UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT3400/4400 - Linear Analysis with Applications
Day of examination: Tuesday, 31 May 2022
Examination hours: 15.00-19.00
This problem set consists of 2 pages.
Appendices: None.
Permitted aids: All.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.
All subproblems count equally. If there is a subproblem you cannot solve, you may still use the result in the sequel. All answers have to be substantiated.

Problem 1 (weight 10\%)

Let (X, \mathcal{A}, μ) be a complete measure space. Suppose that f and g are functions from X to $\overline{\mathbb{R}}$ and set

$$
N=\{x \in X: f(x) \neq g(x)\}
$$

Prove that if f is measurable and N is a null set, then g is also measurable.

Problem 2 (weight 20\%)

(a) Suppose that $\left\{a_{j, k}\right\}_{k \geq 1}$ is an increasing sequence of nonnegative extended real numbers for each integer $j \geq 1$. Explain why

$$
\lim _{k \rightarrow \infty} \sum_{j=1}^{\infty} a_{j, k}=\sum_{j=1}^{\infty} \lim _{k \rightarrow \infty} a_{j, k}
$$

Hint. Counting measure!
(b) Let (X, \mathcal{A}) be a measurable space and let $\left\{\mu_{k}\right\}_{k \geq 1}$ be a sequence of measures on \mathcal{A} which enjoy the property that

$$
\mu_{1}(A) \leq \mu_{2}(A) \leq \mu_{3}(A) \leq \cdots
$$

for every A in \mathcal{A}. Show that the limit

$$
\mu(A)=\lim _{k \rightarrow \infty} \mu_{k}(A)
$$

defines a measure on \mathcal{A}.

Problem 3 (weight 20\%)

Let μ denote the Lebesgue measure on \mathbb{R}. For subsets A and B of \mathbb{R}, consider

$$
A+B=\{a+b: a \in A \text { and } b \in B\}
$$

(a) Suppose that A and B are subsets of $[0,1]$ and that $A+B$ is Lebesgue measurable. Prove that $\mu(A+B) \leq 2$.
(b) Find a subset C of $[0,1]$ such that $\mu(C)=0$ and $\mu(C+C)=2$.

Problem 4 (weight 10\%)

Let H be a Hilbert space and let T be a linear operator on H with $\|T\|=1$. Prove that if $T(x)=x$ for some vector x in H, then $T^{*}(x)=x$ as well.

Problem 5 (weight 30\%)

Consider the Hilbert space $H=L^{2}([0,1], \mu)$, where μ is the Lebesgue measure.
(a) For $0 \leq a \leq 1$, consider the bounded linear functional on H defined by

$$
\varphi_{a}(f)=\int_{[0, a)} f d \mu
$$

Find an element g_{a} in H such that $\varphi_{a}(f)=\left\langle f, g_{a}\right\rangle$ and compute $\left\|\varphi_{a}\right\|$.
(b) Let n be a fixed positive integer. Set $\mathcal{U}_{n}=\left\{u_{n, k}\right\}_{k=1}^{n}$, where

$$
u_{n, k}(x)= \begin{cases}1, & \text { if } \frac{k-1}{n} \leq x<\frac{k}{n} \\ 0, & \text { else }\end{cases}
$$

Consider the bounded linear operator $T_{n}: H \rightarrow H$ defined by

$$
T_{n} f(x)=\varphi_{\frac{k}{n}}(f) \quad \text { for } \quad \frac{k-1}{n} \leq x<\frac{k}{n} \quad \text { and } \quad T_{n} f(1)=0
$$

Prove that $T_{n}(H)=\operatorname{Span}\left(\mathcal{U}_{n}\right)$. What is $\operatorname{rank}\left(T_{n}\right)$?
(c) Let T be the linear operator on H defined by

$$
T f(x)=\int_{[0, x)} f d \mu
$$

Prove that T is compact.

Problem 6 (weight 10\%)

Let T be a compact self-adjoint operator on a Hilbert space H and assume that $\operatorname{ker} T=0$. Let $\left\{\lambda_{j}\right\}_{j \geq 1}$ denote the sequence of eigenvalues of T repeated according to their multiplicity. Define

$$
a=\inf _{j \geq 1} \lambda_{j} \quad \text { and } \quad b=\sup _{j \geq 1} \lambda_{j}
$$

Let W_{T} denote the numerical range of T. Prove that $W_{T} \subseteq[a, b]$.

