
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3400/4400 –– Linear analysis with applications

Day of examination: June 8, 2023

Examination hours: 15.00 – 19.00

This problem set consists of 7 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

The points in parentheses indicate the maximum possible score for each
problem or subproblem. If you are unable to solve a subproblem, you may
assume the result of that problem when solving later problems. E.g., if you
cannot solve problem 3b, you may assume the result of 3b and try to solve
3c.

Note: You must justify all your answers!

Problem 1 (weight 15 points)
Let (X,A, µ) be a measure space which is σ-finite, that is, there exists a
sequence {Ak}k∈N in A such that X =

⋃∞
k=1Ak and µ(Ak) < ∞ for every

k ∈ N.

1a (weight 5 points)
Show that there exists a sequence {Bn}n∈N in A satisfying that Bn ⊆ Bn+1

and µ(Bn) <∞ for every n ∈ N, and that X =
⋃∞
n=1Bn.

Solution. For each n ∈ N, set Bn :=
⋃n
k=1Ak ∈ A.

Then Bn ⊆ Bn∪An+1 =
⋃n+1
k=1 Ak = Bn+1 and µ(Bn) ≤

∑n
k=1 µ(Ak) <∞

for every n. Moreover, since An ⊆ Bn for each n, we have

X =
∞⋃
n=1

An ⊆
∞⋃
n=1

Bn ⊆ X,

hence X =
⋃∞
n=1Bn.

(Continued on page 2.)
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1b (weight 10 points)
Show that for each E ∈ A, we have

µ(E) = sup
{
µ(F ) | F ∈ A, F ⊆ E, µ(F ) <∞

}
.

Solution. Let E ∈ A and set S := sup
{
µ(F ) | F ∈ A, F ⊆ E, µ(F ) <∞

}
.

If F ∈ A and F ⊆ E, then µ(F ) ≤ µ(E), so it is clear that S ≤ µ(E).

If µ(E) < ∞, then as E ⊆ E, we also get that µ(E) ≤ S, hence that
µ(E) = S.

Assume now that µ(E) = ∞. To show that µ(E) = S, we have then to
show that S = ∞. For each n ∈ N, set En := E ∩ Bn ∈ A. Then, using 1a,
we get that En ⊆ En+1 and µ(En) ≤ µ(Bn) <∞ for every n ∈ N. Further,

E = X ∩ E =
∞⋃
n=1

(Bn ∩ E) =
∞⋃
n=1

En.

By continuity from below for µ, we get that

lim
n→∞

µ(En) = µ(E) =∞.

But, as En ⊆ E, we also have that µ(En) ≤ S. Letting n → ∞, we get
S =∞, as desired.

Problem 2 (weight 35 points)
In this problem we consider the measure space (X,A, µ), where X = [0,∞),
A denotes the σ-algebra of all Lebesgue measurable subsets of [0,∞), and µ
denotes the Lebesgue measure on A.

2a (weight 10 points)
Let g : X → R be the nonnegative Lebesgue measurable function defined by

g(x) = |x− 2| e−x for all x ∈ X.

Compute the integral
∫
X
g dµ.

(You don’t have to explain why g is Lebesgue measurable. You can freely
use that

∫
(x− 2)e−x dx = (1− x)e−x + C.)

Solution. Since {g 1[0,n]}n∈N is an increasing sequence of nonnegative
Lebesgue measurable functions converging pointwise to g on X, the MCT
gives that ∫

X

g dµ = lim
n→∞

∫
X

g 1[0,n] dµ = lim
n→∞

∫
[0,n]

g dµ .

(Continued on page 3.)
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Let now n > 2. Since g is continuous, hence Riemann-integrable, on [0, n],
we have that∫

[0,n]

g dµ =

∫ n

0

g(x) dx =

∫ 2

0

(2− x) e−x dx+
∫ n

2

(x− 2) e−x dx

=
[
(x− 1)e−x

]2
0
+
[
(1− x)e−x

]n
2
= e−2 + 1 + (1− n)e−n + e−2 .

Since (1− n)e−n → 0 as n→∞, we get that∫
X

g dµ = lim
n→∞

(1 + 2 e−2 + (1− n)e−n) = 1 + 2 e−2 .

2b (weight 15 points)
For each n ∈ N, let fn : X → R be the Lebesgue measurable function defined
by

fn(x) =
n (x− 2) e−x

2n+ sinx
for all x ∈ X.

Show that each fn is integrable w.r.t. µ. Show also that the limit

lim
n→∞

∫
X

fn dµ

exists and find its value. (You don’t have to explain why each fn is Lebesgue
measurable.)

Solution. Let n ∈ N and x ≥ 0. Since 1 ≤ (2+ 1
n
sinx) ≤ 3, we have that∣∣∣ n

2n+ sinx

∣∣∣ = 1

2 + 1
n
sinx

≤ 1.

Thus, ∣∣fn(x)∣∣ = ∣∣∣ n

2n+ sinx

∣∣∣ |x− 2| e−x ≤ |x− 2| e−x = g(x)

for all n ∈ N and all x ∈ X, i.e., |fn| ≤ g on X for all n ∈ N.

Let f : X → R be given by f(x) = 1
2
(x− 2)e−x. Since

n

2n+ sinx
=

1

2 + 1
n
sinx

→ 1

2
as n→∞

for every x ∈ X, we get that {fn}n∈N converges pointwise to f on X.

Now, since g is integrable on X by 2a, we can apply the LDCT and get
that each fn is integrable on X, f is integrable on X, and

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ .

(Continued on page 4.)
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Finally, we have to compute
∫
X
f dµ . Since |f1[0,n]| ≤ |f | on X for

every n ∈ N, and |f | = g is integrable on X, the LDCT gives that f1[0,n] is
integrable for every n ∈ N and∫
X

f dµ = lim
n→∞

∫
X

f1[0,n] dµ = lim
n→∞

∫
[0,n]

f dµ = lim
n→∞

∫ n

0

1

2
(x− 2)e−x dx

= lim
n→∞

1

2

[
(1− x)e−x

]n
0
= lim

n→∞

1

2

(
(1− n)e−n − 1

)
= −1

2
,

where we have used that f is Riemann-integrable on [0, n] for every n ∈ N.

2c (weight 10 points)
Consider now the Hilbert space H = L2(X,A, µ). To simplify notation, we
consider elements of H as complex functions on X, i.e., we identify complex
measurable functions on X which agree µ-almost everywhere.

For each k ∈ N, set fk := 1[k−1,k) and note that fk ∈ H (you can take
this as granted). Let M be the closed subspace of H given by

M = span{fk | k ∈ N},

and let PM denote the orthogonal projection of H on M .
Let f ∈ H. Explain why f is integrable over each interval [k−1, k). Then

set h := PM(f) and ck :=
∫
[k−1,k) f dµ for each k ∈ N. Show that

∥∥h− n∑
k=1

ck fk
∥∥
2
→ 0 as n→∞ .

Solution. Since f ∈ H, f and |f | are Lebesgue measurable, and |f | ∈ H.
For each k ∈ N, Hölder’s inequality gives that∫

[k−1,k)
|f | dµ =

∫
X

|f | fk dµ ≤ ‖f‖2 ‖fk‖2 <∞,

hence that f is integrable over [k − 1, k).
For k, l ∈ N, we have

〈fk, fl〉 =
∫
X

1[k−1,k)1[l−1,l) dµ =

∫
X

1[k−1,k)∩[l−1,l) dµ =

{
µ([k − 1, k)) = 1 if k = l,

µ(∅) = 0 if k 6= l .

Thus {fk}k∈N is orthonormal. By definition of M , it follows that {fk}k∈N is
an orthonormal basis for M . We therefore get that

h = PM(f) =
∞∑
k=1

〈f, fk〉 fk (convergence w.r.t. ‖ · ‖2).

Since 〈f, fk〉 =
∫
X
f fk dµ =

∫
[k−1,k) f dµ = ck for each k ∈ N, this means

precisely that ∥∥h− n∑
k=1

ck fk
∥∥
2
→ 0 as n→∞.

(Continued on page 5.)
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Problem 3 (weight 30 points)
Let H be a Hilbert space (over F = R or C) having a countably infinite
orthonormal basis {un}n∈N.

A sequence {vn}n∈N of vectors in H is called a Bessel sequence if there
exists a constant M > 0 such that

∞∑
n=1

|〈x, vn〉|2 ≤M ‖x‖2 for all x ∈ H.

3a (weight 10 points)
Let T ∈ B(H), T 6= 0, and set vn := T (un) for each n ∈ N. Use Parseval’s
identity in a suitable way to show that {vn}n∈N is a Bessel sequence.

Solution. Using Parseval’s identity to get the the third equality, we get
that
∞∑
n=1

|〈x, vn〉|2 =
∞∑
n=1

|〈x, T (un)〉|2 =
∞∑
n=1

|〈T ∗(x), un〉|2 = ‖T ∗(x)‖2 ≤ ‖T ∗‖2 ‖x‖2

for every x ∈ H. Setting M := ‖T ∗‖2 (= ‖T‖2 > 0), we see that {vn}n∈N is
a Bessel sequence.

Let now {vn}n∈N be a Bessel sequence in H. Let H0 denote the subspace
of H given by H0 = span{un | n ∈ N}, and define a linear map T0 : H0 → H
by

T0

( N∑
n=1

cn un

)
=

N∑
n=1

cn vn

whenever N ∈ N and c1, . . . , cN ∈ F. (Note that if x0 ∈ H0, then
x0 ∈ span{u1, . . . , uN} for some N ∈ N, so this definition makes sense.)

3b (weight 10 points)
Show that T0 is bounded.

Hint. To estimate ‖T0(x0)‖ for x0 ∈ H0, a good start is to use that
‖y‖ = supx∈H,‖x‖≤1 |〈x, y〉| for every y ∈ H.

Solution. Let x0 ∈ H0. Then choose N ∈ N and c1, . . . , cN ∈ F such
that x0 =

∑N
n=1 cn un. Since {u1, . . . , uN} is orthonormal, we have that

‖x0‖ =
(∑N

n=1 |cn|2
)1/2.

Hence, using the hint and the Cauchy-Schwarz inequality in FN , we get

‖T0(x0)‖ = sup
x∈H,‖x‖≤1

|〈x, T0(x0)〉| = sup
x∈H,‖x‖≤1

∣∣∣ N∑
n=1

〈x, vn〉 cn
∣∣∣

(Continued on page 6.)
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≤ sup
x∈H,‖x‖≤1

(( N∑
n=1

∣∣〈x, vn〉∣∣2)1/2 ( N∑
n=1

|cn|2
)1/2)

≤
(

sup
x∈H,‖x‖≤1

∞∑
n=1

∣∣〈x, vn〉∣∣2)1/2 ‖x0‖
Now, since {vn}n∈N is a Bessel sequence, there exists some M > 0 such that(∑∞

n=1

∣∣〈x, vn〉∣∣2)1/2 ≤ M1/2 ‖x‖ for all x ∈ H. Thus we have(
sup

x∈H,‖x‖≤1

∞∑
n=1

∣∣〈x, vn〉∣∣2)1/2 ≤ M1/2.

Combining this inequality with the one above, we get that

‖T0(x0)‖ ≤ M1/2 ‖x0‖.

This shows that T0 is bounded, with ‖T0‖ ≤M1/2.

3c (weight 10 points)
Use 3b to show that T0 may be extended to an operator T ∈ B(H) satisfying
T (un) = vn for all n ∈ N. Then deduce that for every x ∈ H, we have

T (x) =
∞∑
n=1

〈x, un〉 vn .

Solution. Since {un}n∈N is an orthonormal basis for H, H0 is dense in
H. Hence, by the principle of extension by density and continuity, T0 has a
(unique) extension to an operator T ∈ B(H). For each n ∈ N we then have
T (un) = T0(un) = vn, as desired. Moreover, by continuity and linearity of T ,
we get that

T (x) = T
( ∞∑
n=1

〈x, un〉un
)
=
∞∑
n=1

〈x, un〉T (un) =
∞∑
n=1

〈x, un〉 vn

for each x ∈ H.

Problem 4 (weight 20 points)
Let H be a Hilbert space (over R or C) and let T ∈ B(H) be self-adjoint.

4a (weight 10 points)
Assume that T has infinitely many eigenvalues. Show that T does not have
finite-rank.

Solution. We can pick a sequence {λn}n∈N of distinct nonzero eigenvalues
of T . Letting un be a unit eigenvector of T associated to λn for each n, we

(Continued on page 7.)
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then have that {un}n∈N is orthonormal (since the eigenspaces associated to
different eigenvalues of T are orthogonal to each other). Further, we have
that un = (λn)

−1 T (un) ∈ T (H) for each n ∈ N. Thus, T (H) is infinite-
dimensional, i.e., T does not have finite-rank.

4b (weight 10 points)
Assume T is compact and has finitely many eigenvalues. Show that T has
finite-rank.

Solution. If T = 0, the conclusion is obviously true. So we may assume
that T 6= 0. We may use the spectral theorem for T . Letting L denote
the set of nonzero eigenvalues of T , we then know that L is nonempty, and
the assumption implies that L must be finite. For each λ ∈ L, let Eλ be
an o.n.b. for the associated eigenspace Eλ = ker(T − λI), which is finite-
dimensional. Then the set E ′ = ∪λ∈LEλ consists of finitely many vectors, and
we know that it gives an o.n.b. for T (H). Since T (H) is a subspace of T (H),
this implies that T (H) is finite-dimensional, i.e., T has finite-rank.


