UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3400/4400 — Linear Analysis with Applications
Day of examination:	Tuesday, 31 May 2022
Examination hours:	15.00-19.00
This problem set consists of 2 pages.	
Appendices:	None.
Permitted aids:	All.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All subproblems count equally. If there is a subproblem you cannot solve, you may still use the result in the sequel. All answers have to be substantiated.

Problem 1 (weight 10%)

Let (X, \mathcal{A}, μ) be a complete measure space. Suppose that f and g are functions from X to $\overline{\mathbb{R}}$ and set

$$N = \{ x \in X : f(x) \neq g(x) \}.$$

Prove that if f is measurable and N is a null set, then g is also measurable.

Problem 2 (weight 20%)

(a) Suppose that $\{a_{j,k}\}_{k\geq 1}$ is an increasing sequence of nonnegative extended real numbers for each integer $j \geq 1$. Explain why

$$\lim_{k \to \infty} \sum_{j=1}^{\infty} a_{j,k} = \sum_{j=1}^{\infty} \lim_{k \to \infty} a_{j,k}.$$

Hint. Counting measure!

(b) Let (X, \mathcal{A}) be a measurable space and let $\{\mu_k\}_{k\geq 1}$ be a sequence of measures on \mathcal{A} which enjoy the property that

$$\mu_1(A) \le \mu_2(A) \le \mu_3(A) \le \cdots$$

for every A in \mathcal{A} . Show that the limit

$$\mu(A) = \lim_{k \to \infty} \mu_k(A)$$

defines a measure on \mathcal{A} .

(Continued on page 2.)

Problem 3 (weight 20%)

Let μ denote the Lebesgue measure on \mathbb{R} . For subsets A and B of \mathbb{R} , consider

 $A + B = \{a + b : a \in A \text{ and } b \in B\}.$

- (a) Suppose that A and B are subsets of [0, 1] and that A + B is Lebesgue measurable. Prove that $\mu(A + B) \leq 2$.
- (b) Find a subset C of [0, 1] such that $\mu(C) = 0$ and $\mu(C + C) = 2$.

Problem 4 (weight 10%)

Let *H* be a Hilbert space and let *T* be a linear operator on *H* with ||T|| = 1. Prove that if T(x) = x for some vector *x* in *H*, then $T^*(x) = x$ as well.

Problem 5 (weight 30%)

Consider the Hilbert space $H = L^2([0, 1], \mu)$, where μ is the Lebesgue measure.

(a) For $0 \le a \le 1$, consider the bounded linear functional on H defined by

$$\varphi_a(f) = \int_{[0,a)} f \, d\mu$$

Find an element g_a in H such that $\varphi_a(f) = \langle f, g_a \rangle$ and compute $\|\varphi_a\|$.

(b) Let n be a fixed positive integer. Set $\mathcal{U}_n = \{u_{n,k}\}_{k=1}^n$, where

$$u_{n,k}(x) = \begin{cases} 1, & \text{if } \frac{k-1}{n} \le x < \frac{k}{n}, \\ 0, & \text{else.} \end{cases}$$

Consider the bounded linear operator $T_n: H \to H$ defined by

$$T_n f(x) = \varphi_{\frac{k}{n}}(f)$$
 for $\frac{k-1}{n} \le x < \frac{k}{n}$ and $T_n f(1) = 0$.

Prove that $T_n(H) = \text{Span}(\mathcal{U}_n)$. What is $\text{rank}(T_n)$?

(c) Let T be the linear operator on H defined by

$$Tf(x) = \int_{[0,x)} f \, d\mu$$

Prove that T is compact.

Problem 6 (weight 10%)

Let T be a compact self-adjoint operator on a Hilbert space H and assume that ker T = 0. Let $\{\lambda_j\}_{j\geq 1}$ denote the sequence of eigenvalues of T repeated according to their multiplicity. Define

$$a = \inf_{j \ge 1} \lambda_j$$
 and $b = \sup_{j \ge 1} \lambda_j$.

Let W_T denote the numerical range of T. Prove that $W_T \subseteq [a, b]$.

THE END