Every open subset of X is quasi-compact.

Exercise 8.1.6. Compute a primary decomposition for the following ideals and describe their
corresponding closed subsets.
a) I = (1‘2y2, $2Z7 yQZ) in k’[l’, Y, Z];

b) I = (z°y,y’z) in k[z, y];

o) I = (2%y,y'x)ink[z,y];

d) I =(z,y,x —yz)ink[z,y, z];

e) [ = (2 + (y—1)2? -1,y — 2?) ink[z,y].
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8.1 Noetherian schemes 119

Exercise 8.1.7 (A one dimensional non-Noetherian domain). The ring A in this exercise
was originally constructed by Krull as an example of a non-Noetherian domain with just one
non-zero prime ideal. The spectrum Spec A has two points and is a Noetherian topological
space, while A is not a Noetherian ring.
The example is no more exotic than the ring of rational functions f(x,y) in two variables
over C that are defined and constant on the y-axis. The elements of A, when written in
lowest terms, have a denominator not divisible by x, and f (0, y), which is then meaningful,
is constant.
a) Show that the ideals a, = (z,zy~',..., 2y~ ") with r € N form an ascending
chain that does not stabilize. Conclude that R is not Noetherian.
b) Show that R is local with the set m of elements f € R that vanish along the
y-axis as the maximal ideal.
¢) Prove that there are no other primes than m and (0) in R. HINT: Show first
that any element in R is of the form x'y?c where i > 0, j € Z and « is a unit
in R.

Exercise 8.1.8 (Perfect rings). This exercise provides an abundance of non-Noetherian
domains with Noetherian spectrum. Let A be a Noetherian reduced ring of characteristic
p which is not a field, and let F': A — A denote the Frobenius homomorphism a +— a®.
Consider the direct system {A;};cny with A; = A for all ¢ and maps given by the sequence

A-EsA -0 2y .

Let A% denote the direct limit lim A; and let ¢;: A = A; — A® denote the canonical
maps.
a) Show that F' is not surjective;
b) Let a € A be a non-unit. Show that the principal ideals (¢;(a)) in A% form an
ascending chain which is not stationary. Conclude that A* not Noetherian;
¢) Show that each Spec ¢; is a homeomorphism Spec A ~ Spec A%, and con-
clude that Spec A® is a Noetherian topological space.

Exercise 8.1.9 (The ring of eventually constant sequences). Consider the subring A of
12, Z/2Z consisting of sequences (e;);>1 which are eventually constant, that is, sequences
with e; = e;,1 fori » 0.
a) Show that all elements of A are idempotents and conclude that every prime
ideal is maximal. HINT: the only idempotents in a domain are 0 and 1.
b) Letm,, denote the ideal generated by 1 — a,, where a,, = (0,...,0,1,0,...)
with a ‘1’ in the n-th factor. Show that m,, is a maximal ideal.
¢) Show that D(a,) = {m,,} and conclude that the one-point set {m,, } is both
open and closed in Spec A.
d) Letm,, denote the ideal consisting of sequences which are eventually zero, i.e.,
e; = 0 for all ¢ » 0. Show that m, is a maximal ideal. HINT: Consider the
‘limit map” A — Z/2.
e) Show that A is not Noetherian. HINT: Show that m, is not finitely generated.
f) Show that these are all the prime ideals of A, i.e., that Spec A = {m; | i €
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120 Finiteness coditions and dimension

N} U {my}. HINT: Consider the cases a; ¢ m for some i and a; € m for all ¢
separately; use the identity a;(1 — a;) = 0.

g) Show that Spec A is homeomorphic to the set { + | n € N} U {0} (with the
standard topology).

8.2 Finite morphisms and morphisms of finite type

Let A be aring and let B be an A-algebra. Recall that one says that B is finitely generated
or of finite type over A if there is a finite set b, . .., b, of elements from B such that each
b € B can be expressed as a polynomial with coefficient from A in the b;’s. One says that B
is a finite over A if it is finitely generated as an A-module. In other words, there is a finite set
of elements by, . .., b, so that each b is a linear combination b = > a;b; with a; € A.

Even though the names are similar, the two notions are quite different. To say that B is of
finite type, is to say that B is a ring quotient of a polynomial ring A[t1, . .., t,]|, where as B
being finite means that B is a quotient module of a free module A" of finite rank. Thus Z[¢]
is of finite type, but not finite over Z.

Morphisms of finite type

The scheme-theoretic analogue of the notion ‘finitely generated algebra’ is as follows:

Definition 8.13 (Morphisms of finite type). Let X be a scheme over S with structure
morphism f: X — S.
(i) One says that f or X /S is of locally finite type if S has a cover consisting
of affine open subschemes V; = Spec A; such that each f~'V; can be
covered by affine open subschemes Spec B, ;, where each B;; is finitely
generated as an A;-algebra;
(ii) One says that f or X /S is of finite type if in (i) one can do with a finite
number of subschemes Spec B;; for each .

In case S = Spec A, a scheme over A is said to be of finite type (respectively of locally
finite type) over A if the morphism X — Spec A is of finite type (respectively of finite type).
Note that being (locally) of finite type is local on the target; if S can be covered by opens U;
so that all restrictions f| -1y, are (locally) of finite type, then clearly f is (locally) of finite
type as well.

The prototype example of a morphism of finite type is f : Spec B — Spec A, where B
is a finitely generated A-algebra, and f is induced by the natural map A — B. The converse,
that B is of finite type when f is, holds true as well, though this is slightly tricky to prove
(see Corollary 8.19 below).

Proposition 8.14. A morphism f : X — S is of locally finite type if and only if for
any affine cover S; = Spec A; of S, f~1(S;) can be covered by affine subschemes
Spec B;; with each B;; a finitely generated A;-algebra.
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8.2 Finite morphisms and morphisms of finite type 121

Example 8.15. Both the affine spaces A’; and the projective spaces IP’; are of finite type over
Spec A. The morphism ]_[fozl A} — A} which is the identity on each component, is locally
of finite type, but not of finite type.

Example 8.16. A closed embedding ¢: X — Y is of finite type. Indeed, by definition there
is an open affine cover {Spec A;} of Y so that :~'U; ~ Spec A;/a;, and A;/a; is of finite
type.

Example 8.17 (Open embeddings). An open embedding ¢: U — X is locally of finite type,
but is not of finite type in general. For instance, the open immersion

| D(t:) — Speck[ty, ta, ... ]

teN

is not of finite type, because the scheme on the left is not quasi-compact (and thus cannot be
covered by finitely many affine subschemes).

However, if U is quasi-compact, then ¢ is of finite type. In that case, for any open affine
Spec Ain X, U n Spec A is open in Spec A, and can be covered by finitely many distin-
guished open sets D(g;) = Spec(A,,), and each A, is finitely generated over A (being
generated by g; '). In particular, if X is Noetherian, then any open embedding ¢ : U — X is
of finite type.

Note that Definition 8.13 refers to a specific affine cover {V; } of the base .S and {Spec B;; };
of the inverse images f~'V;. It is an important fact that the conditions will in fact hold for
any open affine cover.

Proposition 8.18. Let f: X — S be a morphism of finite type. Then for any open
affine subscheme Spec A < S and each open affine Spec B < f~!(Spec A), the
algebra B is finitely generated over A.

In particular, when both X and S are both affine, we have the following corollary.

Corollary 8.19. A morphism f : Spec B — Spec A is of finite type if and only if
B is an A-algebra of finite type.

We will prove this result in Section 8.5.

Affine and finite morphisms

The other finiteness condition of this is section is that of a finite morphism. In addition to
satisfy a rather strong finiteness requirement, finite morphism are required to be affine.
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Definition 8.20 (Affine and finite morphisms). Let f: X — Y be a morphism. One
says that
(i) f is affine if there is an open covering {V;} of Y such that each inverse
image f~'V; is affine;
(ii) f is finite if there is a cover of Y by open affines V; = Spec A; such
that each f~1V; = Spec B;, with B; an A;-algebra finitely generated as
A;-module.

One also says that X is finite over Y, and if Y = Spec A, that X is finite over A.

As in the definition of finite type morphisms, the definitions of affine and finite morphisms
make reference to a specific affine cover of the base. Therefore, it is not a priori clear whether
a scheme which is affine over another affine scheme, is necessarily an affine scheme itself.
This is nevertheless true, and is a particular case of the following more general result.

Proposition 8.21.
@) If f: X — Y is affine morphism, the inverse image f~'U of each open
affine subset U — Y is affine.
(ii) If f: X — Y is a finite morphism and U = Spec A < Y is an open
affine subscheme, then f~1U = Spec B where B is a finite A-module.

The proof will be postponed until Section 8.5.

To underline the huge difference between the two finiteness conditions of this section, we
observe the following: X is of finite type over a field k simply means it can be covered by
open affine subschemes of the form Spec k[t, ..., t.]|/a.

On the other hand, for X is to be finite over a field k£ means that X = Spec A is affine,
and A is a k-algebra of finite dimension over k. Such a ring A is Artinian and has only
finitely many prime ideals all being maximal. Hence the spectrum Spec A is a finite set, and
the underlying topology is discrete.

Example 8.22. For n > 1, the structure morphisms A} — Spec k and P, — Spec k are of
finite type, but not finite.

Example 8.23. The embedding Spec A, < Spec A of a distinguished open subscheme is
of finite type, but generally not finite.

An important fact about finite morphisms is that they have finite fibres.

Proposition 8.24. If f : X — Y is a finite morphism, then each scheme-theoretic
fiber X, has an underlying topological space which is finite and discrete.

Proof 1If y € Y is a point, choose an affine U = Spec A containing it. As f is finite,
f71(U) = Spec B is also affine, so we reduce to the case where X and Y are affine, and f
is induced by a ring map A — B, making B into a finite A-module.

In this situation, y corresponds to a prime ideal p < A, and it follows that B, /pB, =
B®y4 A, /pA, is a finite vector space over k(p) = A,/pA, (images of generators persist
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8.2 Finite morphisms and morphisms of finite type 123

being generators). In other words, By,/pB, is an Artinian ring, and hence its spectrum
X, = Spec(B,/pB,) is finite and discrete. O

Example 8.25. The converse of Proposition 8.24 does not hold. The open embedding
A} — {0} — A} has at most one point in the fibre, but it is not a finite morphism.

There is a collection of results, the Cohen—Seidenberg Theorems, about prime ideals in
integral extension with important applications to finite morphisms. We summarize them here
without proofs. They are formulated with the more general hypothesis that the extension is
integral, but finite ring extensions are integral.

Theorem 8.26. Let A — B be an integral extension of rings.
(i) (Lying—Over) If p prime ideal in A, there is prime ideal ¢ in B so that

gnA=0B;

(ii) If g < ¢ are prime ideals in B suchthatq " A = ¢’ n A, thenq = ¢';

(iii) (Going-Up) If p < p’ are two prime ideals in A and q € Spec B with
qn A =p,thereisaq € Spec Bwithqg n A = g;

(iv) (Going-Down) Assume that A is integrally closed and that p’ < p are
two prime ideals. If q € Spec B is such that ¢ n A = p, then there is a
q' € Spec B such thatq’ n A = p’.

For the moment, we shall only apply the two first parts. Translated into geometric language
they give the following result about finite morphisms. One says that a morphism f: X — Y
is dominant, if the image is a dense subset of Y.

Proposition 8.27 (Lying-Over). Let f: X — Y be a finite morphism between two
schemes.
(i) The fibres of f are finite and discrete;
(ii) If f is dominant, it is surjective;
(iii) f is a closed map.

Proof We may assume that X and Y are affine, say X = Spec B and Y = Spec A.

Statement (i) was discussed above. To prove (ii), note that according to Proposition 2.29
on page 33, the mophism f is dominant precisely when the kernel of the correspondig map
f*: A — B between algebras is contained in the nilradical +/0 of A. Hence when f is
dominant, the map Spec (A4/ Ker f#) — Spec A is a homeomorphism. We may thua assume
that A c B, and Lying-Over applies.

Statement (iii) follows from (ii): by (iii) of Proposition 2.27 on page 32, the closure
f(V(b)) of the image of a closed subset V' (b) < Spec B equals V(b n A). Applying
Lying-Over to the inclusion A/b N A < B/b, we see that f(V (b)) = V(b n A). O

Example 8.28. Let k be an algebraically closed field and consider the closed subset X =
V(y?+P(z)) < A? = Spec k[, y] where P(z) is a polynomial in k[z]. Let : A? — A}
denote the projection onto the z-axis; that is, the map induced by the inclusion k[z] < k[z, y].
Then the restriction 7|y will be finite. Indeed, its algebraic counterpart is the inclusion
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k[z] < k[z,y]/(y* + P(z)), and the latter ring has a basis as module over k[z] consisting
of 1 and y.

On the contrary, if Y = V((z — a)y® + P(z)) where a € k is not root of P(x), then
7|y is not a finite morphism. Indeed, the point a € A*(k) does not belong to its image, and
so 7|y is not a closed map.

Exercises

Exercise 8.2.1. For each of the following rings A, decide whether the corresponding mor-
phism Spec A — Spec Z is finite or finite type.

2[i), 2[1/p). Z, Z % Z, Zz].

Exercise 8.2.2. Show that the composition of two morphisms (locally) of finite type is
(locally) of finite type. Show that if .S is quasi-compact and f: X — S is of finite type, then
X will be quasi-compact.

Exercise 8.2.3. Assume that t: Spec B < Spec A is an open embedding. Show that B is
of finite type over A.

Exercise 8.2.4. Assume that S is a Noetherian scheme and that f: X — S is of finite type.
Prove that X is Noetherian. HINT: Hilbert’s Basis Theorem.

Exercise 8.2.5. Let A — B an integral extension of domains. Show that A is a field if and
only if B is a field. If p is a prime in A, show that p lies in the image of Spec B — Spec A if
and only if p A, lies in the image of Spec B, — Spec A,,. Conclude that Spec B — Spec A
is surjective.

Exercise 8.2.6. Let f : X — Y be an affine morphism and let V' < Y be an open set. Show
that f~1(V) — V is affine.

More generally, if V' — Y is any morphism, show that the base change morphism
X xy V — V is affine. Thus affine morphisms are stable under base change.

Exercise 8.2.7. Show that the composition of two finite morphisms is finite.

8.3 The dimension of a scheme

Recall that the Krull dimension of aring A is the supremum of the length of strictly ascending
chains of prime ideals in A. For schemes, we make the following similar definition, which in
fact works for any topological space.

Definition 8.29 (Dimension of topological spaces). Let X be a topological space.
The dimension of X is the supremum of all integers n such that there exists a chain

ZoC21C"'CZn

of distinct irreducible closed subsets of X .

This supremum might not be finite, in which case we declare that dim X = c0. A chain is

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

8.3 The dimension of a scheme 125

said to be saturated if no new term can be inserted, and it is maximal if it is saturated and
cannot be extended. If X is a scheme, we define the dimension of X as the dimension of the
underlying topological space. In particular, it holds true that dim X = dim X,q.

Lemma 8.30.
(1) Y < X is any subset, then dimY < dim X;
(i) Assume that dim X < oo0. If Y < X is a closed and irreducible and
dimY = dim X, then Y is an irreduible component of X;
(iii) If {U,};cs is an open cover of X, then dim X = sup,.; dim U;.

Proof Statement (i): the closure of irreducible subsets are irreducible, and since any closed
Z c Y satisfies Z N Y = Z, achain {Z;} of distinct irreducible closed subsets of Y will
yield a chain {Z;} of distinct irreducible closed subsets of X.

Statement (ii): were Y not a maximal closed irreducible subset of X, any maximal chain
Zy<...c Z, <Y inY could be augmented to a longer chain in X.

Statement (iii): observe that if Z < X is closed an irreducible and Z n U # (J,
then Z nU = Z; indeed, were Z n U a proper subset, Z would be the union Z =
Z nU v (Z —U) of two proper closed subsets. Hence if Zy ... © Z, is a chain in X
and U an element of the cover such that U n Z, # &, then {Z; n U} is a chain in U; and
consequently 7 < dim U This shows that when dim X = o0, the supremum sup,; dim U;
will be infinite as well, and when dim X is finite, taking the chain to be maximal, we see that
dim X =n < dimU. O

In the case where X = Spec A is affine, the closed irreducible subsets of X are of the
form V' (p) where p is a prime ideal. Using this observation we find

Proposition 8.31. The dimension of X = Spec A equals the Krull dimension of A.

Having finite dimension does not guarantee that a scheme is Noetherian; see Example 8.2
for a ‘trivial counterexample’. More seriously, there are even Noetherian rings whose Krull
dimension is infinite. The first example was constructed by Masayoshi Nagata. Although
each maximal chain of prime ideals in a Noetherian ring will be of finite length (prime ideals
satisfy the descending chain condition) there can be arbitrary long ones.

The following is a consequence of the Going-Up part of the Cohen—Seidenberg theorems:

Proposition 8.32. If f: X — Y is a finite surjective morphism, then dim X =
dimY.

Proof Assume first that Y = Spec A and X = Spec B. Since f is dominant, we may
further assume that A — B. By (ii) of Theorem A.17, any chain of distinct prime ideals in B
remains a chain of distinct prime ideals when intersected with A. Hence dim X < dim Y.
On the other hand, by succsessive application of Going-Up, any chain of distinct primes may
be extended to a chain of distinct prime ideals in B. Hence dim Y < dim X.

In general, if {U;} is any affine cover of Y the inverse images f~'U; form an affine cover
of X, and we are through by the affine case and (iii) of Lemma 8.30. O
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Example 8.33.
(i) The dimension of Spec Z equals one. The maximal chains of prime ideals have
the form V' (p) < V(0) = Spec Z for prime numbers p;
(ii) dim Spec k[e]/(€?) = 0;
(iii) The dimension of A"y = Spec A[xy,...,x,] is equal to n + dim A when A is
a Noetherian ring (for general rings dim A"} takes values between dim A + n
and dim A + 2n, and all values are possible). In particular, when A = k is a
field, A} has dimension n. An instance of a maximal chain of irreducible closed
subsets is

V(zy,...,xn) € ... € V(z,22) € V(z1) < A}

(iv) The dimension of A}, equals two; maximal chains of prime ideals in Z[z] are
shaped like (0) < (p) < (f(x),p), where p is a prime number and f(z) a
polynomial which is irreducible mod p.

Example 8.34 (Zero-dimensional schemes). The schemes

SpecZ/pZ,  SpecClz]/(z"),  SpecClz,y]/(z* zy,y?),

have dimension zero. More generally, the spectrum of an Artinian ring has dimension zero
(and when A is Noetherian, Spec A has dimension zero if and only if A is Artinian). However,
there are non-Noetherian rings, e.g. the ring ]_[jil 7,/27., which have dimension zero and
even infinitely many points (see Exercise ??). The ring A = Hflo:l 7,/2"7Z has infinite Krull
dimension, yet Spec A is still Noetherian as a topological space.

Codimension

For a closed subset Y < X the dimensions dim Y and dim X are defined in terms of closed
irreducible subsets contained in Y and X respectively. When Y is irreducible, there is also a
relative notion, the codimension of Y in X, denoted by codim(Y, X'), which is defined in
terms of closed irreducible subsets of X containing Y. These three numbers will in some
important cases be related by the equality dim Y + codim(Y, X) = dim X (which justifies
the name ‘codimension’), although this formula does not hold in general, it is not even true
for all spectra of Noetherian integral domains (see Example 8.37 below).

Definition 8.35 (Codimension). Let Y < X be an irreducible closed subset of X.
The codimension of Y is the supremum of all integers n such that there exists a chain

Y=YcY c---CY,

of distinct irreducible closed subsets of X .

In an affine case there is a bijective correspondence between irreducible closed subsets of
Spec A and prime ideals in A, and the codimension of a closed subset V' (p) will be equal to
the height of the prime ideal p; that is, the maximal length of a chain of distinct prime ideals
Po C p1 C .-+ C P, = p, or equivalently, the Krull dimension dim A, of the localized ring
A,. In a general scheme one has an analogue result:
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8.4 Distinguished properties 127

Proposition 8.36. Let X be a scheme and 2 € X be a point. Set Y = {z}. Then
dim Ox , = codim(Y, X).

Proof GivenachainY c Y; < ...Y,, of distinct irreducible closed subsets, the generic

points 1y, . .., 1, of the Y;’s are contained in each open neighbourhood U of x. In particular,
if U = Spec A is an affine, these generic points correspond to prime ideals p,, < ... C
p1 C p, in A. Taking the supremum gives the claim. O

A chain of distinct irreducible closed subsets of Y may be spliced with one between Y
and X, to yield a chain in X. Hence, taking suprema we find the inequality

dimY + codim(Y, X) < dim X.

As mentioned above, equality does not hold in general. And in fact, there are quite simple
example with the inequality being strict. For integral schemes of finite type over fields
however, the theory is much simpler, and in Chapter xxx we shall study the dimension in
terms of the function field.

Example 8.37. Let A be a DVR with maximal ideal m = (p) and fraction field K; for
instance, the local ring Z,) with p a prime number. Consider the principal ideal n = (tp —1)
in the polynomial ring A[¢]. It is a maximal ideal as it equals the kernel of the map A[t] — K
that sends P(t) to P(1/p), and one easily checks that it does not properly contain any non-
zero prime ideal, so it is of height one. Letting Y = V(n) and X = Spec A[t], we find
dimY = 0 and codim Y = 1, but it holds that dim X = 2.

8.4 Distinguished properties

In this section we will describe a small lemma which is very convenient when working with
properties of schemes.

A property P of open affine subschemes of a scheme X is said to be distinguished if the
following two conditions are satisfied:
(D1) If U has P and g € Ox (U), then D(g) has P;
(D2) If {D(g;)} is a finite cover of U, and each D(g;) has P, then U has P.

Lemma 8.38. Let P be a distinguished property of open affine subschemes of X. If
there is one open affine cover {U; };c; of X so that each U, has P, then every open
affines in X have P. Moreover, it suffices that (D2) is satisfied for all covers by two
distinguished opens.

Proof The set of distinguished open sets contained in some U; form a basis B for the
topology on X, and by property (D1), they all have property P. If V is an open affine in X,
then being quasi-compact, it may be covered by finitely many opens of the basis 3, and so
requirement (D2) ensures that V" also has P.

For the second statement in the lemma, assume (D2) is fulfilled for covers with two
elements. We shall apply induction of the number r of opens in a given cover {D(g;)} of V.
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Because the D(g;)’s cover V, there is a relation a1¢g; + - - - + a,.g, = 1in Oy (V). Let
g = G2gs + - - - + a,g,. Each D(g;g) with ¢ > 2 is distinguished in D(g;), and hence has
property P by (D1). On the other hand, they are also distinguished in D(g) and cover D(g),
hence D(g) has P by induction. Now, V' is the union of D(g;) and D(g) and thus has P by
the r = 2 case. O

8.5 Independence of the affine cover
Finite type

Proof of Proposition 8.18 The proof has two parts: a separate treatment of the affine case
(i.e. a proof of the Corollary) followed by a reduction to that case (which relies on the notion
of distinguished properties).

We begin with the affine case. Suppose that f : Spec B — Spec A is a morphism of finite
type, so that there is an affine cover {Spec B;} of Spec B with each B; finitely generated
over A. We need to show that B is finitely generated over A. In the course of the proof we
shall use the following elementary lemma:

Lemma 8.39. Assume there is a relation >, _.__a;g; = 1 between elements from a
ring R. Then for each natural number 7, one may write ) . ¢;g = 1 where the ¢;’s
are polynomials with integer coefficients in the a;’s and the g;’s.

Proof Expand (), a; g:)°"" and observe that each term contains some power g™ with
m = n. Then collect appropriate terms. O

Shrinking the Spec B;’s we may assume that each Spec B, is a distinguished open subset
D(g;) in Spec B. As Spec B is quasi-compact, we may further assume that the D(g;)’s are
finite in number. Since the D(g;)’s cover Spec B, there is a relation ), _, _, a;g; = 1 with
a; € B.

Lett;; € B,, be generators for B, as an A-algebra, and for each ¢ write g;''t;; = b;; with
bi; € B and n; € N. We contend that the b;;’s together with the a;’s and the g;’s generate
B as an algebra over A. Indeed, pick an element b € B. In each B,, there is an equality
b = P;(t;;) with P; a polynomial with coefficients in A, and multiplying up denominators,
one finds relations gj;b = Q;(b;;) in B, where the Q;’s also are polynomials with coefficients
from A.

Now, by the lemma, there is arelation 1 = ) ¢;g!" with the ¢;’s being integral polynomials
in a;’s and the g;’s. This yields

b= Z bc,g; = Z ciQi(biz),

and since the c;’s are polynomials in a;’s and the g;’s, the right hand side is a polynomial in
the b;;’s, the a;’s and the g;’s with coefficients from A, and we are done.

Next we reduce to the affine case. Let P be the property of an open affine subscheme
Spec A < S that for each open affine Spec B < f~! Spec A, the algebra B is finitely
generated over A. Since f is assumed to be finite, there is one affine cover of S, all of whose
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8.5 Independence of the affine cover 129

opens have P. We proceed to check that P is a distinguished property; this will imply the
Proposition.

The first requirement is straightforward, since if B is finitely generated over A, then B,
will be finitely generated over A,,.

For the second requirement, assume that a family { D(g;)} covers Spec A and that property
P holds for each Spec A,,. If Spec B is a given open affine subscheme of f~* Spec A, then
the Spec By, is open in f~' Spec A,,, and hence each B,, is finitely generated over A,,.
But then it will be finitely generated over A as well, and we may apply Corollary 8.19 to
conclude that B is finitely generated over A. O

Affine morphisms

Proof of Proposition 8.21 (i) We show that the property that f~!(U) is affine, is a dis-
tinguished property of open affine subsets U. Then the proposition follows from Lemma
8.38.

The first requirement, (D1), comes for free since it holds true that f~*D(g) = D(f*(g))
(see Proposition 2.27 on page 32).

For (D2),let V = f~'U, and assume that the distinguished open subsets D(g; ) and D(g,
form a cover of U with each inverse image V; = f~'D(g;) being affine, say f~'D(g;) =
Spec B;.

We begin with establishing that B; ~ Oy (V'),,. To this end, consider the sheaf exact
sequence

0 —— Oy(V) —2> B, x By —2— DBis. (8.5)

Here By = Oy(f~ (U, n Us,)), which equals both (B;),, and (Bs),,. As usual, the
components of the map « are the restriction maps, and the map (3 sends (a,b) to the
difference a/1 — b/1 in Bys.

Now we localize (8.5) in g;. Note that both By, and By, already are A, -modules and so
do not change when localized. Thus we obtain the sequence

0 —— Oy(V),, — By x (Ba),, —— (By),,

1

where now (0, b) = b. This sequence is actually split exact; the map B; —
Either by the Snake Lemma or by a direct reasoning, one infers that the restriction map
induces an isomorphism Oy (V'),, ~ Bj, and of course, by symmetry, Oy (V),, >~ Bo.
Next, consider the canonical morphism 6: V' — Spec Oy (V') from Proposition ?? on
page ??. It lives in commutative diagrams

V — 5 Spec Oy (V)

J J

f~'D(g9;) —— Spec B;,

and since the f~*D(g;)’s cover V (by hypothesis) and the Spec B; cover Spec Oy (V') (by
what we just did), the morphism 6 is an isomorphism. O
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Finite morphisms

Proof of Proposition 8.21  From Proposition 8.21(i) above we know that f 'V = Spec B
for some B, and it only remains to prove that B is a finite A-module. Now, the point is that
having the spectrum of a finite algebra as inverse image, is a distinguished property of affine
open subschemes of Y, and when this is established, we will be through.

Clearly f~* Spec A, = Spec B, so the first requirement is fulfilled. As to the second,
assume that a finitely many D(g;)’s cover V and that f~' D(g;) = Spec B,, with each B; a
finite modules over A,,. Let ¢;; be generators of B,, over A/, which we may chose to be
images of elements b;; in B. We contend that the b;;’s generate B over A.

Given an element b € B, it holds that g['b = Zj a;;b;; for some n € N independent of i
and with a;; € A. Since the D(g;)’s cover V/, there is relation

1 :Clg?+"'+crgfa
which yields

b= chg?b = chaijbij.
J
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9

Projective schemes

The projective varieties are fundamental in the theory of varieties, not just because they are
interesting objects of study, but also because they in many aspects are better behaved than
non-projective ones. In the scheme world, there is a construction extending the notion of
projective varieties; from any positively graded ring R one constructs a scheme Proj R called
the projective spectrum. The construction is somewhat parallel to that of the prime spectrum
of a ring, but there are several key differences between the two. For instance, and perhaps
most strikingly, Proj R does not depend functorially on R in the sense that maps between
graded rings not always give maps between the projective spectra. Moreover, different R’s
may yield isomorphic projective spectra.

9.1 Graded rings

In this book a graded ring will refer to rings R which are graded by the non-negative integers,
i.e. rings admitting a decomposition

R=@=-R@®R @
n=0
as an abelian group such that R,,, - R,, < R,,,;,, for each m,n > 0. Occasionally, we will
also discuss Z-graded rings, where we allow negative degrees as well.
A ring map ¢: R — S between two graded rings R and .S is said to be a map of graded
rings if it respects the grading, that is, if ¢(R,,) < S, for all n.

Example 9.1. The simplest examples of graded rings are the polynomial rings R =
Alto, ..., t.]. They have a standard grading wherein each variable ¢; has degree 1 and
elements from A has degree 0. The graded piece R, is a free module over Ry = A with the
monomials of degree n as a basis.

Note that R, is a subring of R and that R is an algebra over Ry. Moreover, each R,
is an Ry-module. The elements in R,, are said to be homogeneous of degree n, and one
writes deg x = n when x € R,,. (Note that 0 has no well-defined degree, but is considered
homogeneous of any degree.) Every non-zero element x € R can be expressed uniquely as
a finite sum = = Zn x,, with z,, € R,,, and the non-zero terms in the sum are called the
homogeneous components of x.

An R-module M is graded if it has a similar decomposition M = @ _, M, as an
abelian group and R,,M,, € M,, ., for all n and m. Note that we allow also elements of
negative degrees. A map of graded R-modules is an R-linear map ¢: M — N satisfying
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132 Projective schemes

¢(M,) < N, for all n € Z. With this notion of morphisms, the graded R-modules form a
category, denoted GrMod .

As for graded rings, a non-zero element x € M is homogeneous of degree n if it lies in
M,,. Any element = € M may be expressed in a unique way as a finite sum z = » = x,, with
each x,, in M,,, and the non-zero terms are called the homogeneous components of x.

Most of the familiar definitions for modules carry over to the graded setting. For instance,
the direct sum of a family of graded modules @), M; is graded in a natural way such
that canoncal inclusions M; < @, M; preserve the grading. Likewise, the kernel and the
cokernel of a map of graded modules are also graded in a natural way. One has decompositions
Ker ¢ = @, Ker ¢|y, and Coker ¢ = @), Npn/d(M,,).

A sequence of graded modules

0 M M M 0,

is exact if it is exact as sequence of ordinary modules. As maps of graded modules preserve
the grading, this is equivalent to saying that each of the sequences

0 M, M, M 0.

are exact (as a sequence of Ry-modules).

Anideal a © R is homogeneous if the homogeneous components of each element in a
belongs to a. In other words, we may write a = @n a, witha, = a n R,. Anideal ais
homogeneous if and only if it is generated by homogeneous elements (see Exercise 9.1.3). It
is readily verified that radicals, intersections, sums and products of homogeneous ideals are
homogeneous. If a is an homogeneous ideal, the quotient R/a inherits a grading from R and
R/a =@, R./a,.

We will write R for the sum @
which we call the irrelevant ideal.

=0 Ftn; this is naturally a homogeneous ideal of R,

Example 9.2. The irrelevant ideal of a polynomial ring R = Alto,...,t.] is equal to
R+ == (tO) e 7tr)'

Example 9.3 (Veronese rings). Common examples of graded rings are the so-called Veronese
rings associated with a graded ring R. For any natural number d, the Veronese ring R\ is
the subring of R given by (D, - Rna-

Example 9.4. The ideal a = (y — x, z?) in the polynomial ring k[z, y, 2] is a homogenous
ideal, and the quotient R = k[x,y, z]/a is graded. The surjection k[z, y, z] — k[z, z] that
sends y to x is a map of graded rings

k[ﬂj‘7 Y, Z]/(y - Z, ‘/1:2) - k[xu Z]/(xZ)
since it maps a into the ideal (2:?). One verifies without difficulties that this is an isomorphism.

If S © R is a multiplicative system consisting of homogeneous elements, and M is a
graded module, the localization S~! M is naturally a graded R-module with degree n part
equal to

(S™'M), = {m/se S'M | m € M homogeneous, s € S and degm — degs = n }.
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9.2 The Proj construction 133

In particular, if f is a homogeneous element of positive degree, the localization R is a
(Z-graded) ring. As we will see, the degree 0 part (Rf)o will play a crucial role in the
Proj-construction.

Example 9.5. In the polynomial ring R = Alto,...,t,], with the standard grading,
the elements of degree zero in the localization R;, are polynomials in the monomials
totj_l, cey tntj_l, so the piece of degree zero (Rtj )o is the polynomial ring

(Ry)o=A[2,.... 2],

57 7tj

Exercises

Exercise 9.1.1. Let a C k[, y, z] be the ideal (zy, xz,yz). Show that A = R/a is graded
ring and describe each homogeneous component A,,.

Exercise 9.1.2. A polynomial ring k[to, .. .,t,] can be given a non-standard grading by
declaring the degree of each ¢; to be any given natural number d;. For instance, give R =
k[to,t1] a grading by letting deg t;, = 2 and degt; = 3.
a) Describe the homogeneous pieces R,, of degree n;
b) Let k[u] have standard grading and define a map ¢: R — k[u] by the assign-
ments t, — u> and ¢, — u?. Show that ¢ is a map of graded rings.
c) Describe the kernel and the cokernel of ¢ as graded modules.

Exercise 9.1.3. Show that an ideal a in a graded ring R is homogeneous if and only if it is
generated by homogeneous elements.

Exercise 9.1.4. Let R be a graded ring which is not necessarily positively graded. Assume
that a homogeneous element f of R is expressed as a combination f = Y’ a;g; where the
g;’s are homogeneous. Show that f may be expressed as f = .. b;g;, where each b, is
homogeneous of degree deg f — deg g;. HINT: Homogeneous components are unique.

Exercise 9.1.5. Let R be a graded ring and p a homogeneous prime ideal. Show that (R,,)o
is a local ring with maximal ideal equaltom = { fg~' | f € p,g € S(p),deg f = degg }.

Exercise 9.1.6. Let R be a graded ring and p a homogeneous ideal in R. Show that p is
prime if and only if xy € p implies x € p or y € p for all homogeneous elements x and y.

Exercise 9.1.7. Let R and S be graded rings and ¢p: R — S a map of graded rings. Show
that the inverse image ¢~ 'p of an ideal p < S is homogeneous whenever p is.

Exercise 9.1.8. Let R a graded ring. Show R is Noetherian if and only if Ry is Noetherian
and R, is finitely generated.

9.2 The Proj construction

Motivated by the discussion of projective varieties in Chapter 1, where homogeneous ideals
play a fundamental role, we make the following definition:
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134 Projective schemes

Definition 9.6. Let 1 be a graded ring. We denote by Proj R the set of homogeneous
prime ideals of R that do not contain the irrelevant ideal R . It is called the projective
spectrum of R.

We can endow Proj R with a topology by letting the closed sets be sets of the form
V(a)={peProjR|acyp}

with a a homogeneous ideal. This topology is called the Zariski topology. The three topology
axioms follow from the identities in the next lemma. The proof is exactly the same as Lemma
2.2 for Spec R (the arguments there are not disturbed by the conditions that primes are
homogeneous and do not contain the irrelevant ideal); the key point is that sums, products
and radicals persist being homogeneous when the involved ideals are.

Lemma 9.7. Let a, b and {a;};c; be homogeneous ideals. Then:
(i) Ifa < b, then V(b) = V(a);
(i) V(X a) =NV(a);
(iii) V(ab) =V(anb) =V(a)u V(b);
(iv) V(v/a) = V(a).

The reason behind the name ‘the irrelevant ideal’ is that V (R, ) = J, by definition. The
following lemma shows that when constructing the closed sets V' (a), it suffices to work with
ideals contained in the irrelevant ideal. In fact, we can take a lying in any prescribed power
of the irrelevant ideal.

Lemma 9.8. Let a and I be homogeneous ideals in the graded ring R.
(i) If+/T = R,,itholds that V(a) = V(a n I);
(i) V(a) = @gifandonly if R, < +/a.

Proof Proof of (i): since V(R,) = J, condition (iv) of Lemma 9.7 above implies that
V(I) = &, and condition (iii) of the same lemma then gives that V (anl) = V(a)uV (I) =
V(a).

Proof of (ii): if Ry < 4/a, it follows from (i) and (iv) of Lemma 9.7 that V' (a) = .
Conversely, assume that V' (a) = ¢J; or in other words, that R, < p for every homogeneous
prime ideal p with a < p. But then R, is contained in the intersection (| p = +/a, and hence

R, c 4/a. O

Incidentally, we do not get more closed sets if we allow all ideals a and not just the
homogeneous ones. Any given ideal a has a corresponding ~homogenization’: the ideal
generated by all homogeneous components of the elements in a. This ’homogenization’
defines the exact same closed subset of Proj R as a itself. In fact, a homogenous prime ideal
contains a if and only if all homogenous components of elements in a lie in it. Consequently,
the Zariski topology on Proj R can simply be understood as the induced topology from
Spec R, via the inclusion Proj R < Spec R.
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Distinguished open subsets

As for affine schemes, there are distinguished open sets in Proj R.

Definition 9.9 (Distinguished open sets). For each f € R which is homogeneous of
positive degree, we define the distinguished open set D, (f) as

D, (f) ={peProjR|p 3 f}

In other words, D, (f) is the set of homogeneous prime ideals in R that do not contain
the irrelevant ideal R, and do not contain f. It is clear that D (f) is an open set, as the
complement of D, (f) equals the closed set V'(f).

The next result says that the distinguished open sets form a basis for the topology on
Proj R. This fact will be essential when we define the scheme structure on Proj R.

Lemma 9.10. Let R be a graded ring.
(i) If f and g are two homogeneous elements of positive degree, it holds
that D, (f) n D1 (g) = D(f9g).
(i) The D, (f)’s form a basis for the topology on Proj R when f runs
through the homogeneous elements of R of positive degree.

Proof The first part is clear by the definition of a prime ideal. The second follows as in the
affine case: V'(a) is the intersection of the V' (f)’s for the homogeneous f € a N R, so
Proj R — V(a) is the union of the corresponding D, (f)’s. Hence every open set is a union
of sets of the form D (f). O

Exercise 9.2.1. Let R be a graded ring and let f and { f; };c; be homogenous elements from
R all of positive degree. Show that the distinguished open sets D, (f;) cover D, (f) if and
only if a power of f lies in the ideal generated by the f;’s.

Dehomogenization and homogenization

Recall that for a distinguished open set D( f) of an affine scheme Spec A, there is a canonical
homeomorphism between D( f) which associates a prime p € D( f) with the prime ideal pA .
In analogy with this, we will show below that the map p — (pRy), defines a homeomorphism
between D (f) and Spec (Rj)o, where (Ry), denotes the degree 0 part of the localization
;. Before embarking on the proof, let us see an example that illustrates the underlying
approach of the proof.

Example 9.11. As we saw in Chapter 1, the structure of P" (k) as a variety is based on the
isomorphisms D, (t;) ~ A" (k) given by

(tOtn)'_)(tO/tu;lyatn/tz)a (91)
(defined for ¢; # 0). Therefore the most natural coordinates on D, (¢;) are the n quotients
uyp = to/t;, ..., u, = t,/t; (where we exclude the term ¢;/t;).

Let us for simplicity consider the case ¢ = 0. We would like to find a scheme analogue of
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the map (9.1) which works for prime ideals, not just closed points. This will involve passing
from the ring R = k[to, . .., t,] to the degree O part (Ry, )o of the localization of Ry, that
is,

(Riy)o = k[ti/to, ... tn/to] = k[u1, ..., un)

If G(tg,...,t,) € R is a homogeneous polynomial of degree d, we can consider its de-
homogenization with respect to t;, namely g = t,“G. Note that g is a polynomial in the
Ui, ..., U, and therefore defines a regular function on D ().

Conversely, given a polynomial g € k[uy, ..., u,], there is a straightforward way to make
it homogeneous, namely to consider G' = t¢g where d = deg g. This will almost always be
an inverse to the dehomogenization process. There is an exception however: any power £J
will dehomogenize to 1, and there is no way of recovering tJ without knowing d.

In any case, the dehomogenization process allow us to understand the homogeneous prime
ideals in R contained in D (t(). There is a map

D, (to) — Spec(Ry,)o 9.2)

which sends a homogeneous prime p to (pR)o. Note that the latter is a prime ideal in (R )o.
Concretely, if p = (G4, ..., G,) where each G is a homogeneous polynomial of degree d;,
then in the localized ring R;,, we have

pRto = (Gl,...,Gr) = (talel,. ..,tadrcr) = (913--- 797")

where the g;’s are the dehomogenizations of the ;. Moreover, as each g; has degree
zero, the above equality in fact holds in (R;,)o. Hence the dehomogenizations form the
generators for the ideal (pR;, )¢ in (Ry,)o- For instance, if p = (¢; — aito, ..., t, — anlo),
the dehomogenization produces the maximal ideal (u; — ay, ..., t, — a,).

We would like to find an inverse to the map (9.2). Given a prime ideal q € k[uy, ..., u,],
say generated by g1, .. ., g, one can consider the ideal generated by the homogenizations
of the g;’s. For instance, if q = (uy — ay,...,u, — a,) corresponds to a closed point in
Spec k[uy, . .., u,], homogenizing the generators gives (t; — a;tg, ..., t, — ayto), which
indeed produces a closed point of P} contained in D (o).

However, this idea does not quite work in general, as the homogenized ideals may fail
to be prime. For instance, the ideal of the affine twisted cubic curve (uy — u?, uz — u?)
homogenizes to

(tato — 2, t5t2 — 13) = (2, tot1, t] — tota) O (£ — tota, tita — tots, t3 — tits) (9.3)

The issue is caused by the first ideal, which is contained in (). The fix is to consider instead
the ideal 4/qR;, N R, which results in the second ideal in (9.3). In fact, ideals of the form

A/ qRty N R are always prime in R, as we will see below. Once this is established, the map

q — +/qf, N R gives an inverse to the map (9.2) and we get a one-to-one correspondence
between all points of A} and those in D (¢o).

The general set up of the homeomorphism D (f) ~ Spec (Ry), follows the pattern in
the example. Basically one dehomogenizes elements of the ideals with respect to f (and
homogenizes to get them back). It is only slightly more involved for general rings, e.g.,
because f needs not have degree 1.
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Proposition 9.12. Let R be a graded ring and let f € R be homogeneous of degree
d > 1. There is a canonical map ¢: D, (f) — Spec(R;), defined by

o(p) = (pRy)o

This has the following properties:
(1) ¢ is a homeomorphism;
(i1) Open distinguished sets: for any homogeneous element g € R such that
D, (g) € D,(f),letting u = g f~9°€9 € (R}),, we have

#(D4(9)) = D(u);

(iii) Closed sets: if a = R is a homogeneous ideal, then we have that

¢(V(a) n Dy (f)) = V((aRp)o)-

Proof Note that ¢ is the restriction of the map Spec Ry — Spec(Ry), induced by the
inclusion (Rf)o < Rj. Therefore it is continuous. Once we have proved (iii), we can
conclude that it is also a closed map, hence a homeomorphism.

We begin by proving that ¢ has an inverse map v): Spec(R;)o — D (f) defined by

q—/qRs N R.

First of all, we should check that the ideal on the right is a homogeneous prime ideal in R.
The ideal Ry is in any case a Z-graded ideal of R;. First we claim that (qR;)o = ¢. One
inclusion q < (qRy)o is clear, as ¢ < (Ry)o. Conversely, pick an element g € (qR)o and
express it as a sum

g=amgi+ - +ayg,

where the g;’s are elements from q and the a,’s are homogeneous elements from I2; whose
degree is deg a; = deg g — deg g; (Exercise 9.1.4). But as both g and g; have degree zero,
we must have deg a; = 0 as well. Therefore a; € (R f)o, and hence g € q.

Suppose that ab € qR, with a and b homogeneous. Then

] e 20 ¢ (qRy), = g,

and since q is prime, either a?/f4°¢(®) € q or b?/fd°5(®) € q. It follows that either a € qR;
or b € qR;. This shows that /qR; is a Z-graded prime ideal of R;. Therefore /qR; N R
is a homogeneous prime ideal of R, and so 1) is well defined.

It remains to check that v is the inverse of ¢. To prove that ¢ o ¢ = idp, (y), we first note
that for each homogeneous prime q < Ry, it holds that q = 4/qo[2;. Indeed, the inclusion
v/ qoRs < qis immediate. Conversely, let a € q be a homogeneous element. Then al/fdesa
has degree 0, and belongs to qo. It follows that a € 4 /qoRy. If p € D, (f), this implies (with
q=pRy)thatpRy = A/ (pRy)oRy, and we see thatp = +/(pRs)oRs N R = 9(o(p)).

The argument for why ¢ o ¥ = idgpec (r;), 1S similar and is left to the reader.

Proof of (ii): let g € R be an element with D, (g) < D, (f). Then for p € D, (f), the
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following series of equivalences hold true because p[?; is a prime ideal:

peDi(g) < g'f "¢ ¢ pR;
< g'fm99¢ (pRy)o = o(p).

Hence ¢(D. (g)) = D(u).

Proof of (iii): Letp € V(a) "D, (f),sothata < pand f ¢ p. Then (aR;)o < (pRys)o =
¢(p), which gives one of the inclusions. Conversely, given a prime ideal p < (R;)o such
that (aRs)o < p, its preimage p’ = p N R will be a homogeneous prime ideal in R not
containing f, and so (aR;)s < ¢(p’) = (p’Ry)o. This completes the proof. O]

Proj as a scheme

We now explain the scheme structure on Proj R. For this, we need to define the structure sheaf
Oproj r 00 Proj R, and check that the resulting locally ringed space is locally affine. The
construction of Op,,; g parallels that of the structure sheaf on Spec A, using distinguished
open sets in its definition.

Let A be the basis for the topology on Proj R consisting of the distinguished open subsets.
For each D (f), we set*

O(D+(f)) = (By)o- (9-4)

When f and g are homogeneous and D(g) < D(f), the localization map Ry — R, will
preserve the gradings.> Hence (R} ), is mapped into (R, )o, and we may use the degree zero
part of the localization maps as restriction maps O(D, (f)) — O(D(g)).

In this way, we obtain a Z-presheaf (0. We next show that this is a %B-sheaf. If { D, (f;)}
is a finite cover of D, (f), with the f;’s homogeneous, the distinguished open subsets D( f;)
of Spec R will cover D(f), and consequently the standard sequence

0 Ry - Hi Ry, L Hz‘,j Ry, 9.5)

which is an exact sequence of graded R-modules, will be exact simply because Ogpec i is @
sheaf. Taking degree zero parts is an exact operation, and applied to (9.5) it yields the exact
sequence

0 —— (Rp)o = TL(Rp)o =2 I, (Rss,)os 9.6)

which exactly says that O is a #-sheaf. The structure sheaf Op,,; r on Proj R is then defined
to be the unique sheaf extension of O. This is a sheaf such that Op,.; r(D4 (f)) = (Ry)o
over any distinguished open set.

According to Proposition 9.12 on the preceding page, there is a canonical homeomorphism
D (f) ~ Spec(Ry)o, which sends a distinguished open subset D (g) < D_(f) to the

subset D(u) < Spec(Ry)o where u = g4°8 7 f~4°69_ Because u has degree zero, it holds
that (R,), ~ ((Rf)o)u’ which means that O restricts to the Z-sheaf induced by the

! There is a canonical localization which only depends on the open set D+ (f), see Section XXX.
2 As explained in Lemma 2.22, if D(g) = D(f), it holds that g™ = cf for some c € R and some n > 0, and the
localization map is given by af~" — c¢"ag™"", and this preserves degrees.
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structure sheaf on Spec(Ry)o. Hence Op,o; g restricts to Ospec (r 1o~ The locally ringed
space (Proj R, Op,.; r) is therefore locally affine; in other words, it is a scheme.

Definition 9.13. For a graded ring R, we call the scheme (Proj R, Op,;r) the
projective spectrum of R.

The projective spectrum Proj R is in a natural way a scheme over Spec Rg. The structure
map 7: Spec R — Spec R, restricts to a continuous map on Proj R, which turns out
to be a morphism. To check this, it suffices to show that its restriction to D, (f) is a
morphism for each homogeneous f. Under the identification ¢: D (f) ~ Spec (Ry)o from
Proposition 9.12, this restriction turns into the composition 7| p, () © ¢~ ', which matches
the structure map Spec (R f)o — Spec Ry. Precisely, we have that

d(p) "Ry = (pRy)o N Ry = p N Ry.

Indeed, one inclusion is obvious, and if for some x € p it holds that y = f~"x € R, we
find that y lies in p since x = f"y lies there, but f does not.

Example 9.14 (Projective spaces again). Among the most prominent varieties are the pro-
jective spaces, and in Section 7.6 we constructed analogues P’y over any ring. These were
obtained by gluing together schemes shaped like prime spectra Spec A[tot; o, tat; 1].
In the present general setting the P"; ’s resurface as Proj’s of standard graded polynomial rings

Alto, ... ta]:

Proposition 9.15. For each ring A and each non-negative integer n, it holds true that
" = Proj Alto,...,tn].

Proof The only remark needed is that if R = A[to,...,t,], it holds that D, (t;) =
(R:,)o = Spec R; with R; = Alty/t;,...,t,/t;]; indeed, these are precisely the open
pieces joined together to form P";, and the gluing data are also the same because the intersec-
tions D (t;) N D, (t;) are equal to D (t;t;) = Spec (R4, )o. and

(Rit;)o = Rilti/t;] = R;[t;/t;].
O

Example 9.16. The scheme P% = Proj A[t,] merits a comment. In this case the structure
map is an isomorphism Proj A[t,] ~ Spec A (so when A is a field, P is just a point).

Indeed, since the irrelevant ideal A[¢o], is generated by ¢y, it follows that Proj A[ty] =
D (o), and on the other hand, it holds that D (to) = Spec (A[to]t, )o. and (A[to]s,)o =
Alto,t5 o = A.

Example 9.17. Consider R = k[x,y]/(zy) with the natural grading. Geometrically,
Spec R — V (x, y) represents the union of the z- and y-axes, excluding the origin. Therefore,
we expect Proj R to consist of only two points. Besides the irrelevant ideal R, = (x,y),
there are only two homogeneous prime ideals, (x) and (y). Thus, Proj R indeed consists of
just two points.
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Here are some basic properties of Proj R:

Proposition 9.18 (Properties of Proj). Let R be a graded ring.
(1) If R is an integral domain, then Proj R is integral;
(ii) If R is reduced, then Proj R is reduced;
(iii) If R is Noetherian, then Proj R is a Noetherian scheme.
(iv) If R is of finitely generated as an Ry-algebra, then Proj R is of finite
type over Spec Ry.

Proof The two first properties can both be checked on an open affine cover, and Proj R
is covered by the open affines Spec(Ry)o with f € R,. Provided R is an integral domain
(or a reduced ring), the rings R are integral domains (or reduced rings), and (R ), being a
subring of R, the same holds for (R )o.

For the third and fourth properties, note that when R is Noetherian, R is finitely generated,
say by elements fi,..., f.. Each of the the rings (Ry,)o are Noetherian, so Proj R is
covered by finitely many affine schemes Spec(Ry, )o, and so it is Noetherian. Finally, if R is
finitely generated over R, then so is each (Ry, )o, as we will prove later in Lemma 9.39 on
page 150. O

Example 9.19. When R is not Noetherian, it may very well happen that Proj R is not
quasi-compact. This is in stark contrast with the case of affine schemes; a prime spectrum
Spec A is always quasi-compact whatever the ring A is.

An explicit example is the polynomial ring R = k[t1, t5, ... | in infinitely many variables.
Then Proj R is covered by the distinguished opens D (¢1), D, (t2), . . ., but this cover can
not be reduced to a finite one. (See also Exercise 2.5.6 on page 31.)

This situation is somewhat counterintuitive, given the usual heuristic that complex pro-
jective varieties (i.e. closed subsets of the compact space CP") are compact, whereas affine
varieties (e.g. A" or A* —0) are not. The explanation is that the usual notions of ‘compactness’
do not behave so well in the Zariski topology; there are other notions like ‘properness’ which
better capture the properties we want.

Exercises

Exercise 9.2.2. Let R be a graded ring and let he 7: Proj R — Spec R be the structure
map. Show that for each f € Ry, the inverse image 7' D( f) is isomorphic to Proj R;.

Exercise 9.2.3. Let R be a one-dimensional graded ring, with Ry = k a field, and assume
that R is finitely generated as a k-algebra. Show that Proj R is a finite set. HINT: the
maximal ideal R, contains all homogeneous prime ideals.

Exercise 9.2.4. If R is a graded integral domain, show that the function field of X = Proj R
is given by

k(X)z{%|geR,heR,degg=degh}ck(R) 9.7)

Exercise 9.2.5. Show that Proj R is empty if and only if every element in R is nilpotent.
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Exercise 9.2.6. Give examples of a non-Noetherian graded ring R such that Proj R is
Noetherian, of an R that is not of finite type over a field k, but Proj R is, and an R which
is not an integral domain, but whose projective spectrum Proj R is integral. HINT: The
irrelevant ideal is irrelevant.

9.3 Functoriality

In contrast to the Spec-construction, the Proj-construction is not entirely functorial. A map
of graded rings ¢: R — S does not always induce a morphism between the projective
spectra Proj S and Proj R, because prime ideals in S might pull back to prime ideals in R
that contain the irrelevant ideal R, . However, discarding the badly behaved primes, we find
an open set where a morphism can be defined.

This is not the only functorial deficiency of the Proj construction. There are maps between
Proj’s that are not induced by maps of the graded rings (see for instance Proposition 9.26).

The base locus

Given a map of graded rings ¢: R — S, we introduce the base locus of ¢ as the closed set

Bs(¢) = V (¢(R.)) < Proj .

Proposition 9.20. Let ¢: R — S be a map of graded rings. Then there is a morphism
of schemes

F: ProjS — Bs(¢) —— Proj R,

which on the level of topological spaces is given by p — ¢~ 1p.

Proof As ¢ is a map of graded rings, ¢~ 'p is a homogeneous prime ideal whenever p is
one.

Note that the set U = Proj S — Bs(¢) is open in Proj S and has a canonical scheme
structure. Moreover, if p € U, it holds by definition that R, ¢ ¢~ *(p), and ¢~ 'p therefore
is a well-defined point of Proj R. Therefore, on the level of topological spaces, the map F' is
well-defined, and continuous.

Next, we need a map of sheaves of rings Op,o; g — F,Op. We define this map using %-
sheaves on the open sets D (f). That is, we need to specify ring maps Op,o; r(D4 (f)) —
FyOpy(Dy(f)), one for each f € R homogeneous of positive degree, such that they are
compatible with the restrictions to D (g)’s contained in D, (f).

Now, there is a sheaf map Ogpec g — FxOspec s (abusing language, we let I also denote
the map between the Spec’s). In view of the equality '~ D(f) = D(¢(f)), this map when
restricted to D( f), is simply the localization map

Ospec r(D(f)) = By —— Ospec s(D(([))) = Sa(p)- ©-8)

This is a map of Z-graded rings, and on the homogeneous pieces of degree zero it induces the
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desired map

Oproj (D1 (f)) — Oprojs(D+(¢(f))) = Ou(F1D(f)). 9.9)

Since Ogpec  — FOgpec s is a map of sheaves, the maps in (9.8) coincide on intersections,

and the same then holds for those in (9.9). This concludes the proof. ]
Projections

Example 9.21 (Projection from a point). Consider the polynomial rings R = Z[to, t1] and
S = Zl[to, t1, 2], both equipped with standard grading, and the natural inclusion ¢: R < S.
Then R, = (to,t1) < Rand t(R,)S = (to,t1)S, so the base locus is V' (¢, t;) < Proj S.

The counterpart of this example in the world of varieties (that is, on k-points with k a field)
is the projection (ag : a1 : az) — (ag : ay) from P?(k) to P! (k). The base locus consists of
the point (0 : 0 : 1), where the projection is not defined.

Example 9.22 (Projection from a linear subspace). Generalizing Example 9.21, one may
project from any linear subspace of P" = Proj Z[to, .. ., t,]; for instance, V (¢, . .., t,).
The appropriate map of graded rings is then the inclusion Zl[t, . . ., t,.| < Z[to,. .., t,], and
the base locus equals the subscheme V (%, . . ., t,.) < P™. The projection is the corresponding
map

P" —V(to,...,t.) — P,

which on k-points acts by just keeping the r + 1 first homogeneous coordinates and forgetting
the others.

Example 9.23. Consider the map ¢: Z[u,v] — Z|z,y]| of graded k-algebras defined
by the two assignments © — z" and v — y" where n is a natural number (to make
this a map of graded rings, we let u and v have degree n). The base locus Bs(¢) equals
V(z",y™) = V(x,y), which is the empty subscheme of P*. Hence the map ¢ gives rise to
a morphism P* — P!, If k is an algebraically closed field, the map on k-points is given by
(a:b)— (a™:b").

Exercise 9.3.1 (Cremona transformation). Let A be a ring and consider the map of graded
rings ¢: Z[ug, u1, uz] — Z[o, x1, 2] defined by the three assignments u; — x;; where
the indices satisfy {i, j, k} = {1,2,3}.

Determine the base locus Bs(¢) and describe the k-points of V' (Bs(¢)) when k is a field.

Closed embeddings

If a is a homogeneous ideal in the graded ring R, the quotient map ¢: R — R/a is a map of
graded rings, and it holds that (R, ) = (R/a) .. The base locus Bs(¢) is therefore empty,
and the corresponding map of schemes is defined everywhere. Hence we obtain a morphism

t: ProjR/a — Proj R

whose image is V' (a). We contend that ¢ is a closed embedding. It will suffice to verify
this on an open cover of Proj R, so let f € R be a homogeneous element. It holds that
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D (f) = D (¢(f)), and the restriction of ¢ to t~* D (f) may be identified with the
morphism

Spec ((R/Cl)¢(f))0 — Spec (Ry)o

induced by the degree zero part of the localization Ry — (R/a); of ¢. But the latter is
obviously surjective, and we infer that ¢|,~1p, () is a closed embedding. In fact, under mild
assumptions on the graded ring R, every closed embedding into Proj R arises in this way, as
we shall prove in Chapter ??.

Example 9.24 (Homogeneous coordinates). In Chapter 1, we saw that over an algebraically
closed field k, the points a € P (k) have homogeneous coordinates a = (aq : - - : a,,), and
that the homogeneous prime ideal corresponding to a is generated by the 2 x 2-minors of the

matrix
(to ... tn> . ©.10)
g a1 ... Qap

There is an analogue of this for projective spaces over any ring A. For an (n + 1)-tuple
a = (ag,...,a,) of elements of A so that the ay, .. ., a, generate the unit ideal in A, we
can construct the subscheme Proj(R/a) of P} defined by the same equations as above, i.e.,
the homogeneous ideal

in the ring R = Alto, ..., t,]. We claim that the structure map 7 : P, — Spec A restricts
to an isomorphism Proj(R/a) — Spec A. Taking the inverse, we obtain an A-point o, :
Spec A — P’,. This is even an A-point over A, meaning that 7 o 0, = idgpec 4, SO in other
words, o, is a ‘section’ of 7.

As the a; generate the unit ideal, the distinguished open sets D(a;) cover Spec A. It
will therefore suffice to see that the restriction 7 |,—1p(q4,) is an isomorphism for every i. By
Exercise 9.2.2, 7' D(a;) = Proj ((R/a),,), so replacing A by A,,, we may assume that
one of the a;’s, say ay, is invertible in A. Since agt; — a;ty belongs to a, we deduce that
t; — azag 'ty € a, and hence Alto, ..., t,]/a = A[ty]. By Example 9.16, it follows that the
structure map restricts to an isomorphism on V' (a).

If we multiply all the a; by a unit A € A, this does not change the ideal a, and hence we
get the same A-point o, : A — P". It is therefore natural to use the notation (ag : - - - : a,)
for the A-point o,.

It is not true in general that all A-points of P’ are of the ‘homogeneous coordinate form’
(ao e an). However, locally near each point of Spec A, they are, so in particular if A is
a local ring (e.g. a field) it is true. Later we shall give a general description of morphisms into
projective spaces.

Lemma 9.25. Assume that A is a local ring. Then every section Spec A — P7 of

the structure map is given by (ag : - - - : a,,) where at least one a; is a unit. Another
such tuple (af, : --- : al,) gives the same map if and only if a, = Aa; for a unit
Ae A

Proof Assume that a section o: Spec A — P7; of the structure map is given. Then the
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image of the closed point of Spec A lies in D, (t,) for some v. This means that o induces

amap oF of rings from A[tt;?, ... t.t; 1] to A; the images a; = o*(t;t;!) are elements
inAand (ap:---:1:---:a,), with the ‘one’ in the v-th slot, will be the homogeneous
coordinates giving the desired section. 0

Exercise 9.3.2. Let A be ring and 0: Spec A — P’ a section of the structure map P’ —
Spec A. Let © € Spec A be a point. Show that there is an open affine neighbourhood

U = Spec A’ of x and elements a; in A’ such that o|y = o, witha’ = (ag, ..., al).

The Veronese embedding

As we mentioned in the introduction, a significant difference between the Proj-construction
and the Spec-construction, is that many different graded rings can lead to isomorphic Proj’s.
The Veronese embeddings provide infinitely many examples; for any natural number d, the
schemes Proj R and Proj R¥ are isomorphic, but the rings R and R(® are typically not
isomorphic. These also provide examples of morphisms between Proj’s that are not induced
by graded ring maps.

Let R be a graded ring and let d be a positive integer. In Example 9.3 we introduced the
Veronese ring R(?) associated with R as the ring @,, Ray- In this section we aim at showing
that the inclusion ¢: R® — R induces an isomorphism

vg: Proj R — Proj R,

First, let us check that v, is a morphism. The irrelevant ideal of R(? is generated by all
elements in R whose degree is positive and divisible by d. Note that gb(Rf)) defines the
empty set, since any prime p < R such that R, n R(Y < p must contain all of R, : if
a € R, it holds that a’ € R, n R, and so a € p as well. The map v, is called the
Veronese embedding, or the d-uple embedding of Proj R.

Proposition 9.26. The Veronese embedding v is an isomorphism.

Proof The key observation is that for a homogeneous element f € R, the inclusion
R < R induces an equality of the degree 0 parts of the localizations

(R0 = (Bp)o. ©.12)

The inclusion (RE}?)O < (Ry)o is clear. Conversely, let g/f* € (Ry)o, and write it as

g/f* = gf'/f*"" where t > 0 is such that s + ¢ is divisible by d. From deg g = sdeg f, it
holds that g/f* € (R;d))o), so we have the opposite inclusion as well.

Consequently the morphism v, restricts to an isomorphism over open subschemes D, (f) ~
D, (f%), illustrated with the commutative diagram

Proj R —%~ Proj R®

] ]

D.(f) —— D+(f7).
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As f runs over the elements of R, the distinguished opens D, (f¢) cover Proj R(¥. Indeed,
letting I be the ideal in R(Y) generated by all d-powers f¢ for f € R, we have R, < /I,
andso (,.p, V(f) =V (VI) = & by Lemma 9.8.
This means that v, restricts to an isomorphism of schemes over an open covering of
Proj(R?), and hence it is an isomorphism.
O

Example 9.27 (Veronese varieties). Consider the maps P" (k) — P~ (k) given by a basis
for the space of homogeneous forms of degree d in the polynomial ring R = k[xo, . .., x,]
(so N + 1 is the dimension of that space). For instance, the map P?(k) — P°(k) that acts on
a point with homogeneous coordinates (g : ; : Z3) as

(wo 2 @1 2 m2) > (20 1 XXy : ToTy : TT Ty XF),
is one of the sort. Its image is the famous Veronese surface, which we met already in
Example 1.43 in Chapter 1.

P2 ¢

To describe a Veronese embedding in the Proj-terminology and in an absolute setting, let
{M;},<i<n be the set of monomials of degree d in Z[z,...,x,], and define a map of
graded rings

Z[to,...,tl\[]—>Z[$0,...,$n] =R

by sending a variable ¢; to the monomial M. The image of this map is precisely the Veronese
ring R(?, and therefore it induces, according to Section 9.3, a closed embedding of P" =
Proj R into Proj R = PV,

Example 9.28 (Rational normal curves). The rational normal curves from Example 1.42 in
Chapter 1 are other examples of Veronese embeddings. In that case n = 1, and the absolute
version of the embedding P* < P? is given by the surjection

Z[t07 s )td] - Z[J:Ov xl]
t; — ngix’i.
This example has appeared several times before. For d = 2, the map v, embeds P! as the
conic V (t2 — toto) in P2,
For d = 3, the image of v; is the projective twisted cubic curve V' (I) < P? from Example
XXX.

Example 9.29. The rational normal curve of degree d = 4 is also interesting. The image C'
of the map v, : P, — P} is defined by the 2 x 2-minors of the matrix

to 1 T2 t3
t oty ts t
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Let us consider the map Pj — P3 defined by the four monomials u*, uv, uv®, v*. Writing

to,t1,t3,t4 for the coordinates on P}, the image X is defined by ideal
I = (tity — tots, t5 — 1115, tots — tita, t] — t3t3)

In terms of varieties, one can say that X arises as the projection of the rational normal curve
from the point (0:0:1:0:0).

Exercise 9.3.3. Show that the inverse of v is not induced by a map of graded rings R —
R,

Cones

Let R be a graded ring which generated over R, by finitely many elements tg, . .., t,,. Then
there is a morphism of schemes

7 : Spec(R) — V(R,;) — Proj R

which generalizes the usual quotient construction of P™ from A} — V (¢,,...,t,). This
morphism is constructed from the maps of affine schemes Spec(R;) — Spec((Ry)o).
which one can check glue to the morphism 7.

The affine scheme Spec(R) is called the affine cone of X = Proj R, and it is commonly
denoted by C'(X). The origin V (to,...,t,) defines a closed point in C(X), called the
vertex of the cone.

The schemes X and C'(X) share a relationship similar to that of P? and A}t

On the level of k-points, the map 7 sends (ay, . . . , a,,) to the associated point in X with
homogeneous coordinates (ag : - - - : a,,). (See Exericse 9.4.7 for a discussion on non-closed
points.)

Example 9.30. Consider the ring R = Z[xg, z1,232]/(22 + 23 — x3). The affine cone
Spec R represents a quadric surface in A3 defined by the equation 22 + z7 = 3. It is
therefore a cone in the usual since, at least on the level of R-points.

To the graded ring R one can also form the projective cone defined by Proj(R[t]) where
we adjoin an extra variable ¢ of degree 1. Note that

D(t) = Spec (R[t, t_l])o ~ Spec R

This means that the affine cone Spec R embeds as an open subset of the projective cone.
The complement of this open set is given by V(). Note that Proj R embeds as the closed
subscheme

Proj(R[t]/(t)) < Proj R[t].
Example 9.31.

Weighted projective spaces

Our main source of examples will be the weighted projective spaces, which are defined in
terms of polynomial rings with non-standard gradings:
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Definition 9.32. For a ring A and a sequence dy, . . ., d,, of natural numbers, we
define the weighted projective spacever A as

]P)A(do, ey dn) = PI'Oj A[to, e ,tn]

where deg t; = d; for each 7.

While this definition resembles that of a traditional projective space (where all d; are equal
to 1), the weighted projective spaces give a surpringly diverse and rich class of examples.

One of the benefits of weighted projective spaces is that they provide concrete models
for projective schemes. If R is generated by elements %, ..., t,, of degrees dy,...,d,
respectively, there is a graded surjection

Ro[to,. ,tn] — R

and hence Proj R embeds as a closed subscheme of the weighted projective space P(dy, . . . , d,,)
over Ry. See Example 9.35 for a concrete example.

Example 9.33 (The weighted projective spaces P(p, ¢)). Let k be a field and p and ¢ two
relatively prime numbers. Consider the polynomial ring R = k[, y]| with grading given by
degz = pand degy = q. We claim that Proj R ~ PP}.

The idea is to consider the Veronese subring R(¥ where d = pq. Observe that the
homogeneous elements in R(? are linear combination of monomials x*y® with pa + ¢ =
dn. Hence ¢ divides o and p divides 5 and so o/ + 3/ = n with @ = ga’ and 8 = pf’.

If we consider the polynomial ring k[u, v] where the grading where u and v have degree
d, there is a graded ring map ¢ : k[u,v] — R@ which sends u — 27 and v — yP. ¢ is
clearly injective, because x? and y? are algebraically independent. It is also surjective: we
just saw that (R(d))dn has a basis consisting of the monomials 27%y?? with o + 8 = n;
these are the images of the monomials u®v? in A. (See also Exercise 9.4.2.) From this we
conclude that ¢ induces an isomorphism

Proj R ~ Proj R ~ Projk[u,v] = P}.

Example 9.34 (The weighted projective space P(1, 1, d)). We begin with a polynomial ring
R = k[x,y, z] endowed with the grading degz = degy = 1 and deg z = d for some
natural number d. We consider the weighted projective space P(1,1,d) = Proj k[z,y, z].

The scheme P(1, 2, 3) has a cover consisting of the three open affine subschemes D, (),
D, (y) and D, (2). Both D, (z) and D, (y) are isomorphic to the affine plane A?: it is
straightforward to verify that (R,)o = k[yz™!, 2z~ and (R,)o = k[zy~', 2y~%], and
that these are isomorphic to polynomial rings.

However, the third distinguished open affine D, (z) is different. The monomials z¢~‘y¢2 71,
for 0 < @ < d, are clearly homogeneous elements of degree zero in R, and it is readily
verified that they generate (R, )o, so that

(R.)o = k[z""y'z7" |0 <i < d].

Let us take a closer look at the map induced by the (degree preserving) inclusion S =
klx,y] — k[z,y, z] = R.Its corresponding base locus is the closed set V' (x, y) which is
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just a closed point p. Hence we have a map of schemes
f:P(1,1,d) — {p} — P,.

Note that P(1,1,d) — {p} is covered by the open sets D (x) and D (y), both isomorphic
to A7. One checks that f|p, () maps D, (z) < P(1,1,d) into A, = Dy (z) < P}, and
similarly for D, (y). Moreover, when restricted to each of the A?’s, f is given by the
projection onto the first coordinate axis.

Now, D, (x) = Speck[yz~!, zz=%] and D, (y) = Spec k[zy~!, zy~?] are two copies
of A? glued together over the distinguished open sets D(yz ') and D (zy ') respectively.
Over the overlaps, the gluing map is given by multiplication by ¢ /y?. So we recognize
f: X — {p} — P} as being the line bundle L4 from Section 7.7.

Example 9.35. Recall the hyperelliptic curves from Example XXX. These were defined in
terms of a homogeneous polynomial f(xg, ;) of degree 2d. The equation y* = f(xq,x1)
does not define a closed subscheme in IPZ, but it does so in the projective space P(1,1,d) =
Proj k[zq, 21, y] (where y has degree d). In fact, the curve in Example XXX is isomorphic
to the closed subscheme X defined by y? — f(z0, 7).

Note that P(1, 1, d) has an affine covering consisting of three open sets, D (x), D, (1)
and D (y). For the subscheme X however, only two are needed, because X is contained in
D, (xo) N Dy (z1) = P(1,1,d) — V(zo, 1)

Example 9.36. Consider the weighted projective space P(1,2,3) = Proj(R), where R =
k[u, v, w] with deg(u) = 1,deg(v) = 2,deg(w) = 3. Then

RO = Ek[u®, v, w?, u'v, v*w, u*v?, uvw]

is generated by its degree six part as an an k-algebra. We therefore get a closed embedding
P(1,2,3) — P¢. See Exercise 9.4.6 for more on the affine covering of P(1, 2, 3).

Two blow-ups

Example 9.37 (The blow-up of the plane as a Proj). Consider the polynomial ring A =
k[z,y] and the ideal I = (z,y). Let R be the graded ring
R=@PI't,
0

where as indicated, the graded piece of degree i equals I°t’. The irrelevant ideal R is
generated by xt and yt, and consequently Proj R is the union of the two open affine
subschemes Spec(R,;)o and Spec(R,;)o.

Note that there is a map of graded rings ¢: A[u,v] — R, where both u and v are of degree
one, given by the assignments u — xt and v — yt. This is surjective since I is generated by
z and y. Note also that the kernel contains the element zv — yu, and by Exercise 9.4.4

R ~ Alu,v]/(zv — yu). (9.13)

From this description we see that Proj R is covered by the two distinguished open sets
D, (u) = Spec(R,)o and D (v) = Spec(R,)o, and it holds that (R, )y ~ k[z,vu"!]
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and (R,)o ~ k[y,uv™!]. These are glued together along their intersection, which equals
Spec(Ruv)o =~ (A[u, v]yuw/(zv — yu))o, and one finds

1

(A, v]wo/ (v — yu))o = k[x, y,uv™ " ou™"]/(zou™" — y) =~ k[z,uv™" vu™"].

Thereforem Proj R coincides with the previous blow-up construction in Section 7.5 on
page 97.

Example 9.38 (A general blow-up). The previous examples is a specific example of a very
general construction. Let A be a ring and let a be an ideal in A. Consider the graded ring

R=Pdt,
>0
where ¢ is a variable, i.e. R is the subring A[t] of polynomials } . a;t* with a; € a’. In the
ring R, t has degree 1 whereas the elements of A have degree 0. As Rqg = A, Proj Ris a
scheme over Spec A with structure morphism

m: ProjR —— Spec A,

(this was introduced just after Definition 9.13 on page 139). We claim that 7 is an isomorphism
outside the closed subset 7~V (a), and so 7 merits to be called the ‘blow up’ of V' (a). Indeed,
if f € a, it holds that aA; = A and consequently a’A; = Ay for all <. Therefore, we have
the equality Ry = A;[t]. By Exercise 9.2.2 and Example 9.16, we then find that 7 induces
an isomorphism

7 'D(f) = Proj Ry = Proj Af[t] ~ Spec A; = D(f).

9.4 Rings generated in degree one

We will often work with the assumption that the graded ring R is generated in degree one;
that is, R is generated as an Ry-algebra by the elements from R;. This is the same thing as
saying that there is surjective map of graded rings

RO[th s 7tr] - R?

where Ry[to, . ..,t,]is a polynomial ring with standard grading; in other words, that Proj R
admits an embedding as a closed subscheme of P, .

When considering such rings, many arguments become simpler, as the grading more
closely resembles the standard grading. For instance, one can say that Proj R will be covered
by open affine subschemes of the form D (¢) where ¢ is of degree one.

The assumption that R is generated in degree one is in fact not very restrictive. If R is
a finitely generated as an algebra over Ry, then its Proj is isomorphic to the Proj of a ring
generated in degree 1. This is because, for finitely generated R, some Veronese subring
R will have all generators in a single degree. Since Proj R?) is isomorphic to Proj R,
replacing R with R(?) doesn’t alter the Proj (see Exercise 9.4.2 below).

Here is a basic lemma which will be useful in Chapter 16. It basically says that, when f
has degree one, going to distinguished open D, (f) is the same thing as ‘setting f equal to
1.
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Lemma 9.39. Let R be a graded ring and let f € R be homogeneous of degree one.
Then there is a canonical isomorphism (Ry)o ~ R/(f — 1)R.

Proof There is a well defined map Ry — R/(f —1)R that sends = f" to the class of z, and
our map will be its restriction to (R )o. It is surjective, because every element in R/(f —1)R
is a sum of homogeneous elements and, when x is homogeneous, the element x f ~ 48 maps
to the class of . Assume then that z f~ 9° maps to zero, which means that = (f — 1)y
for some y. Letting y = <i<: Yi be the expansion of y in homogeneous components, with
1y, and g; non-zero, we find

t—1

T = —Ys+ Z(fyl — Yis1) + fyr.

Since y, # 0, it not only holds that z = —y,, but also that fy; = y;.1 and fy, = 0. A
straightforward induction yields that 0 = fy, = fi=5*ly, = — ft=5*1z and so x is killed

by a power of f and therefore vanishes in [2y. O
Exercises

Exercise 9.4.1. Show that P(1,...,1,d) is isomorphic to the cone over the Veronese variety

Vi

Exercise 9.4.2. Let {¢;} be a finite set of generators for the graded ring R and let d; = degt;.
a) Let D be the least common multiple of the d; and set D; = D/d;. Show that
the Veronese ring R(P) is generated by elements of degree D.
b) Show that Proj R embeds as a closed subscheme of the weighted projective
space Pg, (do, . ..,d,) over Ry.

Exercise 9.4.3. Let x and y be two points in IP}. Prove there is an open affine U < P}
containing both x and y.

Exercise 9.4.4. Show that equation (9.13) holds.

Exercise 9.4.5 (The weighted projective space P(1, 1, p)). Let R be as in the Example 9.34
above, and let A = k[x,y, w] with the usual grading. Furthermore, let «: R — A be the
map of graded rings that sends z to w?, while leaving = and y unchanged.

a) Show that c is a map of graded rings and induces a morphism 7 : P? — Proj R.

b) Describe the fibres of 7 over closed points in case k is algebraically closed.

Exercise 9.4.6. Let R = k[z,y, z] be the polynomial ring with grading given by deg z = 1,
degy = 2 and deg z = 3, and consider Proj R (which also is denoted P(1, 2, 3)). The aim
of the exercise is to describe the three covering distinguished subschemes D, (x), D (y)
and D (z).

a) Show that (R, ) = k[yx ™2, zz~3] and that D (x) ~ AZ.

b) Show that (R,)o ~ k[z?y~ !, 2%y~% x2zy~2]. Show that the map of graded

rings k[u, v, w] — (R,)o given by the assignments z — yz =2, v — 2%y °

and w — xzy 2 induces an isomorphism k[u, v, w]|/(w? — uv) ~ (R,)o.
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Hence D (y) is a hypersurface in A?; the so-called ‘cone over a quadric’. Show
it is not isomorphic to A? (check the local ring at the origin).

¢) Show that R, = k[z327',4%272 xyz~"] and that the map k[u,v, w] —
(R.), defined by the assignments x — 232~ v — y3z72 and w — zyz~"
induces an isomorphism k[u, v, w]/(w?® — uv) ~ (R.)o. Show that it is not
isomorphic to A?.

d) Show that the map R — k[U,V, W] sending z — U,y — V? and z — W?
induces a map P2 — Proj R, and describe the fibres over closed points.

Exercise 9.4.7. Let R = k[xg, x,]| where k is a field, and consider the morphism
7 :Spec R — V(xg,2,) — P, = Proj R
from page ??
a) Show that 7 maps a k-point (a, b) to (a : b)

b) Show that 7 maps each height 1 prime p = (f (o, 1)) to the generic point in
P;.
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10

Fibre products

10.1 Introduction

The fact that fibre products exist is one of the most important properties of the category of
schemes, and one can argue that it is the definitive reason for transitioning from varieties to
schemes; the fibre product of two varieties is in general not a variety, but it is a scheme.

The general fibre product is moreover extremely useful in many situations and takes on
astonishingly versatile roles. At the end of the chapter we shall explain some of the various
contexts where fibre products appear, including base change and scheme theoretic fibres.

We begin the chapter by recalling the definition of the fibre product of sets, then transition
into a very general situation to discuss fibre products in general categories, and then finally,
return to the context of schemes. We will construct the fibre product first when X, Y and
S are affine schemes, and subsequently, by using several gluing constructions, show that it
exists in general. The majority of the chapter will be devoted to going through the steps of
this gluing procedure. Towards the end, we will treat the main applications and see a series of
examples.

Fibre products of sets.

As a warm-up, we recall the fibre product in the category of sets. Given two maps of sets
fx: X — Sand fy: Y — S, their fibre product X Xxg Y is the subset of the Cartesian
product X X Y consisting of the pairs whose components have the same image in S that is,

X xsV ={(z,9) | fx(x) = fy(¥) }-

Phrased differently, the fibre product is the union of the products fx'(s) x fy'(s) as s
runs through S, and this is the reason for the name ‘fibre product’; the fibres of the map
X XgY — S are the products of the fibres of the two maps fx and fy.

The fibre product fits into the commutative diagram below, where px and py denote the
two projections px (x,y) = z and py (x,y) = y:

X xgY 25 Y

le ny (10.1)

X > s

One also says that this diagram is a Cartesian diagram or a Cartesian square.
The fibre product enjoys the following universal property. Given two maps gx: Z — X

152
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and gy : Z — Y suchthat fx o gx = fy o gy, thereisauniquemap g: Z — X XgY
satisfying px o g = gx and py o g = gy. Indeed, just let g have components gx and gy;
that is, put g(z) = (g9x(2), gy (z)). The situation is described with the commutative diagram

(10.2)

where as usual the dashed arrow indicates a map required to exist.

Exercise 10.1.1. With the notation as above, show that:
a) If Y is asubset of S and fy is the inclusion, then X x g Y equals the preimage

XY

b) If also X is a subset of S, more strikingly, the fibre product X x g Y will be
equal to the intersection X N Y;

¢) When S has one element, X X g Y is just the usual Cartesian product X x Y.

The fibre product in general categories

The notion of a fibre product, formulated as the solution to a universal problem as above, is
meaningful in any category C. Although our main concern will be the category of schemes,
we give the definition in a general setting:

Definition 10.1 (Fibre product). A fibre product of two arrows fy: X — S and
fyr:Y — S from a category C, is a triple consisting of an object X x5 Y and
two arrows py: X XgY — X and py: X XgY — Y which have the following
universal property:

For any two arrows gy : Z — X and gy : Z — Y in Csuchthat fxogx = fy ogy,
there is a unique arrow g: Z — X xg Y satisfying px 0 g = gx and py 0 g = gy.

The universal property may naturally be expressed through commutative diagrams, like
we did in (10.2) for sets, and the notions of Cartesian diagrams and Cartesian squares are
carried over to any category.

When the fibre product exists, it is unique up to a unique isomorphism, as is true for
solutions to any universal problem. However, it is a good exercise to check this in detail in
this specific situation. The precise meaning is that if we have two products, say W and W',
then there is exactly one isomorphism 6: W — W' respecting the projections; that is, one
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154 Fibre products

that makes the diagram below commutative:

For this reason, we allow ourself to speak about the fibre product.

It is not so hard to come up with examples of categories where fibre products do not
exist. For instance, the fibre product does not exist in the familiar ‘geometric’ category of
differentiable manifolds, neither does it in the category of affine varieties. This is yet another
reason why we need to make the transition from varieties to schemes.

In the addition to the set up above, assume we are given two arrows f: Z — X and
g: W — Y in the category C. Composing f with fx, respectively g with fy, we obtain
arrows Z — S and W — S, and so the fibre product Z xg W is meaningful. The
compositions f o pz and g o py are arrows from Z x g W to respectively X and Y, and
the universal property of the fibre product implies that there is an arrow f X g: Z xg W —
X xY suchthatpy o (f x g) = fandpy o (f x g) = g.

10.2 Fibre products of schemes

A fundamental property of the category of schemes is that fibre products exist. Most of this
chapter is devoted to proving this.

Theorem 10.2 (Existence of fibre products). Let X — S and Y — S be schemes
over a scheme S. Then the fibre product X x g Y exists.

The projections from the fibre product to X and Y will frequently be denoted by px and
py respectively.

When the base scheme S is affine, say S = Spec A, the fibre product X xg Y will
sometimes be denoted by X x 4 Y.

The proof of the theorem consists of a series of reductions to the affine case, and the affine
case is settled by means of the tensor product. The reductions rely heavily on the gluing
techniques developed in Chapter 6.

One cannot construct the fibre product X x g Y by defining a structure sheaf on the fibre
product of the sets. In fact, as several later examples will show, the underlying set of a product
of schemes can be very different from the product of the underlying sets of X and Y. This
may sound counterintuitive at first, but is in fact a typical feature of the fibre products of
schemes (see the examples in Section 10.3).

Products of affine schemes

We start by the constructing fibre products of affine schemes. The main observation is that
the category of affine schemes is equivalent to the category of rings with arrows reversed,
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10.2 Fibre products of schemes 155

and that the tensor product of algebras enjoys a universal property dual to the one of the fibre
product.

To be precise, assume that B; and B, are A-algebras, i.e. we have maps of rings a;: A —
B; for i = 1,2. There are maps 3;: B; — B; ®. B, that respectively send b; € B; to
b1 ® 1 and by € B; to 1 ® by. These are both ring maps as bb' ® 1 = (b® 1)(b'® 1) and
1®bb = (1®b)(1®V'). Moreover, they fit into the commutative diagram

B, ®4 B, & B,

ﬂJ T“ (10.3)

Bl<TA

because a1 (a) ® 1 = 1® az(a) by definition of the tensor product B; ® 4 B> (this is the
significance of the tensor product being taken over A; one can move elements coming from
A from one side of the ®-glyph to the other).

Moreover, the tensor product is universal among diagrams such as (10.3). More presisely,
assume that v;: B, — C are maps of A-algebras, i.e. vy 0 oy = 3 © (g; or phrased
differently, they fit into a commutative diagram analogous to (10.3), but with the (;’s replaced
by the ;’s. The association by ® by — 71 (b1)y(b2) is A-bilinear and hence extends to an A-
algebra homomorphism v: By ® 4 Bo — C, which obviously has the property v o 3; = 7;,
as expressed in the following commutative diagram:

V2

B Qi B, <2 B, (10.4)

B1 <T A
Applying the Spec-functor to (10.3), we arrive at the diagram

Spec(B; ®a Bs) —"2 5 Spec B,

pll l (10.5)

Spec B ——— Spec A,

and Spec(B; ® 4 Bs) enjoys the property of being universal among affine schemes sitting
in a diagram like (10.5). Hence Spec(B; ®4 Bs) equipped with the two projections p; and
D2, serves as the fibre product in the category AffSch of affine schemes. One even has the
stronger statement: it is the fibre product in the larger category Sch of schemes.

Proposition 10.3. Given morphisms f;: Spec B; — Spec A for ¢ = 1, 2. Then the
spectrum Spec(B; ®4 Bs) with the two projection p; and p, defined as above, is a
fibre product of the Spec B;’s in the category Sch.

Unravelled, the conclusion reads: if Z is any scheme and g;: Z — Spec B; are morphisms
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156 Fibre products

with f1 0 g1 = f3 © go, there exists a unique morphism g: Z — Spec(B; ®4 Bz) such that
p;og=g;fori=1,2.

Proof To check the universal property, we rely on Theorem 6.5 about maps into affine
schemes. The morphisms g; give maps of A-algebras B, — Oz(Z). By the universal
property of the tensor product, these induce a map of A-algebras B; ®4 By — Oz(Z),
which in turn gives the desired map g: Z — Spec(B; ®4 Bsz) of schemes over Spec A by
Theorem 6.5. By construction, this map satisfies p; o g = g; for ¢ = 1, 2, and it is unique by
the uniqueness part of Theorem 6.5 and the universal property of the tensor product. O

Products of general schemes

Recall that any open subset U of a scheme X has a canonically defined scheme structure as
an open subscheme with the structure sheaf being the restriction Ox|;. Hence, if f: X — Y
is any morphism and V' < Y is an open subscheme, the inverse image f~'V is an open
subscheme of X, and any morphism g: Z — X such that f o g factors through V, will
factor through f~1V.

Lemma 10.4. If X xg Y existsand U < X is an open subscheme, then U xg Y
exists and is canonically isomorphic to the open subscheme p)_(lU with the two
restrictions px| v and Py | p3'U S projections.

Proof Write 1: U — X for the open embedding. The situation is displayed in the following
diagram

gy Y

and we need to verify that p;(lU together with the restriction of the two projections satisfies
the universal property. If Z isascheme and gy: Z — U and gy : Z — Y are two morphisms
over S, the composition gy = ¢ o gy is a map into X, and gx and gy induce a map of
schemes g: Z — X XgY withgx = px ogand gy = py 0 g.Clearly px 0 g = to gy
takes values in U. Therefore g takes values in p;(l U, and we get an induced morphism
g: Z — px'U, which is unique (Exercise 10.2.1 below). O

Exercise 10.2.1. Assume that U < X is an open subscheme and let .: U — X be the
inclusion map. Let f and g be two maps from a scheme Z to U and assume that .o f = 1o0g.
Show that f = g.

The following proposition is the key point in the construction of the fibre product by
gluing.
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10.2 Fibre products of schemes 157

Proposition 10.5. Let fx: X — Sand fy: Y — S be two morphisms and assume
that there is an open cover {U; };cr of X such that U; x g Y exists for all i € I. Then
X xg Y exists. The products U; x s Y form an open cover of X X g Y. Moreover,
the projections restrict to projections.

Proof The proof involves gluing together the different schemes U; x ¢ Y and verifying
that the result indeed is a product X x g Y. We begin with introducing some notation: let
U;; = U; n U; be the intersections of the U;’s and U;’s, and let p;: U; xg Y — U, denote
the projections.

By Lemma 10.4 the inverse images p; ' (U;;) serve as fibre products U;; x g Y with the re-
strictions of p; and py as projections. Hence there are unique isomorphisms 6;; : p;” YU, —
p; ' (Us;) making the diagrams

_ 0ji _
pi {(Uij) —=— p; ' (Uy;)

m % (10.6)
Uy

commute. To be able to glue together the p; ' (U;)’s using the 6,;’s, we need to verify the
conditions of Theorem 6.3 on page 86. The two first follow readily. For the third, note that by
Lemma 10.4 the preimages p; ! (U; j %) serve as products Uijr xs Y with the restrictions of
p; and py as projections. Moreover, the restrictions of the 6;;’s live in diagrams

_ 0ji _ Ok —
P (Uise) —— p; " (Uise) —— i " (Ui)

N lpj %
Uijk-

The two minor triangles commute, so the big one commutes as well, and it follows by
uniqueness that 0;; = 0, o §;,. The third gluing condition is thus fulfilled, and we can glue
the p; ' (U;)’s together to a scheme X x g Y. Moreover, in view of the commutative diagram
(10.6) and Proposition 6.4 on page 87, the p;’s patch together toamap px: X xg Y — X.
The projections U; xg Y — Y are essentially unaffected by the gluing process and glue
together to a morphism py : X xgY — Y. Itis straightforward to check that X x g Y with
these two projections has the required universal property. O

An immediate consequence of Proposition 10.5 is that fibre products exist when the base
S is affine.

Lemma 10.6. Assume that S is affine, then X x g Y exists.

Proof First, if Y is affine as well, we are done: cover X by open affine subschemes U;;
then each U; x g Y exists by the affine case, and we may apply Proposition 10.5 above. In
general, cover Y by affine open subschemes V;. As we just verified, the products X x g V;
all exist, and applying Proposition 10.5 once more, we conclude that X x ¢ Y exists. O
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158 Fibre products

Finally, with Lemma 10.6 established, what remains to prove, that fibre products exist in
general, is a reduction to the case with an affine base. To that end, let {S;} be an open affine
coverof S andlet U; = fx'(S;) and V; = f;-*(S;). By Lemma 10.6 the products U; x g, V;
all exist, and using the following lemma and once more Proposition 10.5, the proof will be
complete.

Lemma 10.7. With the notation just introduced, U; x g, V; serves as the product
U; xs Y with projections being py, and py

Vi

Proof We contend that U; xg, V; satisfies the universal product property of U; xg Y.
Consider the commutative diagram

A
N
Ui Y +—
N
S,

where g and ¢’ are two given morphisms. If a point follows the left path from Z to .S in the
diagram, it ends up in .S;, and the same must hold when it follows the right path. But then,
V; being equal to the inverse image f;-'(.S;), it follows that g’ factors through V;, and by
the universal property of U; x g, V;, there is a morphism Z — U; x g, V; with the requested
properties. O

Vi

Here are some of the basic properties of the fibre product. It is possible to deduce them
directly using gluing arguments, but with the so-called ‘functor of points’, which we will
introduce in Section 10.7, the proofs will become simple and natural.

Proposition 10.8 (Basic formulas). Let X, Y, Z and T be schemes over S. There
are unique canonical isomorphisms over S, all compatible with projections:
(1) (Reflectivity) X xg S ~ X;

(i) (Symmetry) X xgY ~Y xg X;

(iii) (Associativity) (X x5Y) xg Z ~ X x5 (Y x5 Z).

(iv) (Transitivity) (X xgT) xr Y ~ X xgY.
In the last claim Y is supposed to be a scheme over T, and X x g T is considered a
scheme over 7" via the projection onto 7'.

10.3 Examples

As noted in the introduction, the fibre product of schemes can exihibt unexpected behaviour
in some situations, differing from what we are used to in set theory or topology. The main
difference is that the underlying set is almost never the product of the underlying sets of the
factors. The next few examples illustrate this.

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

10.3 Examples 159
Example 10.9. For a ring R and non-negative integers m, n, we have

R[mla“ . 7xm] ®R R[yh' Jyn] =~ R[xh"‘?xmayl?‘ . '7yn]7
and so

m no m—+n
AR XRA _AR .

Even when R = C, the affine space AZ'"™ has an underlying set which is different from
the Cartesian product A" x Af, and the topology is not equal to the product topology (see
Example 2.16).

Even fibre products of spectra of fields can exhibit unexpected behaviour, as the next few
examples show.

Example 10.10. A simple but illustrative example is the product Spec C xg Spec C. This
scheme has two distinct closed points, even if both factors are singletons. Note also that
the product is not integral, not even connected. So the product of integral schemes is not
necessarily integral.

The tensor product C ®g C is in fact isomorphic to the direct product C x C of two copies
of the complex field C. One sees this using that C = R[¢]/(¢* + 1), which gives

CR:C=R[t]/#* +1)®:C =C[t]/#* + 1) = C[t]/(t —i)(t + i) = C x C,

where the last equality follows from the Chinese Remainder Theorem and that the rings
C[t]/(t £ ) both are isomorphic to C.

Example 10.11. The fibre product Spec Fy x 7 Spec F3 is empty. Indeed, it is the specturm
of the ring

Z/2®77/3 ~7/(ged(2,3)) =0
See Exercise 10.3.1 for a generalization.

Example 10.12. The fibre product Spec C(z) x¢ Spec C(y) is even more extreme: it has
infinitely many points! This is because the tensor product A = C(z) ®¢ C(y) is a ring of
Krull dimension one, and it contains infinitely many maximal ideals.

To prove this, we note that the ring A can be written as the localization S~*C[z, y| of the
polynomial ring C[z, y] in the multiplicative set

S ={p(x)q(y) | p(x)q(y) # 0}.

Thus if p © A is a prime ideal, it is of the form p = S~'q for some prime ideal q = C[z, y]
that does not intersect S. Bearing in mind that the maximal ideals in C[x, y| are of the form
(a: —a,y — b) with a, b € C, we find that q is not maximal, and hence of height of at most 1.
We must also have that ¢ N C[z] = 0 and ¢ n C[y] = 0, and we find that either ¢ = (0) or
q = (f(z,y)), where f is an irreducible polynomial neither lying in C[z] nor in C[y].

In conclusion, all non-zero primes in A are therefore maximal, and so A has dimension
one. Moreover, A has infinitely many maximal ideals, in fact, uncountably many.

Example 10.13 (Fibre products of varieties). On a positive note, the fibre product X x; Y
is better behaved in the situation when X and Y are integral schemes of finite type over an
algebraically closed field k. This includes the schemes arising from the varieties of Chapter 1.
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160 Fibre products

In this case, X X Y is again integral (see Theorem 12.26 on page 197) and on the level of
k-points, we have

(X xx Y)(k) = X (k) x Y(k).
It turns out that in this case the k-points are precisely the closed points (this follows from the
Nulstellensatz) and so the set of closed points in the product equals the Cartesian product of
the sets of closed points of the factors.

Of course, the fibre product may additionally have many non-closed points which do not
come from the closed points in each factor (Example 10.9).

Exercises

Exercise 10.3.1. Let p and ¢ be two different prime numbers. Show the following identities:

a) SpecF, xz SpecF, = ;

b) SpecZ,) xz Spec Z,) = Spec Zy);

¢) SpecZy,) Xz SpecZq) = Spec Q.
Exercise 10.3.2. Example 10.10 can be generalized as follows. Let K /k be a finite Galois
extension of fields with Galois group G. Show that the map 2 ® y — (29(y)) e defines an
isomorphism

K&K -] [K.

geG

Hint: Write K = k[z]/(f(z)) for a minimal polynomial f(z) and compute K ®;, K using
the Chinese Remainder Theorem and the fact that f factors in K.
Deduce that Spec K X, Spec K has an underlying set with |G| points.

Exercise 10.3.3. This exercise goes along the same lines as Exercise 10.3.2 and gives an
example that a fibre product X X, Spec L may not be reduced even if X is.
Let k = F,(a) for a prime number p and let L = k[z]/(z? — a). Show that

L x, L~ L[t]/(t" —a) ~ L[t]/(t — x)P.
Conclude that Spec L X gpecr Spec L is not reduced.

Exercise 10.3.4. Let X and Y be schemes over S with open affine covers {U,} and {V;}.
Show that U; x g V; is an open cover of X xg Y.

10.4 Scheme theoretic-intersections

If X is a scheme and Y, Z are two closed subschemes we define their scheme-theoretic
intersection as the fibre product

Y X x A
of the closed embeddings i : Y — X andj: Z — X.

In the special case when X = Spec A and Y and Z are closed subschemes given by
ideals I and J respectively, then

Y xx Z = Spec(A/I ®4 A/J) = Spec(A/(I + J)).
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10.5 Scheme theoretic fibres Il 161

Thus Y X x Z is the closed subscheme associated to the ideal I + J.

Using this local model, one can prove that Y X x Z is in general naturally a closed
subscheme of X with underlying topological space is homeomorphic to i(Y) n j(Z) in X
(Exericse 10.4.1).

Note that the ideal I + J may fail to be a prime ideal even if I and .J are prime. Moreover,
the scheme-theoretic intersection fail to be both reduced and irreducible even if both Y and
Z are are. This is very natural and important: the scheme-theoretic intersection Y x x Z is
designed to capture the multiplicities of an intersection, e.g. as in Bezout’s theorem. See for
instance Examples 5.28 and 5.29. This important point is yet another reason for transitioning
from varieties to schemes.

Exercise 10.4.1. In the setting above, show that the scheme-theoretic intersection is naturally
a closed subscheme of X, with underlying topological space equal to the intersection ¢(Y") N
j(Z)in X.

10.5 Scheme theoretic fibres I1

Suppose that f: X — Y is a morphism of schemes and that y € Y is a point. One of the
first applications of the fibre product is to define a scheme structure on the preimage f~*(y).
Having the fibre product at our disposal, inspired by part a) of Exercise 10.1.1, nothing is
more natural than defining the fibre to be the fibre product X, = Spec k(y) xy X. It appears
in the diagram

X, = X xy Speck(y) — X

| g

Speck(y) ——— Y,

where Spec k(y) — Y is the map corresponding to the point y. Recall that the field k(y)
is given as k(y) = Oy,,/m,, and that the ‘point-map’ Spec k(y) — Y is the composition
Spec k(y) — Spec Oy, — Y of the two canonical maps.

Note that the fibre X, satisfies the following universal property: a morphism g: Z — X
factors through X, if and only if f o g factors through Spec k(y) — Y (topologically this
means it maps Ztoy € Y ).

It is common usage to write X, for the scheme-theoretic fibre and reserve the notation
f~(y) for the preimage as a topological space. In any case, the next proposition shows that
the underlying topological space of X, is equal to f~!(y).

Proposition 10.14. Let X and Y be schemes and f: X — Y a morphism. Let
y € Y be a point. Then the inclusion X, — X of the scheme theoretic fibre is a
homeomorphism onto the topological fibre £~ (y).

Proof We may assume that Y is affine, say Y = Spec A.
We first treat the case where X is also affine, say X = Spec B and f: X — Y is induced
by aring map ¢ : A — B. In this situation Proposition 2.34 states that the fibre f~*(p) over
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a point p € Spec A is homeomorphic to the spectrum of the ring (B/pB),. On the other
hand, standard formulas for tensor products give the equality

(B/pB)y = B®a Ap/pA, = BRak(p),

and the Zariski topology on the spectrum Spec(B/pB), (i.e. the induced topology on
f7(p)) coincides with the Zariski topology on Spec(B ®4 k(p)) (i.e. the topology on the
scheme X, ), and hence the proposition holds when X is affine.

In the general case let U be open and affine in X. Denote by ¢ the inclusion ¢: X, — X;
that is, the projection X Xy Speck(y) — X. According to Lemma 10.4 on page 156, it
holds that U xy Speck(y) = ¢~ *U (equipped with the unique open scheme structure on
the open set ¢~ 'U), and clearly c 'U = U n X,,. By the affine case, the two topologies we
examine agree on X, N U, and as U can be any open affine, the two topologies share a basis
and must be equal. O

Example 10.15 (The fibre product is the fibre product). Let f: X — Sandg: Y — S be
two morphisms of schemes and let ¢: Spec k(s) — S be a point. Denote by h: X xgY —
S the structure map, i.e. h = f o px = g o py. Then the scheme theoretic fibre of h is the
fibre product of the scheme theoretic fibres of f and g:

(X Xg Y)S = XS X k(s) Y;

This is immediate, applying associativity and transitivity of the fibre product (formulas (iii)
and (iv) of Proposition 10.8 on page 158):

(X xs Speck(s)) xie) (Y xgSpeck(s)) = X xg (Y xg Speck(s))
= (X x5Y) x5 Speck(s).

10.6 Base change

Given a set of equations over some ring, it is often fruitful to consider the solutions in some
ring extension. For instance, while 22 + y* + 1 = 0 has no solutions over R, there are
plenty if we regard the same equation over C. More formally, we can start with the spectrum
X = Spec A of the ring

A =Rz, y]/(@® +y* + 1)

and consider the tensor product A xg C = C[x,y]/(z* + y* + 1). Note that the inclusion
R < C induces a morphism Spec(A ®g C) — Spec A. One says that the scheme X¢ =
Spec(A ®g C) is obtained from Spec A via base change. The scheme X = Spec A is a
scheme with no R-points, wheras X¢ has infinitely many C-points.

This idea of ‘changing the base field’ has a vast generalization as follows. Let X be a
scheme over S and let 7' — S be a morphism. The fibre product X x g T is then naturally a
scheme over T'. Considering 7" — S as a change of base schemes, one frequently writes X7
for X x g T and says that X1 is obtained from X by base change.

Taking a base change is a functorial construction. If f: X — Y is a morphism over S,
there is induced a morphism fr = f x idy from X1 to Y over T, and one easily checks
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10.6 Base change 163

that fr o pr coincides with the natural projection map X7 — T’ (or in other words, the outer
rectangle in the diagram below is Cartesian).

Xr —— Yr —> T
L]
X — Y S.

If P is a property of morphisms, one says that ‘P is stable under base change if for any T'
over S, the map fr has the property P whenever f has it. The same convention applies to
properties of schemes.

Examples 10.17 and 10.20 below show that neither being irreducible nor being reduced
are properties stable under base change. On the other hand, one way of phrasing Lemma 10.4
on page 156, is to say that being an open embedding is stable under base change. The same
applies to closed and locally closed embeddings.

Proposition 10.16 (Embeddings and base change). Consider a Cartesian diagram
of schemes

Zy4>Z

fyi lf

Yy — X.

If the morphism f: Z — X is a closed, open or locally closed embedding, then the
morphism fy: Zy — Y is respectively closed, open or locally closed.

Proof The case of open embeddings is already taken care of, and the case of locally
closed embeddings follow directly from the two others, so only the statement about closed
embeddings needs a proof.

Assume first that X and Y are both affine, say X = Spec AandY = Spec B. When Z
Spec A is a closed subscheme, it holds that Z = Spec A/a for some ideal a (Proposition 5.10
on page 71), and therefore Zy = Z xx Y = Spec A/a®4 B = Spec B/aB. Hence Zy
is a closed subscheme of Y.

In general, the statement is local on Y (Exercise 5.3.1 on page 71), so assume that U < Y
is an open affine that maps into an open affine V' < X (one may cover Y by such by first
covering X by affine opens and subsequently cover each of their inverse images in Y by
affine opens). Then by Lemma 10.7 on page 158 one has f~'V xx Y = f~'V xy U, and
by the affine case this is a closed subscheme of U. (|

If one identifies Z with its image in X, the scheme Zy is what one calls the scheme
theoretic inverse image of Z. If k is a field, the k-points in Zy are exactly the k-points that
map into Z.

Example 10.17 (Being irreducible is not stable under base change). Consider the R-algebra
A = R[z,y]/(z* + y*). Over R, the polynomial 2:* 4+ y? is irreducible, so X = Spec A is
an irreducible R-scheme. The base change to C however is not irreducible, because

A®c C ~ Clx,y]/(z —iy) x Clz,y]/(z + iy)
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and so X is the union of two conjugate lines in Spec C[z, y]

Example 10.18 (Being reduced is not stable under base change). An example was already
given in Exercise 10.3.3. Consider the scheme X = Spec Z[z, y]/(z* — 2y?), viewed as a
scheme over Spec Z. Clearly X is integral, as x* — 2y is irreducible. However, if we take
the base change via the morphism SpecF; — Spec Z, the resulting scheme is non-reduced:

Xz, = Spec(Fa[z,y]/(2?))

Example 10.19. For a related example, consider the polynomial 7% — 107" + 1, which is
the minimal polynomial of V2 4+ /3. This polynomial has the interesting property that it is
irreducible over @, but its reduction modulo p factors for every prime p. This means that for
the morphism

Spec Z[T]/(T* — 10T? + 1) — SpecZ,
the fibre over the generic point is irreducible, but all of the closed fibres are reducible.

Example 10.20 (Being reduced is not stable under base change). An example was already
given in Exercise 10.3.3. Consider the scheme X = Spec Z[z, y]/(x* — 2y?), viewed as a
scheme over Spec Z. Clearly X is integral, as 22 — 23?2 is irreducible. However, if we take
the base change via the morphism Spec Fy — Spec Z, the resulting scheme is non-reduced:

Xr, = Spec(Fa[z, /(%))

Exercises

Exercise 10.6.1. Prove statements (i) and (iv) in Proposition 10.8.

Exercise 10.6.2. Let A = R[z,y]/(z* + y* + 1) and let X = Spec A. Show that the
base-change X is isomorphic to Az — V/(¢), but X is not isomorphic to Ay — V' (¢).

Exercise 10.6.3. Show that if B is an A-algebra, then A%, ~ A’} x4 Spec B and that
P% ~ P7% x4 Spec B.

Exercise 10.6.4. Let L,, — P} be the line bundle constructed in Section 7.7 on page 102,
and let f,,: P! — P" be the map u ~— u". Show that L,,, xp1 P} = Ly

Exercise 10.6.5 (Finite type and base change).
a) Show that being of finite type (respectively being finite or being locally of finite
type) is a property stable under base change;
b) Show that the product of two morphisms of finite type (respectively of finite or
locally of finite type) is of finite type (respectively of finite or locally of finite

type).

10.7 Yoneda’s Lemma*

As the examples in Section 10.3 show, the fibre product product X X g Y can be somewhat
elusive when it comes to the underlying topological space. In this section, we clarify the
picture using the so-called ‘functor of points’. This is an important concept in algebraic
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10.7 Yoneda’s Lemma* 165

geometry, and it is often very useful for proving statements about schemes (e.g., Proposition
10.8).

Recall from Section 5.4, that for a scheme X and a ring R, the set of R-valued points
X (R) is the set of all scheme maps Spec(R) — X. There is a generalization of this, where
we consider the set of all morphisms 7' — X from a fixed scheme 7" into X. Formally,
we define the functor of points associated with a scheme X to be the contravariant functor
hx: Sch — Sets defined by

hX (T) = Homsch (T, X)
This functor sends a morphism f: S — 7' to the map of sets
hx(f): hx(T) = hx(S)
g—golf.

If f: X — Y is amorphism of schemes, there is for each T" an induced map h¢(T"): hyx(T) —
hy (T') defined by sending g: 7' — X to f o g. It is readily checked to be a natural transfor-
mation of functors hy: hxy — hy. Recall that a natural transformation n7: F' — G between
two contravariant functors F, G: C — Sets is a collection of morphisms F(T') — G(T),
one for each object T', such that whenever h: S — T is a morphism in C there should be a
commutative diagram (of sets)

(1) 2 p(s)

|
G(

n(s) -
() 2 G(s)

A natural question is whether the scheme X is determined by the functor h x. The answer
is ‘yes’, and this is essentially the content of Yoneda’s Lemma. In short, the lemma says that
there is a bijection between the set of scheme morphisms X — Y and the set of natural
transformations of functors Ay — hy-.

Lemma 10.21 (Yoneda). For each X and Y there is a functorial bijection
HomSch (X, Y) = Homnat.transf. (hX7 hY) (107)
sending X — Y to the natural transformation hx — hy. Thus every natural

transformation hx — hy is of the form A for a unique morphism f: X — Y.

Proof Letn: hy — hy be anatural transformation. Applying 7 to the scheme X, we get
a map

n(X): hx(X) = Homse (X, X) — Homsen (X, Y) = hy (X).
If there is an f: X — Y such that Ay = 7, then we must have
n(X)(idx) = hy(X)(idyx) = feoidx = f.

Therefore f is determined by 7, and hence (10.7) is injective.
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For surjectivity, we put f = 1(X)(idx) and will check that h; = 7. This means that for
any scheme Z, the map of sets

n(Z): hx(Z) — hy(2)

is equal to the map of sets that sends g: Z — X to g o f. Since 1 is a natural transformation,
we have for any g: Z — X, a commutative diagram

hx(g)
=

h (X) hx(2)
n(X) ln(Z)

hy (X) 229 hy(2)

Going through the diagram clockwise, we see that idx gets sent to 77(Z)(g), while going
counterclockwise, id x gets sent to g o f. Hence

n(Z2)(9) = go f =hy(Z)(9),
andson = hy. O]

In particular, we have the following consequences:

Corollary 10.22. For two schemes X and Y, we have:
(1) hx and hy are isomorphic (as contravariant functors from Sch to Sets),
if and only if X ~ Y":
(ii) If a functor F’ is the same as hx for some scheme X, then X is deter-
mined up to isomorphism.

Replacing the scheme X with its associated functor of points h x, may at this point seem
like just yet another jump in abstraction, but the nice thing is that you can work with functors
whose values are good old sets. For instance, by the Yoneda lemma, we see that giving a
morphism f: X — Y of schemes, is the same thing as for each scheme Y giving a map of
sets f(T"): X(T) — Y (T') which is functorial in 7" (i.e. a natural transformation). In fact,
using that schemes are locally affine, and that morphisms of schemes glue together, it is even
sufficient to test this condition on affine schemes T" = Spec B.

Another important consequence of this is that instead of specifying a scheme explictly, say
by giving a projective embedding and a homogeneous ideal, we can simply specify a functor
equivalent to hy, and this will precisely pin down what scheme we are talking about. Many
schemes are in the first place defined as solutions to universal problems (e.g. fibre products),
and often the functor perspective can clarify and simplify computations.

Example 10.23 (The functor of points of A'). By Theorem 6.5 on page 88 to give a morphism
from 7 into the affine line A’ = Spec Z[t] is the same thing as giving an element of O7(T").
Therefore, hy:1 is isomorphic to the functor

F(T) = Or(T)

More generally, A" represents the functor F'(T") = I'(T, Or)™; this is just a fancy way of
saying that a morphism X — A" is the same thing as an n-tuple of regular functions.
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Example 10.24 (The functor of points of Spec A). More generally, let A be a ring and
consider the functor F': Sch®” — Sets given by

F(T) = Homgings(A, (T, O7)).
From Theorem 6.5, we deduce that F' ~ hgpec 4.
Exercise 10.7.1. Show that functor of points of A' — {0} = Spec Z[t,t™!] is isomorphic to
F(T) =T(T,0r)*.

Exercise 10.7.2. Show that the functor " — GL,,(Or(T)) is represented by the scheme
G]Ln = Spec Z[tij, det(tij)_l].

The fibre product in terms of the functor of points

There is a nice way to explain the universal property of fibre products of two S-schemes X
and Y in terms of the functors of points hx, hy and hg. For a scheme 7, it translates into the
following: the set Homs, (7', X x g Y') is the fibre product of the two sets Homs, (7", X)
and Homs, (7, Y") over Homs, (7', .S). In other words, there is a natural bijection of sets (!)

hxxsy(T) = hx(T) Xpgry hy (T). (10.8)

By uniqueness, these bijections are functorial in 7', and we conclude that the functor of points
of the fibre product X x g Y is isomorphic to the fibre product functor hx x,  hy, which
assigns the set hx (T') X (1) hy (T) to a scheme T'. Thus the fibre product of schemes is
not so mysterious after all; it is essentially forced upon us by the universal property of fibre
products of sets.

Setting 7" = Spec R in (10.8), we get:

Corollary 10.25. For any ring R, there is a natural bijection
(X xsY)(R) = X(R) xs(r) Y(R), (10.9)

where the right-hand side is the fibre product of sets.

Once we know the functor of points of X xg Y, Yoneda’s Lemma implies that many
computations involving fibre products reduce to ones involving sets only. To illustrate this,
we give a proof of Proposition 10.8

Proof of Proposition 10.8 By Yoneda’s lemma, it suffices to verify the corresponding state-
ments for sets, and this is elementary: note that the assignments (b, a) — b; (b, c) — (c, b);
and ((b,c),d) — (b, (¢, d)) give natural bijections of sets

BXAAZB (b,a)»—>b

Bx,C~Cx,B (b,¢) — (c,b)
(Bx4C)xcD~Bxu(CxcD) ((b,c),d) — (b, (c,d)).
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168 Fibre products

These translate into natural isomorphisms of functors
hXXSS th (1010)
hXXSY 2hXxSY (10.11)
h(XxSY):SZ = hXxs(YxsZ)

and by Yoneda’s Lemma, we have the isomorphisms between the corresponding fibre products
as well. (|

Exercise 10.7.3. Let A, B and C be sets.
a) Suppose fp: B —> A, fa: A’ > Aand fo: C — A are maps with fo =
go fa forg: A — A. Show that there is a bijection
BXAC:(BXAA') XA/C

induced by (b, ¢) — ((b, g(c)), c).
b) Deduce claim (iv) in Proposition 10.8.

10.8 Proj and products

In this section we will need the tensor product of to graded algebras. If R = (P,,_, R, and
R = ®n>0 R/ are two graded rings with the same degree zero piece A, the tensor product
R® 4 R has a natural grading induced from the gradings of R’ and R; indeed, the tensor
product commutes with arbitrary direct sums, so R®4 R’ decomposes as

R®sR = @ R;®4R,.
4,520
Grouping together parts with ¢ + 7 = n, we find
ROAR =P P RQuR,
n=0i+j=n

and this defines the induced grading. The homogeneous tensors which are decomposable,
are of the form x ® y with x and y homogeneous and deg r ® y = deg x + degy. General
homogeneous elements are A-linear combinations of such.

Base change

Let R = @, R be a graded ring. Forming tensor products commutes with formimg
direct sums, so if B is any Ry-algebra, we have RQ@p, B = (—ano R, ®gr, B and this gives
R ®pg, B a grading. In this setting the Proj-construction behaves well:

Proposition 10.26. Forming Proj commutes with base change. That is, if R is a
graded ring and Spec B — Spec R is a morphism, there is a canonical isomorphism

Proj R x g, Spec B ~ Proj R®g, B.

Proof The salient point is that for each homogeneous element f € R, there is a canonical®

1 Characterised by inducing the identity on R®p, B
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identification Ry g, B ~ (R®pg, B) g 1. It relies on the identity f " ®1 = (f®1)7",
which is valid in Ry @g, B, but the right side is meaningful in both rings. Clearly homoge-
neous elements of degree zero correspond, and hence we have canonical identifications

(Rs ®r, B)o ~ ((R®r, B)se1),-
Translated into geometry, these provide canonical isomorphisms

Di(f) %, Spec B ~ D, (f®1). (10.12)

As f runs through the homogeneous elements of R, , the open subschemes on the left in
(10.12) yield an open cover of the product Proj R x r, Spec B. The irrelevant ideal R ®r, B
equals R, ®pg, B and is therefore generated by the elements f ® 1 with f running through
R, . Thus the open subschemes on the right in (10.12) constitute an open affine cover of
Proj R®pg, B. It only remains to observe that the isomorphisms in (10.12) being canonical,
coincide on the intersections D (f) n D, (f’) = D, (ff’), and hence patch together to a
global isomorphism. O

Example 10.27. In Example 9.38 on page 149 we introduced the blow-up of an ideal a in a
ring A as the structure map 7: Proj @ >0 a’t’ — Spec A. In that example we also showed
that 7 is an isomorphism outside the inverse image 7'V (a). Proposition 10.26 yields a
closer description of the scheme-theoretic inverse image of V' (a) in that

(Pat)®sA/a=Pa'/a",
>0 i>0
and hence 7'V (a) = Proj@,., a’/a’*".
Exercise 10.8.1. Let m = (zy,...,x,) the origin in A}.
(i) Show that the graded k-algebra @), , m’/m**! is isomorphic to the polynomial

ring k[t1, ..., t,], where t; denotes the class of x; in m/m?.
(ii) Letm: X — A" be the blow up of the origin 0 in A} (that is, of m). Show that
Xo =Pp
The Segre embedding

In the world of varieties, the Segre embedding is an embedding of the product of two projective
spaces P (k) x P™ (k) into the projective space P *™ (L), which is given by all products
of coordinates:

(ug -+ up) X (Vg : v 0,) = (Upp : ULV =« +* 2 UV; 2+ & Up Uy )y
J

or in terms of coodinates w;; on P"™*™*"(k), it is given by w;; = w,;v;.

Note that there are (n + 1)(m + 1) different products. Scaling the u;’s simultaneously
and the v;’s simultaneously, will scale the products simultaneously, and obviously, if at least
one of the u;’s and one of the v;’s are non-zero, one of the products will be non-zero as well.
Thus we obtain, at least set-theoretically, a well-defined map

o: PP (k) x P (k) — Prmntm (k).
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The map o is injective and the image is closed; if u,. v, # 0, we recover the coordinates of the
points in P" (k) and P™ (k) where respectively u, # 0 and v, # 0 as v; /v, = u,v;/u, v,
and u;/u, = u;vs/u,vs. One verifies easily that the image is the vanishing locus of the
quadrics w;;wy,, — w;W;, for all choices of four different indices ¢, j, [, m. If one organize
the coordinates w;; into a matrix M = (w;;), these quadrics are precisely the 2 x 2-minors
of M in other words, the image of ¢ is the locus where M has rank one.

Finally, note that 0 ~' D, (w,.s) = D, (u,) x D (v,); indeed, u,v, # 0 precisely when
both u, # 0 and vy, # 0.

There is a scheme analogue of this which works in greater generality, however, we confine
ourselves to the following simpler version.

Proposition 10.28 (The Segre embedding). Given a ring A and natural numbers m
and n, there is a closed embedding

Omm: PR X4 P} — PR,

Proof We start by chosing coordinates bt letting

P" = Proj A[u;|0 < i < n]

P™ = Proj A[v;]|0 < j < m],
and moreover we let

PP = Proj Alw;|0 < i <n,0 < j <mj.
All three rings are polynomial rings, and A[w;|i] and A[v,|j] have the natural gradings, but
Alw;;ij] has the grading with each w;; of degree two.
As the indices 7 and s trace the appropriate index sets, the open distinguished sets D, (u,.),

D, (v,) and D (w,,) form open covers of the corresponding projective spaces. The strategy
of the proof is, for each choice of r and s, to construct closed embeddings

frs: Dy(u,) x Dy(vs) = Dy (wys)

that match on the different intersections. According to Exercise 10.3.4 the sets D, (u,.) %

D, (v,) form an open affine cover of P x P", and we conclude that the f,,’s may be

glued together to give a morphism o: P™ x P" — P"™*™*" [t has the property that

o 'D, (w,s) = Dy (u,) x Dy (v) and hence is closed embedding (Definition ??).
Recall that (A[w;|i].,)o = Alu;u;t]i] so that

D, (u,) = Spec A[u;u;*|i].
Similarily, for the other distinguished open sets we have equalities
D (vs) = Spec A[v;vsj]
D, (w,s) = Spec Alw;;w; i, j]-
Note further the equality A[u;u; '|i] @4 Alvjv i) = Alwu;?t, v;v; b4, 5] so to have the

T
morphisms f,;, we need surjective algebra maps

1

¢rs: A[wmwy_élhaj] - A[UZ'UJ: ,Uj’l};1|i,j]
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with the appropriate gluing properties. There is an obvious candidate, namly the one given by
the assignments w;;w, ' — w;v;u, vt

Note that ¢, arises as the degeree zero part of the localization of in w,, and u,v, of the
natural map

S = Alwgi, j] — Alui, vi, j]

that sends w;; to u;v;.

To prove that ¢, is surjectivity, observe that A[w;u; ', v;v; |, j] is generated over A by
elements shaped like pu, “qu_® where p and ¢ are homogeneous monomials with respective
degrees a and b in the u;’s and the v;’s, and so it suffices to see that each of these belongs to
image. Replacing p with pud®®? and ¢ by qvgegp , we may assume that ¢ = b. Then p and ¢
will be homogeneous monomials of the same degree, and we may match each occurrence of
one of the u;’s in p with an occurrence of one of v;’s in g, and in this way form a monomial
P in the w;; of degree a so that Pw,_® maps to pu, “qu;*.

For the gluing process to work we need that f,.; and f,., restrict to the same map

D, (uyu) X Dy(v509) = Dy (wpsworg);

or what amounts to the same, that the maps ¢,., and ¢, localize to the same map

—1
rs )

—1

Alw;jw wmw;;/ﬁ,j] — A[uiufl,u,«uw ,vjvs_l,vsvs_/lﬁ,j].

Both arise from the map (10.8) through sucsessive localizations and takings of degree zero
parts, and the order does not matter in view of the general formula

((Sw)O)w’ufl = ((Sw’)O)ww’*l = (Sww/)o

where S is any graded ring and w and w’ homogeneous elements of the same degree.
It remains to see that

O-ilDJr (wrs) = D+ (ur) X D+ (US)'
This will follow from the equalities
f;SlDJr (wrs) N Dy (wpg) = Dy (upu) x Dy (vsv4),

which hold true since the inverse images f,.' D, (w,s) N D (w,y) equal D(¢(w,ow, )
inside D (us) x D, (v,) = Spec A[u;u; ', v;v; i, j] because of the identity

1 -1

-1 -1, —1; . -1 1,1 -
Alwu,  uou, vv; 0, 050, |4, j] = Aluu, v, wosu,, v i, 7]

O

Example 10.29. Consider the cased that R = k[zq, x| and R’ = k[yo, y1] where k is a
field. The assignment 2;; — x; ® y; yields an isomorphism

K[ 200, 201, 210, 211/ (200211 — 201210) — S = @,50(Rn @ RY,),

and we recover the usual embedding of P}, x;, P} as a quadric surface in P;.
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P! x P! QcP
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11

Separated schemes

We have seen several examples showing that the topology on schemes behaves very differently
from the usual Euclidean topology. In particular, schemes are essentially never Hausdorff
— the open sets in the Zariski topology are simply too large. Still we would like to find an
analogous property that can serve as a satisfactory substitute, so that we have good properties
such as ‘uniqueness of limits’. This leads to the notion of ‘separatedness’.

The route we take to defining separatedness involves the diagonal morphism. The motiva-
tion comes from the following basic fact from point set topology.

Proposition 11.1. A topological space X is Hausdorff if and only if the diagonal
A ={(z,z) | x € X }isaclosed subset of X x X (in the product topology).

Proof The diagonal A < X x X is closed if and only if the complement X x X — A'is
open, and with the product topology, this is equivalent to any point (x,y) € X x X with
x # y being contained in U x V where U,V < X areopenand U x V < X x X — A.
But this is equivalentto U N V' # &. O

Even for the affine line X = A} over a field, the usual Hausdorff condition does not
hold; any open set will contain the generic point (0) (or even in the context of varieties, two
non-open subsets intersect). On the other hand, the Zariski topology on a product is typically
much finer than the product topology on the underlying sets. For instance, for A}, we have
A} x; A} = AZ, and it makes perfect sense to talk about the subset V(z — y) < A? of
points on the ‘diagonal’, and this is indeed a Zariski closed subset.

It turns out that the ’diagonal perspective’ gives a completely satisfactory notion of
‘Hausdorffness’ for schemes. In fact, it works for relative schemes X / S as well, and thus we
will speak of a morphism X — S being separated, rather than the scheme itself.

The freedom to glue schemes together leads to many examples of non-separated schemes,
but they are not commonly encountered in practice. For instance, all affine schemes and
all projective schemes are separated. More importantly, some very nice and advantageous
properties hold only for separated schemes, and this legitimates the notion. For instance, in
a separated scheme, the intersection of two affine subsets is again affine (this is a property
which will be important later on).

173
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174 Separated schemes

11.1 Separated schemes

Let X /S be a scheme over S. There is a canonical map A x /51 X — X x5 X of schemes
over S called the diagonal map or the diagonal morphism. The two component maps of
Ax /s are both equal to the identity id x; in other words, the defining properties of A x /g are
pi © Ax/g = idx fori = 1,2 where the p,’s denote the two projections.

The following little lemma gives intuition for the diagonal morphism. In particular, it says
that if py,p; € X (K) are two K-points (K a field), the K-point p; X py: Spec K —
X Xxg X lies in the diagonal precisely exactly whenever p; = ps.

Lemma 11.2. A morphism f: Z — X x g X factors through the diagonal if and
onlyifp; o f =pgo f.

Proof 1If f factors, the equality holds by definition of the diagonal. If the equality hold,
we just put ¢ = p; o f: Z — X, and the unicity part of the universal property gives that

Ax/song. D

In the case that X and S are affine schemes, say X = Spec B and S = Spec A, the
diagonal has a simple and natural interpretation in terms of algebras; it corresponds to the
most natural map, namely the multiplication map:

w: B®4 B — B.

The multiplication map sends b® b’ to the product bb’, and then extends to B ® 4 B by
linearity. The projections correspond to the two algebra homomorphisms 3;: B — B®4 B
that send B to b® 1 respectively to 1 ® b. Clearly it holds that i1 o 3; = idp, and on the
level of schemes this translates into the defining relations for the diagonal map. Moreover, p
is clearly surjective, so we have established the following:

Proposition 11.3. If X is an affine scheme over the affine scheme S, then the
diagonal Ay s: X — X xg X is a closed embedding.

The conclusion here is not generally true for schemes, and shortly we shall give coun-
terexamples. However, from the proposition we just proved, it follows readily that the image
Ax/s(X) is always locally closed, i.e. the diagonal is locally a closed embedding:

Proposition 11.4. The diagonal A /g is locally a closed embedding.

Proof Begin with covering .S by open affine subsets and subsequently cover each of their
inverse images in X by open affines as well. In this way one obtains a cover of X by affine
open subsets U; whose images in S are contained in affine open subsets S;. The products
U; xs, U; = U, xg U, are open and affine, and their union is an open subset containing the
image of the diagonal. By Proposition 11.3 above the diagonal restricts to a closed embedding
of U; inU; xg, U,. ]

With this in place, we are ready to give the general definition of separatedness:
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11.1 Separated schemes 175

Definition 11.5. One says that the scheme X /S is separated over S, or that the
structure map X — S is separated, if the diagonal map Ax/s: X — X xg X is
a closed embedding. One says for short that X is separated if it is separated over
Spec Z.

Recall that being a closed embedding is a local property on the target. Translating this to
the case of Ay /g, amorphism f: X — S is separated if and only if for some open cover
{S;} of S it holds that all the restrictions f|;-15, are separated.

In fact, since Ax/g is a locally closed embedding, it suffices to check that the image
Ax/s(X) is a closed subset of X x g X. In particular, this means that being separated is a
condition that only involves the underlying topological part of the map f: X — S.

Example 11.6. Any morphism Spec B — Spec A of affine schemes is separated, by
Proposition 11.3. More generally, any affine morphism f : X — Y is separated.

Example 11.7 (Monomorphisms). Recall that a morphism f: X — Y is called a monomor-
phism if it satisfies the following property: if g;: T' — X for ¢ = 1, are morphisms such that
fogs = fogs,then gg = go. For monomorphisms, the fibre product X xy X is in fact
equal to the diagonal; thatis Ay = X xy X.Indeed, one readily verifies that the square

X 9, x
o

X 1,y

is Cartesian. So, monomorphisms are separated.

Uniqueness of limits

A very useful property that separated schemes have, and which we referred to in the introduc-
tion as ‘uniqueness of limits’, is that morphisms into separated schemes are determined on
open dense subschemes, at least when the source is reduced:

Proposition 11.8 (Uniquness of limits). Let X and Y be two schemes over S and
let f,g: X — Y with be two morphisms over .S. Assume that

e X isreduced
e Y is separated over S

Then if there is a dense open subscheme U < X such that f|;; = g|y, then f = g.
Proof We may assume that X is affine, say X = Spec A. The two maps f and g gives

a morphism H: X — Y xg Y. We want to show that H factors through the diagonal
Y > Y xgY;then f = g.
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176 Separated schemes

Taking the pullback of the diagonal Ay /g, we obtain the square in the following diagram:

— Y

e

U—5 X 25V xsY

Here E is the ‘equalizer’ of the two morphisms, and informally j(E) is the subscheme of
points in X where the morphisms are equal (see Exercise ??). Now, pullbacks of closed
embeddings are closed embeddings, hence the image j(E) is closed, and by Proposition 5.10
on page 71, it is isomorphic to a subscheme of the form Spec(A/a) for some ideal a. On
the other hand, saying that f|; = g|y means that there is a lift U — E of ¢, and hence the
image j(F) contains the dense set U and therefore is equal to X . Thus a is contained in the
nilradical of A, which is zero as A is reduced. Consequently, j is an isomorphism, H factors
through the diagonal and it follows that f = g. O

As examples shortly will show, the above proposition fails when X is not separated.

Example 11.9. Likewise, it may fail when the scheme Y is not reduced. One example can
be Y = Speck[z,y]/(y?, xy) with the two maps f;: Y — Speck[u], j = 1,2 defined by
u+— x and u — x + y respectively. These agree over the distinguished open set D(z), but
they are different.

Example 11.10. The affine line X with two origins constructed in Section 7.3 on page 95 is
not separated over Spec k. Recall that X was constructed as the union of two copies of the
affine line A}, = Spec k[u] glued together along their common open subset Spec k[u, u™!].
We let g;: Aj — X be the two open embeddings that result from the gluing. The scheme X
has two ‘origins’; the images 0; and 05 of the origin 0 € A}, under respectively g; and gs.

Already now, Proposition 11.8 tells that X is not separated; we have two different maps
agreeing on an open dense set; but it is instructive to understand the diagonal a bit more.

In the product there are four ‘origins’, the images 0; x 0; of 0 under the four maps
gij: A — X x; X with components g; and g;. Over the complement of the origin, these
maps coincide and equal the diagonal map.

According to Lemma 11.2, only 0; x 0; and 05 x 05 lie on the diagonal. But all four lie in
the closure of the diagonal: consider 0; x O, for instance, which lies in the image of the map
g12. If V is an open subset containing 0; x 0, the inverse image gy, V' will be a non-empty
open, and hence meets A} — {0}. But then V meets g;5(A; — {0}), which is open in the
diagonal.
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11.2 Properties of separated schemes 177

X X xp X

o)
© X
Heuristically, the maps g;; are equal on A' — {0}, but they bridge the gap at 0 differently,

namely by passing over different points 0; x 0,; thus all four lie in the closure. The diagonal
bridges the gap by passing over 0; x 0; and 02 x 09, but avoids the two others.

Example 11.11. An even more basic example of a scheme that is not separated is obtained
by gluing the prime spectrum of a discrete valuation ring to itself along the generic point.

To give more details, let R be a DVR with fraction field K. Then Spec R = {z, n} where
x is the closed point and 7 is the generic and open point. Citing the gluing lemma for schemes
(Proposition 6.3 on page 86), we may glue two copies of Spec R together by identifying the
generic points; that is, the open subschemes Spec K in the two copies.

In this manner we construct a scheme Zp together with two open embeddings g;: Spec R —
Z . They send the generic point 7) to the same point, which is an open point in Zg, but they
differ on the closed point x. It follows Zp is not separated; the principle of uniqueness of
limits is violated.

The similar-looking examples of Examples 7.3 and 7.4 are separated however, because
they are affine.

Spec R

Spec R

11.2 Properties of separated schemes

We introduce separatedness mostly because they give good formal properties. In some sense
the schemes category is still a little bit ‘too large’, and separated schemes have properties
that make them closer to varieties. In this section we survey a few of these properties.

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

178 Separated schemes

Proposition 11.12. The following hold true:

(i) (Embeddings) Locally closed embeddings are separated, in particular
open and closed embeddings are;

(ii) (Composition) Let f: T'— S and g: X — T be morphisms. If both f
and g are separated, the composition g o f is separated as well. If X is
separated over S, it is separated over 7T';

(iii) (Base change) Being separated is a property stable under base change: if
f: X — Sisseparated and T' — S is any morphism, then fr: X xg
T — T is separated;

Proof To prove (i), notice that both open and closed embeddings are monomorphisms,
hence they are separated (Example 11.7). A locally closed embedding is the composition of
an open and and closed embedding, and so (i) follows from (ii).

Proof of (ii): let the two separated morphisms be f: X — T and g: T' — S. The point is
that the following diagram is Cartesian:

Xxp X —1y X xgX

i lfxf (11.1)

Ars
T 2T P g,

where h is the canonical map being the identity on both components. This is straightforward
and left to the reader (Exercise 11.3.6).

Note that Ax /g = ho Ax/p. Assume first that 7" — S is separated, then A7 /g is a closed
embedding, and h will also be one as being a closed embedding and is stable under pullbacks
(Proposition 10.16 on page 163). It follows that Ax /g = h o Ax/r is a closed embedding
(composition of closed embeddings are closed embeddings), and so X is separated over S.
For the second part of the statement, assume that X is separated over S. Then the composition
h o Axr, being equal to Ax /g, is a closed embedding, hence A x 7 is a closed embedding
as well, according to Exercise 11.3.10.

When proving statement (iii), it suffices to cite Exercise 11.3.7 on page 182, that diagonals
pull back to diagonals, and again Proposition 10.16, that pullbacks of closed embeddings are
closed embeddings.

O

Intersection of affines

Proposition 11.13. Assume that X is a separated scheme over an affine scheme
S = Spec A, and assume that U and V are two affine open subscheme of X. Then
the intersection U n V is also affine, and the natural multiplication map

Ox(U)®s0x(V) — Ox(UNnYV)

is surjective.
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11.2 Properties of separated schemes 179

Proof The product U xg V is an open and affine subset of X xg X,and U NV =
Ax/s(X) n (U xg V). So if the diagonal is closed, U n V' is a closed subscheme of the
affine scheme U x g V, hence affine (Proposition 5.10). By the construction of the fibre
product of affine schemes one has

U x5 V,0uxsv) =T(U,O0p) @4 T(V, Oy),
and as U n V is a closed subscheme of U X g V/, the restriction map
(U x5 V,0Ouxsv) = T(U N V,0pnv)
is surjective, as we wanted to show. O

Conversely, we have

Proposition 11.14. Let X be a scheme over Spec A, and let {U,};c; be an open
affine cover of X such that

(i) all intersections U; n U; are affine;

(i) Ox(U;) ®4 Ox(U;) —> Ox(U; nUj) is surjective for each i, j € I.
Then X is separated over S.

Proof Let p1,p2: X xg X — X be the two projections and let A: X — X xg X
denote the diagonal morphism Ay /g. Let U; = Spec B; and U; = Spec B, be two open
subschemes belonging to the cover {U,}. We have

A Y pr Y ) npy N (U) = Ao HU) n ATy N (U) = Ui n U, (11.2)

Also, from the universal property of the fibre product it follows that p; ' (U;) n p~*(U;) =
Ui, xsU; © X xg X, and from this we deduce that A is a closed embedding if each
restriction

Aijl UiﬁUjHUi XsUj

of A is a closed embedding. But this follows from the assumptions: by (i) the intersection
U; n Uj is affine, say U; n U; = Spec C;;, and by (ii) the ring homomorphism B; ®4
B; — C}; is surjective. Hence A,;; is a closed embedding for each 4, j, and the proof is
complete. 0

Example 11.15. The above provides us with a convenient criterion to check that a scheme is
separated, given an affine covering. For instance, let us show that the projective line P} is
separated. P}, is covered by the two affine subsets U; = Spec k[x] and U, = Spec k[z ],
which have affine intersection Spec k[x, x~*]. To conclude, we need only check that the map

k[x] @k k[z™] — k[z,27']
is surjective, and it is.

Example 11.16 (Proj R is separated). More generally, for each graded ring R it holds that
Proj R is separated. Indeed, Proj R is covered by the affine open sets D (f) where f runs
over the homogeneous elements of R*. These open sets are clearly affine (Proposition 9.12),
and so is their intersection: D, (f) n D, (g) = Dy(fg). Thus to prove that Proj R
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180 Separated schemes

is separated, we need only check condition (ii) of Proposition 11.14 above, namely that
(Rf)o® (Ry)o — (Ryg)o is surjective for any f, g € R, which it is.

Example 11.17. Here is a non-separated scheme where two affine open subsets have non-
affine intersection. We glue two copies of the affine plane AZ together along the complement
Uy = A?2 — V(z,y) of the origin. If U; and U, denote the two open embeddings of the
affine plane, then U; n U, = Uj,, but the open set Uy, is not affine (see the example in
Section 5.6 on page 69). In this example, the multiplication map in the proposition coincides
with k[z, y] ® k[z,y] — T'(Uia, Oyp,, ), which is surjective.

Examples of diagonals

When the fibres of a morphism f: X — Y vary in regular and uniform way, the fibre product
X xy X has aregular behaviour. For instance, if f: L,, — IP’,IC is one of the line bundles
from Section 7.7, the product L, Xp1 L,, will be what one might call a ‘plane bundle’, all
its fibres are affine planes A?, and the diagonal is just L,,, with each fibre sitting diagonally
in each AZ-fibre.

When the morphism has irregular fibres however, the product X xy X also show irregular
behaviour. We shall illustrate this by a few examples. They are all birational; i.e. f is an
isomorphism on an open dense subscheme U c Y.

Quite generally, over any open U < Y the fibre product U xy U is an open subset of
X xy X, and when f|;-1y is an isomorphism, the projection f~'U xy f~'U — U will
be an isomorphism, and U will be an dense open subscheme of the diagonal A in X xy X.
In each of these cases, which is typical for birational morphisms, the diagonal will be an
irreducible component of the product. In the examples i will denote the canonical map
h: X xy X — Y, and k will be an algebraically closed field.

Example 11.18. Let f: X — AZ be the blow-up of a point p. The fibre of f over p is a
projective line, and by Example ??, the fibre of h over p will then be P, x; P;. By the
transitivity of pull backs, this intersects diagonal in the fibre of the diagonal over p (even
scheme theoretical), and in the identification of the diagonal with X, this corresponds to the
exceptional divisor.

So X x,2 X has two components, the diagonal X' and a copy of P! x IPi, and they meet
along a P} which is the exceptional divisor in one component and the diagonal in the other.

D xcD
!’
A |
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(\ embedded component

DxgD ———— &

——

Example 11.19. Consider the nodal cubic curve C' given in the affine plane A? by the
equation v* = vu>. The nodal cubic may be parameterized by the map f: D = Spec k[t] —
C identifying C' as Spec k[t? — 1,t(¢* — 1)]. We claim that the fibre product D x ¢ D is
the disjoint union of the diagonal D and two closed isolated points lying over the origin.

Away from the fibre 4~!(0) the canonical map h is an isomorphism since f restricts to an
isomorphism D — h™'(0) ~ C' — {0}, and this shows that the diagonal D is an irreducible
component of D x ¢ D.

The fibre Dy of f over the origin is given as

Dy = Speck[t]/(t* — 1,t(t* — 1)) = Speck[t]/(t* — 1),

C

and it decomposes as the disjoint union z; U x5 where each x; = Spec k. According to
Example ?? the fibre of i over 0 then consists of the four points x; X x; with 1 < ,j < 2,
each being a copy of Spec k.

Two of these (z; X x; and x5 X o) are absorbed in the diagonal, but the others must be
isolated point in the product, indeed, they are closed, as the fibre is closed, and their union is
the complement of the diagonal, which is closed.

Example 11.20. Next, consider the cuspidal cubic curve C' = Spec k[t?, t*]. It is parameter-
izedby D = Spec k[t], the map f: D — C being induced by the inclusion k[t?, t*] < k[t].
This is a homeomorphism, and away from the origin 0 it is an isomorphism. The scheme
theoretic fibre over the origin equals Dy = Spec k[t]/(t?).

The closed points of D x ¢ D are equal to D(k) x ¢y D(k) = D(k) since f is bijective,
and so h is bijective as well, and set-theoretic it equals the diagonal. since f is an isomorphism
away from f~'(0), the map h will be an isomorphism away from 2~*(0). However, the fibre
over 0 is large:

(D x¢ D)o = Dy %y, Dy = Spec k[t](t?) @ k[u]/(u?) = Speck[t, u]/(t*,u?).

The algebra k[u, t]/(t?, u?) is of length four, twice the length of the fibre of f, so something
is going on at the origin: the product D x o D has an embedded component there. You will
find further details in Execerise 11.3.14.

11.3 Exercises

Exercise 11.3.1. In the setting of the proof of Proposition 11.4, show that Ax/g|y, = Ay, /s.

Exercise 11.3.2. Let X = SpecC and S = SpecR. Recall that the product X xg X
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182 Separated schemes

consists of two (closed) points. Which one is the diagonal? Can you find another R-algebra A
sothatif Y = Spec Aitholdsthat Y XY ~ X X ¢ X and the diagonal is the other point?

Exercise 11.3.3. Recall that a morphism ¢: X — Y is said to be affine if for some cover
{U;} of Y of open affine sets, the inverse images ¢~ *(U;) are affine (Definition 8.20 on
page 122). Show that affine morphisms are separated.

Exercise 11.3.4. Show that if a scheme X is separated (over Z), then for every scheme Y
and every morphism f: X — Y, the morphism f is separated.

Exercise 11.3.5. Let X and Y be schemes separeted over a scheme .S. Show that their
product X xg Y is separated over S.

Exercise 11.3.6. Let 7" — S be a morphism and let X and Y be two schemes over 7. Show
that there is a Cartesian diagram

Xxp X 4+ X xgX

| [

A
T —"° 5 TxgT,

and conclude that the natural map ¢: X x7 Y — X xg Y is alocally closed embedding.
Hint: Use the functor of points to reduce to a statement of sets.

Exercise 11.3.7 (Pullback of diagonals). Let X — S and T' — S be morphisms between
schemes, and as usual, let X7 = X x g T'. Show that the diagonal A x /g pulls back to the
diagonal A x.. /75 in other words, that there is a canonical Cartesian square

AxpT
Xr r Xp xp Xp
X 2% L X wg X,

Exercise 11.3.8. Let X /S be a scheme and let ¢ : W — X be a an open subscheme or a
closed subscheme (over .S). Show that the diagram below is Cartesian

We——X

J/AW/S J/AX/S

w Xg W —— X X g X
Conclude that W /S is separated if X /S is.

Exercise 11.3.9 (The graph of a morphism). A morphism ¢: X — Y over S has a graph
I'y: X — X xgY;itis the pullback of the diagonal Ay /s under the morphism ¢ x
idy: X xY — Y xgY.Show that the graph is a closed embedding when Y is separated.

Exercise 11.3.10 (Closed embeddings). Let f: X — Y and g: Y — Z be morphisms of
schemes.
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a) Assume that g is separated. Show that if the composition g o f is a closed
embedding, then f is a closed embedding. HINT: Consider the diagram

X Uy X%,V — s Y

| 5

X — 7
gof
where the square is Cartesian and I'; is the graph of f.
b) Show by an example that in general f is not necessarily a closed embedding
even if g o f is. HINT: For one of the copies of A, say Uy, in the affine line
X with two origins constructed on page 95 in Chapter ??, exhibit a morphism
X — A! that restricts to the identity on U,.

Exercise 11.3.11. Let R and S be two DVR’s with the same fraction field, and denote
by my and mg the two maximal ideals. Assume that R and S different in the sense that
mr NS & mg and mg N R & mpg. Let Z be the scheme obtained by gluing Spec R and
Spec S together along the generic points. Show that Z is affine, more precisely, show that Z
is isomorphic to Spec (R n S).

Exercise 11.3.12 (Equalizers). Let X and Y be schemes over S and f; and f, two morphisms
fromY to X.Let f: ¥ — X xg X be the morphism whose components are the f;’s; that
is, f; = m; o f (as usual, the 7;’s are the two projections). The pullback f~ 1A /s is called
the equalizer of the f;’s, and we shall denote it by n7: £ — Y. In other words, the diagram
below is Cartesian:

E—"' Y

|s
Ax/s

X 225 X xg X.

a) Show that a morphism g: Z — Y satisfies f; o g = fy o g if and only if ¢
factors via n;
b) Show that X is separated if and only if all equalizers of maps into X are closed.

Exercise 11.3.13. Let A be a B-algebra. Show that the kernel of the multiplication map
1 AQp A — A is generated by the elements of the form a®1 — 1®a. HINT:

Exercise 11.3.14. This exercise connects up with Example 11.20 and explains the embedded
component appearing the D X D in the product of the normalisation D of the cuspidal
plane cubic C over C. Consider the ring A = k[t] Qg2 451 k[t]
a) Show that « = t®1 — 1®¢1 is nilpotent and generates a prime ideal;
HINT: a generates the kernel of the multiplication map. Compute o by the
binomial theorem.
b) show thatm = (t® 1,1 ®t) is a maximal ideal; HINT: Consider the image
of m under the multiplication map.
c¢) Show that the ideal generated by ¢ ® ¢ is m-primary; HINT: consider m?.
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184 Separated schemes

d) Show that (0) = (t®1 —1®¢t) N (t®1) is a primary decomposition of the
zero-ideal (0). HINT: All ¢ ® t/ with either ¢ > 2 or j > 2kill .

Exercise 11.3.15. With reference to Example 11.18, check by hand that X x A2 X has two
components by covering X with two affine opens.

Exercise 11.3.16. The aim of this exercise is to show that infinite products H:’:l X; may
fail to exist in the category of schemes. That is, there is no scheme that has the universal
property of the product for schemes.
a) Show that if X and Y are schemes, the set of points of Y where two morphisms
Y — X agree is a locally closed subset of Y.
b) Let Z denote the affine line with the doubled origin. Suppose that Hle Z is
represented by a scheme X. Let Y = Spec A be an affine scheme. Show that
every countable intersection of distinguished open sets of Y occurs as the locus
where two maps Y — X agree. Show that this gives a contradiction, e.g., for
Y = SpecZ, so that X is not a scheme.
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12

Algebraic varieties

In the introductory chapter we gave a temporary and restricted definition of a variety, and
there we only spoke about either affine or projective varieties. With the theory of schemes
sufficiently developed, we are now ready for the full truth

Definition 12.1. A variety over a field k is an integral, separated scheme of finite
type over k.

The literature sees a varying terminology at this point. Some authors do not require varieties
to be irreducible (but they are always reduced), and many require the base field to be
algebraically closed. It is also convenient to accept the empty scheme as a variety (over any
field k).

Example 12.2. The schemes

Ag = SpecQ[t], Spec Clz, y]/(z* — 4°), SpecF,[z,y, z]/(z* — y2),

are affine varieties, whereas the following schemes are not:

Spec Q[t]/t?, Spec Clz, y]/(zy), SpecZ.

In the introductory chapter we did not introduce maps between varieties (we did it for
affine varieties, but not for projective ). Now, quite naturally, a map between two varieties
is a morphism between the schemes. In this way, the varieties constitute a full subcategory
Var/k of the category Sch/k of k-schemes.

Subvarieties

The notion of subschemes has a counterpart in the notion of subvarieties:

Proposition 12.3 (Subvarieties). Let X be a variety over the field k.
(i) (Open subvarieties) Every open subscheme U < X is a variety;
(i1) (Closed subvarieties) Every closed, integral subscheme ¥ < X is a
variety;
(iii) Every closed irreducible subset Y < X has a unique structure as closed
subvariety.

Proof Open subschemes of integral schemes are integral by Proposition 5.22 on page 76,
and open embeddings are separated (Propo§§§0n 11.12 on page 178), so U is integral and
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186 Algebraic varieties

separated. Finally, U is of finite type over k; indeed, U is covered by finitely many open
affine subschemes since X is, and we conclude by Corollary 8.19.

For the second statement, according to Example 8.16 the subscheme Y is locally of finite
type, and since X is quasi compact, it is of finite type. By hypothesis, it is integral, and it is
separated by Proposition 11.12.

As to the last claim, each closed subset carries a unique reduced scheme structure, which
is integral when the subset is irreducible. The rest follows from (ii). ]

Example 12.4 (Affine varieties). Prime spectra Spec A of integral algebras of finite type
over k are varieties since all prime spectra are separated (Proposition 11.3 on page 174). In
particular the affine spaces A} = Spec k[t1, ..., t,]| will all be varieties.

An affine variety is a variety which is isomorphic to a prime spectrum, and by Corol-
lary 8.19 these are precisely the varieties that are affine schemes. The affine varieties form
a full subcategory AffVar/k of Sch/k, and the relative version of The Main Theorem for
Affine Schemes (Theorem 5.2 on page 68) yields that AffVar/k is equivalent to the opposite
of the category of integral domains finitely generated over k.

When £ is algebraically closed, the category of ‘old style varieties’ and polynomial maps
is equivalent to AffVar/k with the functor Z — Spec A(Z) being an equivalence. Note
that, except when Z is a point, Spec A(Z) is much larger than the ‘old style variety’ Z.
It contains all prime ideals of A(Z) and not only the maximal ones. In a way, Spec A(Z)
carries information about all subvarieties of Z.

Example 12.5 (Projective varieties). The projective spectrum Proj R of a graded integral
domain R with Ry = k which is finitely generated over k, is a variety. Proposition ?? tells
us that Proj R is of finite type over k, it is integral by 9.18 and separated by Example 2?. In
particular, the projective spaces [P}, are varieties.

From 12.3 above, it follows that each closed integral subscheme Z < P! is a variety. Such
varieties are called projective varieties. One also has the notions of quasi projective varieties
and quasi affine varieties, which are varieties that are isomorphic to open subvarieties of
either projective or affine varieties.

12.1 Noether’s Normalization Lemma

‘We now turn to one of the key results in the theory of varieties, the Normalization Lemma of
Emmy Noether. It relates the dimension of an affine variety X to the transcendence degree
r of its function field over the base field, and in some sense it is the closest one comes to
having global coordinates on affine varieties. In geometric terms it states that projection of a
closed subvariety X — A} onto a general linear subspace A, of A} is a finite morphism.

Transcendence degree

The notion of ‘transcendence degree’ of a field extension £k — K plays a central role,
so we begin with quickly recalling a few facts. Elements aq, ..., a, from K are said to
algebraically independent if for every polynomial P(t1,...,t,) with coefficients from k it
holds that P(ay,...,a,) # 0; or in other words, that sending indeterminates ¢; to a; yields

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

12.1 Noether’s Normalization Lemma 187

a k-algebra isomorphism k[t1,...,t.] ~ k[ai, ..., a,]. Likewise, one says that a possibly
infinite subset S < K is algebraically independent when every finite collection of distinct
members of .S are algebraically independent.

A transcendence basis for K over k is a maximal algebraically independent set S
K. For independent element aq, . . ., a, to form a transcendence basis it is necessary and
sufficient that the field extension k(ay, . .., a,) < K is algebraic, and one may prove that
all transcendence bases have the same cardinality. This common cardinality is called the
transcendence degree of K over k and is denoted by trdeg, K. In general, the transcendence
degree may be infinite, but for finitely generated field extensions it will be always finite.
Note that if A — B is an extension of domains with B of finite type over A, then the
associated extension of fraction fields will be a finitely generated field extension with a finite
transcendence degree.

The Normalization Lemma

With minor modifications, the standard proof of the classical version of the Normalization
Lemma yields a somewhat more general result:

Theorem 12.6. Let A — B be two domains with B of finite type over A and let n be
transcendence degree of the quotient field K (B) over K (A). Then there are elements
Zq,...,2, in B which are algebraically independent over A and an element f € A
such that By is a finite module over A¢[z1,...,x,].

When A is a field, the localization is unnecessary, and the classical Normalization Lemma
ensues.

Corollary 12.7 (Noether’s Normalization Lemma). Let & be a field and let B be a
domain of finite type over k and denote by 7 the transcendence degree of K (B) over
k. Then there are algebraically independent elements 1, ..., x, in B such that B is
a finite module over k[z, ..., x,].

The proof of the theorem goes by induction on the number of generators that A requires. The
inductive step hinges on the following lemma of purely algebraic content:

Lemma 12.8. Let p(ty,...,t,) be a polynomial over a domain A, and let
Us, . .., U, be new variables. Then for s a sufficiently large integer, the leading
coefficient of p(t1, us + 13, ..., Uy, + t‘f”H) as a polynomial in ¢; will be a non-zero

element of A.

Proof The substitutions ¢; = u; + t‘{%l for ¢ > 2 in a monomial ¢ ...t result in a
polynomial in ¢; whose leading term is of degree a; + 38 + - -+ + ,, 8™ 1, and whose
leading coefficient is one.

Now, the crucial point is that for s >> 0, the expressions a; + @28 + +++ + QS
will all be different, so the term of highest degree in ¢; appears only once when one develops

m—1
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188 Algebraic varieties

pltr,ug + 5, .o Uy, + t‘{m_l) in powers of ¢, and hence it is not cancelled. Indeed, for
any pair of distinct monomials an equality

7 om—1

=aj+aps+--+als

m—1

ap +ags+ -+ ays

holds only for finitely many s since non-zero polynomials merely have finitely many zeros.
And as there are only finitely many pairs of monomials terms in f, we are through. O

Proof of the theorem Choose generators w1, . .., w,, for B as an algebra over A. Then
K (B) is generated as a field over K (A) by the w;’s as well. It follows that n < m, and in
case of equality, that wy, . .., w,, are algebraically independent over A. Hence in that case
B = Alwy,...,w,,] is a polynomial ring, and the induction can start.

If n < m, there is a non-zero polynomial p(ty, . .., t,,) with coefficients in A such that
p(wi,...,w,) = 0. We introduce new variables t; — tTFI = u,;, where s is a natural
number, and set

1

q(tr,ugy .oy Up) = p(tr,ug + 17,000 U + th ).

According to the lemma we may chose s >> 0 so that the leading coefficient g of ¢
as a polynomial in ¢; lies in A. With z; = w; — wf%l for ¢+ > 2 it holds true that
q(wy, 29, ..,2m) = 0, and since g~'¢ is monic in ¢y, it ensues that B, is a finite module
over the subalgebra B’ = Az, ..., 2m].

Now, K(B) = K(B,) is algebraic over K (B’) so that the two fields have the same
transcendence degree over K (A) = K (A,). Moreover, by construction, B’ is generated by
less than m elements over A,. Induction applies, and there is a h € A, and algebraically
independent elements z1, ..., x, so that B} is finite over A,[z1,...,2,]. Now, g is
invertible in B’, so that B; = B,,, and taking f = gh we are done. O

Example 12.9. Consider ‘the hyperbola® X = V(zy — 1) < A? = Speck[z,y] and
the projection X — A} = Spec k[z] onto the x-axis, which is induced by the inclusion
k[x] < k[x,1/x]. The algebra k[x,1/x] is not finite over of k[x]; it requires all powers
1/z as generators. However, for any elements a, b of k with ab # 0, it holds that k[x, 2]
is finite over k[ax + bz ~']; indeed, k[x, 1/x] is generated by x over k[az + bz '], and x
satisfies the equation

2* —za '(ax +bz™") + bat = 0.

Turning Theorem 12.6 into geometry, we arrive at the following description of the generic
behaviour of a morphism locally of finite type between integral schemes.
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12.2 The Nullstellensatz 189

Theorem 12.10 (Generic structure of morphisms of locally finite type). Let X
and Y be integral schemes and f: X — Y a dominating morphism locally of finite
type. Then there are open affine subsets U < Y and V' < X so that f(V) = U and
so that f|y factors as

V SsUxA" 25U

where g is finite and p is the projection and where n = trdeg,, .y k(X).
If X and Y are affine, we may take V' to be the inverse image of a distinguished open
set.

Note that A™ is the absolute affine space A" = Spec Z|[t1,...,t,], and the product U x A"
is the product over Z. If X, Y and f are defined over a ring R, the product may be replaced
by (and in fact, coincides with) the product U X p A%,.

Proof Choose two open affine subschemes Spec A — Y and Spec B © X such that the
inclusion f(Spec B) < Spec A holds true. According to Proposition 8.18, the A-algebra B
will of finite type. Moreover, since f is dominating, it holds that f#: A — B is injective, and
we may as well assume that A — B. Applying Theorem 12.6 to the extension A — B, we
can find algebraically independent elements x4, ..., x,, and an g € A such that B, is finite
over Ay[z1,...,2,]. Let U = D(g) < Spec Aand V = D(g) < Spec B, and note that
Spec Ay[z1,...,x,] = Spec A, x A"

Finally, by construction f(V') < U, and since both g, being finite and dominant (by
‘Lying-Over’, Proposition 8.27 on page 123), and p are surjective, it ensues that f(V') = U.
Note that the projection p is surjective since (U x A™)(k) = U (k) x A" (k) and A™(k) # &
for every field k. O

12.2 The Nullstellensatz

As a first application of the Normalization Lemma, we give short proofs of the versions of
Nullstellensatz cited in Chapter 1. The first out is the The Weak Nullstellensatz (Theorem 1.10
on page 6), and the full Nullstellensatz (Theorem 1.9 on page 6) follows suit, after a basic
result about the density of closed points of a variety.

Corollary 12.11 (Weak Nullstellensatz). If X is a scheme of locally of finite type
over a field k, and x € X is a closed point, then k(x) is a finite extension of k.

When £k is algebraically closed, it follows that k(x) = k; in other words, the k-points and
the closed points of X coincide. In particular, for X = A} this is precisely the content of
statement (ii) of Theorem 1.10. In case X is the spectrum of a field, the corollary if often
called Zariski’s Lemma .

Proof The point x is contained in an affine open subscheme Spec A of X with A of finite
type over k. The residue field k(x), being a quotient of A, is of finite type as an algebra over
k as well, and the Normalization Lemma implies that k() is a finite extension of k. Indeed,
it says that k(x) is finite over a polynomial ring A over k. But Going—Up (Exercise 8.2.5
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on page 124) then implies that A is a field, and no genuine polynomial ring is field. Hence

A=k O

Corollary 12.12 (Density of closed points). Let X and Y be schemes over a field k&
with X locally of finite type over k.
(i) If f: X — Y is amorphism over k, then f(x) is a closed point for each
closed point x € X;
(ii) The closed points in X form a dense subset.

That X be locally of finite type is essential; for instance, the statements fail for local rings.
If e.g. A is a domain and p € Spec A is a prime ideal which is not maximal, the image in
Spec A under the canonical map of the single closed point in Spec A, is equal to the prime
p, which is not closed. Note also that if A is a local domain, but not a field, Spec A has just
one closed point, which is not dense as there are other points.

Proof To prove (i), we may assume that X and Y are affine, say X = Spec B and
Y = Spec A, and that B is of finite type over k. The point x corresponds to a maximal ideal
min B, and k(x) = B/mis a finite extension of k according to the Weak Nullstellensatz. Let
p < B be the prime ideal corresponding to f(x); that is, p is the preimage of m under the map
f*: A — B. This map induces an injection A/p — B/m = k(z). Now k(x) is integral
over k, hence a fortiori integral over A/p, and it follows from Going-Up (Exercise 8.2.5 on
page 124) that B/p is a field.

Proof of (ii): it suffices to see that each open subset of X contains a closed point. From
Corollary 8.18 follows that X, being locally of finite type over k, has a basis consisting of
open affines of finite type over k, and each of these have closed points. If an open subscheme
U < X is of finite type over k and = € U is closed in U, it ensues from (i) that x is closed
in X as well, and we are done. OJ

The full version of the Nullstellensatz takes the following form in a setting over an arbitrary
field.

Corollary 12.13. Let A be an algebra of finite type over a field k£, and a < A an
ideal. It then holds that /a = (] _._ m, the intersection extending over all maximal
ideals containing a.

acm

To draw the line back to Hilbert’s Nullstellensatz as formulated in Chapter 1, assume that
k is algebraically closed and let a be an ideal in k[ty, ..., t,]. To say that a polynomial f
vanishes at all k-points in Z(a), is to say that f lies in all maximal ideals that contain a, and
consequently, by the corollary, it belongs to /a.

Proof The radical y/a is equal to the intersection of all prime ideals containing a, so we
may as well assume that a is prime. Replacing A by A/a it suffices to see that the intersection
of all maximal ideals in a domain of finite type over k is reduced to the zero ideal. But by
Proposition 2.11 on page 25 this is equivalent to the close points of Spec A being dense,
which holds true according to Corollary 12.12. O
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12.3 The dimension of schemes of finite type over a field 191

12.3 The dimension of schemes of finite type over a field

In a general setting the definition of the dimension of a scheme in terms of the Krull dimension,
suffers from several deficiencies. The most troublesome is that maximal chains of closed
integral subschemes situated between two fixed subschemes, are not always of the same
length. In particular, the codimension of an integral subscheme Y in X, as the length of
a maximal chain ascending from Y, does not always equal the ‘intuitive’ codimension
dim X —dimY.

For varieties over a field, however, these occult phenomena does not take place; all maximal
chains are of the same length, and the dimension behaves as one expects. One underlying
reason is that the dimension of a variety coincides with the transcendence degree of its
function field. This follows from Normalization Lemma and Going—Up, once it holds for
affine space itself, and so to establish this will be our first task.

Dimension of affine space

The transcendence degree of the function field k(A}) over k is by definition equal to n, and
one might be tempted to take for granted that affine space A}’ is of dimension 7, but this is in
fact slightly subtle. What is is obvious, is that dim A} > n since there are chains of linear
subspaces of length n, however, the converse inequality requires some effort.

Lemma 12.14. Let & be a field and n a natural number.
(1) dim A} =n;
(ii) for each non-constant, irreducible polynomial f € k[ty,...,t,], it holds

that dim V' (f) = n — 1.

Proof The proof goes by induction on 1, and the case n = 1 is clear. Consider a polynomial
fin A = k[t1,...,t,] which is not constant. As in Lemma 12.8, let u; = t;, — t5 with
5§ >> (. Then

f(tl, ce 7tn) = f(tl,’LLQ —+ tiq, vy Up + ti)

is a monic polynomial in ¢, with coefficients in B = k[ua,...,u,] € A, and the u;’s are
algebraically independent. By induction dim B = n — 1.

Consider now the algebra A/(f)A. The algebra B maps injectively into A/(f)A; a
polynomial in the kernel depends only on the w;’s, but it also is a multiple of f (which
depends on ?1), hence it must vanish. The extension

Bc A/(f)A

is integral since A/(f)A is generated over B by the class of ¢;, which is integral since f is
monic. Going-Up then yields that dim A/(f)A =n — 1.

Asto (i), let 0 < p; < ... < p, be a saturated chain in A, and chose an irreducible
polynomial f € p; (in fact, p; is a principal ideal since A is a UDF). By (ii), it holds that
dim A/(f) =n —1,and sor — 1 < n — 1, and we infer that dim A} < n. O

Exercise 12.3.1. Let A be aring and m < A[t] a maximal ideal. Let my = A n m and
k= A/mo
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a) Show that A[t]/moA[t] ~ k[t];

b) Show that if m; is maximal and generated by r elements, then m is generated
by r + 1 elements. HINT: k[¢] is a principal ideal domain;

¢) Show by induction on the number of variables that each maximal ideal in a
polynomial ring k[¢1, . .., t,.] over a field k is generated by r elements;

d) (Alternative proof that dim A} = m) Show that if A is an algebra of finite type
over a field k, then dim A[¢] = dim A+ 1. HINT: Claim (i) of Corollary 12.12
is useful;

e) If X is a variety over k, show that dim X x; A} = dim X + n.

Dimension and transcendence degree

We have now come to the main result about the dimension of a variety:

Theorem 12.15 (Dimension and transcendence degree). Let X be a variety over
the field k.
(i) dim X = trdeg,, k(X);
(ii) For each non-empty open subvariety U < X, it holds that dim U =
dim X;
(iii)) If Y < X is a closed subvariety, all maximal chain of irreducible
subvarieties

YcZic...cZ,.cX

have the same length;
(iv) codim(Y, X) = dim X —dimY.

Note that with Y the empty subvariety, claim (iii) says that all maximal chains in X are of
the same length. In particular, it holds that dim Ox , = dim X for all closed points z € X.

Proof In view of Lemma 8.30 on page 125, the general case follows from the affine case, so
we may assume that X is affine, say X = Spec A. The Normalization Lemma tells us that
there is a finite surjective morphism p: X — A} where n = trdeg, k(X). Applying Going—
Up (Proposition 8.32 on page 125) and Lemma 12.14, we infer that dim X = dim A} = n.

Statement (ii) follows since U has the same function field as X.

To prove (iii), consider a maximal chain 0 < py < ... < p,. of prime ideals in A, and chose
algebraically independent elements ¢4, . . ., t,, such that A is finite over B = k[ty,...,t,].
The ideal py is minimal among the non-zero prime ideals in A, and Going—Down (part (iv)
of Theorem A.17 on page 422) ensures that ¢ = po N B is minimal among the non-zero
prime ideals in B. Hence q = (f) for some f € B, as polynomial rings are UFD’s. Now,
B/q < A/po is an integral extension, and by Lemma 12.14 we have dim B/q = n — 1.
Hence dim A/py = n — 1 by Going—Up; induction applies, and the chain {p,/po} in 4/po
is of length n — 1, which implies that the original chain has length n.

Finally, claim (iv) is a direct consequence of (iii). O

Example 12.16. The projective space P} = Proj k[to, . .., t,] is a variety of dimension n. It
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12.3 The dimension of schemes of finite type over a field 193

has open subvarieties isomorphic to affine n-space A}, namely the distinguished subvarieties
D, (t;).

Example 12.17. The quadric cone Q = Speck[z,y, z]/(2* — yz) of Example 5.25 on
page 76 has dimension 2. This follows directly from (ii) of Lemma 12.14. More generally, for

any irreducible non-constant polynomial f € k[t1,...,t,], the closed subvariety V (f) =
Speck[ty,...,t,], where f vanishes, is of dimension n — 1.
In an analogues manner, an irreducible homogeneous polynomial f € k[to,...,t,]

defines a closed subscheme Z = Proj k[to, ..., t,]/(f) of P}, which is a closed subvariety
of dimension n — 1. Indeed, at least one distinguished open set, say D(t;), meets Z in a
non-empty open subscheme U; = D(t;) n Z, which equals Spec k[tot; ', ... t,t;']/(F),
where F'is f dehomogenized with respect to ¢;; that is, it equals f(tot; o sty 1) (see
Sections 1.3 and 9.2). Hence dimU; = n — 1 and so also dim Z = n — 1.

The subvarieties described in this example are respectively called affine and projective
hypersurfaces.

There is a generalization of the notion of ‘hypersurfaces’ which is meaningful for any
scheme X. A subscheme is said to be locally given by one equation if one may find an open
affine cover {U;} of X and non-zerodivisors f; € Ox (U;) so that Z n U; = V (f;).

In the Noetherian case the codimension of Z will be one according to the Hauptidealsatz,
for each generic point of Z it holds that dim O ,, = 1, and one could be tempted to expect
that dim Z = n — 1. However this is not always true even in the Noetherian case; there are
examples of Noetherian domains of any Krull dimension having principal maximal ideals.
This pathology, which is due to maximal chains of prime ideals being of varying length, does
not occur in the realm of varieties, so for those, intuition concords with reality:

Proposition 12.18. Let X be variety over k£ and let Z < X be a closed subvariety
locally defined by one equation. Then dim Z = dim X — 1.

For schemes which are not integral, but of finite type over k, we still have a good control
over the dimension. First of all, the dimension of X is the same as of X,.4, S0 we may assume
that X is reduced. Then, if X = U X is the decomposition into irreducible components,
each X is integral, and dim X is the maximum of all dim X;.

Example 12.19. Consider A} = Spec k[z,y, 2] and Y = V (a) where a is the ideal
a = (33?/—33,532&22—2,?/3 _y’ny _l‘y) = (Z,y,l‘) N (y_ ]-axQ) N (y+ ].,l‘)

The associated primes of a are p; = (x,y + 1), ps = (x,y — 1) and p3 = (z,y,2).So Y
has three components: L = V(z,y+1), M = V(x,y—1) (two lines), and P = V (z, vy, 2)
(the origin). The dimension of Y equals the largest of the dimension of each component,
anddim L = 1,dimM = 1,dim P = 0, so dimY = 1. The codimension of Y in A}
equals the maximum of the heights of the associated primes of a; i.e. ht(p;) = 2. So the
codimension of Y equals 2.
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194 Algebraic varieties

Dimension of fibres

When investigating a morphism f: X — Y, understanding the fibres over closed points is a
must, and a first step in that direction is to survey how the dimension of a fibre X, varies
with the closed point y. There are some general principles which we will explain, and which
involves the ‘relative dimension’ 7 = dim X — dim Y.

Heuristically, one would believe that the dimension of a fibre should be equal to the relative
dimension. However, this is not generally true, but still holds for most fibres. The fibre
dimension does not vary arbitrarily, all components of each fibre is of dimension at least the
relative dimension, and we begin with with proving this. The argument is based on Krull’s
Hauptidealsatz combined with the fact that all maximal ideals in k[¢y, . . ., ¢, ] are generated
by n elements.

Proposition 12.20. Let f: X — Y be a dominant morphism between varieties
over a field k. For every closed point y € Y in the image of f and every irreducible
component Z of the fibre X, it holds that dim Z > dim X — dimY.

Proof Replacing Y by some open affine neighbourhood U of y and X by some open affine
subscheme that meets Z and maps into U, we may assume that X and Y both are affine; say
X = Spec B and Y = Spec A.

We first treat the essential case that Y = AJ}. So, let m be the maximal ideal in the
polynomial ring k[¢y, . . ., t,] that corresponds to y. It is generated by n elements g1, . . . , Gp.
Consequently, the fibre X, is given as

X, = Spec B/mB = Spec B/(gi. ., g2,

and the actual component Z of the fibre X, equals V' (p) for a prime ideal p minimal over
(91, - -, gn). Citing the Hauptidealsatz, we infer that codim(Z, X') = dim B, < n. Hence
by (iv) of 12.15 we conclude that dim X — dim Z < n = dim A}; or on other words, that
dim Z > dim X — dim A}.

Attacking the general case, we appeal to the Normalization Lemma to find a finite and
dominant morphism p: Y — A7}, and consider the composition h = po f: X — A}. The
point is that z = p(y) is closed in A7, and that Z is a component of the fibre ! (z2); indeed,
the fibre p~'(z) is finite and discrete. O

Theorem 12.10 combined with Going—Up gives the following;

Proposition 12.21 (Dimension of generic fibres). Let X and Y be varieties over k
and let f: X — Y be a dominant morphism. There is an open dense subset U < Y’
so that for all closed points y € Y and all irreducible components Z of X, it holds
that dim Z = dim X — dim Y.

Proof We may clearly assume that Y is affine, and we cover X by finitely many open affine
subschemes {W,}.
For each W; we choose open affines V; € W, and U; Y such that f; = f

v, factors as

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

12.3 The dimension of schemes of finite type over a field 195
in Theorem 12.10; that is, as the composition of two maps
‘/i L} Uz x A" L Ui

with g; finite and p; the projection and » = dim V; —dim U;. Note that r = dim X —dim Y
by (i) of Theorem 12.15. We claim that the set U = (), U; will be as required. Indeed,
consider a closed point y € U and a component Z of the fibre X,. At least one of the
W, meets the given component Z in an open dense set, and hence the corresponding V;
meets Z as well. Then Z; = Z n W, is open and dense in Z, and dim Z = dim Z; by
(ii) of Theorem 12.15. The restriction g;|z : Z; — p;'(y) = y x; A} is a finite map,
and so by Going—Up, the closure of the image is of the same dimension as Z;; hence
dim Z = dim Z; < r. The converse inequality is just Proposition 12.20, sodim Z = r. [

Proposition 12.22 (Semicontinuity of the fibre dimension). Let X and Y be
varieties over k and let f: X — Y be a surjective morphism. Then for all integers s
the set Fs(f) ={yeY |dim X, > s}isclosedin Y.

Proof The proof goes by induction on dim Y. The case dim Y = 0 is trivial, so assume
thatdimY > 0.If s < r = dim X —dim Y, it holds that F(f) = X by Proposition 12.20
(remember that f is surjective). Suppose then that s > r, and let U < Y be an open set as
in Proposition 12.21. Let Z; be the components of Y — U and let W;; be the components
of f~'Z;. Then dim Z; < dimY’, and by induction each F,(f|w,,) is closed in Z;. We
contend that

E(f) = UFs(fIWi,,), (12.1)

and this will imply that F,(f) is closed since Z; is closed in Y.

As to (12.1), note that for all points in y € U, each component W of X, has dim W =
7 < s, and hence the inclusion F(f) = |J;; Fi(flw,;) holds true. Then pick a point
y € Fy(f|w,,)- Each component of f‘ﬁ/17 (y) is contained in a component of f~!(y), so we
infer that dim f~*(y) > dim f|. (y) > s. O

Images and constructible sets

Images of morphisms A subset F of a topological space is locally closed if it is the intersection
of an open and a closed set. When X is Noetherian, a constructible set is defined to be a
finite union of locally closed sets. It is easy to verify that finite unions and finite intersections
of constructible sets are constructible, and that a subset which is constructible in a closed
subspace, is constructible in the surrounding space.

The main interest in constructible sets lies in the fact that images of morphisms, which in
general are neither closed nor open, are constructible; at least when the morphisms are of
finite type and the schemes are Noetherian.

Example 12.23. The standard example is the map A? — A2 (where k is algebraically
closed), that acts on closed points as (z,y) — (xy,y). The image is the union of the
complement of the x-axis and the origin. Indeed, the only possible points in the preimage
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196 Algebraic varieties

of a point on the z-axis are points on the x-axis, but all these map to the origin. For points
(a,b) off the z-axis, b # 0 and (ab™!, b) is a preimage.

Theorem 12.24 (Chevalley’s constructibility theorem). Let X and Y be Noetherian
schemes and let f: X — Y be a morphism of finite type. Then the image f(X) is
constructible.

Proof Since Y and Y., are homeomorphic and since being constructible is a purely
topological property, we may assume that Y is reduced. The proof will be by Noetherian
induction. Consider the set

Y ={ZcY | Zisclosedand f(f 'Z) is not constructible }.

If f(X) is not constructible, ¥ is non-empty (it contains Y'), and since Y is Noetherian, ¥ has
a smallest member. Replacing Y with this smallest ‘crook’, we may assume that f(f~'2)
is constructible for all proper closed subsets of Y. If f is not dominant, we are through,
so we may assume that f is dominant. By Theorem 12.10 there is an open non-empty set
U < f(X), and for all irreducible components Z; of the complement Y — U (which are
finite in number since Y is Noetherian), it holds that f(f~'Z;) is constructible. But as

F) =U v s 2,

it ensues that f(x) is constructible. O

One easily extends the theorem to images of constructible sets:

Corollary 12.25. Let X and Y be Noetherian schemes and let f: X — Y be a
morphism of finite type. For each constructible subset F — X the image f(E) is
constructible.

Proof 1If E is locally closed, we give E the unique reduced scheme structure, which is
Noetherian and such that f|z is a morphism of finite type. Then f|g has constructible image
equal to f(E). The corollary then follows since f(F U F') = f(E) u f(F) forall sets. [

Exercise 12.3.2. Show that the constructible sets in a topological space form the small-
est Boolean algebra containing the open (or the closed) sets. Show inverse images under
continuous maps of contructible sets are constructible.

Exercise 12.3.3. Let X be a scheme and z € X a point. One says that a point y € X is a
specialization of x if y € Z, and that y is a generalization of z if x € ¥.

One says that a subset £ < X is closed under specialization if specializations of points in
F belong to F. Likewise, F is said to be closed under generalization if generalizations of
points in & belong to E.

a) Show that E is closed under specializations if and only if the complement
X — FEis closed under generalizations;

b) Show that E is closed under specialization if and only if it has the following
property: if x € F and Z < X is a closed irreducible set with x € E then
Z c E;
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12.3 The dimension of schemes of finite type over a field 197

¢) Show that closed sets are closed under generalization and that open sets are
closed under generalization;

d) Show that if E set closed under specialization and x ¢ F, then each irreducible
component Z of X containing z is disjoint from F’;

e) Show that in a Noetherian scheme, a constructible subset E is closed if it is
closed under specialization and that it is open if it is closed under generalization;

f) Give example that the Noetherian hypothesis is necessary. HINT: Consider the
spectrum in Exercise ??.

Products of varieties

In section?? gave examples of domains of finite type over k such that the tensor product
A®y, B is not a domain — in the examples A and B were even fields. In other words, and
in geometric terms, the product X x, Y of two varieties needs not be a variety; it will be
separated and of finite type, but not necessarily integral. But, as we are about to see, such
things occur only when the base field is not algebraically closed.

Theorem 12.26 (Product of varieties). If X and Y are two varieties over an alge-
braically closed field k, then X x; Y is a variety.

Proof The product of to separated schemes of finite type over k is separated (Exercise 11.3.5
on page 182) and of finite type. So the crucial point is to see that the product is integral. To
that end, one easily reduces the proof to the affine case and so to prove that the tensor product
A®;, B of two domains finitely generated over k is a domain.

Suppose that f = > a; ®b; and g = > ¢; ® d; are two elements such that fg = 0. We
may arrange it so that the a;’s and the ¢;’s are linearly independent over k. Let b be the ideal
in B generated by the b;’s and 0 the one generated by the d;’s.

For a maximal ideal m in B and an element b € B, let b denote the class of b in B/m. By
the Nullstellensatz B/m = k and so A®j, B/m = A. Clearly fg = 0. As A is a domain
and the a;’s and the ¢;’s are linearly independent, either f => b;a; = 0, and all b; € m,
org=>, d;c; = 0, and all d; € m. Hence b n 9 < m. This holds for all maximal ideals
m c B, and according to Corollary 12.12 the intersection of all maximal ideals in B equals
0, hence it holds that b N 0 = 0. As B is a domain, it ensues that either b = QO or 0 = 0,
which means that either f = 0 or g = 0. O

Corollary 12.27. The product of two projective varieties X and Y over an alge-
braically closed field k, is a projective variety.

Proof The product is a variety by the theroem. The Segre embedding (Proposition 10.28 on
page 170) realizes P} x P}"* as a projective variety, and if X < P} and Y < P} are closed
embeddings, then X x; Y < P} x; P} is a closed embedding. O
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198 Algebraic varieties

Proposition 12.28 (Dimension of a product). If X and Y are varieties over the
algebraically closed field k, it holds that dim X x, Y = dim X + dim Y.

Proof Replacing X and Y with non-empty open subsets, we may assume that both X and
Y are affine. Chose finite surjective morphisms f: X — A} and g: Y — A}’, where n
and m are the dimensions of X and Y respectively. The morphism f x g: X X, Y —
A} x, AT = AZ*"‘ is finite and surjective, hence dim X x, Y =n + m. O

Exercise 12.3.4. Let X and Y be schemes of finite type over an algebraically closed field k.
Show that if both are irreducible, then the product X x, Y is irreducible. Show that if both
are reduced, then the product X x; Y is reduced.

Exercise 12.3.5 (Alternative proof of Theorem 12.26). This exercise presents a proof of a
slightly stronger version of Theorem 12.26. If X and Y are two varieties over k and k is
closed in the function field k(X), then X x; Y is integral. (A subfield k = K is closed in
K if any root in K of a polynomial with coefficients in k lies in k; or equivalently every
irreducible polynomial over k is irreducible over K.)
It suffices to do the affine version: let A be a domain of finite type over the field k. Assume
that the ground field k is algebraically closed in the fraction field K of A.
a) If L = k(t), show that A®y, k(t) = S~ A[t] where S is the multiplicative set
of non-zero polynomials in A[¢] with coefficients in k. Conclude that A ®, k(t)
is a domain.
b) If L = k[t]/(f) with f irreducible, show that A®, L = A[t]/(f) and that
A[t]/(f) is integral. HINT: K[t]/(f) is a field.
¢) Show by induction on the number of generators over k required by L, that
A®, L is integral for all finitely generated field extensions L of k.
d) Show that A®y, B is a domain for all integral k-algebras B of finite type.
HINT: The tensor product is contained in A ®j, K (B) which is integral.

12.4 Birational vs biregular geometry

Two varieties are said to be birationally equivalent if they they have isomorphic open subsets.
This is a much weaker relation than being isomorphic; for instance, blowing up a point in P2
yields a variety which is birationally equivalent with but not isomorphic to P%.

Rational maps

Let us be precise about what a rational map from X to Y is. Heuristically, just like rational
functions, it is a morphism U — Y where U is an open non-empty subset of X. To avoid the
ambiguity in the domain of definition U, one introduces an equivalence relation between such
pairs (U, f), and says that two pairs (U, f) and (U’, f’) are equivalent if f|y~v = f'|v~v:-
A rational map is then an equivalence class of such pairs. However, it follows immediately
from Proposition 6.4 about gluing morphisms that there is a preferred member in each class
for which the open set U is maximal, and this is another way of resolving the ambiguity. A
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12.4 Birational vs biregular geometry 199

rational map is denoted with a dashed arrow f: X --+ Y (with the set of definition tacitly
understood).

One says that a rational map f: X --» Y is dominant if f(U) is dense in Y where U
is some open set where f is defined (if true for one U, it holds for all). Let g: ¥ --+ Z
be another rational map say defined on V' < Y. The open set f~*(V) is non-empty since
f(U) being dense entails that f(U) NV # &, and on f~!(V') the composition g o f is
defined. We conclude that dominant rational maps can be composed, and so the varieties over
k together with the dominant rational maps form a category Rat.

A map dominant rational map f: X --» Y is birational if it is an isomorphism in Raty;
or in clear text, if there is dominant rational map g: Y --» X so that f o g = idy and
go f =idx. One says that X and Y are birationally equivalent if there is birational map
between them.

Example 12.29. Sending (uo U u2) to (ujus @ uglUs : uguy) is a rational map from IP’%
to 7 defined away from the three coordinate points (0 : 1:0), (1:0:1)and (1:1:0). It
is birational with itself as inverse.

Example 12.30. Sending (ug : uy) X (vo : v1) to (ugvg : u1vy : uyvy) is a rational
map P} x P, --» P{. Defined away from (1 : 0) x (0 : 1). It is also birational with
(to : t1 : ta) — (Lo : t1) x (t1 : t2) as inverse; this map is defined away from (0 : 0 : 1)
and (1:0:0).

The main theorem of birational geometry

A fundamental truth is that the study of of dominant rational maps, basically is reduced to the
study of extensions of function fields:

Theorem 12.31. Let X and Y be two varieties over k. Then there is a one-to-one
correspondence between rational dominant maps X --+ Y and k-algebra homomor-
phisms k(YY) < k(X). In particular, two varieties are birationally equivalent if and
only if their function fields are isomorphic as k-algebra.

We need a little lemma.

Lemma 12.32. Let A and B be two domains of finite type over a field k& and denote
their fraction fields by K and L respectively. Assume that ¢: K — L is a k-algebra
homomorphism. Then there is some element d € B so that ¢(A) < B,.

Proof Letay,...,a, generate A over k. Each ¢(a;) is of the form ¢(a;) = b;/c; with
b;,c; € A. Thend = ¢, ... c, does the job. O

Recall also that when A and B are domains, a morphism f: Spec A — Spec B being
dominant is equivalent to the associated map f#: A — B being injective; this is just
Proposition 2.29 on page 33 bearing in mind that /0 = 0 in B. Note further that a rational
map f: X --» Y being dominant means that it maps the generic point of X to the generic
point of Y.
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200 Algebraic varieties

Proof of the theorem LetU = Spec B < X and V' = Spec A — Y be open affine subsets.
Then k(Y') is the fraction field of A and k(X)) that of X.

Given a dominant rational map f: X --» Y, we may chose U and V so that f is defined
on U and maps U into V. The induced k-homomorphism A — B is injective since f is
dominant and extends to a k-homomorphism k(Y) — k(X). This does not depend on the
choice of open affines; indeed, it is the map between stalks at the generic points induced by
f

For the converse, if a k-homomorphism ¢: k(YY) — k(X) is given, there is according
to Lemma 12.32 an element d € B so that $(A) < Bjy; then ¢ induces a morphism
Spec By — SpecA = V < Y hence a rational map X --» Y. Evidently, A maps
injectively into B, so the morphism is dominant.

One leisurely verifies that the two assignments are mutually inverses (the key comment is
that all maps between coordinate rings of affines are restrictions of f*: k(Y) — k(X)) O

Associating X to the function field k(X)) defines a functor from the category Rat; of
varieties over k and dominant rational maps to the category of fields of finite type over
k and k-homomorphism. Theorem 12.31 tells us that it is fully faithful; that is, it holds
that Homg,, (X,Y) >~ Homay, (k(X),k(Y")). In fact, as we shortly will see, it is also
essentially surjective: every field K of finite type over k is of the form k(X) for some variety
X. So it makes the two categories ‘essentially equivalent’, but there is no natural functor that
serves as the inverse functor — there is no good, systematic way to pick out one particular
model for each field K. A variety X so that k(X)) ~ K is called a model for the field K.

Theorem 12.33 (Main theorem of birational geomtry). The assignment X +—
k(X) is fully faithful and essentially surjective functor between the following cate-
gories:
(i) The category of projective varieties and dominant rational maps;
(i1) The category of finitely generated field extensions of k£ and k-algebra
homomorphisms.

Proof Given a field K of finite type over k Assume that K = k(t;,...,t,) and let A
be the subring of K generated by the ¢;’s; that is, A = k[ty,...,t.]. To get a projective
projective variety, embed X = Spec A in affine space A}, and close it up in P}. O

Note, to obtain a non singular model X for each field X is highly desirable, but extremely
difficult. An illustrious result of Hironaka’s is that it is true in characteristic zero, but in
positive characteristic it is still un-known, except in low dimensions.

Exercise 12.4.1. Let Q(xo, ..., z,) be a homogeneous quadratic polynomial. Show that the
subvariety of IP’ZJr2 given by z,, 1%, 12 + Q(22, ..., x,) is birational to IP’ZH.
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13

Local properties

13.1 Tangent spaces

Consider an affine variety X < A}, say X = V(I) where I = (fi,..., f,). For a k-point
p € X, the tangent space 1, X is usually defined as the sub-vector space of k" given by the
null space of the Jacobian matrix

o/,
xj l<isr
1<j<n
It is easily verified using the chain rule that 7}, X does not depend on the choice of generators
for I.
The dimension of 7}, X is given by

dimT,X = n —rank J(f1,..., f)(p). (13.2)

As it is defined, T, X is a subspace of k™. One sometimes also talks about the affine tangent
space at a point a = (aq, ..., a,) as the subvariety defined by the linear equations (in A})

J(fi,-- o fr)(p) - (x —a) = 0.
Tp

Example 13.1. Consider the cuspidal cubic curve X = V' (2®+y?) in AZ. Then the Jacobian
at a closed point p = (a, b) is given by J = (3a?, 2b). Therefore, 7, X has dimension 2 at
the origin p = (0, 0) and dimension 1 for every other point.

There is an intrinsic description of the tangent space 7, X, which is independent of the
affine embedding of X, and which will be the inspiration for the general definition.

Suppose for simplicity that p = (0,...,0) is the origin (we may always arrange this
by a linear change of coordinates), and write M = (x1,...,2,) < k[z1,...,z,] for the

maximal ideal at p. For a polynomial f € k[zy,. .., z,], we consider its linearization at p,
given by
Df = —(0)x;
f Z (0
201
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202 Local properties

This is just the linear part of the Taylor expansion at p. Note that the coordinates =1, ..., x,
give a basis for the dual space (k)" = Homy (k", k). Hence we may view D f as a linear
functional on k", and in this way we get a k-linear map

D:9Mm— (k™).

It is clear that D is surjective, since D(x;) = x;. A polynomial f lies in kernel of D precisely
when all terms are of degree at least two, or phrased differently, the kernel of D equals 9t2.
Hence D induces an isomorphism of k-vector spaces

M/M? ~ (k™).

Returning to the variety X and the tangent space 1,,.X, we take the dual of the inclusion
T,X < k", to obtain a surjection

(") = (T,X)".
Concretely, this map is given by restricting a linear functional on £" to the subspace 7, X.
The composition
0 :m/Mm* — (k)Y — (T,X)"
is also surjective.

We claim that Ker § = M? + I. Indeed, note that f € Ker 6 if and only if D f restricts
to 0 on 7, X . This happens if and only if D f = Dg for some g € I (since T}, X is the zero
locus of Dg for all g € I); that is, if and only if f — g € Ker D = 9M?, or equivalently,
fem?+1.

It follows that we have isomorphisms of k-vector spaces

(T,X)" ~ M/(M? + 1) ~ m/m*. (13.3)

where m < Oy, is the maximal ideal. Taking duals, we now have:

Proposition 13.2. There is a natural isomorphism

T,X ~ Homy(m/m? k). (13.4)

Tangent spaces in general

Taking Proposition 13.2 as motivation, we make the following definition of tangent spaces of
general schemes.

Definition 13.3. Let X be a scheme and let p € X be a point.

(i) The cotangent space is defined the k(p)-vector space m,,/m>, where m,,
is the maximal ideal in the local ring Ox ,,.
(ii) The tangent space is defined as the dual k(p)-vector space

T,X = Homy, (mp/mfﬂ k(p))

The cotangent space is functorial in the following sense. Let f: X — Y be a morphism
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13.1 Tangent spaces 203

and let y = f(z). The map of local rings f*: Oy, — Ox_, takes the maximal ideal into
the maximal ideal, and being a ring map, it sends mi into m2. Therefore it induces a map of
k(y)-vector spaces

fﬁ: my/mi — m,/m>.
Moreover, for each morphism g which is composable with f one has

since (g o f)f = ffo gt

The map fﬁ is, however, just a map of k(y)-vector spaces. In general, there is no way to
make m,,/ mi a k(x)-vector space, and for this reason the tangent spaces are not functorial in
general; the required duals will be with respect to different fields.

One exception is when X and Y are varieties over some field k£, and = and y both are
k-points. Then k(x) = k(y) = k, and we are permitted to take duals to get a map

df : T, X - T,Y.
Once the tangent maps are defined, they behave functorially:

d(go f)e = dgy o dfe

when g: Y — Z is a map of k-schemes and x is a k-point.!

Zariski tangent spaces and the ring of dual numbers

When X is a scheme over a field k, there is an interesting relation between the Zariski tangent
space at k-points and the ring k[€]/(¢?). This ring is called the ring of dual numbers over k,
which is often written k[e], tacitly understanding that €2 = 0 in this ring. The spectrum of
k[€] is a very simple scheme: its underlying topological space is a single point. However, the
non-reduced structure on Spec k€] shows that it is more interesting than Spec k. We picture
it as a point € with a vector ‘sticking out of it’.

Proposition 13.4. Let X be a scheme over k. To give a k-morphism Spec(k[¢]) —
X is equivalent to giving a k-rational point z € X (k), and an element of 7, X .

Before proving the proposition, let us mention that there are other interesting tiny algebras
related to k[e|. If V' any vector space over k, one may form the ‘infinitesimal’ k-algebra
Dy = k@ V where V is as a maximal ideal with square zero; that is, the multiplication is
(@ +w) - (b+wv) = ab+ (aw + bv). The important property of Dy is that k-algebra maps
Dy, — k€] correspond bijectively to linear functionals on V'; in other words, there is an
isomorphism

I‘IOI’IINg)c (Dv, ]f[ﬁ]) >~ Homk(V, k)
Indeed, if : Dy — k[e] is given, the restriction «|y is k-linear and takes values in (¢) = k.

1 Note that this only works if dimy,(,) TyY is finite; this subtle point is another reason why the cotangent space
m/m? is preferable to the tangent space.
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For the inverse map, if a.: V' — k is a given functional, the assignment a + v — a + a(v)e
defines a k-algebra map.

Proof of Proposition 13.4  Fix a k-point p € X (k). Every map Spec k[e] — X that sends
the point (¢€) to p, must factor through each open affine neighbourhood of p, and so we
may well assume that X is affine, say X = Spec A. Let m = m,. A homomorphism
a: A — k[e] corresponds to a morphism Spec k[e] — X that sends (€) to p, precisely
when the diagram

A — k[q]
|

commutes (where A — k and k[e] — k are the quotient maps associated to m, and €
respectively). Such maps « factor in a unique manner through the canonical map A — A/m?
(since a(m) < (e€) and € = 0). Now, the reduction map A/m? — A/m = k splits
as an algebra homomorphism, the structure map k& — A/m? being a section, and A/m?
decomposes as an k-algebra into A/m? = k @ (m/m?); in other words, A/m* = D, /2 in
the terminology above. It follows that we have our desired isomorphism

Hompg, (A, k[€]) ~ Hompg, (A/m? k[e]) ~ Homy(m/m?, k).
I

Exercise 13.1.1. Let V and W be two vector spaces over k. Show that there is a functorial
isomorphism Homag, (Dv, Dy ) ~ Hom,(V, W).

13.2 Normal schemes

Recall that an integral domain A is said to be normal if it is integrally closed in its fraction
field K = k(A). In other words, any element z € K which satisfies a monic equation with
coefficients in A, is already contained in A. Here are a few examples of normal rings:

Example 13.5. Any UFD is normal (e.g., Z, Z[x1, . . ., T,]).
To see this, take any element u/ v € K. If there is a monic relation of the form

(w/v)" + a1 (u/v)" 4+ ag =0 (13.5)

with the a; € A, then multiplying by v™ shows that v divides u". But then if we assume that
u have no common factors, we must have u = a - v for some a € A, hence u/v € A.

Example 13.6. If A is normal, then so is A[x].
Example 13.7. Any localization S~ A of a normal integral domain A is normal.

The last part has a converse: An integral comain A is normal if and only if A, is normal
for all prime ideals p, if and only if A, is normal for all maximal ideals m.

Motivated by all the desirable algebraic properties of normal rings, we make the following
definition:
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13.2 Normal schemes 205

Definition 13.8. Let X be a scheme. We say that X is normal if for each point x € X,
the local ring Ox , is an integrally closed integral domain.

The primary example of a normal scheme is X = Spec A, where A is a normal integral
domain. Note however, that in the definition of a normal scheme we do not make the
assumption that X is integral. However, if x € X, the local ring O ,, is an integral domain,
and normality implies that there is a unique irreducible component X; of X containing =,
and X;, with its induced scheme structure is integral. In any case, any normal scheme is
reduced.

Example 13.9. A7 and [P}, are normal schemes, because the local rings is isomorphic to
Z[x1, ... Tp](ay,...,x,) Which is a localization of an UFD, hence normal.

Althogh it is not obvious from the definition, the notion of normality is related to regularity.
This is because of the algebraic fact that local regular rings are unique factorization domains
?, hence they are normal (Example 13.5). From this we conclude:

Proposition 13.10. Any regular scheme is normal.

Example 13.11. More generally, a scheme which is locally factorial (meaning that all stalks
Ox , are UFD’s), is also normal.

We will see an example below of a normal scheme which is non-regular. While normal
schemes are more general than regular schemes, they still have several nice properties. For
instance, if X is a normal variety, then:

(i) The singular locus of X has codimension at least 2 in X (Theorem 13.22);
(i1) Any finite birational morphism Y — X is an isomorphism (Proposition 13.27);
(iii) Any rational function defined outside a closed set of codimension at least 2,
extends to a regular function on all of X (Theorem 13.19).

Normalization

In this section, we will construct the normalization of a scheme. This produces a normal
scheme X together with a dominant morphism 7 : X — X . We construct the normalization
X because has better properties than X, e.g., X typically has a smaller singular locus than
X. When X is a variety, the normalization morphism 7 is birational, so X can be viewed as
a sort of ‘mild resolution of singularities’ of X. In fact, when X is a curve, being normal is
the same as being regular, so X is indeed the desingularization of X (cf. XXX).
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Theorem 13.12 (Normalization). For an integral scheme X, there is a normal
scheme X, and a morphism 7m: X — X satisfying the following universal property:
For any dominant morphism h: Y — X from a normal scheme Z, there is a unique
morphism A: Z — X such that h = 7 o h.

Proof If X = Spec A is affine, define X = Spec A where A 2 A is the integral closure
of Ain K = k(X), and mx : Spec B — Spec A is the morphism induced by the inclusion.
Note that the scheme X is normal, because all the local rings are given by localizations B,

which are normal in k(A) = K by assumption. Moreover, Y (X) is integral, because A is
an integral domain.

Next we verify the universal property. Let h : Z — X be a dominant morphism from
an integral normal scheme Z. This means that the map h* : A — Oz(Z) is injective. As
Oy(Z) is normal, the ring map A — O (Z) factors via Aas A — A — Oy(Z). Hence h
factors via Y (X), and we are done.

Now suppose X is a general integral scheme. For an affine subset U = Spec A < X, we
set Y(U) = Spec A and check that the collection of morphisms 7y : Y (U) — U satisfy
the conditions of Proposition 24.1, so that they glue to a morphism 7x : Y (X) — X.

If U,V are two affines with V' < U, we can consider the open subscheme W =
7, (V) < Y(V). By assumption, this scheme is affine (since 7 is an affine morphism),
integral and normal, being an open set in Y (U). Note that

Ow(W) = [ Ovw)s-

peW

The intersection takes place inside K = k(W) = Ek(X). As the local rings Oy ),
are integrally closed, we see that Oy, (W) is normal. By Exercise 13.5.1, we see that
Ow (W) coincides with the integral closure of V' in K. In other words, Y (V) is canonically
identified with 7r;;' (V) = Y/(U) xy V. Finally, if W < V < U are three affines, the map
Y (W) — Y (U) clearly factors via Y (V).

Finally, we prove that the scheme X and mx : X — X satisfy the universal property. So
let h : Z — X be a dominant morphism from a normal integral scheme Z. Over each U,,
we have an induced morphism h~*(U;) — U;, which by the universal property over the U;
must factor uniquely via U; via g; : h=*(U;) — U;. Again the uniqueness in the universal
property tells us that these maps must agree over the overlaps h~*(U,;). Since the h=*(U;)
form an open cover of Z, these maps glue to amap g : Z — X factoring h. O
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Proposition 13.13. For a Noetherian integral scheme X, the normalization X has
the following properties:
() m: X — X is surjective;
(ii) X and X have the same dimension;
(iii) There is a dense open subset U < X so that 7 restricted to 71 (U) is
an isomorphism;
(iv) If X is of finite type over a field or over Z, then 7: X — X is a finite
morphism.

Proof All of these properties are ‘local on X’. Thus by the gluing construction used in
the construction of X, we reduce to X = Spec A and X = Spec A and 7 is induced by
the inclusion A < A. Here the points (i)—(iv) follow from basic properties of integral ring
extensions. For instance, both statements (i) and (ii) follow from the Going-Up theorem.

The statement (iii) holds true because by construction, X and X have the same fraction
field K, and 7 maps the generic point 7 = Spec K of X maps to the generic point of X .

Finally, the statement (iv) follows from Theorem A.18, which tell us that with our assump-
tions, A is finite as an A-module.

O

Corollary 13.14 (Being normal is a generic property). Let X be a Noetherian
integral scheme. Then there is a non-empty open subscheme U — X which is normal.

13.2.1 Examples

Example 13.15 (Cuspidal cubic). Let k be a field, and let X = Spec A where A =
klz,y]/(y* — x3). This is the cuspidal cubic curve in AZ.

There is an isomorphism of k-algebras A — k[t? 3] given by sending = — t* and

y — t3. It is clear that k[t?,¢?] is an integral domain with fraction field K = k(¢). On
the other hand this ring is visibly not normal, as t ¢ k[ti,t?’] but yet it satisfies the monic

equation 7% — t* = 0. The normalization of A equals A = k[t]. The inclusion A < A

induces the normalization morphism 7 : A} — X, and this is an isomorphism over the open
set D(t) < A}.

Example 13.16 (Nodal cubic). Letnow X = Spec A with A being the ring A = k[z, y]/(y*—
3 — x2), where k now is a field whose characteristic is not two (if the characteristic is two,
we are back in previous cuspidal case). This is the nodal cubic curve in A . Here it is a little
bit tricker to find the normalization, but it helps to think about it geometrically.

If we think of the corresponding affine variety { (z,y) | y* = 2> + 2* } < A%(k), we see
that the origin (0, 0) is a special point: a line [ < AZ through the closed point (0,0) € X
(with equation y = tz) will intersect X at (0, 0) and at one more point (with z = t* — 1),
and this gives a parameterization of the curve, which is generically one-to-one.

Back in the scheme world, we imitate this by introducing the parameter ¢ = yx~! in
the function field K of X, the equation > = 3 — 22 then reduces to t> = 1 + x after

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

208 Local properties

Spec k[t] Spec k[z,y]/(y* — 2 — x?)

being divided by 2. Moreover, the element ¢ is integral, since it satisfies the monic equation
T? — z — 1 = 0 (which has coefficients in A). Sincex =t* —landy = z - y/ov = t3 — t,
we see that

A=k[t? —1,t* —t] c k[t] € K = k(t),

and since k[t] is integrally closed, any element in & which is integral over A, can be written
as a polynomial in t. So A = k[t] is the integral closure of A in k(¢). The normalization
map 7 : Spec A — Spec A is an isomorphism outside the origin (0, 0) € X . Geometrically
the map 7 identifies two points (¢ + 1) and (¢ — 1) in A}, to the origin in X.

Example 13.17 (The quadratic cone). Consider the affine scheme X = Spec A where
A = C|z,y, z]/(xy — 2z?). Note that this is not a factorial scheme as zy = 2 and one easily
checks that z, y and z all are irreducible elements, so we cannot immediately conclude that
A is normal. However, there is an isomorphism of rings

¢: A — C[u?,uv, v?],

and the latter algebra is normal in C(u?, uv, v?). Indeed, note that if T = p/q € C(u?, uv, v?)
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13.3 Normality and rational functions 209

satisfies a monic equation with coefficients in C[u?, uv, v?], then T € C[u, v] is a polyno-
mial (as C[u, v] is integrally closed). Therefore, T' € C[u?, uv, v?].

For another proof, see Exercise 13.2.1.

Example 13.18. In general, the normalization map of a scheme 7 : X — X needs not be
finite in the sense of Definition 8.20 on page 122. The first examples of Noetherian integral
domains A whose integral closure is not finite over A were found by Yasuo Akizuki and
Friedrich Karl Schmidt in the 1930s.

Exercise 13.2.1. Prove directly that A = C[z,y, z]/(2* — zy) is normal as follows. Let
B = C[x,y], so that A = B[z]/(2? — zy).
a) Show that A is a finite B-module of rank 2, with basis 1, z.
b) Show that K(B) = C(x,y) and the field extension K (B) c K(B) has
degree 2.
¢) Show that w = u + vz € A satisfies the monic polynomial

T? —2uT + (u® — zyv?) = 0.

d) Show that if w is integral over B, then u € C[z, y|; xyv* € C[x, y] and hence
v € C[z,y]. Conclude that w € A.

13.3 Normality and rational functions

Theorem 13.19 (“Algebraic Hartogs’s theorem™). Let X be a Noetherian normal
scheme, and let U < X be an open subset with codimx (X — U) > 2. Then the
restriction map

Ox(X) — Ox(U) (13.6)

is an isomorphism.

In other words, every regular function f € Ox (U) on U extends uniquely to all of X.

Proof We begin by proving the theorem for the case when X is affine, say X = Spec A4,
where A is a normal integral domain. If we view Ox (X) = A and Ox (U) as subrings of
the function field k(X), the restriction map (13.6) is simply an inclusion A = Ox (U). As
X — U is assumed to be of codimension at least 2, U contains all points x corresponding
to prime ideals p of height 1. This means that Ox (U) < Ox, = A, for every such p.
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210 Local properties
Therefore, by Proposition XXX, we conclude that

Ox(U)< ) 4, =4
ht p=1

Next, suppose X is a general Noetherian normal scheme, and let {U,} be an affine cover of
X. Consider the diagram

0 — Ox(X) —— [[,Ox(Ui)) ——— [,, Ox(U; n Uy)

! | !

0 —— Ox(U) E— Hle(UzﬂU) E— Hi’jOX(UimUij)

By the affine case, the middle vertical arrows are isomorphisms. Therefore, by a diagram
chase, we would be able to say that the left-most vertical map is an isomorphism if the
right-most map is. The issue is that the intersections U;; = U; n U; need not be affine.
Nevertheless, fix ¢ and j and let U;;;, be a covering of U;; consisting of affine open sets which
are distinguished in both U; and U. Again, by the affine case, we get that the restriction map

Ou.;. Uijr) = Op,;, Uiy A U)

1,

is an isomorphism. Moreover, in this case, the intersections U;;, N U, - are now affine,
so by the diagram above applied to X = U,; and the covering U,;;, we conclude that
Ox(U;j) = Ox(U;; n U) is an isomorphism, and we are done. O

Example 13.20. The assumption that the codimension is at least 2 can not be removed: For
the open set D(t) < A}, we have Oy1 (D(t)) = k[t,t~"] whereas Oy1 = k[t].

By the way, the Proposition gives another way to see the why Oy (U) = k[u, v] for the
open set U = A? — V(u,v) in A} (Example XXX).

There is a converse to this result, known as Serre’s Criterion. It gives a more geometric
characterisation of the property of ‘normality’ (which is fundamentally an algebraic notion).

Theorem 13.21 (Serre’s Criterion). Let X be a Noetherian integral scheme. Then
X is normal if and only
(i) The set of singular points, sing(X ), has codimension at least 2 in X.
(i) Whenever U < X is an open set whose complement has codimension at
least 2, the restriction map (13.6) is an isomorphism.

In particular, we get:

Corollary 13.22. If X is a normal variety, then the singular set sing(X ') has codi-
mension at least 2.

Example 13.23 (Curves). A curve X is normal if and only it is regular.

Example 13.24 (Hypersurfaces). Let X be a regular variety and let Y < X be a hypersurface
defined by f € Ox(X). Then the condition (ii) in Theorem 13.21 is automatically satisfied
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13.4 Normality and finite birational morphisms 211

(this is a non-trivial fact; see ?). Thus Y is normal if and only if sing(X') has codimension at
least 2.

We have seen several examples of non-normal schemes which do not satisfy condition (i)
of Serre’s criterion. Here is one where the second condition fails:

Example 13.25. Let X be the scheme obtained by gluing together two copies of A? at the
origin (see Example 24.12 on page 405). Then X is an integral scheme of dimension 2,
and the singular locus consists of a single point p. However, consider now the complement
U = X —p, which consists of two disjoint copies of A7 —p. The regular function f € Ox (U)
which takes the value 0 on one component and 1 on the other clearly does not extend to all of
X.

See Exercise 13.5.3 for another example.

13.4 Normality and finite birational morphisms

Birational morphisms f : Y — X are isomorphisms over an open set, but they need not be
global isomorphisms. For instance, when f is the blow-up of A} at a point, there is a whole
IP;. which is collapsed to a point. But what if we in addition assume that f is finite - is f an
isomorphism then? In general, the anwer is no; here is a counterexample.

Example 13.26. Consider

[ Specklz,y]/(y* — 2*) — k[z]

given by Example XXX. The map is a homeomorphism and birational, but not an isomorphism
in a neighborhood of the origin. Even worse, the map

f + Specklz,yl/(y* — 2° — 27) — k[]
of Example XXX is not even bijective.

This type of phenomenon does not occur if the target is a normal scheme. The exam-
ples above are not normal schemes, and the failure of being an isomorphism is entirely
concentrated at the singular point at the origin.

Proposition 13.27. Let X and Y be integral schemes, and let f : Y — X be a finite,
birational morphism. If X is normal, then f is an isomorphism.

Proof Since the property of being an isomorphism is local on the target, and finite mor-
phisms are affine, we may reduce to the case where both X and Y are affine, say X = Spec A
and Y = Spec B, and f is induced by aringmap ¢ : A — B.

As f is a finite morphism, the map ¢ makes B into a finite A-module. In addition, if f is
birational, ¢ induces an isomorphism of the function fields ¢ : K(A) — K (B). Therefore,
since A is integrally closed, the map ¢ : A — B must be an isomorphism, being finite hence
integral. Therefore, f is an isomorphism of schemes. O
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13.5 Exercises

Exercise 13.5.1. Let A be an integral domain with fraction field K. Let z € K be an element.
Show that the following are equivalent:

a) x is integral over A

b) Alz] is a finite A-module

c¢) There exists a subalgebra A’ © A such that x € A’ and R is a finite A’-module.

Exercise 13.5.2 (The cone over a rational quartic curve). Consider X = Spec A, where A
is the C-algebra

A = C[u*, v, uv®, v'] ~ Clto, t1, ts, ta]/(tots — tits, t5 — tots, ts — t113).

a) Show that X is a variety of dimension 2.
b) Show that X is non-singular outside the origin p = V (to, t1, t3,14).
¢) Show that
B _ 8
to t4
defines a regular function on X — p, but it does not extend to all of X. Conclude
that X satisfies (i) but not (ii) of Serre’s criterion.
d) Show that the ideal (%) is not principal in A. HINT: A primary decomposition
of (to) is given by
(to) = (to, £1) N (to, ta)
Exercise 13.5.3. Consider X = Spec A, where A is the C-algebra
A =C[s*, s%, st t'] ~ Clw,y, 2, w]/(zw — yz,y* — 2°2,2° — yw?).

a) Show that X is a variety of dimension 2.
b) Show that X is non-singular outside the origin p = V (z,y, z, w).
¢) Show that

defines a regular function on X — p, but it does not extend to all of X.
d) Conclude that X satisfies (i) but not (ii) of Serre’s criterion.

Exercise 13.5.4. Show that the normalization of the scheme X = Spec Z[6i] is given by
Spec Z[i].

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

14

Sheaves of Modules

In this section we develop the theory of sheaves in greater detail. For a scheme X, the
category of sheaves on X is a particularly nice category which behaves very much like the
category of modules over a ring. One is able to form kernels, cokernels and images of maps,
direct sums and products of sheaves and there is the the notion of exact sequences. In short,
the category AbShy of sheaves on X is an abelian category with arbitrary products and direct
sums.

Kernels

For a map of sheaves ¢: F — G, we define its kernel as follows:

Definition 14.1. The kernel Ker ¢ of ¢ is the subsheaf of F defined by
(Ker 6)(U) = Ker gy

for each open U < X. In other words, (Ker ¢)(U) consists of the sections in F(U)
that map to zero under ¢ : F(U) — G(U).

The kernel is clearly a presheaf, because ¢y (s|y) = ¢y (s)|v for any section s € F(U)
and any open V' < U (the diagram (3.3) commutes).

We check the two sheaf axioms. The Locality axiom for Ker ¢ is inherited from the
Locality axiom for . For the Gluing axiom, suppose we are given a cover {U;} of an open
set U and sections s; € (Ker ¢)(U;) that agree on the overlaps. One may glue together
the s;’s to a section s of F over U, and one has ¢(s)|y, = ¢(s|v,) = ¢#(s;) = 0. By the
Locality axiom for G, it then follows that ¢(s) = 0, and hence s € (Ker ¢)(U).

Lemma 14.2. For each point z € X, one has (Ker ¢), = Ker ¢,.

Proof The inclusion (Ker ¢), < Ker ¢, is clear. Conversely, an element in Ker ¢, is
the germ s, of a section s of F over some open neighbourhood U of z, such that the
germ ¢y (), of ¢y (s) equals zero. This means that for some open V' < U it holds that
¢u(s)|v = 0. Hence s|y € (Ker ¢)(V), and therefore s, € (Ker ¢),.. O

A map of sheaves ¢p: F — G is said to be injective if Ker ¢ = 0; this is equivalent to
¢u being injective for each open U'. In light of the previous lemma, it is also equivalent to
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214 Sheaves of Modules

the condition that Ker ¢, = 0 for all x; that is, all stalk maps ¢, are injective. One often
expresses this by saying that ‘¢ is injective on stalks’.

Images

Defining the image of a map ¢: F — G between sheaves is more subtle than defining the
kernel. It might be tempting to define Im ¢ over an open set U by

tis (0) = {ou(s) £ 6(0) | s = 7O . (14.1)

but this will in general not be a sheaf. It is however a presheaf, as ¢ is compatible with
restrictions. Gluing sections of the form ¢y, (s;) for a cover {U;} of U can be done inside
G(U), but for the result to lie in Im ¢(U), one must make sure that the s;’s come from an
element s in F (U ). However, unless ¢ is injective, there is no reason to expect that the s;’s
should agree on the intersections U; N U;. Here is a concrete example where this fails:

Example 14.3. Let Z be the closed subscheme given by the ‘z-axis’ in AZ. Thatis, Z =
Spec k[z] inside A7 = Spec k[z,y]. Lett: Z — A2 denote the inclusion, and consider the
associated map of sheaves

RE OA% — 1,04.

We claim that the naive image presheaf G given by G(W) = Im (¢ (W)) is not a sheaf. To
see why, let U = D(z) and V = D(y). For these open sets, we have U n Z = Z — V()
and V n Z = . Over these open sets, the map 3" is given by

it Ou2(U) = k[z,yl. — Oz(c71U) = k[z].

i (V) = k[z,yle — O2(7'V) =0

it v Op(UnV) =Ek[2,yley — Oz(7'UNV)=0.
ity Op(UuV)=Eklz,y] — Oz (U UV)) = k[z]..

Here we have used Example XXX for Q2 (U U V') = k[, y]. Now note that the elements
71 € G(U) and 0 € G(V) both restrict to 0 in G(U n V') = 0. However, they do not glue

together to a section over U U V, because there is no element of [z, y] that maps to ™! in

To define the image sheaf, we need to add in all sections that can be obtained by gluing
together local sections of the form ¢y, (s;) as above. In other words, we take the sections of
Q(U) which are ‘locally images of ¢’. This will then be a subsheaf of G; it is the smallest
subsheaf of G containing the images of ¢. For a later applications, we allow F to be simply a
presheaf.

Definition 14.4. For a map of presheaves ¢: F — G, where G is a sheaf, we define
the image sheaf Im ¢ by

there is a cover U; of U and sections}

(Im¢)(U) = {t €g(U) ‘ s; € F(U;) such that t|y, = ¢(s;)
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This is a presheaf because ¢ is compatible with restrictions (the diagram (3.3) commutes).
The Locality axiom holds for free because G is a sheaf. As for the Gluing axiom, suppose
we are given an open cover {U;} of an open set U and sections ¢; € (Im ¢)(U;) that agree
on the overlaps. Since G is a sheaf, the ¢;’s glue together to a section ¢t € G(U ), and t is by
construction locally an image because each ; is.

Unlike the situation for kernels, (Im ¢)(U) is not always equal to Im ¢y (see Exam-
ple 14.3). In general, all we can say is that Im ¢y < (Im ¢)(U) (any section of the form
t = ¢(s) clearly lies in Im ¢). But in the particular case of injective maps, i.e. when each
map ¢y is injective, the sheaf Im ¢ coincides with the naive presheaf as in (14.1), and we
have:

Lemma 14.5. If ¢ : F — G is injective, then taking the image commutes with taking
sections; that is, (Im ¢)(U) = Im ¢y forall U.

The situation for stalks is better: in general forming images commutes with forming stalks.

Lemma 14.6. For each x € X we have (Im ¢), = Im ¢,.

Proof Lett, € Im ¢, and pick an s, € F, with ¢,(s,) = t,. We may extend these germs
to sections s and ¢ over some open neighbourhood V/, so that ¢y (s) = ¢, and ¢ is a section of
Im ¢ over V. This shows that Im ¢, < (Im ¢),. Conversely, if ¢ is a section of Im ¢ over
an open U containing x, the restriction ¢|y- lies in Im ¢y, for some smaller neighbourhood V'
of x; hence the germ ¢, lies in Im ¢,,. O

A map of sheaves ¢: F — G is said to be surjective if the image sheaf Im ¢ equals G.
By the lemma below, this is equivalent to all the stalk maps ¢, being surjective (one says that
‘¢ is surjective on stalks’). However, we underline that this does not imply that the maps ¢
are surjective for every open U.

Lemma 14.7. Two subsheaves H, G of a sheaf F are equal if and only if H, = G,
(as subgroups of F,) forall x € X.

Proof Only the ’if-part’ needs an argument, so let U < X be open and let s € G(U)
be a section all whose germs s, lie in H,. Extend each s, to a section of H over some
neighbourhood U, of x; these extensions coincide on intersections U, n U, and hence
they patch together to a section in H (U ), which by the Locality axiom equals s. This shows
that H < G as subsheaves of F, and the same argument with G and H switched gives

H=0G. O

In the special case when X is affine, and F and G are of ‘tilde-type’, we have the following:
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Proposition 14.8. If X = Spec A is an affine scheme, and M and N are A-modules,
then the following are equivalent:
) ¢: M — Nis surjective (resp. injective)
(i) ¢, : M, — N, is surjective (resp. injective) for every p € Spec A.
(iii) ¢x : M — N is surjective (resp. injective).

Example 14.9. The map /* : Op2 — 1407 of Example 14.3 is surjective, as a map of
sheaves, even though it is not surjective over every open set. To see this, note that A2 is
covered by the two opens U = D(z) and U’ = D(z — 1). We already showed that Lu;j is
surjective, as this is given by the quotient map k[z, y], — k[z],. By Example 14.8, /2 is
surjective for all p € U. A similar argument applies to U’, where the map ng, is given by

Ot = Hla,ylas = 02 '0") = Kol

For amap ¢ : F — G to be an isomorphism, the situation is better:

Proposition 14.10. Let ¢: F — G be a map of sheaves. Then the following four
conditions are equivalent.
(i) The map ¢ is an isomorphism;
(ii) Forevery x € X, the map on stalks ¢,.: F, — G, is an isomorphism;
(iii) One has Ker ¢ = 0 and Im ¢ = G;
(iv) For all open subsets U — X the map on sections ¢ : F(U) — G(U)
is an isomorphism.

Proof (i) = (ii). This implication is clear.

(ii) = (iii). Ker ¢ = 0 follows by Lemma 14.2 and Im ¢ = G follows by Lemma 14.6
and (14.7).

(iii) = (@iv). As Ker ¢ = 0, it follows that ¢ is injective, in which case taking images
commutes with taking sections (Lemma 14.5), and so we have Im ¢y = (Im ¢)(U). But by
assumption, Im ¢ = G, so we are done.

(iv) = (iii). If ¢y is an isomorphism for every U, the inverse maps 1y = gZ)El gives an
inverse ¢ : G — F. O

Exercise 14.0.1. Fill in the details of the proof of Lemma 14.5.

14.1 Exact sequences

Exact sequences are essential in the study of modules over a ring. There is an analogous
notion of exactness for sequences of sheaves, which very much resembles the definition for
modules.

A sequence of maps of sheaves

F-*s¢-Yyxn (14.2)

is said to be exact if Im ¢ = Ker ) (as subsheaves of G).
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14.1 Exact sequences 217

A short exact sequence is an exact sequence of the form

0 F-2,¢- Y n 0 (14.3)

where we have exactness at all stages. This is just a convenient way of simultaneously saying
that ¢ is injective, that ¢ is surjective and that Im ¢ = Ker 1.

Exactness for a sequence of sheaves is a purely local condition; the sequence (14.2) is
exact if and only if for each x € X the sequence induced on stalks

[ Yo
Fo =0 — Ha (14.4)

is exact. This follows from Lemma 14.7 applied to Ker ¢» and Im ¢.
The following proposition will be very important:

Proposition 14.11 (Taking sections is left exact). Given a short exact sequence as
in (14.3). Then for each open subset U < X, the sequence

0 — F(U) -2 g(U) 2% HU)

is exact.

Proof As ¢ is injective, we have that ¢y is injective, and also that (Im ¢)(U) = Im ¢ by
Lemma 14.5. By definition, we have Ker ¢y = (Ker ¢)(U). Combining these, we find

(Im ¢)(U) = Im ¢y = Ker vy = (Ker ) (U),
and hence the above sequence is exact. O

One way of phrasing Proposition 14.11 is to say that taking sections over an open set U
is a left exact functor. This functor, however, is not exact in general. The defect of lacking
surjectivity is a fundamental problem in every part of mathematics where sheaf theory is used,
and to cope with it one has developed cohomology. (We will explore this in Chapter 17.)

Example 14.12. Consider the two points p = (0 : 1) and ¢ = (1 : 0) in P} and let
L : Z — P}, be the closed embedding given by their union. Let Z be the kernel of the map
e Op — 1,Oy. 1 fits into the following sequence

#

0 I Opr —— 1,07 — 0. (14.5)

We first claim that this sequence is exact, i.e., that s surjective. For this, it suffices to check
that the map is surjective locally. If Uy = P;. — p ~ Spec k[s], then (¢,O02)(U) = k[s]/s
and the map (*(U) is given by the quotient map k[s] — k[s]/s, which is surjective. A
similar argument shows that ¢* is surjective over U; = P} — ¢. Hence the sequence (14.5) is
exact.

Evaluating (14.5) on global sections, we get I'(P*, O]pi) = k by Proposition 7.1 and
1:0z(P}) = Oz(Z) = k @ k and the sequence becomes

0 —— I(Py,Z) —— k —— kD Ek,
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218 Sheaves of Modules

showing that the global evaluation map can not be surjective.

Example 14.13 (Sheaf version of the sheaf sequence). For each inclusion t: U — X of
an open subset U into a topological space X and each sheaf F on X there is a canonical
map F — 1, F|y. Over an open V' — X it simply given by the restriction map F (V') —
F(V n U). The fundamental sheaf sequence (3.2) on page 44 has a sheafy version involving
these ‘restriction maps’.

Given a finite open cover {U, };c; of X, there is an exact sequence of sheaves

0 — F — l_L. Li*f’Ui — ]-_[iyj Lij*f

Uij

where ¢;: U; — X denotes the inclusion map, where U;; = U; n U and 1;;: U;; — X
also denotes the inclusion. Indeed, over an open U < X, the corresponding sequence of
sections appears as

0— FU) — [ FUnU) — [[,, FU A Uy)

which being the fundamental sequence (3.2) for the cover {U n U;} of U is exact.

14.2 The sheaf associated to a presheaf

Essentially any construction for abelian groups, such as forming kernels, cokernels, tensor
products, direct sums etc. have analogues for sheaves. For these constructions, one typically
starts by writing down a naive presheaf and then proceeds to show that it satisfies the two
sheaf axioms. This works well in some cases (e.g., for the kernel sheaf in the previous
section), but in general, it can fail to be a sheaf (as for images). To obtain an actual sheaf,
we sometimes need to replace this naive presheaf with a sheaf which in some sense best
approximates it; in other words, as one says, we sheafify it. More precisely, to any presheaf
F, we shall build a sheaf 71 and a map of presheaves

H}‘:F—)F+

which is universal among maps from JF into a sheaf. The map kills the sections which are
‘locally zero’, that is, those whose stalks are all zero, and F* ‘enriches’ F by including the
results of all possible gluing processes.

The main properties of 7 and « » are summarised in the following proposition.
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14.2 The sheaf associated to a presheaf 219

Proposition 14.14. Given a presheaf F on X, there is a sheaf 7 and a natural
presheaf map kx: F — F T satisfying the following:

(1) Kz is functorial in F: a map of presheaves ¢p: F — G induces a map of
sheaves ¢*: F™ — G* such that ™ o kr = kg 0 ¢@;

(ii) xr enjoys the universal property that any map of presheaves F — G
where G is a sheaf, factors through % in a unique way. This property
characterizes F up to a unique isomorphism. In other words, if G is a
sheaf, there is a natural isomorphism

HomAbPrShX (-7:7 g) = Homth(]:+,g)7 (14.6)

where on the left hand side G is considered as a presheaf;
(iii) k7 induces an isomorphism on stalks: F, ~ F." for every x € X.

We will now explain how to construct 7 and kx from F. If you find the construction
a bit daunting, don’t worry, we will never need the explicit construction again. All of the
arguments using F in this book use only the three properties in the Proposition 14.14. This
is a good illustration of the slogan: “ask not what the thing is, but what it does”.

The construction uses the so-called Godement sheaf TI(F) associated with F. For a
presheaf F, the sections of this sheaf is defined by

I(F)U) = [ [ Fo = { (ta)acr | ta € Fu }. (14.7)

zeU

In other words, the sections are sequences (t, ),cy of arbitrary germs’ at the various points
x in U. The restriction maps are the projections: (¢;)zev|v = (tz)zev for open subsets
V < U. The first thing to check is that this indeed yields a sheaf:

Lemma 14.15. TI(F) is a sheaf.

Proof Locality holds: if {U,} is an open cover of U, and s = (s, ).ep is a section of IT1(F)
over U such that 5|y, = 0 for each ¢, then s, = 0 for every z € U,. Hence, if t|y;, = O for
all 7, it follows that ¢ = 0.

Gluing holds: Suppose we are given an open cover {U;} of U and sections t; = (t%.) e,
of II(F) over U; matching on the intersections U; n U;. Saying that the sections agree over
the overlaps, means that the component of ¢; at a point @ € U; n U is the same as that of ¢;.
Hence we get a well-defined section ¢ € II(F)(U) by using this common component as the
component of ¢ at x. Itis clear that ¢|y, = ;. I

There is a canonical map
or: F—>II(F)

that sends a section s € F(U) to the sequence of all its germs; that is, to the element (s, ) etz
of the product in (14.7). This map kills the sections of F which are ‘locally zero’. Indeed, the
kernel consists exactly of the sections with all germs equal to zero.

1 The notation is not ideal: ¢,, is a germ at z, but at the same time, = serves as an index.
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The map oz depends functorially on F. For any map of presheaves ¢: F — G, we may
define I1(¢) : II(F) — II(G) over an open U as the appropriate product of all the stalk-maps
F. — G, with z € U. In other words, I1(¢)y sends (S,) e t0 (¢4 (S2))zer- There is thus
a commutative diagram of sheaves

F 27 I(F)
ﬂ l“(‘” (14.8)
G — 1(G).

It is not hard to check that II(id) = idn(r) and that II(+) o ¢) = TI(%)) o II(¢) for two
composable morphisms between presheaves on X, so that II is a functor from the category
of presheaves on X to the category of sheaves on X.

Definition 14.16. For a presheaf F on X, we define the sheaf associated to F, or
the shedafification of F, as the image sheaf F of the map o z: F — II(F). The map
kr: J — FTisjust ox, but considered to take values in F .

Explicitly, a section of 7 (U) is a sequence t = (. )zer of elements in the ¢, € F, that
locally come from sections of F, that is, there is an open cover {U;} and sections s; € F(U;)
so that (s;), = t, forz € U;.

Taking the associated sheaf is a functorial operation. To each map of presheaves ¢: F — G
there is a map of sheaves ¢ : F* — G that lives in the following commutative diagram:

F 5, Fh 11(F)
q{ l‘“ [ (14.9)
GG mn(g).

Indeed, a section of F* is a section of II(F) which locally comes from F; that is, it is of the
form o (s). But then I1(¢) (0 #(s)) locally comes from G as well, because I1(¢)(c#(s)) =
0g(¢(s)). Thus II(F) maps F* into G*, and we let ¢ be the restriction of II(¢) to F+.

Proof of Proposition 14.14  Assertion (i) has already been taken care of.

As for (ii), the main observation is that when G is a sheaf, kg is an isomorphism; indeed,
the Locality axiom then causes k¢ to be injective. On the other hand, Im kg is the smallest
subsheaf containing the ‘naive presheaf image’ of G, which equals G itself when G is a sheaf.
This means that ¢™ o /@51 provides the wanted factorization.

Finally, let us prove claim (iii), starting with the surjectivity. An element F,' is the germ ¢,
of a section t of F* over some open neighbourhood U of x. The section ¢ comes locally from
F, so its restrictions to the open sets belonging to some open cover {U; } of the neighbourhood
are of the form t|y, = k(s;) with s; € F(U;). Now z lies in one of the U;’s, and hence the
corresponding germ (s; ), maps to t,.. The injectivity follows since the kernel of  z consists
of sections with all germs vanishing, but tautologically, these vanish already in F,. O

Example 14.17. A presheaf F which is contained in a sheaf G is particularly easy to sheafify.
The sheafification 7 equals the image of the inclusion map F — G. The sections in F 1 (U)

Comments or corrections welcome: https://tinyurl.com/yc5y6dwp

This material has been / will be published by Cambridge University Press as Introduction to Schemes by Geir Ellingsrud & John Christian Ottem
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works.
© Geir Ellingsrud and John Christian Ottem 2015-2024


https://tinyurl.com/yc5y6dwp

14.2 The sheaf associated to a presheaf 221

are the sections in G(U) that locally lie in F; that is, sections s so that s|y;, € F(U;) for
some open cover {U;} of U.

Exercise 14.2.1. Prove that the sheafification is unique up to a unique isomorphism.

Cokernels and quotients

We follow the strategy outlined above and define cokernels and quotient sheaves using the
sheafification procedure.

For a map of sheaves ¢ : F — §, we define the cokernel Coker ¢ to be the sheaf
associated to the presheaf

(Coker'¢)(U) = G(U)/Im ¢(U).

For a subsheaf G — F of a sheaf G, the quotient sheaf F /G is the sheaf associated to the
presheaf

(F/9) (U) = F(U)/G(V).

In other words, F / @G is the cokernel of the inclusion map G — F.

Note that over an open set U, the cokernel presheaf is simply given by Coker ¢;. Com-
posing ¢ with the canonical map Coker’¢) — Coker ¢ we obtain a map G — Coker ¢. It
sits in the sequence

F 243G — Cokerp —— 0. (14.10)

Example 14.18. In the sequence (14.5) the subsheaf 7 < O]pk identifies with the sections
of Opll vanishing along the subscheme Z. By the uniqueness of the cokernel, we get an
isomorphism of sheaves O/Z ~ 1,O. Even in this example it is necessary to sheafify,
as the ‘naive’ quotient sheaf on global sections satisfies Op: (P')/Z(P') = k, whereas

Exercise 14.2.2. Show that the sequence (14.10) is exact. HINT: Show that it is exact on
stalks.

Exercise 14.2.3 (Universal properties). Let ¢ : F — G be a map of sheaves.

a) Show that Ker ¢ satisfies the following universal property: Any map of sheaves
v : H — F such that v o ¢ = 0 factors via a unique map 7 : H — Ker ¢.

b) Show that Im ¢ satisfies the following universal property: Given a map of
sheaves o : F — H and 3 : H — G such that 5 o a = ¢, there is a unique
morphism ¢ : H — Im ¢ factoring .

¢) Show that Coker ¢ satisfies the following universal property: Given a map
¥: G — H with ¢ o ¢ = 0, there is a unique map ¢ : Coker ¢ — H factoring
.

HINT: The arguments in each case are rather different. For b), use the explicit description of
Im ¢. For ¢), the universal property of sheafification may be helpful.
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14.3 Direct sums and products

The category of sheaves also has direct sums. For a finite collection F1, . . ., F,, of sheaves,
the presheaf given by

3
S
@D
B
|
P-=
=
s

i=1 i=1

is a sheaf. Indeed, restrictions are given componentwise and Locality holds because if
s =(S1,...,8,) € D,_, F;(U) restricts to 0 on a covering, then all s; = --- = 5, = 0
by locality for the F;’s. Likewise, given local sections matching on the overlaps, one can
glue componentwise.

This all works well for finitely many sheaves, but for a general collection of sheaves

{F:}ier one has to sheafify in order to define the direct sum. That is, we define ,_; F; to
be the sheaf associated to the presheaf
i
@F | (U)=PFQ). (14.11)
el =
For the collection F;, one can also form the direct product, denoted ]_L JF, which is defined
by
TUT]F | =]]F®O. (14.12)
el el

This is again a presheaf with componentwise restriction maps. It is not necessary to sheafify
[ [; F:; gluing can be done componentwise.

Example 14.19. Here is an example showing that it is necessary to sheafify in the definition
of the direct sum. Let X = ]_[:;1 Spec C be the disjoint union of countably many copies
of Spec C. The topology on X is the discrete topology. For each n € N, let ¢,,: p, =
Spec C — X be the open embedding of the n-th copy of Spec C and let F,, = ¢,,,C the
skyscraper sheaf at p,,.

We let F = @."_, F, and claim that F(X) # @, _, F(X). Note that the right hand
side is just the countable sum @fil C. On the other hand, X is covered by the open sets
U, = {p,} and the elements z,, = 1 € F,,(U,,) trivially agree on the (empty) intersection
U,, n U, for m # n. Therefore the x,,’s glue to an element = € F (X ), which, since all the
x,,’s are non-zero, can not lie in @@, F,,(X).

Summing up what we have done so far, the category AbSh x of sheaves on X is an abelian
category. It is an additive category and every map has a kernel, a cokernel and an image, and
every map « lives in an exact sequence

0 —— Kera F 250 Cokeraa —— 0

Exercise 14.3.1. Show that the direct product presheaf [ [._, F; defined above is a sheaf.

el

Exercise 14.3.2 (Universal properties of @ and [ [). Let {F;},c; be a collection of sheaves.
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14.4 Sheaves of modules 223

a) Show that the direct sum has canonical inclusions ¢;: F; — (—DZ Fi, which
have the following universal property: for any family of maps n;: F; — G
there is a unique map 7: @, F; — G such thatn; = no;.

b) Show that the direct product has canonical projections m;: [[, F; — F;
having the universal property dual to the direct sum: i.e. for any family of maps
€;: Fi — G there isamap n: F; — [ [, F; such that m; o = ;.

Exercise 14.3.3. Show that the direct sum can be defined as the image sheaf of the natural
map @,_; F; — |[,c; F: where the left-hand side is regarded as a presheaf. Hint: Use
Example 14.17 and the universal property of €P.

14.4 Sheaves of modules

A module over a ring is an additive abelian group equipped with a multiplicative action of the
ring. Loosely speaking, we can multiply elements of the module by elements from the ring.
In a similar way, if X is a scheme, an O x-module is a sheaf F whose sections over open
sets U can be multiplied by sections of Ox (U).

More formally, we define an O x-module as a sheaf F equipped with multiplication maps
F(U) x Ox(U) — F(U), one for each open subset U of X, making the group of sections
F(U) into a Ox (U)-module in a manner which is compatible with restriction maps. In other
words, for every pair of open subsets V' < U, the diagram below is required to commute

FU) x Ox(U) —— F(U)

l l (14.13)

F(V)x Ox(V) —— F(V).

Here vertical arrows represent restrictions maps and horizontal ones are multiplication maps.

A map of Ox-modules is simply a map of sheaves ac: F — G between O y-modules F
and G such that for each open U the map oy : F(U) — G(U) is a map of Ox (U )-modules.
The Ox-modules on a scheme X therefore form a category, which we denote by Modx . We
write Hom x (F, G), or sometimes Home,, (F, G) for the set of Ox-linear maps F — G.
Note that this is an abelian group.

Most of the constructions for modules over a ring now have analogues for O x-modules.

For instance, for a map of Ox-modules « : F — G, the kernel, image and cokernel of
«, as defined in Section XXX, have natural O x-modules structures. Here it is clear that the
image and cokernel presheaves have natural O y-module structures, and then Exercise 14.5.2
shows that also the associated sheaves are O x-modules.

If F and G are Ox-modules, the direct sum F @ G is also an O x-module in a natural
way, with multiplication being defined component-wise. The same is true for more general
direct sums ,_; F;.

For two O x-modules F and G, we can also define the tensor product F Qo G to be the
sheaf associated to the presheaf

TWU)=F{U)®oyw) G(U) (14.14)
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(Here it is necessary to sheafify; see Example XXX.) We will sometimes write simply F ® G
for this tensor product.
If F,G are Ox-modules, the presheaf given by Home,, (F|r, G|) over an open set
U < X is a sheaf, denoted by s#0ome, (F,G). This is also a Ox-module in a natural way.
For a morphism f : X — Y and an O x-module F, the pushfoward f,F is naturally an
Oy-module via the natural map f* : Oy — f,Ox. That is, for a section s € f,F (V) and
a€ Oy(V),wedefine a- s € f (V) tobe section f*(a) - s € F(f~'V).

Example 14.20 (Ideal sheaves). Ideal sheaves are important examples of O x-modules.
Formally, a sheaf Z is an ideal sheaf if Z(U) < Ox(U) and Z(U) is an ideal for each open
set U < X. For an ideal sheaf Z, the quotient sheaf Ox /Z associated to an ideal sheaf Z is
an O x-module.

The primary example is the following. Let ¢ : ¥ — X be a closed embedding, then the
kernel Z of the map f: Ox — 1,0y is an ideal sheaf of O, and there is an exact sequence

0—>I—>OX—>L*OY—>0

We also see that 1, Oy ~ Ox /T as Ox-modules.
See Example 14.12 for a more concrete example of an ideal sheaf.

Example 14.21. If F is a sheaf obtained by gluing together sheaves F; defined on a cover
U = {U;}, and each F; is an Op,-module, then F is an O x-module.

Example 14.22. Write P! for the projective line over a field k, and consider the sheaves
Ox(n) from Section 7.7. That is, Op:(n) is the sheaf obtained by gluing Oy, to Oy,
using the isomorphism Oy, |, ~v, — Ov,lvynv, 0n Uy N Uy = Spec k[u, u™!] given by
multiplication by u™. Then Op: (n) is an Opi1-module. The map ¢ : Opi(—1) — Op1 is a
map of Op:-modules, and the image of ¢ is an ideal sheaf of Op:.

Example 14.23 (Modules on spectra of DVR’s). Modules on the prime spectrum of a discrete
valuation ring R are particularly easy to describe. Recall that the scheme X = Spec R has
only two non-empty open sets: the whole space X itself and the {n} consisting of the generic
point. The singleton {7} is the underlying set of the open subscheme Spec K, where K
denotes the fraction field of .

We claim that giving an O x-module is equivalent to giving an R-module M, a K-vector
space N and an R-module homomorphism p: M — N.

Indeed, given an O x-module F, we get the R-modules M = F(X) and N = F({n}),
and the latter is a vector space over K = Ox({n}). The homomorphism p is just the
restriction map F(X) — F({n}). Conversely, given the data M, N and amap p: F(X) —
F({n}), we can define a presheaf F by setting F(X) = M and F({n}) = N and use
p as the restriction map. If we also set () = 0, we have a presheaf F which satisfies
the two sheaf axioms. Furthermore, since M and N are modules over Ox(X) = R and
Ox ({n}) = K respectively, this makes F into an Ox-module.

Note that the restriction map can be any 2-module homomorphism M — N. In particular,
it can be the zero homomorphism, and in that case M and N can be completely arbitrary
modules.

Exercise 14.4.1. Let X = A{ and let F be the constant sheaf on Z. Is F an Ox-module?
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Example 14.24 (Godement sheaves again). We may generalize the construction of the
Godement sheaf in the following way. Given any collection of abelian groups {4, },ex
indexed by the points = of X, we can define a sheaf A by

AU) =[] A,
zelU
and whose restriction maps to smaller open subsets are just the projections onto the corre-
sponding smaller products.

If we suppose that each A, be a module over the stalk Ox ., the sheaf A becomes an
O x-module. Indeed, the group I'(U, A) = [ [, A is automatically an O x (U)-module, as
the the multiplication is defined component-wise with the help of the stalk maps Ox (U) —
Ox ;. Clearly these module structures are compatible with the projections, and thus makes
A into an O x-module.

14.5 Exercises
Exercise 14.5.1. Let A = C x C x C. Describe all Ox-modules on X = Spec A.

Exercise 14.5.2. Suppose that F is a presheaf of O x-modules (i.e. a presheaf satisfying the
usual O x-module axioms). Show that the sheafification F 7 is an O x-module in a natural
way.

HINT: One can use the universal properties of sheafification, but the simplest way is via
the explicit description of F .

Exercise 14.5.3. Let a.: F — G be a map between two O x-modules.

a) Show in detail that the kernel, cokernel and image of o as a map of sheaves in-
deed are O x-modules. Moreover, show that they satisfy the universal properties
of kernel, cokernel and image in the category of O x-modules as well.

b) Show that a sequence of Ox-modules is exact if and only it is exact as a
sequence of sheaves.

Exercise 14.5.4. Show that the category Mod x has arbitrary products and direct sums, by
showing that the products and sums in the category of sheaves AbSh x are O x-modules and
are the products, respectively the direct sums, in the category Mod x.

Exercise 14.5.5. For each of the schemes below, describe the O x-modules on X .
a) X is the scheme obtained by gluing Spec Zs) and Spec Zs) along their com-
mon open subscheme Spec Q.
b) X is the scheme obtained by gluing two copies of Spec Z, along Spec Q.
c¢) Let X be the scheme obtained by gluing the schemes X; = Spec Z,, together
along their common open subschemes Spec Q. Describe the O x-modules on
X.

(Here Z ;) denotes the localization at the prime ideal (p).)
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15

Quasi-coherent sheaves

15.1 The tilde of a module

The primary example of an O x-module is a sheaf of the form M which we introduced in
Section 4.4. Let us briefly recall the construction. If A is a ring, and M is an A-module, the
sheaf M on X = Spec A is the sheaf extending the following Z-sheaf

The restriction maps are the canonical localization maps, which are described as follows:
when D(g) < D(f), we may write g" = af for some a € A and some n € N, and the
localization map M; — M, sends mf~" to a"mg~"".

It is almost immediate that M is an O x-module. Over a distinguished open set U = D(f),
the group M (D(f)) = My is amodule over Ay, and if U < X is any open subset, we may

cover it by distinguished open sets D( f) and define a Ox (U )-module structure on M (U) by
means of the exact sequence in claim (iii) of Proposition 4.22. In the same way, one verifies
that the restriction maps are O x-module homomorphisms. The tilde-construction therefore
yields a functor from Mod 4 to Modx, and it has very good properties, as we are going to

see. We start by explaining a the universal property of M among O y-modules.

Proposition 15.1. Let X = Spec A be an affine scheme. For an A-module M and
an O x-module F, there is a natural isomorphism

Homo, (M, F) —— Hom(M, F(X))

that sends ¢p: M — Fto ¢y : M — F(X). Itis functorial in both M and F.

Proof Let f € A, and consider the commutative diagram

M —2 5 F(X)

D(s)

My —— F(D(f))
where the vertical maps are restriction maps. This gives the following relation:

ép(r)(mlpis)) = dx(m)|pip)-
226
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15.1 The tilde of a module 227

Note that F(D(f)) is an A;-module, because F is an O x-module. Therefore, in the local-
izations at f, we have the following relation

o (mf") = dx(m)|pi - [, (15.1)

where m f~" € M. This means that the maps ¢y are completely determined by ¢x :
M — F(X). By Proposition 3.17, the map of sheaves ¢ is completely determined once it is
specified over the D(f)’s. Thus, ¢ is determined by ¢, and the map in the proposition is
injective.

For the surjectivity, suppose we are given a map of A-modules a: M — F(X). As usual,
to define a map M —> F it suffices to tell what it does to sections over the distinguished open
sets D( f). Inspired by (15.1), we define ap(y) by

app(mf™") =a(m)|py - [

Thus avp ) is simply the composition of the two maps of A ;-modules
My —— F(X); — F(D(f)),

where the right-hand map is induced from the restriction map F(X) — F(D(f)) by
localization (note that F(D(f)) is an A s-module). This is compatible with the restriction
maps, so we get a well-defined map of sheaves ¢ : M — F. Taking f = 1, we see that we
recover « from ¢ on global sections.

The statement about the functoriality follows from formula (15.1); the details are left to
the reader. O

If we apply Proposition 15.1 to M = F(X) and consider the preimage of the identity
map F(X) — F(X), we obtain the following corollary:

Corollary 15.2. For each Ox-module F on an affine scheme X, there is a unique
O x-module homomorphism

Br: F(X) —> F (15.2)

that induces the identity on the spaces of global sections. The map 37 is functorial in

F.

In concrete terms, the map B is defined over a distinguished open subset D(f) as

—_—

follows. A section of the sheaf F(X) over D(f) is an element of the form sf~" where

s € F(X). Regarding f~™ as a section of Ox(D(f)) = Ay, we may send sf~" to the

product s|p(yy - f~™, which, because F is an O x-module, defines a section of F(D(f)).
The following proposition summarizes the basic properties of the tilde-functor.
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228 Quasi-coherent sheaves

Proposition 15.3 (Properties of the tilde-functor). Let A be aring and let X =
Spec A. Then:

(1) The tilde-functor is additive, i.e., it takes direct sums to direct sums.

(ii) For any two A-modules M and N, the map o — & gives an isomor-
phism Hom4 (M, N) ~ Homp, (]\7 ,N), whose inverse is the map
¢ — dx;

(ii1) The tilde-functor is exact.

Proof _For statement (i) see Exercise ??. Statement (ii) follows from Proposition 15.1 with
F = N and the fact that by definition (&) x = «a. To prove statement (iii), let

0 M’ M M 0. (15.3)

be an exact sequence of A-modules. This gives the sequence O x-modules

~

0 M M M 0. (15.4)

To check that (15.4) is exact, it suffices to check that it is exact on stalks for every point
x € X.Butif z € X corresponds to the prime ideal p = A, the stalks of (15.4) is simply the
localization of (15.3) at p (which is exact, because localization is an exact functor). O

Item (ii) above says that the tilde functor is fully faithful. Hence it establishes an equiva-
lence between the category Mod 4 of A-modules and a subcategory of Mod x. This subcate-
gory is usually a strict subcategory; most O x-modules are not of tilde-type.

The next result tells us that the restriction of a tilde type sheaf to an affine open is again of
tilde type. More precisely, let X = Spec A be an affine scheme, with an open subscheme

U = Spec B < X, and let M be an A-module. Then the group of sections M (U)isa
module over Ox (U) = B, and there is a B-linear map

M®y B — (M) (U),
defined by m ® b — bm|;. Applying tilde, we get a map of Oy -modules
M®4 B — M|y, (15.5)
and this turns out to be an isomorphism:
Proposition 15.4 (Restriction of tilde type to open affines). Let X = Spec A and

let U = Spec B — X be an open affine subscheme. Then for each A-module M the
canonical map in (15.5) is an isomorphism

M®a4 B~ M|y.

Proof By Proposition XXX, it suffices to prove that (15.5) is an isomorphism on every stalk.
If y € U corresponds to the prime ideal p < A, the induced map on stalks is given by the
isomorphism

(M@A B)p = Mp ®AF Bp =~ Mp.
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O

The restriction to an open affine open is a special case of a pullback; we will study these in
more detail in Section ??.

We end this section by describing how tilde-type modules behave when pushed forward.
Let X = Spec Band Y = Spec A. Givingamap f: X — Y is the same thing as giving
the map of rings ¢: A — B, which in turn is equivalent to giving an A-algebra structure
on B. Any B-module M is therefore also an A-module, and when wanting to emphazise
the A-module structure of M, we will write M 4 for M considered as an A -module. In
particular, it holds for localizations in elements g € A that My gy = (Ma),.

Recall Proposition 2.27 which says that f ' D(g) = D(¢(g)). This means that we have
equalities

(fM)(D(g)) = M(f'D(g)) = (Ma),;

the last by (ii) of Proposition 4.22, and the first by 