
Solution to the mandatory assignment in MAT3400/4400 — Fall 2016

All references will be to McDonald and Weiss.

Problem 1

For n, k ∈ N we let

In,k =

(
an −

1

2n+k
, an +

1

2n+k

)
.

Since In,k is an interval we have by Proposition 3.2 that

λ(In,k) =
2

2n+k
=

1

2n
1

2k−1
.

By subadditivity of the Lebesgue measure (Proposition 3.1) we then have

λ(Uk) = λ

( ∞⋃
n=1

In,k

)
≤
∞∑
n=1

1

2n
1

2k−1
=

1

2k−1

∞∑
n=1

1

2n
=

1

2k−1
,

for each k ∈ N. Since U1 ⊇ U2 ⊇ U3 · · · and λ(U1) < ∞ it follows from downward
continuity of measures (Theorem 5.1) that

λ(N) = λ

( ∞⋂
k=1

Uk

)
= lim

k
λ(Uk) ≤ lim

k

1

2k−1
= 0.

Hence λ(N) = 0.

Problem 2

Suppose for contradiction that f : R→ R is a continuous function such that f = g λ-a.e.
For each n ∈ N we define intervals

En =

(
− 1

n
, 0

)
and Fn =

(
0,

1

n

)
.

Since En and Fn are intervals we have (Proposition 3.2) that λ(En) = 1
n = λ(Fn). In

particular they do not have measure 0, so there exists points xn ∈ En, yn ∈ Fn such that
f(xn) = g(xn) = 0 and f(yn) = g(yn) = 1. For each n we have |xn| ≤ 1

n so limn xn = 0.
Similarly limn yn = 0. Now by the continuity of f we get

f(0) = f(lim
n
xn) = lim

n
f(xn) = lim

n
0 = 0,

but also
f(0) = f(lim

n
yn) = lim

n
f(yn) = lim

n
1 = 1.

This is a clear contradiction, therefore there cannot exists a continuous function that is
equal to g λ-a.e.
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Problem 3 (15 points)

First note that all the fn are continuous and therefore measurable. For each n ∈ N and
x ∈ (0,∞) we have

|fn(x)| =

∣∣∣∣∣ n sin
(
x
n

)
x (1 + x2)

∣∣∣∣∣ =
n
∣∣sin (xn)∣∣

x (1 + x2)
≤

nxn
x (1 + x2)

=
x

x (1 + x2)
=

1

1 + x2
.

Define a continuous function g : R→ R by

g(x) =
1

1 + x2
.

Then on the set (0,∞) we have |fn| ≤ g, so to show that each fn is integrable it
suffices to show that g is integrable over (0,∞). We put En = [0, n] and note that
E1 ⊆ E2 ⊆ E3 ⊆ · · · and ∪nEn = [0,∞). Since g is a measurable non-negative function
we get by the Monotone Convergence Theorem that∫

(0,∞)
g dλ =

∫
[0,∞)

g dλ = lim
n

∫
[0,n]

g dλ.

Since the Riemann and the Lebesgue integrals agree for continuous functions over bounded
intervals (Theorem 4.9), we then get∫

[0,n]
g dλ =

∫ n

0
g(x) dx =

∫ n

0

1

1 + x2
dx

= [arctan(x)]n0 = arctan(n)− arctan(0) = arctan(n).

Thus ∫
(0,∞)

g dλ = lim
n

∫
[0,n]

g dλ = lim
n

arctan(n) =
π

2
.

In particular g is integrable and so each fn is integrable.

We now note that for each x ∈ (0,∞) we have, by L’Hôpital’s rule, that

lim
n
n sin

(x
n

)
= lim

n

sin
(
x
n

)
1
n

= lim
n

x cos
(
x
n

)
1

= x cos(0) = x.

Hence for each x ∈ (0,∞) we have

lim
n
fn(x) =

limn n sin
(
x
n

)
x (1 + x2)

=
x

x (1 + x2)
=

1

(1 + x2)
= g(x).

It now follows from the Dominated Convergence Theorem (Theorem 5.9), using g as the
dominating function, that

lim
n

∫
(0,∞)

fn dλ =

∫
(0,∞)

lim
n
fn dλ =

∫
(0,∞)

g dλ =
π

2
.

2



Solution to the mandatory assignment in MAT3400/4400 — Fall 2016

Problem 4

Part (a): We verify the conditions of Definition 5.1. First we see that for all D ∈ D we
have

µf (D) = µ(f−1(D)) ≥ 0,

since µ is a measure. Since f−1(∅) = ∅ we see that

µf (∅) = µ(f−1(∅)) = µ(∅) = 0.

Suppose now that {Dn}n is a sequence of disjoint sets from D. Then {f−1(Dn)}n is a
collection of pairwise disjoint sets in A, so

µf

(⋃
n

Dn

)
= µ

(
f−1

(⋃
n

Dn

))
= µ

(⋃
n

f−1(Dn)

)
=
∑
n

µ(f−1(Dn)) =
∑
n

µf (Dn),

since µ is a measure.

Part (b): Since g is measurable we have that g−1(O) ∈ D for any open subset O of C.
So by the definition of f we have that for any open set O

(g ◦ f)−1(O) = f−1(g−1(O)) ∈ A,

i.e., g ◦ f is A-measurable.

Part (c): We will use bootstraping. We start by establishing the equality for indicator
functions, then non-negative simple functions, and then non-negative functions. Let D
be a set in D. Then

(χD ◦ f)(x) =

{
1, if f(x) ∈ D
0, if f(x) /∈ D

=

{
1, if x ∈ f−1(D)

0, if x /∈ f−1(D)

= χf−1(D)(x).

Thus we have∫
Y
χD dµf = µf (D) = µ(f−1(D)) =

∫
X
χf−1(D) dµ =

∫
X
χD ◦ f dµ.

So the two integrals agree on indicator functions. Let now s : Y → [0,∞] be a simple
function with canonical presentation

s =

n∑
i=1

aiχAi
.
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Then ∫
Y
s dµf =

∫
Y

n∑
i=1

aiχAi
dµf =

n∑
i=1

ai

∫
Y
χAi

dµ

=
n∑
i=1

ai

∫
X
χAi
◦ f dµ =

∫
X

n∑
i=1

ai(χAi
◦ f) dµ

=

∫
X

(
n∑
i=1

aiχAi

)
◦ f dµ =

∫
X
s ◦ f dµ.

So we have established the equality for all non-negative simple functions. Suppose now
h : Y → [0,∞] is a non-negative D-measurable function. By Proposition 5.7 we can
find a non-decreasing sequence {sn}n of non-negative simple D-measurable functions
such that sn converges pointwise towards h. By the Monotone Convergence Theorem
(Theorem 5.6) we then get∫

Y
h dµf =

∫
Y

lim
n
sn dµf = lim

n

∫
Y
sn dµf = lim

n

∫
X
sn ◦ f dµ.

Since sn ◦ f is a non-decreasing sequence of A-measurable functions that converges
pointwise to h ◦ f we then get∫

Y
h dµf = lim

n

∫
X
sn ◦ f dµ =

∫
X

lim
n

(sn ◦ f) dµ =

∫
X
h ◦ f dµ.

So the equality holds for non-negative functions.

We can now show the claim about the integrability of g. We have

g ∈ L(Y,D, µf ) ⇐⇒
∫
Y
|g| dµf <∞ ⇐⇒

∫
X
|g| ◦ f dµ <∞

⇐⇒
∫
X
|g ◦ f | dµ <∞ ⇐⇒ g ◦ f ∈ L(X,A, µ).

Problem 5

Part (a): Since f is continuous it is measurable. It now follows from Exercise 5.30 that
f−1(B) ∈ B[0,2π] for all B ∈ B2.

Part (b): For each n ∈ {1, 2, . . .} we have∫
T
|zn| dλf =

∫
T

1 dλf = λf (T) = λ(f−1(T)) = λ([0, 2π]) = 2π <∞.

So each function zn is integrable.
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By the remarks after Problem 4 we then have∫
T
zn dλf =

∫
[0,2π]

f(θ)n dλ(θ) =

∫
[0,2π]

exp(inθ) dλ(θ)

Since exp(inθ) = i sin(nθ) + cos(nθ), we then get that∫
T
zn dλf =

∫
[0,2π]

cos(nθ) dλ(θ) + i

∫
[0,2π]

sin(nθ) dλ(θ)

=

∫ 2π

0
cos(nθ) dθ + i

∫ 2π

0
sin(nθ) dθ

= [
1

n
sin(nθ)]2π0 + i[− 1

n
cos(nθ)]2π0

= 0 + i0 = 0.

Where we used that the Riemann and Lebesgue integrals agree for continuous functions
over closed bounded intervals (Theorem 4.9).

Problem 6 (20 points)

Part (a): Suppose first that we are given a function of the form

f = aχE + bχEc ,

with a, b ∈ C. The indicator function of a set in G is G-measurable, so the functions χE
and χEc are G-measurable. Since the G-measurable functions form an algebra (Theorem
5.3 and the remark after Example 5.4), we have that f is G-measurable.

Suppose now that f is any G-measurable function. We first claim that f can take at
most two distinct values. Suppose that a1, a2, a3 ∈ C are distinct and that ai ∈ f(Ω) for
i = 1, 2, 3. Each of the one-point sets {ai} is closed, so f−1({ai}) ∈ G are three distinct
sets in G. Neither is the empty set, since we assumed ai ∈ f(Ω), and neither is Ω, since
we assumed that f took more than one value. There are only two sets in G not equal
to ∅ or Ω, hence we have a contradiction. Since f only takes at most two values it is a
simple G-measurable function and so has the form

f = aχ∅ + bχE + cχEc + dχΩ = (b+ d)χE + (c+ d)χEc ,

for some a, b, c, d ∈ C.

Part (b): By part (a) we know that PGf = αχE + βχEc for some complex numbers
α, β ∈ C. We wish to determine α and β. Let now a, b ∈ C be given. For any A-
measurable function g we get

〈g, aχE + bχEc〉 =

∫
Ω
gaχE + bχEc dµ = a

∫
Ω
gχE dµ+ b

∫
Ω
gχEc dµ

= a

∫
E
g dµ+ b

∫
E
g dµ.
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If we put g = f − (αχE + βχEc) then∫
E
g dµ =

∫
E
f dµ−

∫
E
αχE dµ−

∫
E
βχEc dµ =

∫
E
f dµ− αµ(E),

where we used that χEc = 0 on E and χE = 1 on E. Similarly∫
Ec

g dµ =

∫
Ec

f dµ−
∫
Ec

αχE dµ−
∫
Ec

βχEc dµ =

∫
Ec

f dµ− βµ(Ec),

So we get that

〈f − (αχE + βχEc), aχE + bχEc〉 = 〈g, aχE + bχEc〉

= a

(∫
E
f dµ− αµ(E)

)
+ b

(∫
Ec

f dµ− βµ(Ec)

)
By Theorem 13.2 we must have that the above inner product is 0 for all a, b in C (and
that this uniquely identifies α and β). If we put a = 1 and b = 0 we get

0 = 〈f − (αχE + βχEc), χE〉 =

∫
E
f dµ− αµ(E).

Hence

α =
1

µ(E)

∫
E
f dµ.

If we put b = 1 and a = 0 we see that

β =
1

µ(Ec)

∫
Ec

f dµ.
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