Solution to the mandatory assignment in MAT3400/4400 — Fall 2016

All references will be to McDonald and Weiss.

Problem 1

For n,k € N we let
1 1
Imk = (an — W,an + W) .
Since I, 1, is an interval we have by Proposition 3.2 that

2 1 1
)‘(I”vk) - on+k = on 9k—1"

By subadditivity of the Lebesgue measure (Proposition 3.1) we then have

o <1 1 1 =1 1
AMUk) = A <U Im’c) <D T = 5T D = g
n=1 n=1 n=1

for each k € N. Since Uy 2 Uz 2 Us--- and A(U;) < oo it follows from downward
continuity of measures (Theorem 5.1) that

o0
. . 1
AN) = A </<O1 Uk) = hin AUg) < hinﬁ =0.

Hence A(N) = 0.

Problem 2

Suppose for contradiction that f: R — R is a continuous function such that f = g A-a.e.
For each n € N we define intervals

1 1
E, = <—,O> and F, = (O, ) .
n n

Since E, and F), are intervals we have (Proposition 3.2) that A(E,) = 2 = A(F,). In
particular they do not have measure 0, so there exists points x,, € E,, y, € F), such that
f(zn) = g(zn) =0 and f(ys) = g(yn) = 1. For each n we have |z,| < % so lim,, z,, = 0.

Similarly lim,, y,, = 0. Now by the continuity of f we get
f(0) = f(limzy,) = lim f(z,) = lim0 = 0,
n n n
but also
£(0) = f(limy,) =lim f(y,) = lim1 = 1.

This is a clear contradiction, therefore there cannot exists a continuous function that is
equal to g A-a.e.
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Problem 3 (15 points)

First note that all the f, are continuous and therefore measurable. For each n € N and
x € (0,00) we have

n sin (%) n ‘sin (%)’ n< B T 1

z (14 22)

n

[ fal@)] = c(1+22) ~z(1+22) z(l+a?) 1+a2

Define a continuous function g: R — R by

1

90 =T

Then on the set (0,00) we have |f,| < g, so to show that each f, is integrable it
suffices to show that ¢ is integrable over (0,00). We put E, = [0,n] and note that
Ei CFEyCFE3C -+ and U, FE, = [0,00). Since g is a measurable non-negative function
we get by the Monotone Convergence Theorem that

/ gdi = gdA = lim gdA.
(0,00) [0,00) o Jo,n]

Since the Riemann and the Lebesgue integrals agree for continuous functions over bounded
intervals (Theorem 4.9), we then get

n n 1
gd)\:/ g(z d:L‘:/ dx
/[o,n] 0 (=) o 1+a?

= [arctan(z)]; = arctan(n) — arctan(0) = arctan(n).

Thus
/ gdX = lim gd\ =limarctan(n) = T
(0,00) 2

n [07,”] n

In particular g is integrable and so each f,, is integrable.

We now note that for each = € (0,00) we have, by L’Hopital’s rule, that

lim 7 sin (£> = lim Sml(ﬁ) = lim % =z cos(0) = z.
n n n ES n
Hence for each x € (0, 00) we have
~ limy, nsin (%) B x 1

lign fo(z) =

z(1+22)  z(l+a2?) (1+22) = 9(@).

It now follows from the Dominated Convergence Theorem (Theorem 5.9), using g as the
dominating function, that

lim %w:/ hmhﬁz/ gdr =T,
n J(0,00) (0,00) " (0,00) 2
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Problem 4

Part (a): We verify the conditions of Definition 5.1. First we see that for all D € D we
have

pr(D) = u(fH(D)) = 0,
since p1 is a measure. Since f~1(f)) = () we see that

p(0) = (£ 71(0)) = (@) = 0.

Suppose now that {D,}, is a sequence of disjoint sets from D. Then {f~*(Dy,)}, is a
collection of pairwise disjoint sets in A, so

0o ()]
= Zn:u(f_l(Dn)) = En: 115 (Dn),

since p is a measure.

Part (b): Since g is measurable we have that g~1(O) € D for any open subset O of C.
So by the definition of f we have that for any open set O

(9o /)7H0) = g7 (0)) € A,
ie., go f is A-measurable.

Part (c): We will use bootstraping. We start by establishing the equality for indicator
functions, then non-negative simple functions, and then non-negative functions. Let D
be a set in D. Then

_J1, if f(x)eD
<xDof><x>—{07 e

)1, ifze YD)
o, ifz¢ fYD)

= Xf—l(D)(fU)~

Thus we have
/ Xp dpy = pp(D) = u(f~1(D)) = / Xs-1(p)y A = / Xp © fdp.
Y X X

So the two integrals agree on indicator functions. Let now s: Y — [0,00] be a simple
function with canonical presentation

n
§ = Z aiX 4, -
=1
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Then

sdp :/ aiXq, Apr = ai/x_d,u
Jsane= [ S dns =D [ xa
—Zaz‘/ XAiofd,U—/ > ailxa, o f)dp
i=1 JX X =1

:A(g%m>ﬁ@24mﬁm

So we have established the equality for all non-negative simple functions. Suppose now
h:Y — [0,00] is a non-negative D-measurable function. By Proposition 5.7 we can
find a non-decreasing sequence {s;}, of non-negative simple D-measurable functions
such that s, converges pointwise towards h. By the Monotone Convergence Theorem
(Theorem 5.6) we then get

/hd,uf:/limsnd,uleim/ snduf:lim/ sp o fdpu.
Y y ™ mJy mJX

Since s, o f is a non-decreasing sequence of A-measurable functions that converges
pointwise to h o f we then get

/hd,uf:hm/ snofd,u:/lim(snof)du:/hofdu.
Y nJx x " X

So the equality holds for non-negative functions.

We can now show the claim about the integrability of g. We have

g€ LV Dupy) = [ lolduy <00 = [ lolofdu< oo

— / o fldu< oo —= gof e L(X, A p).
X

Problem 5

Part (a): Since f is continuous it is measurable. It now follows from Exercise 5.30 that
f_l(B) € B[O,2TI’] for all B € BQ.

Part (b): For each n € {1,2,...} we have

/\z”dAf:/mAf:Af(T):A(f—l(T)):A([o,2w]):27r<oo.
T T

So each function z" is integrable.
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By the remarks after Problem 4 we then have

/z" d\y = / (O™ dA () = / exp(inf) dA(6)
T [0,27] [0,27]
Since exp(inf) = isin(nf) + cos(nd), we then get that

/T Ny = /[0 SO+ / sin(nd) dA(6)

[0,27]
2m 2w
:/ cos(nb) d9+z’/ sin(nf) d
0 0

_ l : 21 ‘_1 o2
= [n sin(nf)]§" + i[ - cos(nb)]g
=0+4+:0=0.

Where we used that the Riemann and Lebesgue integrals agree for continuous functions
over closed bounded intervals (Theorem 4.9).

Problem 6 (20 points)

Part (a): Suppose first that we are given a function of the form

f = axXg + bXEC7

with a,b € C. The indicator function of a set in G is G-measurable, so the functions x
and Xz are G-measurable. Since the G-measurable functions form an algebra (Theorem
5.3 and the remark after Example 5.4), we have that f is G-measurable.

Suppose now that f is any G-measurable function. We first claim that f can take at
most two distinct values. Suppose that ai,ag, a3 € C are distinct and that a; € f(Q) for
i =1,2,3. Each of the one-point sets {a;} is closed, so f~!({a;}) € G are three distinct
sets in G. Neither is the empty set, since we assumed a; € f(£2), and neither is €2, since
we assumed that f took more than one value. There are only two sets in G not equal
to () or €, hence we have a contradiction. Since f only takes at most two values it is a
simple G-measurable function and so has the form

f=axy+bxg+cxpe +dxg =0+ d)xp+ (c+d)xge,
for some a,b,c,d € C.

Part (b): By part (a) we know that P;f = axp + Bxp. for some complex numbers
a,f € C. We wish to determine o and 8. Let now a,b € C be given. For any A-
measurable function g we get

<g,axE+bec>=/anxEvaxEcduZa/ngEdqub/ngEcdu

:a/ gd,u+b/ g d.
E E
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If we put g = f — (ax + BXpe) then

/Egduz[Efdu—[EaxEdu—/EﬂxEcduz/Efdu—au(m,

where we used that x5 =0 on F and xp =1 on E. Similarly

/gdu= fdu—/ axEdu—/ ﬂxEcdu=/ fdp — Bu(E®),
c EC EC EC EC

So we get that
(f = (axg + Bxpe), axg + bxge) = (9, axp + bxpe)

:a</Efdu—au(E)> +b< chdu—ﬁu(Ec)>

By Theorem 13.2 we must have that the above inner product is 0 for all a,b in C (and
that this uniquely identifies « and (3). If we put a = 1 and b = 0 we get

0= (f — (axp + Bxue)s xp) = /E f dp — ap(E).

Hence

a:u(lE)/Efdu.

If we put b =1 and a = 0 we see that

1
- du.
B M(EC)/ch a



