## UNIVERSITY OF OSLO

## Faculty of Mathematics and Natural Sciences

Examination in MAT3400/4400 - Linear analysis with applications.
Day of examination: Monday, December 5, 2011.
Examination hours: 9.00-13.00.
This problem set consists of 3 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: You must justify all your answers!

## Problem 1

(20 points) Let $L^{2}([-\pi, \pi])$ be the Hilbert space of equivalence classes of square-integrable functions on $[-\pi, \pi]$ with respect to Lebesgue measure. The inner product on $L^{2}([-\pi, \pi])$ is given by $\langle f, g\rangle=\int_{-\pi}^{\pi} \overline{f(x)} g(x) d x$ for $f, g \in \mathcal{L}^{2}([-\pi, \pi])$. It is assumed known that the functions $e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}$ for $n \in \mathbb{Z}$ form an orthonormal basis of $L^{2}([-\pi, \pi])$.

Compute the Fourier series of the function

$$
f(x)= \begin{cases}-1 & \text { if }-\pi<x<0 \\ 0 & \text { if } 0 \leq x<\pi\end{cases}
$$

Express the answer in terms of trigonometric functions. You can use the fact that $\sin t=\frac{1}{2 i}\left(e^{i t}-e^{-i t}\right)$ for all $t \in \mathbb{R}$.

## Problem 2

Let $\kappa(x, y)=\frac{1}{3}-x y$ be defined on $[0,1] \times[0,1]$. Let $H$ be the Hilbert space $L^{2}([0,1])$ of equivalence classes of square-integrable functions on $[0,1]$ with respect to Lebesgue measure where the inner product is given by $\langle f, g\rangle=\int_{0}^{1} \overline{f(x)} g(x) d x$ for $f, g \in \mathcal{L}^{2}([0,1])$. Let $K$ denote the compact self-adjoint integral operator on $H$ given by

$$
(K f)(x)=\int_{0}^{1} \kappa(x, y) f(y) d y
$$

## 2 a

(10 points) Find the eigenvalues and corresponding eigenvectors for $K$.

## 2b

(10 points) Formulate the Fredholm alternative for a compact operator on a Hilbert space. In the case of $K$ from question 2a decide for which $g \in H$ there is a unique solution for the equation $f=K f+g$.

## Problem 3

Let $L^{2}([0,1])$ be the Hilbert space of equivalence classes of square-integrable functions on $[0,1]$ with respect to Lebesgue measure where the inner product is $\langle f, g\rangle=\int_{0}^{1} \overline{f(x)} g(x) d x$ for $f, g \in \mathcal{L}^{2}([0,1])$. It is known that $C^{2}([0,1]) \subset$ $L^{2}([0,1])$.

## 3a

(10 points) Let $q:[0,1] \rightarrow[0, \infty)$ be a continuous function and let $L u=$ $-u^{\prime \prime}+q u$ be the Sturm-Liouville operator on a domain $\mathcal{D}(L) \subset C^{2}([0,1])$. It is assumed known that $L$ can only have real eigenvalues. Suppose that $u(1) u^{\prime}(1)-u(0) u^{\prime}(0) \leq 0$ for all $u \in \mathcal{D}(L)$ such that $L u=\alpha u$. Prove that

$$
\alpha \int_{0}^{1} u^{2}(x) d x \geq \int_{0}^{1} q(x) u^{2}(x) d x+\int_{0}^{1}\left(u^{\prime}(x)\right)^{2} d x .
$$

Conclude that all eigenvalues of $L$ are positive or zero.

## 3b

(20 points) Let $L$ be given by $L u=-u^{\prime \prime}$ on $\mathcal{D}(L)=\left\{u \in C^{2}([0,1])\right.$ : $\left.u^{\prime}(0)=0, u^{\prime}(1)=0\right\}$. Find the eigenvalues and corresponding normalized eigenvectors for $L$.

## Problem 4

Let $(X, \Sigma, \mu)$ be a measure space and let $\lambda$ be Lebesgue measure on the Borel $\sigma$-algebra $\mathcal{B}$ on $\mathbb{R}$. Let $1 \leq p<\infty$.

## $4 \mathbf{a}$

(5 points) Let $g:(0, \infty) \rightarrow \mathbb{R}$ be the function $g(t)=t^{p-1}$. Prove that $\int_{(0, a]} g d \lambda=\frac{1}{p} a^{p}$ for every $a>0$.

Let $f: X \rightarrow[0, \infty]$ be a measurable function. Define a function $\phi_{f}:(0, \infty) \rightarrow[0, \infty]$ by $\phi_{f}(t)=\mu(\{x \in X: f(x)>t\})$.

## 4b

(5 points) Suppose that $f$ has form $f=a \chi_{A}$ where $a \geq 0$ and $A \in \Sigma$. Prove that $\phi_{f}=\mu(A) \chi_{(0, a)}$ and $a^{p} \mu(A)=p \int_{(0, \infty)} g \phi_{f} d \lambda$.
(Continued on page 3.)

## 4c

(10 points) Suppose that $f$ has form $f=\sum_{j=1}^{m} f_{j}$ where $f_{j}=a_{j} \chi_{A_{j}}$ with $a_{j} \geq 0$ and $A_{j} \in \Sigma$ for all $j=1, \ldots, m$, and such that $A_{j} \cap A_{k}=\emptyset$ if $j \neq k$ (thus $f$ is a simple, measurable, nonnegative function in standard form). Prove that $\phi_{f}$ is Borel measurable and that

$$
\begin{equation*}
\int_{X} f^{p} d \mu=p \int_{(0, \infty)} g \phi_{f} d \lambda \tag{1}
\end{equation*}
$$

Hint: show that $\phi_{f}=\sum_{j=1}^{m} \phi_{f_{j}}$.

## 4d

(10 points) For arbitrary $f: X \rightarrow[0, \infty]$ measurable prove that $\phi_{f}$ is Borel measurable and that the equality (1) is valid.

## END

