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Abstract

The main texts of MAT3400/MAT4400 are

[4] Tom L. Lindstrøm, Spaces—an introduction to real analysis.

[1] Erik Bédos, Notes on Elementary Linear Analysis.

The purpose of the present note is to supplement the main texts, and it
is intended that the note be read after [4] and before [1]. Specifically, it is
expected that the reader is familiar with Sections 7.1–7.6 and 8.1–8.4 in [4]. We
will replace and expand on the material found in the second part of Section 7.5
and in Section 8.5 of [4]. Some material from Section 7.8 is also included.
Although the main focus of this note is on the Lebesgue measure, we will at
times state and prove results for general measure spaces when no additional
work is required1.

1This pertains specifically to Lemma 2.2.2, Lemma 2.2.4 and Theorem 2.3.1.

i





Contents

Abstract i

Contents iii

1 Riemann and Lebesgue 1
1.1 Riemann integrable implies Lebesgue integrable . . . . . . . . . 2
1.2 Lebesgue’s criterion . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Cantor sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Littlewood’s three principles 11
2.1 The first principle . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The second principle . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The third principle . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Bibliography 21

iii





CHAPTER 1

Riemann and Lebesgue

Fredholm and Schmidt had
nothing else at their disposal
beyond the horrible and useless
“Riemann integral”, and it is likely
that progress in Functional
Analysis might have been
appreciably slowed down if the
invention of the Lebesgue integral
had not appeared, by a happy
coincidence, exactly at the
beginning of Hilbert’s work.

Jean Dieudonné [2, pp. 119–120].

The main purpose of this chapter is to compare the Riemann integral
and the Lebesgue integral. Recall from calculus that the Riemann integral is
defined only for certain bounded functions on a finite interval I = [a, b]. The
Lebesgue integral was constructed in [4, Section 8.4] for the entire real line,
but we can easily restrict it to I as follows.

Let A denote the σ-algebra of Lebesgue measurable sets on R and let µ
be the Lebesgue measure. The σ-algebra of Lebesgue measurable sets on I
is AI = {X ∩ I : X ∈ A} and µI denotes the Lebesgue measure restricted to
sets from AI . Suppressing the subscript I on A and µ, we consider the measure
space ([a, b], A, µ). If a A-measurable function f : [a, b] → R is µ-integrable,
then its Lebesgue integral is denoted∫

[a,b]
f dµ.

In the construction of the Riemann integral we only measure the area of
rectangles, so the only thing we need to know is what the length of an interval
is. The construction of the Lebesgue integral relies on the Lebesgue measure,
so in this case we can measure many other sets. Hence we expect that the
Lebesgue integral can integrate more functions than the Riemann integral.
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1. Riemann and Lebesgue

1.1 Riemann integrable implies Lebesgue integrable

To compare the Riemann integral and the Lebesgue integral, we require the
following definition. In the present section (as in [4, Section 8.4]), we will work
with half-open intervals.

Definition. A function g : R → R is called a step function if

g =
J∑

j=1
cj1Ij

where cj ̸= 0 and Ij = (aj , bj ] for j = 1, 2, . . . , J .

We will also consider step functions defined on an interval I, in which case
we require that Ij ⊆ I for j = 1, 2, . . . , J . In the context of the Lebesgue
measure, a step function is just a particular example of a simple function since
intervals are Lebesgue measurable.

If g : [a, b] → R is a step function and Ij = (aj , bj ] for j = 1, 2, . . . , J , then
∫

[a,b]
g dµ =

J∑
j=1

cjµ(Ij) =
J∑

j=1
cj(bj − aj) =

∫ b

a
g(x) dx, (1.1.1)

where the integral on the left hand side is the Lebesgue integral and the integral
on the right hand side is the Riemann integral. Having now established the
completely expected fact that the Riemann and Lebesgue integrals coincide
for step functions, our next goal is to consider more complicated functions.

We begin by discussing a slightly different (but equivalent1) construction
of the Riemann integral compared to the standard one typically presented in
calculus textbooks using partitions. If f : [a, b] → R is a bounded function, set

L(f) = sup
{∫ b

a
g(x) dx : g is a step function and g ≤ f

}
,

U(f) = inf
{∫ b

a
g(x) dx : g is a step function and g ≥ f

}
.

The function f is Riemann integrable if and only if L(f) = U(f), in which case∫ b

a
f(x) dx = L(f) = U(f).

Note that for a function to be Riemann integrable, we have to be able to
approximate it well from both above and below using step functions. Recall
also that for a function to be Lebesgue integrable, we only need to be able to
approximate it well from below using the more general simple functions.

1We leave it to the interested reader to prove that our construction is equivalent to
whatever is presented their favorite calculus textbook.
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1.1. Riemann integrable implies Lebesgue integrable

Theorem 1.1.1. Suppose that a bounded function f : [a, b] → R is Riemann
integrable. Then f is Lebesgue integrable and∫

[a,b]
f dµ =

∫ b

a
f(x) dx.

Proof. Let M denote the maximum of |f | on [a, b]. Since f is Riemann
integrable, we can find a sequence of step functions {gj}j≥1 and a sequence of
step functions {hj}j≥1 such that

−M ≤ gj(x) ≤ f(x) ≤ hj(x) ≤ M (1.1.2)

for every x ∈ [a, b] and such that

lim
j→∞

∫ b

a
gj(x) dx = lim

j→∞

∫ b

a
hj(x) dx =

∫ b

a
f(x) dx.

By iteratively replacing gj by max(gj , gj−1) for j ≥ 2 and hj by min(hj , hj−1)
for j ≥ 2, we may assume without loss of generality that {gj}j≥1 is increasing
and that {hj}j≥1 is decreasing. Hence they will converge pointwise to functions
g and h, respectively, which in view of (1.1.2) satisfy

−M ≤ g(x) ≤ f(x) ≤ h(x) ≤ M

for every x ∈ [a, b]. Note that g and h are measurable by [4, Proposition 7.3.9],
since the step functions {gj}j≥1 and {hj}j≥1 are measurable. Since

0 ≤ hj(x) − gj(x) ≤ 2M

we can use the Dominated Convergence Theorem and (1.1.1) to conclude that

0 ≤
∫

[a,b]
(h − g) dµ = lim

j→∞

∫
[a,b]

(hj − gj) dµ = lim
j→∞

∫ b

a

(
hj(x) − gj(x)

)
dx = 0.

Since g ≤ h, we conclude from this that g = h almost everywhere. Since
g ≤ f ≤ h, we find that f = g = h almost everywhere. Since the Lebesgue
measure is complete, this shows that f is measurable. Since f is bounded
by assumption, it is therefore Lebesgue integrable. Moreover, the Lebesgue
integral of f is equal to the Lebesgue integral of g. Using that |gj | ≤ M
for every j ≥ 1 from (1.1.2), we can appeal to the Dominated Convergence
Theorem and (1.1.1) to compute∫

[a,b]
f dµ =

∫
[a,b]

g dµ = lim
j→∞

∫
[a,b]

gj dµ = lim
j→∞

∫ b

a
gj(x) dx =

∫ b

a
f(x) dx.

Theorem 1.1.1 can be used to compute Lebesgue integrals of continuous
functions over finite intervals using Riemann integrals, where we can use the
techniques of calculus. We conclude this section with two examples intending
to clarify how we can handle Lebesgue integrals over R.
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1. Riemann and Lebesgue

Example 1.1.2. Let f(x) = (1 + x2)−1 and suppose that we want to compute
the Lebesgue integral

∫
R f dµ. By the Monotone Convergence Theorem∫

R
f dµ = lim

n→∞

∫
R

1[−n,n]f dµ.

The integrals on the right hand side can be computed using Theorem 1.1.1
since f is continuous on [−n, n]. We obtain∫

R
1[−n,n]f dµ =

∫
[−n,n]

f dµ =
∫ n

−n

1
1 + x2 dx = 2 arctan(n).

Computing the limit, we find that
∫
R f dµ = π. ♣

Example 1.1.3 (The Dirichlet integral). Consider the function

f(x) =
{ sin(πx)

πx x ̸= 0,

1 x = 0.

A fun calculus exercise is to compute the improper integral∫ ∞

−∞
f(x) dx = lim

n→∞

∫ n

−n
f(x) dx = 1.

However, f is not Lebesgue integrable on R. We recall from the definition of
integrable functions in [4, Section 7.6] that f is Lebesgue integrable if and only
if |f | is Lebesgue integrable. We can show that

∫
R |f | dµ = ∞ (see Exercise 1.2),

so f cannot be Lebesgue integrable. ♣

1.2 Lebesgue’s criterion

In this section we shall present a criterion which describes precisely when
a bounded function f : [a, b] → R is Riemann integrable. The criterion is,
amusingly, due to Lebesgue. To state it, we require the following definition.

Definition. Let f : [a, b] → R be a bounded function. The set of discontinuities
of f is Df = {x ∈ [a, b] : f is discontinuous at x}.

A well-known result from calculus states that if Df is finite, then f is
Riemann integrable. It turns out that the Riemann integral can handle an
infinite number of discontinuities, provided their Lebesgue measure is zero.

Theorem 1.2.1 (Lebesgue’s criterion). Let f : [a, b] → R be a bounded function.
Then f is Riemann integrable if and only if µ(Df ) = 0.

We will not present a proof of Theorem 1.2.1, but refer instead the interested
reader to [3, Theorem 2.28]. While Theorem 1.2.1 seems to be an impressive
result, it is often not very useful for practical computations. Example 1.2.2
illustrates one case where it happens to be useful.
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1.3. Cantor sets

Figure 1.1: Plot of the function from Example 1.2.2 for q ≤ 200.

Example 1.2.2 (The popcorn function). Consider the function f : [0, 1] → R
defined as follows:

• f(0) = f(1) = 0,

• if 0 < x < 1 and x is irrational, then f(x) = 0,

• if 0 < x < 1 and x = p/q for positive integers p and q with no common
factor, then f(x) = 1/q.

See Figure 1.1 for a plot of an approximation to f . Since µ(Q) = 0, it follows
that f is Lebesgue integrable and that the Lebesgue integral is∫

[0,1]
f dµ = 0.

Is f Riemann integrable? It is not too difficult to check that f is continuous
at each irrational x (since any sufficiently close rational number must have a
large denominator) and discontinuous at each rational 0 < x < 1. It therefore
follows from Theorem 1.2.1 that f is Riemann integrable and that∫ 1

0
f(x) dx = 0

by Theorem 1.1.1. ♣

1.3 Cantor sets

In this section we shall study some interesting subsets of the unit interval [0, 1].
We are used to expressing real numbers on this interval in decimal expansion

x =
∞∑

j=1

aj

10j
, where aj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

5



1. Riemann and Lebesgue

It is also possible to express numbers with respect to other bases, for instance
in binary expansion

x =
∞∑

j=1

bj

2j
, where bj ∈ {0, 1}

or in ternary expansion

x =
∞∑

j=1

cj

3j
, where cj ∈ {0, 1, 2}.

Just as some rational numbers have two distinct decimal expansions
2
5 = 0.2000 . . . = 0.1999 . . . ,

some rational numbers have two distinct binary and ternary expansions. For
example, 1/3 have the ternary expansions

1
3 = 0.1000 . . . = 0.0222 . . . .

Using ternary expansion we can introduce the protagonist of the present section,
which is the set of real numbers on [0, 1] that have a ternary expansion which
does not contain any ones. In particular, 1/3 = 0.0222 . . . is in the set.

Definition. The Cantor set is

C =

x =
∞∑

j=1

cj

3j
: cj ∈ {0, 2}

 .

We will always choose a ternary expansion for x ∈ C without any ones.

The Cantor set is the canonical example of fractal subset of the real line.
Before discussing this further, let us consider the following question: Is the
Cantor set big or small? The following result provides one possible answer.

Theorem 1.3.1. The Cantor set is uncountable.

Proof. The function T : C → [0, 1] defined by

T (x) = T

 ∞∑
j=1

cj

3j

 =
∞∑

j=1

cj/2
2j

is surjective (see Exercise 1.3). Since [0, 1] is uncountable, so is C.

Since C is a subset of [0, 1], the proof of Theorem 1.3.1 also shows that C
(in some sense) is as big as the unit interval [0, 1], so we might answer that the
Cantor set is big.

The following result hints at the fractal nature of C, since it states that C
is equal to two copies of itself if each copy is scaled down by a third.
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1.3. Cantor sets

Figure 1.2: The sets Cn in the proof of Theorem 1.3.3 for n = 0, 1, 2, . . . , 6.

Theorem 1.3.2. Let C denote the Cantor set. Then

C = C
3 ∪

(2
3 + C

3

)
and this is a union of two disjoint sets.

Proof. If x = ∑
j≥1 cj3−j let us write [x]3 = (c1, c2, . . .). Then[

x

3

]
3

= (0, c1, c2, . . .) and
[2

3 + x

3

]
3

= (2, c1, c2, . . .).

The result now follows after recalling that the Cantor set is defined by the
requirement that cj ∈ {0, 2} for each j ≥ 1.

Let us assume that C is Lebesgue measurable. Combining Theorem 1.3.2
with [4, Proposition 8.4.6] and [4, Exercise 8.4.5], we find that

µ(C) = 1
3µ(C) + 1

3µ(C) = 2
3µ(C),

which ensures that µ(C) = 0 since µ(C) ≤ µ([0, 1]) = 1 < ∞. Hence we
might answer that the Cantor set is small. The next result will be proved by
establishing that C is Lebesgue measurable. As a byproduct, we shall obtain a
geometric definition of the Cantor set which is probably more useful and more
natural than the one we gave in the definition above.

Theorem 1.3.3. The Lebesgue measure of the Cantor set is 0.

Proof. We begin with C0 = [0, 1]. If 1/3 < x < 2/3, then the first digit in any
ternary expansion of x must be a 1. Hence we can safely delete the middle
interval (1/3, 2/3) from C0 without loosing any real number in the Cantor set.
We therefore define

C1 = C0 \ (1/3, 2/3).

A moments thought now reveals to us that if 1/9 < x < 2/9 or 7/9 < x < 8/9
then the second digit in any ternary expansion of x must be a 1. Note also
that the intervals (1/9, 2/9) and (7/9, 8/9) are the middle third of the intervals
[0, 1/3] and [2/3, 1], which together constitute C1. Since no real number from
the former two intervals can be in the Cantor set, we may safely delete them.
Hence we set

C2 = C1 \
(
(1/9, 2/9) ∪ (7/9, 8/9)

)
.

7



1. Riemann and Lebesgue

Note that C2 consists of four intervals. A similar argument shows that we can
safely delete the middle third of any of them. By continuing iteratively in this
way, we obtain a sequence of sets Cn. The first seven sets are displayed in
Figure 1.2. When going from Cn−1 to Cn we remove precisely the real numbers
0 < x < 1 whose ternary expansions must have a 1 at the nth digit (and which
have not previously been removed). This shows that

C =
∞⋂

n=0
Cn

and hence C is measurable. By the discussion above, it follows that µ(C) = 0.
It is also possible to give a direct proof of this claim based on the geometric
construction as follows: Note that µ(Cn) = 2

3µ(Cn−1) since we always delete
the middle third of each interval. By induction we obtain

µ(Cn) =
(2

3

)n

µ(C0) =
(2

3

)n

.

Since evidently Cn ⊆ Cn−1, it follows from continuity of measure for decreasing
sequences (see [4, Proposition 7.1.5]) that

µ(C) = lim
n→∞

µ(Cn) = 0.

It is possible to exploit the construction of the Cantor set from the proof
of Theorem 1.3.3 to construct sets are similar to the Cantor set, but which
have positive measure.

Example 1.3.4 (Fat Cantor sets). Suppose that 0 < r < 1/3. We set
F0 = [0, 1] and iteratively define Fn by deleting a segment of length rn from
the middle of each interval in Fn−1. The next two sets in the sequence are

F1 =
[
0,

1 − r

2

]
∪
[1 + r

2 , 1
]

and

F2 =
[
0,

1 − r

4 − r2

2

]
∪
[

1 − r

4 + r2

2 ,
1 − r

2

]

∪
[

1 + r

2 ,
3 + r

4 − r2

2

]
∪
[

3 + r

4 + r2

2 , 1
]

.

Since we double the number of intervals in each step, it is clear that Fn−1 is
comprised of 2n−1 intervals. When we proceed to Fn, we delete a segment of
length rn from each of these intervals. By induction, this shows that

µ(Fn) = µ(Fn−1) − 2n−1rn = 1 −
n∑

k=1
2k−1rk.

8



1.4. Exercises

Figure 1.3: The sets Fn from Example 1.3.4 with r = 1/4 for n = 0, 1, 2, . . . , 6.

We now define F = ∩n≥0Fn. As in the proof of Theorem 1.3.3, we find that

µ(F) = 1 −
∞∑

k=1
2k−1rk = 1 − r

1 − 2r
= 1 − 3r

1 − 2r
.

It is interesting to note that even though F has positive measure, there is no
interval I such that I ⊆ F (see Exercise 1.6). ♣

Remark. Let us close this section by briefly discussing the fractal nature of
C again, which from our point of view is encoded in Theorem 1.3.2. Every
subset X ⊆ R can be assigned a real number 0 ≤ H(X) ≤ 1 which is called its
fractal dimension (or Hausdorff dimension). Every countable set has fractal
dimension 0 and every set which contains an interval has fractal dimension 1.
The Cantor set has fractal dimension

H(C) = log 2
log 3 = 0.6309 . . .

which gives yet another answer to the question: Is the Cantor set big or small?
The interested reader is referred to [3, Chapter 11].

1.4 Exercises

Exercise 1.1. Explain why the Monotone Convergence Theorem applies in
Example 1.1.2.

Exercise 1.2. Let f be the function defined in Example 1.1.3.

(a) Prove that ∫
R

|f | dµ = ∞.

(b) Explain why the Monotone Convergence Theorem cannot be used to
compute ∫

R
f dµ

in Example 1.1.3. What about the Dominated Convergence Theorem?

Exercise 1.3. Prove that the function T defined in the proof of Theorem 1.3.1
is a surjection.

9



1. Riemann and Lebesgue

Exercise 1.4. Let Cn denote the sets constructed in the proof of Theorem 1.3.3.
Prove that

Cn = Cn−1
3 ∪

(2
3 + Cn−1

3

)
and that the union is disjoint for n ≥ 1.

Exercise 1.5. Let f : [0, 1] → R be the function f = 1C where C is the Cantor
set. Prove that f is Riemann integrable.

Hint. Do not use Theorem 1.2.1, but take a look at the proof of Theorem 1.3.3.

Exercise 1.6. Fix 0 < r < 1/3 and consider the set F from Example 1.3.4.

(a) Prove that there is no interval I such that I ⊆ F .

(b) Let f : [0, 1] → R be the function f = 1F where F a fat Cantor set.
Prove that f is not Riemann integrable.
Hint. Use (a) and Theorem 1.2.1.

10



CHAPTER 2

Littlewood’s three principles

If one of the principles would be
the obvious means to settle a
problem if it were “quite” true, it
is natural to ask if the “nearly” is
near enough, and for a problem
that is actually soluble it
generally is.

J. E. Littlewood [5, p. 27].

Littlewood’s three principles are heuristic devices which enable us to better
understand Lebesgue measurable sets and functions on the real line, which we
have seen in Section 1.3 can be quite erratic. The principles can informally be
stated as follows.

1. Every measurable set is nearly a finite union of intervals.

2. Every integrable function is nearly continuous.

3. Every convergent sequence of measurable functions is nearly uniformly
convergent.

Note that we have not assigned the word nearly a mathematical meaning. In
fact, we shall see that this word takes on different meanings in the different
principles. The purpose of this chapter is to present three theorems which
capture the essence of the three principles.

2.1 The first principle

To state our version of Littlewood’s first principle, we shall make use of the
following definition.

11



2. Littlewood’s three principles

Definition. Let A and B be subsets of some set X. The symmetric difference
of A and B is

A△B = (A \ B) ∪ (B \ A).

The symmetric difference of two sets is the set comprised of the elements
which lie in one of the two sets, but not in both. Note that A = B if and only
if A△B = ∅. The symmetric difference is therefore natural to use if we want
to measure if two sets are nearly equal.

Theorem 2.1.1 (Littlewood’s first principle). Let E be a Lebesgue measurable
subset of R with finite measure. For every ε > 0, there is a finite union of
finite intervals F such that

µ(E△F ) ≤ ε.

Remark. Theorem 2.1.1 assigns the word nearly in Littlewood’s first principle
the meaning that the measure of the symmetric difference of E and a finite
union of intervals can be made as small as we wish.

Note that Theorem 2.1.1 is stated for general finite intervals. Since the
Lebesgue measure of a finite union of endpoints is 0, we can assume that the
intervals in question are open, closed or half-open without loss of generality.

Proof. Fix ε > 0. By the assumption that µ(E) < ∞, it follows from the outer
measure construction (see [4, Chapter 8]) that there is a sequence of finite
half-open intervals {Ij}j≥1 such that

E ⊆
∞⋃

j=1
Ij (2.1.1)

and such that ∞∑
j=1

µ(Ij) ≤ µ(E) + ε

2 . (2.1.2)

Since µ(E) < ∞, the left hand side of (2.1.2) is a convergent sum of nonnegative
real numbers. This means that there is an integer J such that∑j>J µ(Ij) ≤ ε/2.
We now choose our finite union of intervals as

F =
J⋃

j=1
Ij . (2.1.3)

To estimate the Lebesgue measure of E△F , it is sufficient to estimate the
Lebesgue measure of E \ F and F \ E. The latter two sets are disjoint, so

µ(E△F ) = µ(E \ F ) + µ(F \ E). (2.1.4)

To estimate µ(E \ F ), we first use (2.1.1) and (2.1.3) to conclude that

E \ F ⊆

 ∞⋃
j=1

Ij

 \

 J⋃
j=1

Ij

 ⊆
∞⋃

j=J+1
Ij .

12



2.1. The first principle

This implies that µ(E \ F ) ≤ ε/2 by countable subadditivity and our choice of
J . To estimate µ(F \ E), we first use (2.1.3) to see that

F \ E =

 J⋃
j=1

Ij

 \ E ⊆

 ∞⋃
j=1

Ij

 \ E.

Since µ(A \ B) = µ(A) − µ(B) for measurable sets B ⊆ A when µ(A) < ∞,
we conclude from this, (2.1.1), countable subadditivity and (2.1.2) that

µ(F \ E) ≤ µ

 ∞⋃
j=1

Ij

− µ(E) ≤

 ∞∑
j=1

µ(Ij)

− µ(E) ≤ ε

2 .

Inserting our estimates for µ(E \F ) and µ(F \E) into (2.1.4) yields the desired
estimate µ(E△F ) ≤ ε/2 + ε/2 = ε.

The assumption that E has finite measure in Theorem 2.1.1 cannot be
dropped (see Exercise 2.1).

Example 2.1.2. Fix 0 < r < 1/3 and consider the fat Cantor set F from
Example 1.3.4. Recall that the set Fn used in that construction is a union of
2n intervals. Since F ⊆ Fn by construction and since µ(Fn) ≤ 1, we find that

µ(F△Fn) = µ(Fn \ F) = µ(Fn) − µ(F).

Combining this with the computations in Example 1.3.4, we find that

µ(F△Fn) =
(

1 −
n∑

k=1
2k−1rk

)
−
(

1 −
∞∑

k=1
2k−1rk

)
=

∞∑
k=n+1

2k−1rk = 2nrn+1

1 − 2r
.

Since 0 < r < 1/3, we can make this as small as we like by picking n sufficiently
large. Of course, we knew this was possible already by Theorem 2.1.1! ♣

We will have use of the following corollary to Theorem 2.1.1 in the next
section. Recall from [4, Chapter 7] that a every simple function f can be
written in standard form f = ∑J

j=1 aj1Aj , where aj ̸= ak and Aj ∩ Ak = ∅ for
j ̸= k. Recall also that f is integrable if and only if µ(Aj) < ∞ for every j
such that aj ̸= 0.

From the definition of step functions in Section 1.1, we see that step
functions are Lebesgue integrable simple functions.

Corollary 2.1.3. Suppose that f : R → R is a Lebesgue integrable simple
function. For every ε > 0, there is a step function g : R → R such that∫

R
|f − g| dµ ≤ ε.

Proof. Left to the reader (see Exercise 2.2).
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2. Littlewood’s three principles

2.2 The second principle

The are (at least) two different theorems which can be chosen to exemplify
Littlewood’s second principle. It is probably most common to choose Lusin’s
theorem (see e.g. [3, Exercise 2.4.44]), the proof of which actually relies on
a version of Littlewood’s third principle! We will instead choose to present
a theorem which is easier to prove and more useful in applications. Before
stating the result, we recall the following.

Definition. A function f : R → R is said to be compactly supported if there is
a real number M ≥ 0 such that f(x) = 0 whenever |x| ≥ M .

Theorem 2.2.1 (Littlewood’s second principle). Let f : R → R be a Lebesgue
integrable function. For every ε > 0 there is a compactly supported continuous
function g : R → R such that ∫

R
|f − g| dµ ≤ ε.

Remark. Theorem 2.2.1 assigns the word nearly in Littlewood’s second principle
the meaning that we can choose a continuous function g such that the Lebesgue
integral of |f − g| can be made as small as we wish.

Our strategy for the proof of Theorem 2.2.1 is to perform a sequence of
approximations. In each step, we will replace our integrable function f by a
more manageable function:

Integrable ⇝ Simple ⇝ Step ⇝ Continuous

The middle step is a consequence of Littlewood’s first principle and can be
found in in Corollary 2.1.3 above. Our job is therefore to obtain the first and
last approximations. The following result, which is stated and proved for a
general measure space, supplies the first.

Lemma 2.2.2. Suppose that (X, A, µ) is a measure space and let f : X → R
be an integrable function. For every ε > 0, there is a simple integrable function
g such that ∫

X
|f − g| dµ ≤ ε.

Proof. Since f is measurable, we can decompose f = f+ − f−, where f+ and
f− are nonnegative measurable functions. By [4, Lemma 7.5.3], there are
increasing sequences of simple nonnegative functions {h+

n }n≥1 and {h−
n }n≥1

such that {h±
n }n≥1 converges pointwise f±. Set

gn = h+
n − h−

n .

14



2.2. The second principle

Then {gn}n≥1 is a sequence of simple functions which converges pointwise to
f and which enjoy the estimates

|gn(x)| = |h+
n (x) − h−

n (x)| = |h+
n (x)| + |h−

n (x)| ≤ |f+(x)| + |f−(x)| = |f(x)|

for every n ≥ 1 and every x ∈ X. In particular, we conclude from this that

|f(x) − gn(x)| ≤ |f(x)| + |gn(x)| ≤ 2|f(x)|

for every n ≥ 1 and every x ∈ X. Since f is integrable, we can therefore appeal
to the Dominated Convergence Theorem to establish that

lim
n→∞

∫
X

|f − gn| dµ =
∫

X
lim

n→∞
|f − gn| dµ = 0.

In the final equality we used that {gn}n≥1 converges pointwise to f . Since this
limit is equal to 0, there must be some positive integer N such that∫

X
|f − gN | dµ ≤ ε,

which is the desired estimate with the simple function g = gN .

The last approximation in the proof of Theorem 2.2.1 is the easiest one.

Lemma 2.2.3. Suppose that f : R → R is a step function. For every ε > 0,
there is a compactly supported continuous function g such that∫

R
|f − g| dµ ≤ ε.

Proof. Consider a step function f = ∑J
j=1 cj1Ij . Recall from the definition

in Section 1.1 that the real numbers cj are nonzero and that the intervals
Ij = (aj , bj ] are finite. For each j = 1, 2, . . . , J , we let gj denote the function
defined in Figure 2.1 with δj = ε/(J |cj |). Since each gj is continuous and
compactly supported, so is the function g = g1 + g2 + · · · + gJ . By the triangle
inequality, we find that

∫
R

|f − g| dµ ≤
J∑

j=1

∫
R

|cj1Ij − gj | dµ =
J∑

j=1

ε

J
= ε.

We are finally ready to wrap up the proof of our version of Littlewood’s
second principle. Note that the heavy lifting is done by Theorem 2.1.1 through
Corollory 2.1.3.

Proof of Theorem 2.2.1. Use Lemma 2.2.2, Corollary 2.1.3 and Lemma 2.2.3.
Note that the function produced by Corollary 2.1.3 will be compactly supported.
The details are left to the reader (see Exercise 2.3).
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2. Littlewood’s three principles

aj − δj aj bj bj + δj

cj

Figure 2.1: The functions gj from the proof of Lemma 2.2.3.

We will conclude this section by applying the techniques we have developed
to Fourier analysis. We shall use the triangle inequality for integrals of complex-
valued functions, which has a rather cute proof.

Lemma 2.2.4. Let (X, A, µ) be a measure space and suppose that f : X → C
is integrable. Then ∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤
∫

X
|f | dµ.

Proof. There is some θ ∈ R such that∣∣∣∣∫
X

f dµ

∣∣∣∣ = eiθ
∫

X
f dµ =

∫
X

eiθf dµ.

Since the left hand side is real, so is the right hand side. Hence∣∣∣∣∫
X

f dµ

∣∣∣∣ = Re
∫

X
eiθf dµ =

∫
X

Re(eiθf) dµ ≤
∫

X
|f | dµ,

which completes the proof.

If f : R → R is an integrable function, then its Fourier transformation is

f̂(ξ) =
∫
R

f(x)e−iξx dµ(x).

The complex-valued function x 7→ f(x)e−iξx is integrable for each ξ ∈ R, since
|e−iξx| = 1. It follows at once from Lemma 2.2.4 that

|f̂(ξ)| ≤
∫

X
|f | dµ

so the function f̂ : R → C is bounded when the function f is integrable. It
is possible to use Lemma 2.2.4 and the Dominated Convergence Theorem to
prove that f̂ is continuous (see Exercise 2.5). We do not need this fact to
establish the following result.
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2.3. The third principle

Theorem 2.2.5 (The Riemann–Lebesgue lemma). Suppose that f : R → R is
Lebesgue integrable. Then

lim
ξ→±∞

f̂(ξ) = 0.

Proof. Suppose first that f = c1I for a constant c and a finite interval I = [a, b].
By direct computation using the Riemann integral (justified by Theorem 1.1.1),
we obtain

f̂(ξ) =
∫

[a,b]
ce−iξx dµ(x) = ic

e−iξb − e−iξa

ξ
.

From this it is clear that f(ξ) → 0 as ξ → ∞ or as ξ → −∞. To pass from this
special case to the general case, we rely on Lemma 2.2.4 and an approximation
argument based on Lemma 2.2.2 and Corollary 2.1.3. The details are left to
the reader (see Exercise 2.6).

2.3 The third principle

Our version of Littlewood’s third principle is often called Egorov’s theorem.
It will be stated and proved for a general measure space and we require the
following definition.

Definition. We say that the measure space (X, A, µ) is finite if µ(X) < ∞.

A typical example of a finite measure space is the Lebesgue measure and
the σ-algebra of Lebesgue measurable sets on some finite interval (I, A, µ).

Theorem 2.3.1 (Littlewood’s third principle). Let (X, A, µ) be a finite measure
space and suppose that {fj}j≥1 is a sequence of measurable functions which
converges pointwise to a function f . For every ε > 0 there is a set Aε such
that µ(Aε) ≤ ε and such that {fj}j≥1 converges uniformly to f on X \ Aε.

Remark. Theorem 2.3.1 assigns the word nearly in Littlewood’s third principle
the meaning that we can get uniform convergence by discarding a set of
arbitrarily small measure.

Proof. Fix a positive integer n and consider the sequence of sets

An,k =
∞⋃

j=k

{
x ∈ X : |f(x) − fj(x)| ≥ 1

n

}

for k ≥ 1. Note first that An,k+1 ⊆ An,k. Moreover, since {fj}j≥1 converges
pointwise to f it follows that ∩k≥1An,k = ∅. Since µ(X) < ∞, it clearly
holds that µ(An,1) < ∞. We can therefore appeal to continuity of measure for
decreasing sequences (see [4, Proposition 7.1.5]) to conclude that

lim
k→∞

µ(An,k) = 0. (2.3.1)
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2. Littlewood’s three principles

Given a real number ε > 0 and an integer n ≥ 1, it follows from (2.3.1) that
there is an integer kn such that µ(An,kn) ≤ 2−nε. Define

Aε =
∞⋃

n=1
An,kn .

By countable subadditivity and our choice of kn, we find that

µ(Aε) ≤
∞∑

n=1
µ(An,kn) ≤

∞∑
n=1

ε

2n
= ε.

If x ∈ X \ Aε, then
|f(x) − fj(x)| <

1
n

whenever j ≥ kn because if the converse estimate holds, then x ∈ An,kn ⊆ Aε.
This demonstrates that {fj}j≥1 converges uniformly to f on X \ Aε.

Theorem 2.3.1 is no longer true if we remove the assumption (X, A, µ) is a
finite measure space (see Exercise 2.7).

2.4 Exercises

Exercise 2.1. Show that the assumption that E has finite Lebesgue measure
in Theorem 2.1.1 cannot be dropped.

Hint. Consider the set E = ⋃
j≥1[2j − 1, 2j] and draw a picture.

Exercise 2.2. Prove Corollary 2.1.3.

Exercise 2.3. Fill in the details in the proof of Theorem 2.2.1.

Exercise 2.4. We will say that a function f : R → R is smooth if the derivatives
f (k) exist for all k ≥ 1.

(a) Let δ > 0. Prove that the function gδ : R → R defined by

gδ(x) =

exp
(
− δ

1−x2

)
if − 1 < x < 1,

0 else,

is smooth.

(b) Prove that for every ε > 0, there is a δ > 0 such that∫
R

∣∣gδ − 1[−1,1]
∣∣ dµ ≤ ε.

Hint. Draw a picture (or ask your computer to do it).
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2.4. Exercises

(c) Establish the following stronger version of Littlewood’s second principle:
Let f : R → R be a Lebesgue integrable function. For every ε > 0 there
is a compactly supported smooth function g : R → R such that∫

R
|f − g| dµ ≤ ε.

Exercise 2.5. Let f be a Lebesgue integrable function. Prove that

f̂(ξ) =
∫
R

f(x)e−iξx dµ(x)

is continuous.

Hint. Use Lemma 2.2.4 and the Dominated Convergence Theorem.

Exercise 2.6. Finish the proof of Theorem 2.2.5.

Exercise 2.7. Show that the assumption that (X, A, µ) is a finite measure
space cannot be dropped in Theorem 2.3.1.

Hint. Consider the Lebesgue measure on the real line and the sequence of
functions {fn}n≥1 defined by fn = 1[n,n+1]. We informally say that this
sequence of functions converge to 0 by escaping to infinity.
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