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CHAPTER 1

On normed spaces and
bounded linear operators

1.1 Preliminaries

In this section we fix some notation and review some of the concepts and
results that we will need. These are usually covered in undergraduate courses
in real analysis, and the reader may consult the book of T. Lindstrøm, Spaces:
an introduction to real analysis (AMS 2017), or any other standard book in
real analysis, for examples, and proofs.

Throughout these notes F will denote either R (the real numbers) or C
(the complex numbers). If X, Y are sets, we let X×Y denote their Cartesian
product, i.e.,

X × Y =
{

(x, y) : x ∈ X, y ∈ Y
}
.

A metric space (X, d) is called complete when every Cauchy sequence in
(X, d) is convergent.

Definition 1.1.1. A normed space (X, ‖ · ‖) over F is a vector space X over
F which is equipped with a norm ‖ · ‖. We recall that X is then a metric
space with respect to the metric given by d(x, y) = ‖x − y‖ for x, y ∈ X.
We will only consider normed spaces over F in these notes, and we will often
just write X to denote such a normed space, assuming tacitly that some
norm on X is given.

When x ∈ X and r > 0, we let BX
r (x) denote the closed ball in X with

center in x and radius r, that is,

BX
r (x) :=

{
y ∈ X : ‖x− y‖ ≤ r

}
.



1. On normed spaces and bounded linear operators

When there is no danger of confusion, we just write Br(x) instead of BX
r (x).

We also set

X1 := BX
1 (0), i.e., X1 =

{
x ∈ X : ‖x‖ ≤ 1

}
.

Definition 1.1.2. If (X, ‖ · ‖) is a normed space, and ‖ · ‖′ is also a norm
on X, we say that ‖ · ‖ and ‖ · ‖′ are equivalent when there exist positive
real numbers K and L such that

‖x‖′ ≤ K ‖x‖ and ‖x‖ ≤ L ‖x‖′ for all x ∈ X.

When ‖ · ‖ and ‖ · ‖′ are equivalent, it is clear that a sequence {xn}∞n=1
in X converges to x ∈ X w.r.t. ‖ · ‖ if and only if it converges to x ∈ X
w.r.t. ‖ · ‖′. The following proposition implies that for many purposes the
choice of a norm in a finite-dimensional space can be made arbitrarily.

Proposition 1.1.3. If X is a finite-dimensional vector space, then all
norms on X are equivalent.

Definition 1.1.4. Assume {xn}∞n=1 is a sequence in a normed space (X, ‖·‖).
We say that the series ∑∞n=1 xn is convergent in X if there is some x ∈ X
such that ‖x−∑N

n=1 xn‖ → 0 as N →∞, in which case we say that ∑∞n=1 xn
converges to x (w.r.t. ‖ · ‖), and also write x = ∑∞

n=1 xn.

Definition 1.1.5. When a normed space (X, ‖ · ‖) is complete with respect
to the associated metric given by

d(x, y) = ‖x− y‖

for all x, y ∈ X, we say that X is a Banach space.

To check that a normed space is a Banach space, the following result is
often useful:

Theorem 1.1.6. Let (X, ‖ · ‖) be a normed space. Then X is a Banach
space if and only if every absolutely convergent series in X is convergent in
X, that is, if and only if the following condition holds :

Whenever ∑∞n=1 xn is a series in X such that ∑∞n=1 ‖xn‖ < ∞, then∑∞
n=1 xn is convergent in X.

Remark 1.1.7. It is good to know that if X is a normed space, then we
can always form its completion; this means that whenever needed, we can
assume that X sits as a dense subspace of a Banach space X̃ where the
norm of X̃ extends the norm on X. An elegant way to construct X̃ (as
an application of the so-called Hahn-Banach theorem) is covered in more
advanced courses on linear analysis.
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1.1. Preliminaries

Definition 1.1.8. Assume that X and Y are both vectors spaces over F.
Then a map T : X → Y is called a linear operator if we have

T (λ1 x1 + λ2 x2) = λ1 T (x1) + λ2 T (x2)

for all λ1, λ2 ∈ F and all x1, x2 ∈ X.

We let L(X, Y ) denote the set of all linear operators from X to Y . One
readily checks that L(X, Y ) is a vector space over F with respect to the
operations defined by

(S + T )(x) = S(x) + T (x), (λT )(x) = λT (x)

for S, T ∈ L(X, Y ), λ ∈ F and x ∈ X. We also set L(X) := L(X,X). We
let IX ∈ L(X) denote the identity map from X into itself, that is, IX(x) = x
for all x ∈ X. We sometimes write I instead of IX if no confusion is possible.

Definition 1.1.9. Assume that X and Y are both normed spaces over F.
Then a linear operator T : X → Y is called bounded if there exists some
real number M > 0 such that

‖T (x)‖ ≤ M ‖x‖ ∀x ∈ X,

or, equivalently, such that ‖T (x)‖ ≤ M for all x ∈ X1.

Proposition 1.1.10. Assume that X and Y are both normed spaces over
F and let T ∈ L(X, Y ). Then the following conditions are equivalent:

(a) T is bounded.

(b) T is uniformly continuous on X.

(c) T is continuous on X.

(d) T is continuous at x = 0.

We will denote the set of all bounded linear operators from X to Y
by B(X, Y ). We follow tradition here and use the qualifying adjective
“bounded”, although we could equally well have used “continuous” instead.
One readily checks that B(X, Y ) is a subspace of L(X, Y ). We also set
B(X) = B(X,X).
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1. On normed spaces and bounded linear operators

Proposition 1.1.11. Assume that X and Y are both normed spaces over
F. For T ∈ B(X, Y ), set

‖T‖ := sup
{
‖T (x)‖ : x ∈ X1

}
< ∞.

Then the map T 7→ ‖T‖ is a norm on B(X, Y ), called the operator norm,
making B(X, Y ) a normed space over F. Moreover, we have

‖T‖ = sup
{
‖T (x)‖ : x ∈ X, ‖x‖ = 1

}
(when X 6= {0}),

and
‖T (x)‖ ≤ ‖T‖ ‖x‖ for all x ∈ X.

Theorem 1.1.12. Assume that X is a normed space and Y is a Banach
space (both over F). Then B(X, Y ) is Banach space. In particular, B(X) is
a Banach space whenever X is a Banach space.

An immediate consequence of this theorem is that B(X,F) is a Banach
space whenever X is normed space over F. Elements of L(X,F) are called
linear functionals. Thus B(X,F) consists of the bounded linear functionals
on X; it is usually called the dual space of X and denoted by X∗ in many
books, or by X] in others.

Definition 1.1.13. A map T : X → Y between two vector spaces over F is
called a (vector space) isomorphism if T ∈ L(X, Y ) and T is bijective (that
is, T is both one-to-one and onto). It is then easy to check that the inverse
map of T , T−1 : Y → X, is linear, i.e., T−1 ∈ L(Y,X).

Definition 1.1.14. Assume that X and Y are normed spaces over F. A
map T : X → Y is called an isomorphism of normed spaces if T is a (vector
space) isomorphism such that both T and T−1 are bounded.

Definition 1.1.15. Assume that X is a normed space and T ∈ B(X). Then
we say that T is invertible in B(X) if T is an isomorphism of normed spaces.
In other words, an operator T ∈ B(X) is invertible in B(X) if T is bijective
and T−1 ∈ B(X).

Proposition 1.1.16. Let X, Y, Z be normed spaces over F, and let T ∈
B(X, Y ), S ∈ B(Y, Z). Set ST := S ◦ T : X → Z. Then ST ∈ B(X,Z)
and

‖ST‖ ≤ ‖S‖ ‖T‖ .

Corollary 1.1.17. Assume that X is a normed space and S ∈ B(X). For
each n ∈ N, let Sn := S · · ·S denote the product of S with itself n times.
Then Sn ∈ B(X) and

‖Sn‖ ≤ ‖S‖n.
Note that by setting S0 = IX , this formula also holds when n = 0.
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1.2. Norms and seminorms

1.2 Norms and seminorms
Seminorms on vector spaces are almost as good as norms, and there is a
standard way to produce a normed space from a vector space equipped with
a seminorm. As we will use this procedure in the next chapter, we briefly
describe it here. It is frequently used in linear analysis.

Definition 1.2.1. A seminorm on a vector space V (over F) is a function
v 7→ ‖v‖′ from V into [0,∞) which is homogeonous and satisfies the triangle
inequality, i.e., we have

‖λ v‖′ = |λ| ‖v‖′ and ‖v + w‖′ ≤ ‖v‖′ + ‖w‖′

for all v, w ∈ V and λ ∈ F.

Clearly, a seminorm ‖ · ‖′ is a norm if it also satisfies that

v ∈ V and ‖v‖′ = 0 =⇒ v = 0 .
Example 1.2.2. Let X be a vector space and (Y, ‖ · ‖) be a normed space
(both over F). Pick T ∈ L(X, Y ). For each x ∈ X, set

‖x‖T := ‖T (x)‖ .

Then it is almost immediate that the map x 7→ ‖x‖T is a seminorm on X.
Since

‖x‖T = 0⇔ ‖T (x)‖ = 0⇔ T (x) = 0⇔ x ∈ ker(T ),
we see that ‖ · ‖T gives a norm on X if and only if ker(T ) = {0}, i.e., if and
only if T is 1-1. �

Let V be a vector space (over F) and ‖ · ‖′ be a seminorm on V . Define
a relation ∼ on V by setting

v ∼ w ⇔ ‖v − w‖′ = 0 , v, w ∈ V.

It is an easy exercice to check that ∼ is an equivalence relation (cf. Exercise
1.1). We denote the equivalence class of v ∈ V by [v], that is,

[v] :=
{
w ∈ V : v ∼ w

}
,

and set Ṽ :=
{

[v] : v ∈ V
}
. Moreover, for v, w ∈ V , and λ ∈ F, we set

[v] + [w] := [v + w] , λ [v] := [λ v] , ‖ [v] ‖ := ‖v‖′ .

It is somewhat tedious, but straightforward, to check that these opera-
tions on Ṽ are well-defined, that Ṽ is a vector space (over F) and that ‖ · ‖
is a norm on Ṽ . We leave it as an exercise to provide some of the necessary
details.
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1. On normed spaces and bounded linear operators

1.3 Aspects of finite dimensionality
Unless otherwise specified, we always assume that the space Fn, n ∈ N, is
equipped with the Euclidean norm ‖ · ‖2 given by

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2
for x = (x1, . . . , xn) ∈ Fn,

and with the metric induced by this norm. As we recalled in Section 1.1,
all norms on a finite-dimensional vector space are equivalent. The usual
way to prove this is to consider first Fn and show that any other norm
on Fn is equivalent to ‖ · ‖2. A crucial fact in the proof is that a subset
of Fn is compact (w.r.t. the metric associated with ‖ · ‖2) if and only if
it is closed and bounded. (We recall that a subset K of a metric space
is called compact if every sequence in K has a subsequence converging to
a point in K.) It will be useful for us to know that this characterization
of compactness, sometimes called the Heine-Borel property, holds in any
finite-dimensional normed space. We will need the following lemma.

Lemma 1.3.1. Let X and Y be finite-dimensional normed spaces. Assume
that X and Y are isomorphic as vector spaces and let T ∈ L(X, Y ) be an
isomorphism. Then T is an isomorphism of normed spaces.

Proof. We have to show that T and T−1 are bounded. We denote the
respective norms on X and Y by the same symbol ‖ · ‖. For x ∈ X we set

‖x‖T := ‖T (x)‖ .

Since T is 1-1, we get from Example 1.2.2 that the map x 7→ ‖ · ‖T is a
norm on X. Since X is finite-dimensional, ‖ · ‖T is equivalent to ‖ · ‖. In
particular, this means that there exists some C > 0 such that

‖T (x)‖ = ‖x‖T ≤ C ‖x‖ for all x ∈ X,

which shows that T is bounded. Similarly, by considering the norm on
Y given by ‖y‖T−1 := ‖T−1(y)‖ for y ∈ Y , one deduces that T−1 is also
bounded. �

Proposition 1.3.2. Let X be a finite-dimensional normed space. Then a
subset K of X is compact (w.r.t. the metric induced by the given norm) if
and only if K is closed and bounded.

Proof. Since a compact subset of a metric space is always closed and bounded,
we only have to show the reverse implication. So let K ⊆ X be closed and
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1.3. Aspects of finite dimensionality

bounded. We must show that K is compact. If X = {0}, this is obviously
true, so we may assume that m := dim(X) ≥ 1. Let then T : X → Fm
denote the coordinate map w.r.t. some basis for X. Lemma 1.3.1 gives
that T is an isomorphism of normed spaces. Set K ′ := T (K) ⊆ Fm. Then
K ′ is bounded (since T is bounded). Moreover, K ′ is closed. Indeed, as
K ′ = (T−1)−1(K), this follows from the continuity of T−1. By the Heine-
Borel property of Fm, we can conclude that K ′ is compact. As K = T−1(K ′)
and T−1 is continuous, this implies that K is compact, as desired. �

Since the unit ball X1 of a normed space is closed and bounded we get:

Corollary 1.3.3. The unit ball X1 of a finite-dimensional normed space X
is compact.

We recall that a vector space is said to be infinite-dimensional if it is
not finite-dimensional. We note that if X is an infinite-dimensional normed
space, then X1 is not compact. (See Exercise 1.2.) In particular, this
implies that an infinite-dimensional normed space never has the Heine-Borel
property.

Another property which is automatically satisfied for a finite-dimensional
normed space is completeness:

Proposition 1.3.4. Let X be a finite-dimensional normed space. Then X
is a Banach space.

Proof. We may clearly assume that X 6= {0}. To show that X is complete,
we let {xn}n∈N be a Cauchy sequence in X and have to prove that it is
convergent. As in the proof of Proposition 1.3.2, we can pick an isomorphism
of normed spaces T : X → Fm, where m = dim(X). For each n ∈ N, set
yn := T (xn). Since ‖yn − yk‖2 = ‖T (xn − xk)‖2 ≤ ‖T‖ ‖xn − xk‖ for all
k, n ∈ N, we see that {yn}n∈N is a Cauchy sequence in Fm. Since Fm is
complete, there exists y ∈ Fm such that ‖yn − y‖2 → 0 as n → ∞. Set
x := T−1(y) ∈ X. Then we get

‖xn − x‖ = ‖T−1(yn − y)‖ ≤ ‖T−1‖ ‖yn − y‖2 → 0 as n→∞.

Thus, {xn}n∈N is convergent, as desired. �

Corollary 1.3.5. Assume M is a finite-dimensional subspace of a normed
space X. Then M is closed in X.

Proof. Assume {xn}n∈N ⊆ M converges to x ∈ X. We have to show that
x ∈ M . As M is complete by Proposition 1.3.4, and {xn}n∈N is a Cauchy
sequence in M , it follows that {xn}n∈N converges to some y ∈M . Thus we
get that x = limn→∞ xn = y ∈M . �
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1. On normed spaces and bounded linear operators

Finite dimensionality has also some impact on linear operators.

Example 1.3.6. Let m,n ∈ N and let T ∈ L(Fn,Fm). Then T is bounded.
Indeed, let A = [ai,j] denote the standard matrix of T . Then we have
T (x) = (F1(x), . . . , Fn(x)), where Fi(x) := ∑n

j=1 ai,j xj for each i = 1, . . . ,m
and x = (x1, . . . , xn) ∈ Fn. Since each component Fi is clearly a continuous
function from Fn to F, we get that T is continuous, and therefore bounded.

More generally, we have:

Proposition 1.3.7. Let X and Y be normed spaces and let T ∈ L(X, Y ).
Assume that X is finite-dimensional. Then T is bounded.

Proof. By replacing Y with T (X) if necessary, we may assume that Y is
finite-dimensional. Moreover, we may also assume that both X and Y are
different from {0}. Set n = dim(X),m = dim(Y ), and let C : X → Fn,
D : Y → Fm be isomomorphims, which are then necessarily isomorphisms of
normed spaces by Lemma 1.3.1. The composition T ′ := D ◦ T ◦C−1 is then
a linear map from Fn to Fm, hence it is bounded by the previous example.
It follows that T = D−1 ◦ T ′ ◦ C, being the composition of bounded maps,
is bounded. �

Note that the above result is not true in general if we instead assume that
Y is finite-dimensional, even in the case where Y = F : a linear functional
T : X → F may be unbounded when X is an infinite-dimensional normed
space. For an example, see Exercise 1.3.

Definition 1.3.8. A linear operator T : X → Y between two vector spaces
X and Y is said to have finite-rank if the range of T is finite-dimensional,
i.e., if dim(T (X)) <∞.

It is obvious that a linear functional on a normed space has always
finite-rank. As such a linear functional can be unbounded (cf. Exercise 1.3),
this means that a finite-rank linear operator T between normed spaces is
not necessarily bounded; in fact, it can be shown that a finite-rank linear
operator T between normed spaces is bounded if and only if ker(T ) is closed.
Bounded finite-rank operators are examples of compact operators, which we
will study in Chapter 4.

1.4 Extension by density and continuity
This short section is devoted to a very useful principle in linear analysis,
often called the principle of extension by density and continuity. We will
need the following elementary lemma, which is probably well-known.
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1.4. Extension by density and continuity

Lemma 1.4.1. Assume that X and Y are metric spaces and f, g are con-
tinuous maps from X to Y which agree on a dense subset X0 of X. Then
f = g.

Proof. Let x ∈ X. Since X0 is dense in X, there exists a sequence {xn}n∈N
in X0 which converges to x. By continuity of f and g, we get

f(x) = lim
n
f(xn) = lim

n
g(xn) = g(x) . �

Theorem 1.4.2. Assume that X is a normed space and Y is a Banach
space (both over F). Assume also that X0 is a dense subspace of X, while Y0
is a subspace of Y . Let T0 ∈ B(X0, Y0). Then T0 extends in a unique way to
an operator T ∈ B(X, Y ). It satisfies that ‖T‖ = ‖T0‖.

Proof. Let x ∈ X. Since X0 is dense in X, there exists a sequence {xn}n∈N
in X0 such that ‖x−xn‖ → 0 as n→∞. In particular, {xn}n∈N is a Cauchy
sequence in X0. We claim that {T0(xn)}n∈N is a Cauchy sequence in Y .
Indeed, let ε > 0, and choose N ∈ N such that

‖xm − xn‖ < ε/‖T0‖ for all m,n ≥ N .

Then, for all m,n ∈ N , we get

‖T0(xm)− T0(xn)‖ = ‖T0(xm − xn)‖ = ‖T0‖ ‖xm − xn‖ < ε ,

as desired.
Since Y is complete, we can conclude that there exists some y ∈ Y

such that limn T0(xn) = y. Note that y only depends on x. Indeed, as-
sume {x′n}n∈N is another sequence in X0 converging to x. Then the se-
quence x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n, . . . in X0 also converges to x, so, arguing

as above, we get that there exists some z ∈ Y such that the sequence
T0(x1), T0(x′1), T0(x2), T0(x′2), . . . , T0(xn), T0(x′n), . . . converges to z. This
implies that

lim
n
T0(x′n) = z = lim

n
T0(xn) = y .

Hence it makes sense to define T (x) := y. Doing this for every x ∈ X, we
get a map T : X → Y , and it is easy to check that T is linear, so we leave
this as an exercise.

Next, we show that T is bounded. Let x ∈ X and pick {xn}n∈N in X0
converging to x. As T (x) = limn T0(xn) and ‖T0(xn)‖ ≤ ‖T0‖ ‖xn‖ for all
n ∈ N, we get

‖T (x)‖ = lim
n
‖T0(xn)‖ ≤ ‖T0‖ lim

n
‖xn‖ = ‖T0‖ ‖x‖ .
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1. On normed spaces and bounded linear operators

It follows that T ∈ B(X, Y ) with ‖T‖ ≤ ‖T0‖.
Further, T is an extension of T0. Indeed, let x ∈ X0. Then set xn := x

for all n ∈ N. Since {xn}n∈N is a sequence in X0 converging to x, we get
that

T (x) = lim
n
T0(xn) = T0(x) .

The uniqueness of T as an extension of T0 is immediate from Lemma 1.4.1.
Finally, we have

‖T0‖ = sup{‖T0(x)‖ : x ∈ X0, ‖x‖ ≤ 1}
= sup{‖T (x)‖ : x ∈ X0, ‖x‖ ≤ 1}
≤ sup{‖T (x)‖ : x ∈ X, ‖x‖ ≤ 1} = ‖T‖ ≤ ‖T0‖ .

Thus, ‖T‖ = ‖T0‖, as desired. �

Remark 1.4.3. The conclusion of Theorem 1.4.2 is not necessarily true if
Y is a normed space which is not complete (cf. Exercise 1.5). �

An interesting special case of Theorem 1.4.2 is when T0 is an isometry.
We recall that a linear map between normed spaces is called an isometry
when it is norm-preserving. A linear isometry is clearly bounded.

Corollary 1.4.4. Assume that X is a normed space, Y is a Banach space,
X0 is a dense subspace of X, Y0 is a subspace of Y , and U0 ∈ L(X0, Y0) is
an isometry. Then the unique extension of U0 to an operator U in B(X, Y )
is also an isometry.

Proof. Theorem 1.4.2 guarantees that U0 extends in a unique way to U ∈
B(X, Y ). Let x ∈ X and pick {xn}n∈N in X0 converging to x. We then have
U(x) = limn U0(xn), so we get

‖U(x)‖ = lim
n
‖U0(xn)‖ = lim

n
‖xn‖ = ‖x‖ .

�

Using Corollary 1.4.4, it can be shown that the completion of a (non-
complete) normed space is unique up to isometric isomorphism (cf. Exercise
1.7). We also record an important particular case of Theorem 1.4.2.

Corollary 1.4.5. Assume that X is a Banach space and X0 is a dense
subspace of X. Then every T0 ∈ B(X0) extends in a unique way to an
operator T ∈ B(X), which satisfies that ‖T‖ = ‖T0‖.

An important application of this result to integral operators will be given
in the next chapter (cf. Example 2.1.9).

10



1.5. Exercises

1.5 Exercises
Exercise 1.1. Let V be a vector space (over F) and let ‖ · ‖′ be a seminorm
on V . In Section 1.2 we sketched how one can produce a normed space
(Ṽ , ‖ ·‖) from V and ‖ ·‖′. Here you are asked to provide some of the missing
details.

a) Recall that ∼ is defined by v ∼ w ⇔ ‖v−w‖′ = 0 (v, w ∈ V ). Check that
∼ is an equivalence relation on your V , i.e., that the following properties
hold for u, v, w ∈ V :

• v ∼ v,

• v ∼ w =⇒ w ∼ v,

• u ∼ v and v ∼ w =⇒ u ∼ w.

b) For v ∈ V , set [v] :=
{
w ∈ V : v ∼ w

}
. Further, for v, w ∈ V , and λ ∈ F,

set
[v] + [w] := [v + w] , λ [v] := [λ v] , ‖ [v] ‖ := ‖v‖′ .

Check that these operations on Ṽ :=
{

[v] : v ∈ V
}
are well-defined and turn

Ṽ into a vector space (over F). Check also that ‖ · ‖ is a norm on Ṽ .

Exercise 1.2. Let X be a normed space. LetM denote a finite-dimensional
subspace of X, and assume M 6= X.

a) Let x ∈ X \M . Show that d := infm∈M ‖x−m‖ > 0.

b) Show that there exists y ∈ X such that ‖y‖ = 1 and
1
2 ≤ ‖y −m‖ for all m ∈M.

c) Assume that X is infinite-dimensional (as a vector space). Show that
the unit ball X1 is not compact.

(Hint : Use b) to construct inductively a sequence {yn}n∈N in X1 such
that 1/2 ≤ ‖yn − yk‖ for all 1 ≤ k < n.)

Exercise 1.3. Recall that `∞(N), which denotes the space of all bounded
functions from N into C, is a normed space w.r.t. ‖f‖u = supn∈N |f(n)|. Let
X be the subspace of `∞(N) given by

X = {f : N→ C : f(n) = 0 for all but finitely many n}.

a) Show that X is infinite-dimensional.

11



1. On normed spaces and bounded linear operators

b) Consider X as a normed space w.r.t. ‖ · ‖u and let L : X → C be
defined by

L(f) =
∞∑
n=1

f(n)

for all f ∈ X. Clearly, L ∈ L(X,C). Show that L is unbounded. Check
also that ker(L) is not closed in X.

Exercise 1.4. Let PR denote the real vector space consisting of all polyno-
mials in one real variable with real coefficients. For p ∈ PR, set

‖p‖ := sup
t∈[0,1]

|p(t)| .

a) Explain why p→ ‖p‖ gives a well-defined norm on PR.
b) Define a linear operator D : PR → PR by

D(p) = p′ (the derivative of p).

Show that D is unbounded. Conclude that PR is infinite-dimensional.

Exercise 1.5. Let X be a Banach space having a dense subspace X0 which
is not complete. Consider the identity map I0 : X0 → X0. Show that I0
does not have an extension to a bounded linear map from X into X0.

Exercise 1.6. Assume that X is a normed space and Y is a Banach space
(both over F), and let {Tk}k∈N be a sequence in B(X, Y ) which is uniformly
bounded in the sense that M := supk∈N ‖Tk‖ <∞ .

Moreover, assume that there exists a dense subset S of X such that
{Tk(x)}k∈N converges in Y for every x ∈ S.

Show that there exists T ∈ B(X, Y ) such that

T (x) = lim
k
Tk(x) for all x ∈ X .

Exercise 1.7. Assume X0 is a normed space and let (X, i) denote a com-
pletion of X0, that is, X is a Banach space and i : X0 → X is a linear
isometry such that i(X0) is dense in X. (As mentioned in Remark 1.1.7,
such a completion always exists.)

Show that (X, i) is unique up to isometric isomorphism, meaning that
the following holds: if (X ′, i′) is another completion of X0, then there exists
an isometric isomorphism U : X → X ′ such that i′ = U ◦ i.

12



CHAPTER 2

On Lp-spaces

An important class of Banach spaces over F associated with measure spaces
are the so-called Lp-spaces, where 1 ≤ p ≤ ∞. We will assume that F = C,
and just mention that the case where F = R may be handled in a similar way.
Our presentation is somewhat more detailed than the one given Lindstrøm’s
book Spaces. We assume that the reader is familiar with the basics of
measure and integration theory, as covered for example in sections 7.1-7.6
and 8.1-8.4 of Spaces, supplied with Brevig’s lecture note entitled A measure
of Lebesgue measure. Our notation will essentially be the same as in these
references.1

2.1 The case 1 ≤ p <∞
Let (X,A, µ) be a measure space and set

M =M(X,A) :=
{
f : X → C : f is A-measurable

}
.

We recall that a complex function f : X → C is called A-measurable if it
its real part and its imaginary part are A-measurable. It is straightforward
to show that M is a vector space over C (with its natural operations),
so we leave this as an exercise for the reader (Exercise 2.1). We will be
interested in subspaces ofM associated with any p ∈ [1,∞]. In this section
we consider the case 1 ≤ p <∞.

1In particular, if A is a subset of a set X, then 1A will denote the indicator function
of A (in X). In most situations, the fact that X is not included in this notation will
not create any confusion; a more precise notation could be 1X

A . Indicator functions are
sometimes called characteristic functions, and some authors prefer to write χA instead of
1A. The σ-algebra on X consisting of all subsets of X will be denoted by P(X).



2. On Lp-spaces

Let f ∈M. Obviously, the function |f |p is non-negative, and one easily
checks that it belongs toM (using that the function z → |z|p is continuous
on C). Thus, with the convention that ∞1/p :=∞, we can define

‖f‖p :=
( ∫

X
|f |p dµ

)1/p
∈ [0,∞].

Moreover, we set

Lp(X,A, µ) := {f ∈M : ‖f‖p <∞}.
We will just write Lp, or Lp(µ), or Lp(X), when it is clear from the context
what we mean. We note that L1 consists of all the complex functions on
X which are integrable (w.r.t. µ), i.e., which are A-measurable and satisfies
that

∫
X |f | dµ <∞.

When A = P(X) and µ is the counting measure on A, it is common
to write `p(X) instead of Lp(X,A, µ); the norm of f ∈ `p(X) is then given
by ‖f‖p = (∑x∈X |f(x)|p)1/p. When X = N, it is usual to write `p instead
of `p(N), and think of elements of `p as sequences under the identification
f → (f(1), f(2), f(3), . . .).

It is not difficult to verify that Lp is a subspace of M. For example,
closedness under addition follows readily from the inequality

|z + w|p ≤ 2p (|z|p + |w|p) ,

which is easily seen to hold for all z, w ∈ C. On the other hand, it is not
true in general that ‖ · ‖p is a norm on Lp. The reason is that for f ∈ Lp,
we have

‖f‖p = 0 ⇔
∫
X
|f |p dµ = 0 ⇔ |f |p = 0 µ-a.e. ⇔ f = 0 µ-a.e.

Using the triangle inequality for | · | on C, one readily deduces that ‖ · ‖1
gives a seminorm on L1. As we will soon see, ‖ · ‖p is a seminorm on Lp for
any p ≥ 1. To handle the case p > 1, we will need:

Theorem 2.1.1 (Hölder’s inequality). Assume p ∈ (1,∞) and let q ∈ (1,∞)
denote p’s conjugate exponent, given by q = p

p−1 , so that 1
p

+ 1
q

= 1.
Let f ∈ Lp and g ∈ Lq. Then fg ∈ L1 and

‖fg‖1 =
∫
X
|fg| dµ ≤ ‖f‖p ‖g‖q . (2.1.1)

Proof. We first note that if a, b are nonnegative real numbers, then we have

ab ≤ a p

p
+ b q

q
. (2.1.2)
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2.1. The case 1 ≤ p <∞

A geometric way to prove this inequality (called Young’s inequality) is to
observe that A := ap

p
=
∫ a

0 x
p−1 dx is the area of the region under the graph

of the function y = x p−1 over [0, a], while B := bq

q
=
∫ b
0 y

q−1 dy is the area
of the region under the graph of the function x = yq−1 over [0, b]. Now, as
q − 1 = 1/(p− 1), we have y = xp−1 ⇔ x = yq−1 when x, y ≥ 0. By making
a drawing, one sees that ab, which is the area of the rectangle [0, a]× [0, b],
is less than or equal to A+B, as desired.

Next, we note that we may assume that ‖f‖p = ‖g‖q = 1. Indeed,
assume that (2.1.1) holds whenever ‖f‖p = ‖g‖q = 1, and consider f ∈ Lp
and g ∈ Lq. If ‖f‖p = 0 or ‖g‖q = 0, then both sides of (2.1.1) are equal to
zero. On the other hand, if ‖f‖p and ‖g‖q are both nonzero, then we may
use that (2.1.1) holds for the functions f/‖f‖p and g/‖g‖q, and deduce that
it holds in the general case.

Hence, assume that ‖f‖p = ‖g‖q = 1. Then, using (2.1.2) with a = |f(x)|
and b = |g(x)| for each x ∈ X, and linearity of the integral, we get∫

X
|fg| dµ =

∫
X
|f(x)| |g(x)| dµ(x)

≤ 1
p

∫
X
|f(x)|p dµ(x) + 1

q

∫
X
|g(x)|q dµ(x)

= 1
p
‖f‖pp + 1

q
‖g‖qq

= 1
p

+ 1
q

= 1

= ‖f‖p ‖g‖q ,

as desired. �

Corollary 2.1.2. Let p ∈ [1,∞). Then ‖ · ‖p is a seminorm on Lp. In
particular, for all f, g ∈ Lp, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p (Minkowski’s inequality) (2.1.3)

Proof. As already mentioned, the case p = 1 is straightforward. So assume
p ∈ (1,∞). The reader should have no problem to see that we have
‖λ f‖p = |λ| ‖f‖p for all λ ∈ C and all f ∈ Lp. Next, let f, g ∈ Lp, and let
q be p’s conjugate exponent. As (p− 1)q = p and p/q = p− 1, we have

‖ |f + g|p−1‖q =
( ∫

X
|f + g|(p−1)q dµ

)1/q
=
( ∫

X
|f + g|p dµ

)1/q

= ‖f + g‖p/qp = ‖f + g‖p−1
p .
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2. On Lp-spaces

Since f + g ∈ Lp, this shows that |f + g|p−1 ∈ Lq; moreover, using Hölder’s
inequality (at the 4th step), we get

‖f + g‖pp =
∫
X
|f + g|p dµ =

∫
X
|f + g| |f + g|p−1 dµ

≤
∫
X
|f | |f + g|p−1 dµ+

∫
X
|g| |f + g|p−1 dµ

≤ ‖f‖p ‖ |f + g|p−1‖q + ‖g‖p ‖ |f + g|p−1‖q
= (‖f‖p + ‖g‖p) ‖|f + g|p−1‖q
= (‖f‖p + ‖g‖p) ‖f + g‖p−1

p ,

and Minkowski’s inequality clearly follows. �

Let {fn} be a sequence in Lp and f ∈ Lp. We note that it may happen
that fn → f pointwise on X while ‖fn − f‖p 6→ 0 as n→∞. For example
one may let X = R, A = BR, µ = Lebesgue measure on BR, and consider
the sequence given by fn = 1[n,n+1] for each n ∈ N: it converges pointwise
to 0 on R as n→∞, and satisfies ‖fn‖p = 1 for all n ∈ N.

The following Lp-version of Lebesgue’s Dominated Convergence Theorem
gives conditions ensuring that a pointwise limit is also convergent w.r.t. ‖·‖p.

Proposition 2.1.3. Let p ∈ [1,∞) and {fn}n∈N ⊆ Lp. Assume that there
exist some g ∈ Lp such that |fn| ≤ g µ-a.e. for all n ∈ N, and some f ∈M
such that fn → f pointwise µ-a.e. on X.
Then f ∈ Lp and ‖fn − f‖p → 0 as n→∞.

Proof. The assumptions imply that |fn|p ≤ g p µ-a.e. for all n ∈ N and that
|fn|p → |f |p pointwise µ-a.e. on X. It follows that we |f |p ≤ g p µ-a.e., so∫

X
|f |p dµ ≤

∫
X
g p dµ <∞ ,

hence f ∈ Lp. Further, we get

|fn − f |p ≤
(
|fn|+ |f |

)p
≤ (2 g)p = 2p g p µ-a.e.,

and |fn − f |p → 0 pointwise µ-a.e. on X. Since 2p g p ∈ L1, we can apply
(the complex version of) Lebesgue’s Dominated Convergence Theorem and
get

lim
n→∞

∫
X
|fn − f |p dµ =

∫
X

0 dµ = 0,

which gives that ‖fn − f‖p → 0 as n→∞, as desired. �
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2.1. The case 1 ≤ p <∞

We note that if p ∈ [1,∞) and {hk}k∈N is a sequence in Lp such that
limk→∞ ‖hk − h‖p = 0 for some h ∈ Lp, then it is not necessarily true that
hk → h pointwise µ-a.e. on X. However, the following weaker statement
holds:

Proposition 2.1.4. Let p ∈ [1,∞). Assume that {hk}k∈N is a sequence in
Lp such that limn→∞ ‖hk − h‖p = 0 for some h ∈ Lp. Then there exists a
subsequence {hkn}n∈N which converges to h pointwise µ-a.e. on X.

We postpone the proof of this result to after the proof of Theorem 2.1.5.
Let p ∈ [1,∞). Since ‖ · ‖p is a seminorm on Lp = L(X,A, µ) (by Corol-

lary 2.1.2), we may use the procedure outlined in Section 1.2 to obtain a
normed space Lp = Lp(X,A, µ). We will denote the norm on Lp by the
same symbol ‖ · ‖p. Concretely, (Lp, ‖ · ‖p) can be described as follows. We
first note that if f, g ∈ Lp, then

f ∼ g ⇔ ‖f − g‖p = 0 ⇔ f = g µ-a.e.

Hence, we have [f ] :=
{
g ∈ Lp : f = g µ-a.e.

}
, Lp := {[f ] : f ∈ Lp}, and

[f ] + [g] := [f + g] , λ [f ] := [λ f ] , ‖ [f ] ‖p := ‖f‖p

for f, g ∈ Lp and λ ∈ C. Then we have:

Theorem 2.1.5. Let p ∈ [1,∞). Then (Lp, ‖ · ‖p) is a Banach space.

Proof. Let {[fn]}n∈N ⊆ Lp be such that ∑∞n=1 ‖[fn]‖p <∞, i.e., such that

S :=
∞∑
n=1
‖fn‖p <∞ .

According to Theorem 1.1.6 we have to show that the series ∑∞n=1 [fn] is
convergent in Lp. It suffices to show that there exists some F ∈ Lp such
that limN→∞ ‖

∑N
n=1 fn − F‖p = 0, because this will give that

lim
N→∞

‖
N∑
n=1

[fn]− [F ]‖p = lim
N→∞

‖
[ N∑
n=1

fn − F
]
‖p = lim

N→∞
‖

N∑
n=1

fn − F‖p = 0 ,

thus showing that ∑∞n=1[fn] converges to [F ] in Lp.
For each N ∈ N, set gN := ∑N

n=1 |fn|. Also, let g : X → [0,∞] be given
by

g(x) :=
∞∑
n=1
|fn(x)| for all x ∈ X.
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2. On Lp-spaces

Clearly, the sequence {g pN}N∈N of A-measurable nonnegative functions is
nondecreasing, and it converges pointwise to the A-measurable function g p
on X. Further, using Minkowski’s inequality, we get

‖gN‖p ≤
N∑
n=1
‖ |fn| ‖p =

N∑
n=1
‖fn‖p ≤ S

for all N ∈ N. Hence, using the Monotone Convergence Theorem, we get∫
X
g p dµ = lim

N→∞

∫
X
g pN dµ = lim

N→∞
‖gN‖pp ≤ Sp < ∞ .

Since g p ≥ 0, it follows from Exercise 7.5.6 in Lindstrøm’s book that g p
is finite µ-a.e., hence that g is finite µ-a.e. This means that the series∑∞
n=1 fn(x) is absolutely convergent for every x belonging to some E ∈ A

such that µ(Ec) = 0. We may therefore define F ∈M by

F (x) =

∑∞
n=1 fn(x) if x ∈ E,

0 if x ∈ Ec.

Setting FN := ∑N
n=1 fn, we then have |FN | ≤ gN ≤ g ∈ Lp for every N ∈ N,

and FN → F pointwise µ-a.e. on X as N → ∞. Proposition 2.1.3 gives
now that F ∈ Lp and limN→∞ ‖FN − F‖p = 0, as we wanted to show. �

As a spin-off of the proof above, we can now prove Proposition 2.1.4:

Proof of Proposition 2.1.4. Let {hk}k∈N be a sequence in Lp such that
limk→∞ ‖hk − h‖p = 0 for some h ∈ Lp. Set k0 := 0 and h0 := 0. As
{hk}k∈N is a Cauchy sequence in Lp, it is not difficult to show (cf. Exercise
2.7) that we can pick a subsequence {hkn}n∈N such that

∞∑
n=1
‖hkn − hkn−1‖p <∞.

Set fn := hkn − hkn−1 for each n ∈ N. Then {fn}n∈N is a sequence in Lp
such that ∑∞n=1 ‖fn‖p <∞, and the proof of Theorem 2.1.5 gives that the
sequence {FN}N∈N, given by FN := ∑N

n=1 fn, converges to a certain function
F ∈ Lp pointwise µ-a.e. on X, such that limN→∞ ‖FN − F‖p = 0. Now, for
every N ∈ N, we have

FN =
N∑
n=1

(hkn − hkn−1) = hk1 + (hk2 − hk1) + · · ·+ (hkN
− hkN−1) = hkN

.

So we get that limN→∞ ‖hkN
− F‖p = 0. Since limn→∞ ‖hn − h‖p = 0, we

also have limN→∞ ‖hkN
−h‖p = 0. This gives that ‖F −h‖p = 0, hence that

F = h µ-a.e. Thus we can conclude that {hkN
}N∈N = {FN}N∈N converges

to h pointwise µ-a.e. on X, as desired. �
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2.1. The case 1 ≤ p <∞

It is often good to have a dense subspace available. For our first result
in this direction, we recall that a complex function on X is called simple if
it takes a finite number of values. When p = 1, this result is essentially the
same as Lemma 2.2.2 in Brevig’s note. It is not difficult to adapt its proof
to handle the case where p > 1. We leave this an exercise (cf. Exercise 2.8).

Proposition 2.1.6. Let p ∈ [1,∞). Denote by E the subspace of M
consisting of all A-measurable simple complex functions on X, and by E0

the subspace of E spanned by the family {1A : A ∈ A, µ(A) <∞}.
Then we have E0 = E ∩ Lp. Moreover, [E0] :=

{
[s] : s ∈ E0

}
is a dense

subspace of Lp(X,A, µ) with respect to ‖ · ‖p.

Our next result is the Lp-version of Littlewood’s second principle for
functions on bounded intervals.

Proposition 2.1.7. Let p ∈ [1,∞) and a, b ∈ R, a < b. Let A be the
σ-algebra of all Lebesgue measurable subsets of [a, b] and µ be the Lebesgue
measure on A. Recall that C([a, b]) denotes the space of all continuous
complex functions on [a, b].

Then {[g] : g ∈ C([a, b])} is a dense subspace of Lp([a, b]) with respect to
‖ · ‖p.

Note: since the linear map g 7→ [g] from C([a, b]) into Lp([a, b]) is 1-1,
it is common to consider C([a, b]) as a dense subspace of Lp([a, b]) via this
identification.

Proof. It is routine to verify that {[g] : g ∈ C([a, b])} is a subspace of
Lp([a, b]). To show that it is dense, one can argue in a quite similar way
as in the proof of Lemma 2.2.3 in Brevig’s note, by approximating simple
functions with step functions and using Proposition 2.1.6.

Alternatively, one can exploit the regularity properties of the Lebesgue
measure on A to show that if A ∈ A and δ > 0, then there exists some
k ∈ C([a, b]) such that ‖1A− k‖p < δ. Combining this fact with Proposition
2.1.6 readily gives the desired assertion. We leave the details to Exercise
2.9). �

The Lp-version of Littlewood’s second principle for functions on R is
analogous to Theorem 2.2.1 in Brevig’s note (where p = 1).

Proposition 2.1.8. Let p ∈ [1,∞). Let A be the σ-algebra of all Lebesgue
measurable subsets of R and µ be the Lebesgue measure on A. Let Cc(R)
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2. On Lp-spaces

denote the space of all continuous complex functions on R having compact
support.2

Then {[g] : g ∈ Cc(R)} is dense in Lp(R) with respect to ‖ · ‖p.

Proof. Minor modifications of the proof of Theorem 2.2.1 in Brevig’s note
(or of the previous proof) suffice. We leave this to the reader. �

We end this section with an important example showing the usefulness
of the principle of extension by density and continuity.

Example 2.1.9. Let a, b ∈ R, a < b, and equip the space C([a, b]) of all con-
tinuous complex functions on [a, b] with the norm ‖f‖2 = (

∫ b
a |f(s)|2 ds)1/2.

Considering [a, b] × [a, b] as a metric space w.r.t. the Euclidean metric
inherited from R2, let K : [a, b]× [a, b]→ C be a continuous function.

We can then associate to K an integral operator TK on C([a, b]) as
follows.

Let f ∈ C([a, b]). Since the function t 7→ K(s, t) f(t) is continuous on
[a, b] for each s ∈ [a, b], we may define a function TK(f) : [a, b]→ C by

[TK(f)](s) =
∫ b

a
K(s, t) f(t) dt for all s ∈ [a, b] .

We leave it as an exercise to verify, using basic knowledge from real analysis,
that TK(f) is a continuous function on [a, b], satisfying

‖TK(f)‖2 ≤
( ∫ b

a

∫ b

a
|K(s, t)|2 ds dt

)1/2
‖f‖2 .

As the map f 7→ TK(f) is then clearly linear, it follows that TK is a bounded
linear operator from C([a, b]) into itself.

Let now L2([a, b]) denote the L2-space associated with the measure space
([a, b],A, µ), where µ is the Lebesgue measure on the σ-algebra A of all
Lebesgue measurable subsets of [a, b].

As we may identify C([a, b]) with a dense subspace of L2([a, b]) (cf. Propo-
sition 2.1.7), we get from Corollary 1.4.5 that TK has a unique extension to
a bounded operator on L2([a, b]), also denoted by TK . The function K is
usually called the kernel of the integral operator TK . We will come back to
such integral operators later.

More generally, one may define integral operators associated with kernels
K which are L2-functions on [a, b] × [a, b] (with respect to the so-called

2We recall that a function g : R→ C is said to have compact support if there exists
some M > 0 such that g = 0 outside [−M,M ].
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2.2. The case p =∞

Lebesgue product measure), but this requires a thorough knowledge of
integration theory on product spaces. We also note that we could have
defined integral operators on Lp([a, b]) for any p ∈ [1,∞), in a similar way
as we did above for p = 2. �

2.2 The case p =∞
We now consider the case p = ∞. Let F(X) denote the vector space
consisting of all complex functions on X (with its natural operations).
By an algebra of complex functions on X, we will mean a subspace of
F(X) which is also closed under pointwise multiplication. For example,
M =M(X,A) is an algebra of complex functions on X. Another natural
algebra is the one consisting of those functions in M which are bounded.
We will actually be interested in a slightly larger algebra.

Definition 2.2.1. A function f ∈ M is said to be essentially bounded
(w.r.t. µ) if there exists some real number M > 0 such that

|f | ≤ M µ-a.e.,

in which case we set ‖f‖∞ := inf
{
M > 0 : |f | ≤ M µ-a.e.

}
.

Example 2.2.2. a) Asume g ∈M is bounded and set ‖g‖u := supx∈X |g(x)|.
Then g is essentially bounded (w.r.t. µ), and we have

‖g‖∞ ≤ ‖g‖u .

Indeed, we have µ({x ∈ X : |g(x)| > ‖g‖u}) = µ(∅) = 0. This gives that
|g| ≤ ‖g‖u µ-a.e., and both assertions follow readily.

We note that it may happen that ‖g‖∞ < ‖g‖u. For example, consider
the Borel function g on X = R given by g = 1{0}; letting µ be the Lebsgue
measure on BR, we get

‖g‖∞ = 0 < 1 = ‖g‖u .
b) Consider X = [0,∞), A = the Borel subsets of X and µ = the

Lebesgue measure on A. Let f ∈M be given by

f(x) = eix +
∞∑
n=1

n1{2nπ}(x), x ≥ 0 .

Then f(2kπ) = k+1 for every k ∈ N, so f is unbounded. On the other hand,
f is essentially bounded (w.r.t. µ), with ‖f‖∞ = 1, since µ

(
|f |−1((M,∞))

)
is equal to 0 if M ≥ 1 and to ∞ if 0 < M < 1.

21



2. On Lp-spaces

The following useful observation may seem obvious, but it requires a
proof.

Lemma 2.2.3. Let f ∈M be essentially bounded (w.r.t. µ). Then we have

|f | ≤ ‖f‖∞ µ-a.e. (2.2.1)

Proof. Set B := {x ∈ X : |f(x)| > ‖f‖∞} ∈ A and assume (for contradic-
tion) that µ(B) > 0. For each n ∈ N, set

Bn :=
{
x ∈ X : |f(x)| > ‖f‖∞ + 1

n

}
∈ A .

Clearly, Bn ⊆ Bn+1 for every n, and B = ⋃∞
n=1Bn, so we have

lim
n→∞

µ(Bn) = µ(B) > 0 .

Hence there must exist at least one N ∈ N such that µ(BN) > 0. Now, by
definition of ‖f‖∞, we can findM > 0 such that ‖f‖∞ ≤M < ‖f‖∞+ 1

N
and

|f | ≤M µ-a.e. But this implies that |f | ≤ ‖f‖∞+ 1
N
µ-a.e., i.e., µ(BN ) = 0,

and we have reached a contradiction. �

Using Lemma 2.2.3, it is straightforward to verify that the set L∞ =
L∞(X,A, µ) consisting of all functions inM that are essentially bounded
(w.r.t. µ) is an algebra of complex functions onX (cf. Exercise 2.12). Another
application is the following Hölder-type inequality:

Proposition 2.2.4. Let q ∈ [1,∞), f ∈ L∞ and g ∈ Lq. Then fg ∈ Lq
and

‖fg‖q ≤ ‖f‖∞ ‖g‖q .

Proof. Using Lemma 2.2.3 we get that |fg|q = |f |q |g|q ≤ ‖f‖q∞ |g|q µ-a.e.
It follows that ∫

X
|fg|q dµ ≤ ‖f‖q∞

∫
X
|g|q dµ <∞ .

Hence fg ∈ Lq. Moreover, taking the q-th root, we obtain the desired
inequality. �

Convergence in L∞ with respect to ‖ · ‖∞ is closely related to uniform
convergence:

Proposition 2.2.5. Let {fn}n∈N ⊆ L∞ and f ∈ L∞. Then we have that
‖fn − f‖∞ → 0 as n→∞ if and only if there exists some E ∈ A such that
µ(Ec) = 0 and fn → f uniformly on E.
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2.2. The case p =∞

Proof. Assume ‖fn − f‖∞ → 0 as n→∞. For each n ∈ N, set

Fn := {x ∈ X : |fn(x)− f(x)| > ‖fn − f‖∞} ∈ A.

Since fn−f ∈ L∞, we have µ(Fn) = 0 for each n. Hence, F := ∪n∈N Fn ∈ A
and µ(F ) = 0.

Set now E := F c ∈ A. Then µ(Ec) = 0 and

E = {x ∈ X : |fn(x)− f(x)| ≤ ‖fn − f‖∞ for all n ∈ N} .

It is then obvious that fn → f uniformly on E. The proof of the reverse im-
plication goes along the same lines, and we leave it as an exercise (cf. Exercise
2.14). �

As with the Lp-spaces for 1 ≤ p <∞, an annoying fact is that in general
‖·‖∞ is only a seminorm on L∞. But we can use again the procedure outlined
in Section 1.2 to obtain a norm ‖ · ‖∞ on a vector space L∞ = L∞(X,A, µ),
given as follows. Setting

[f ] = {g ∈ L∞ : ‖f − g‖∞ = 0} = {g ∈ L∞ : f = g µ-a.e.}

for each f ∈ L∞, we get

L∞ = L∞(X,A, µ) := { [f ] : f ∈ L∞}

with operations [f ] + [g] := [f + g], λ[f ] := [λf ], and norm ‖[f ]‖∞ := ‖f‖∞
(where f, g ∈ L∞ and λ ∈ C).

As to be expected, we have:

Theorem 2.2.6. (L∞, ‖ · ‖∞) is a Banach space.

Proof. We have to show that L∞ is complete w.r.t. the metric associated
with ‖ · ‖∞.

Let {[fn]}n∈N be a Cauchy sequence in L∞. So each fn belongs to L∞
and for any given ε > 0, there exists some N ∈ N such that

m,n ≥ N =⇒ ‖ [fm]− [fn] ‖∞ < ε ,

that is,
m,n ≥ N =⇒ ‖ fm − fn ‖∞ < ε . (2.2.2)

For each m,n ∈ N, set

Fm,n :=
{
x ∈ X : |fm(x)− fn(x)| > ‖fm − fn‖∞

}
.
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2. On Lp-spaces

Then Fm,n ∈ A and µ(Fm,n) = 0 for all m,n ∈ N (because fm − fn ∈ L∞).

Next, set F := ⋃
m,n∈N Fm,n ∈ A and E := F c ∈ A.

Note that µ(Ec) = µ(F ) = 0 (since 0 ≤ µ(F ) ≤ ∑
m,n∈N µ(Fm,n) = 0).

Moreover,

E =
⋂

m,n∈N
(Fm,n)c =

⋂
m,n∈N

{
x ∈ X : |fm(x)− fn(x)| ≤ ‖fm − fn‖∞

}
=
{
x ∈ X : |fm(x)− fn(x)| ≤ ‖fm − fn‖∞ for all m,n ∈ N

}
.

Let now ε > 0 be given, and choose N ∈ N such that (2.2.2) holds.
Then for all x ∈ E and all m,n ≥ N , we have

|fm(x)− fn(x)| ≤ ‖ fn − fm ‖∞ < ε . (2.2.3)

It follows that {fn(x)}n∈N is a Cauchy sequence in C for each x ∈ E. Since
C is complete, this implies that {fn(x)}n∈N is convergent for each x ∈ E,
hence that limn→∞ fn(x) = g(x) for some g(x) ∈ C for each x ∈ E. Thereby
we obtain a function g : E → C, which is AE-measurable since g is the
pointwise limit of the restriction of the fn’s to E. (Here, AE denotes the
σ-algebra of all sets in A which are contained in E).

We can now extend g to an A-measurable function f : X → C by setting
f(x) = g(x) if x ∈ E, and f(x) = 0 otherwise.

Again, let ε > 0 be given and choose N as above. Then, for all x ∈ E
and all m ∈ N such that m ≥ N , we get from (2.2.3) that

|fm(x)− f(x)| = |fm(x)− g(x)| = lim
n→∞

|fm(x)− fn(x)| ≤ ε .

This implies that {fm}m∈N converges uniformly to f on E.
Moreover, set D := E ∩ {x ∈ X : |fN(x)| ≤ ‖fN‖∞} ∈ A. Then we

have

|f(x)| = |f(x)− fN(x) + fN(x)| ≤ |f(x)− fN(x)|+ |fN(x)| ≤ ε+ ‖fN‖∞

for all x ∈ D. As

0 ≤ µ(Dc) ≤ µ(F ) + µ
(
{x ∈ X : |fN(x)| > ‖fN‖∞}

)
= 0 ,

we have µ(Dc) = 0, so

|f | ≤ ε+ ‖fN‖∞ µ-a.e.
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This shows that f ∈ L∞. Using Proposition 2.2.5, we can now conclude
that ‖fm − f‖∞ → 0 as m→∞. Thus

‖ [fm]− [f ] ‖∞ = ‖fm − f‖∞ → 0 as m→∞ .

This means that {[fm]}j∈N converges to [f ] in L∞. We have thereby shown
that every Cauchy sequence in L∞ is convergent and the proof is finished.

�

2.3 Exercises
In the exercises of this section, unless otherwise specified, (X,A, µ) denotes
a measure space andM denotes the space of A-measurable complex functions
on X.

Exercise 2.1. a) Show thatM is a vector space (over C). You can take it
as granted that the set F(X) consisting of all complex functions on X is a
vector space (over C) w.r.t. its natural pointwise defined operations.

b) Let f ∈M. Show that |f | ∈ M, and that |f |p ∈M for every p > 1.

Exercise 2.2. Let f ∈ L1. Check that Re(f) and Im(f) are both integrable,
and set ∫

X
f dµ :=

∫
X

Re(f) dµ+ i
∫
X

Im(f) dµ .

Then show that
∣∣∣ ∫X f dµ∣∣∣ ≤ ∫

X |f | dµ.

Exercise 2.3. Assume that X = [1,∞), A = the Borel subsets of X and µ
is the Lebesgue measure on A. Let f ∈M be given by

f(x) = 1
x

for all x ≥ 1,

and let 1 ≤ p < ∞. Show that f ∈ Lp(X,A, µ) if and only if p > 1, and
compute ‖f‖p in this case.

Exercise 2.4. Assume that X = R, A = the Borel subsets of X and µ is
the Lebesgue measure on A. Let f ∈M be given by

f(x) = e−x
2 for all x ∈ R.

Show that f ∈ Lp(X,A, µ) for all p ∈ [1,∞) and compute ‖f‖p. (You are
allowed to use that limN→∞

∫N
−N e

−t2 dt =
√
π without proof.)
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2. On Lp-spaces

Exercise 2.5. Assume that X = (0, 1], A = the Borel subsets of X and µ
is the Lebesgue measure on A. Let 1 ≤ p <∞ and f ∈M be given by

f(x) = 1√
x

for all x ∈ (0, 1].

a) Show that f ∈ Lp(X,A, µ) if and only if p < 2, and compute ‖f‖p in
this case.

b) Let ν be the measure on A given by

ν(A) =
∫
A
x dµ(x) for all A ∈ A .

Show that f ∈ Lp(X,A, ν) if and only if p < 4, and compute ‖f‖p in
this case.

Exercise 2.6. Assume that X = [1,∞), A = the Borel subsets of X and µ
is the Lebesgue measure on A. For each n ∈ N, define fn ∈M by

fn(x) = n

nx1/3 + 1 for all x ≥ 1.

a) Show that fn ∈ Lp for all n ∈ N whenever 3 < p <∞.

b) Assume that 3 < p <∞. Decide whether the sequence {[fn]}n∈N is
convergent in Lp and find its limit if it converges.

Exercise 2.7. Let {xk}k∈N be a sequence in a vector space X having a
seminorm ‖ · ‖, and assume this sequence is Cauchy, i.e., for every ε > 0,
there exists some Nε ∈ N such that ‖xk − xl‖ < ε for all k, l ≥ Nε. Set
k0 := 0 and x0 := 0. Show that we can pick k1 < k2 < · · · < kn < · · · in N
such that

∞∑
n=1
‖xkn − xkn−1‖ <∞.

Exercise 2.8. Prove Proposition 2.1.6.

Exercise 2.9. Provide the details missing in the proofs of Proposition 2.1.7
and Proposition 2.1.8.

Exercise 2.10. Provide the details missing in Example 2.1.9.

Exercise 2.11. The purpose of this exercise is to present an alternative way
to produce integral operators on L2([a, b]) associated to continuous kernels.
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Let µ denote the Lebesgue measure on the Lebesgue measurable subsets
of [a, b] and let K be a continuous complex function on [a, b] × [a, b]. For
each s ∈ [a, b], let ks : [a, b]→ C denote the continuous function defined by

ks(t) := K(s, t) for all t ∈ [a, b].

a) Let f ∈ L2([a, b]) and s ∈ [a, b]. Show the function ks f is Lebesgue
integrable on [a, b] and satisfies∫

[a,b]
ks f dµ ≤ ‖ks‖2 ‖f‖2 .

b) Let f ∈ L2([a, b]) and define g : [a, b]→ K by

g(s) =
∫

[a,b]
ks f dµ =

∫
[a,b]

K(s, t) f(t) dµ(t) for each s ∈ [a, b] .

Show that g is continuous and check that

‖g‖2 ≤ M ‖f‖2 , whereM :=
( ∫ b

a

∫ b

a
|K(s, t)|2 dsdt

)1/2
.

Deduce that we obtain a linear map T 0
K : L2([a, b])→ L2([a, b]) by setting(

T 0
K(f)

)
(s) :=

∫
[a,b]

ks f dµ for each f ∈ L2([a, b]) and all s ∈ [a, b],

which satisfies that ‖T 0
K(f)‖2 ≤ M ‖f‖2 for all f ∈ L2([a, b]).

c) Check that the operator TK : L2([a, b])→ L2([a, b]) defined by

TK([f ]) = [T 0
K(f)] for all [f ] ∈ L2([a, b])

is well-defined, linear and bounded, with ‖TK‖ ≤M .

Exercise 2.12. Check that ‖ · ‖∞ is a seminorm on L∞ (so that ‖ · ‖∞ gives
a norm on L∞). Check also that L∞ is an algebra of functions on X and
that we have ‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞ for all f, g ∈ L∞.

Exercise 2.13. Let f ∈M. Show that f ∈ L∞ if and only if there exists
a bounded function g ∈M such that f = g µ-a.e., in which case we have

‖f‖∞ = inf{ ‖g‖u : g ∈M is bounded and g = f µ-a.e.}.

Exercise 2.14. Finish the proof of Proposition 2.2.5.

Exercise 2.15. Let 1 ≤ p ≤ r <∞ and X be a nonempty set. Show that

` p(X) ⊆ ` r(X) ⊆ `∞(X) .
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2. On Lp-spaces

Exercise 2.16. Let p ∈ [1,∞) and assume that the measure space (X,A, µ)
is finite, that is, µ(X) <∞.

a) Show that L∞ ⊆ Lp.
b) Consider 1 ≤ p ≤ r <∞ and let f ∈ Lr. Show that f ∈ Lp and

‖f‖p ≤ µ(X)
1
p
− 1

r ‖f‖r .

Hint: Use Hölder’s inequality in a suitable way.
Note that this shows that Lr ⊆ Lp. In particular, we have L∞ ⊆ L2 ⊆ L1.
c) Consider the Lebesgue measure on the Borel subsets of R. Give an

example of a function which is in L2, but not in L1 Give also an example of
a function which is in L∞, but not in L2.

Exercise 2.17. Let E denote the space of all simple functions belonging to
M and let f ∈ L∞.

Show that there exists a sequence {hn}n∈N in E such that ‖f−hn‖∞ → 0
as n→∞. Deduce that the space [E ] := {[h] : h ∈ E} is dense in L∞ with
respect to ‖ · ‖∞.
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CHAPTER 3

On Hilbert spaces and bounded
linear operators

3.1 Inner product spaces
We assume that inner product spaces over R are familiar to the reader. In
applications, one frequently has to work with inner products spaces over C.
We give here a unified review of the basics results about such spaces (but
skip the proofs as they are almost identical in the complex case.)

Definition 3.1.1. An inner product space over F is a vector space X over
F which is equipped with an inner product 〈·, ·〉 : X ×X → F. This means
that for x, y, z ∈ X and λ ∈ F we have:

i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

ii) 〈λx, y〉 = λ〈x, y〉,

iii) 〈y, x〉 = 〈x, y〉,

iv) 〈x, x〉 ≥ 0,

v) 〈x, x〉 = 0 if and only if x = 0.

Remark 3.1.2. a) Properties i) and ii) say that the inner product is linear
in the first variable.

b) When F = R, property iii) says that the inner product is symmetric,
i.e., 〈y, x〉 = 〈x, y〉; combining i) and ii) with iii), we then get that the inner
product is also linear in the second variable.

c) When F = C, we get that the inner product is conjugate-linear in the
second variable; this means that we have

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 and 〈x, λy〉 = λ〈x, y〉.
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Some authors prefer to use inner products that are linear in the second
variable and conjugate-linear in the first variable. This is common in
textbooks related to physics or mathematical physics. As one can go from
one type to the other by setting 〈x, y〉′ := 〈y, x〉, it is mainly a matter of
taste which convention one chooses to use. �

Example 3.1.3. The standard example of an inner product space over F
is Fn, where n ∈ N, equipped with

〈x,y〉 :=
n∑
j=1

xjyj , x = (x1, · · · , xn),y = (y1, · · · , yn) ∈ Fn.
�

In the sequel, by an inner product space, we will always mean an inner
product space over F. An inequality of fundamental importance is:

Theorem 3.1.4 (The Cauchy-Schwarz inequality). Let X be an inner prod-
uct space. Then we have

|〈x, y〉| ≤ ‖x‖ ‖y‖ (3.1.1)

for all x, y ∈ X, with equality if and only if x and y are linearly dependent.

If X is an inner product space, then using the Cauchy-Schwarz inequality,
one deduces that ‖x‖ := 〈x, x〉1/2 gives a norm on X. Thus, X is then a
normed space, and its norm is easily seen to satisfy the parallellogram law,
that is, for all x, y ∈ X we have

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2. (3.1.2)

Moreover, the so-called polarization identities are sometimes useful:

〈x, y〉 = 1
4 (‖x+ y‖2 − ‖x− y‖2) if F = R, (3.1.3)

〈x, y〉 = 1
4

3∑
k=0

ik ‖x+ iky‖2 if F = C. (3.1.4)

Definition 3.1.5. Let X be an inner product space. If x, y ∈ X, then
x and y are said to be orthogonal (to each other) when 〈x, y〉 = 0. If
U, V are nonempty subsets of X, we write U ⊥ V when 〈u, v〉 = 0 for all
u ∈ U, v ∈ V . A nonempty subset S of X is called orthogonal if x and
y are orthogonal for all x, y ∈ S such that x 6= y. Moreover, S is called
orthonormal if S is orthogonal and ‖x‖ = 1 for all x ∈ S.

30



3.1. Inner product spaces

Proposition 3.1.6 (Pythagoras). Assume {x1, . . . , xn} is a finite orthogo-
nal subset of an inner product space X. Then we have

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2.

Proposition 3.1.7. Assume S = {u1, . . . , un} is a finite orthonormal subset
of an inner product space X. Then S is linearly independent. Moreover, if
u ∈ Span{u1, . . . , un}, i.e., if u is a linear combination of the vectors in S,
then

u =
n∑
j=1
〈u, uj〉uj and ‖u‖2 =

n∑
j=1
|〈u, uj〉|2.

Proposition 3.1.8 (Bessel’s inequality). Assume S = {uj : j ∈ J} is an
orthonormal subset of an inner product space X indexed by a countable set
J .1Then for any x ∈ X we have∑

j∈J
|〈x, uj〉|2 ≤ ‖x‖2.

Definition 3.1.9. An inner product space X (over F) is called an Hilbert
space (over F) when X is complete as a normed space (with respect to the
norm associated with its inner product).

Example 3.1.10. Since a finite-dimensional normed space is automatically
complete. we get that Fn is a Hilbert space w.r.t. its standard inner product.

�

Remark 3.1.11. Assume X is an inner product space. Considering X as a
normed space, we may form its completion X̃ (cf. Remark 1.1.7), and extend
the inner product on X to an inner product on X̃ as follows: if y, y′ ∈ X̃,
then we can pick sequences {xn}∞n=1, {x′n}∞n=1 in X converging respectively
to y and y′; after checking that {〈xn, x′n〉}∞n=1 is a Cauchy sequence in F,
hence is convergent, we may set

〈y, y′〉 := lim
n→∞
〈xn, x′n〉.

It is then a somewhat tedious exercise to verify that this gives a well-defined
inner product on X̃ which extends the one on X. This means that whenever
needed, we may assume that X sits as a dense subspace of a Hilbert space
X̃ (called the completion of X) where the inner product on X̃ extends the
inner product on X. �

1We recall that a set J is countable if it is either finite or countably infinite (that is,
there exists a bijection from N onto J).
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We end this section with a rich class of examples.

Example 3.1.12. Let (X,A, µ) be a measure space. Set L2 := L2(X,A, µ)
and L2 := L2(X,A, µ). We can organize L2 as a Hilbert space (over C) as
follows.

Let f, g ∈ L2. Then g is measurable (since g = Re(g) − i Im(g)) and∫
X |g|2 dµ =

∫
X |g|2 dµ = ‖g‖2

2 <∞, so g ∈ L2. Hence, Hölder’s inequality
gives that f g ∈ L1, and we can set

〈[f ], [g]〉 :=
∫
X
f g dµ .

We leave it as an exercise to check that this gives a well-defined inner product
on L2. As the associated norm obviously coincides with the ‖ · ‖2-norm, L2

is complete w.r.t. this norm and we can conclude that L2 is a Hilbert space.

3.2 Geometry in Hilbert spaces
In courses in elementary linear algebra, one learns that if M is a finite-
dimensional subspace of an inner product space H, then every vector in
H can be written in a unique way as the sum of a vector in M and a
vector in the orthogonal complement M⊥. As we are going to establish,
such a decomposition also holds when H is a Hilbert space and M is closed
subspace of H, not necessarily finite-dimensional.

We recall first that if (X, d) is a metric space, x ∈ X and A is a nonempty
subset of X, then the distance from x to A is defined by

d(x,A) = inf{d(x, y) : y ∈ A} .

If for example A is compact, then the function y 7→ d(x, y), being continuous,
will attain its minimum on A; hence, in this case, there exists some (not
necessarily unique) xA ∈ A such that d(x,A) = d(x, xA). However, if A is
closed, but not compact, such an element xA may not exist (cf. Exercise
3.3).

Let us now consider a Hilbert space H with the metric dH associated
to its norm. If x ∈ H and M is a closed subspace of H, then M is not
compact, so we can not use the result mentioned above. However, if M is
finite-dimensional, then we know from previous courses that there exists a
unique xM ∈M which gives the best approximation to x in M , in the sense
that

‖x− xM‖ ≤ ‖x− y‖ for all y ∈M,
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which means that dH(x, xM) = dH(x,M). Moreover, we also know that the
vector xM is constructed as the orthogonal projection of x on M . When M
is closed, but not finite-dimensional, we are going to switch this process by
showing first that there exists a unique best approximation xM to x in M ,
and use this fact to define the orthogonal projection of x on M .

We will actually prove a more general result, valid for any closed convex
subset of H. We recall that a subset C of some vector space V (over F) is
called convex if C contains the line segment between any two elements of C,
i.e., if we have (1− t)x+ ty ∈ C whenever x, y ∈ C and t ∈ [0, 1].

Clearly, any subspace of a vector space is convex, as is any ball in
a normed space. Using that the norm in a Hilbert space satisfies the
parallellogram law, we will prove the following result, which the reader is
advised to illustrate geometrically by looking at various examples in R2.

Theorem 3.2.1. Let C be a nonempty closed convex subset of a Hilbert
space H and let x ∈ H. Then there is a unique vector xC ∈ C such that
dH(x, xC) = dH(x,C), that is, such that

‖x− xC‖ ≤ ‖x− y‖ for all y ∈ C.

The vector xC is called the best approximation to x in C.

Proof. We first consider the case where x = 0. We then have to show that
there is a unique vector 0C ∈ C of minimal norm, i.e, which satisfies that

‖0C‖ = inf
{
‖y‖ : y ∈ C

}
.

Set s := inf
{
‖y‖2 : y ∈ C

}
. For each n ∈ N we can find yn ∈ C such that

s ≤ ‖yn‖2 < s+ 1
2n . (3.2.1)

Then the sequence {yn}n∈N is Cauchy in H. Indeed, consider m,n ∈ N.
Then, using the parallellogram law and (3.2.1), we get that

‖yn + ym‖2 + ‖yn − ym‖2 = 2 ‖yn‖2 + 2 ‖ym‖2 < 4 s+ 1
n

+ 1
m
.

Now, since C is convex, we have c := 1
2 yn + 1

2 ym ∈ C. Hence,

‖yn + ym‖2 = 4 ‖c‖2 ≥ 4 s ,

so we get

‖yn − ym‖2 < 4 s+ 1
n

+ 1
m
− ‖yn + ym‖2 ≤ 1

n
+ 1
m
.
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Thus, given ε > 0, we can choose N ∈ N such that N ≥ 2 ε−2, and obtain
that ‖yn − ym‖ < ε for all n,m ≥ N , as desired.

As H is complete, there exists y0 ∈ H such that limn yn = y0. Since C
is closed, y0 ∈ C. Letting n→∞ in (3.2.1), we get that

‖y0‖ =
√
s = inf{‖y‖ : y ∈ C}.

If y′0 ∈ C also satisfies that ‖y′0‖ = inf{‖y‖ : y ∈ C}, then we can consider
the sequence {zn}n∈N in C given by zn = y′0 if n is odd and zn = y0 if n is
even. Since zn satisfies (3.2.1) (with yn = zn) for each n, we can conclude
as above that {zn}n∈N is convergent. This clearly implies that y′0 = y0.

Thus, y0 is the unique vector in C satisfying ‖y0‖ = inf{‖y‖ : y ∈ C},
and we can set 0C := y0.

In the general case where x is any vector in H, we note that the set

D := {x− y : y ∈ C}

is closed and convex. Using the first part, we get that there exists a unique
vector 0D ∈ D such that ‖0D‖ = inf{‖z‖ : z ∈ D} = d(x,C). Then
xC := x− 0D ∈ C has the desired properties. �

Since a subspace is convex, Theorem 3.2.1 gives:

Corollary 3.2.2. Let M be a closed subspace of a Hilbert space H and
let x ∈ H. Then there is a unique vector xM ∈ M , called the the best
approximation to x in M , satisfying that

‖x− xM‖ ≤ ‖x− y‖ for all y ∈M.

This result has some far-reaching consequences. To help us formulate
these, we first introduce some appropriate terminology.

Definition 3.2.3. Let M1 and M2 be subspaces of a Hilbert space H. We
will say that H is the algebraic direct sum of M1 and M2 if every x ∈ H can
be written in a unique way as x = m1 +m2 with m1 ∈M1 and m2 ∈M2 .

Moreover, we will say that H is the direct sum of M1 and M2, and write

H = M1 ⊕M2 ,

when M1 and M2 are both closed, and H is the algebraic direct sum of M1
and M2.

Our main interest in this course is the concept of direct sum (which, by
the way, clearly also makes sense in a normed space). However, the following
characterization of algebraic direct sum will be useful.
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3.2. Geometry in Hilbert spaces

Lemma 3.2.4. Let M1 and M2 be subspaces of a Hilbert space H and set

M1 +M2 := {m1 +m2 : m1 ∈M1, m2 ∈M2}.

Then the following two conditions are equivalent:

(i) H is the algebraic direct sum of M1 and M2.

(ii) H = M1 +M2 and M1 ∩M2 = {0}.

Proof. Assume (ii) holds and let x ∈ H. Then we have x = m1 + m2 for
some m1 ∈M1 and m2 ∈M2. Assume we also have x = m′1 +m′2 for some
m′1 ∈M1 and m′2 ∈M2. Then we get

m1 −m′1 = m′2 −m2 ∈ M1 ∩M2 .

Since M1 ∩M2 = {0}, this implies that m′1 = m1 and m′2 = m2. Thus (i)
holds. Conversely, assume (i) holds. It then obvious that H = M1 + M2.
Consider y ∈M1 ∩M2. Then we have y = y + 0 with y ∈M1, 0 ∈M2, and
y = 0 + y with 0 ∈M1, y ∈M2. As y has a unique decomposition as such a
sum of vectors, we get that y = 0. This shows that M1 ∩M2 = {0}, hence
that (i) holds. �

Corollary 3.2.2 is the key to the following fundamental result.

Theorem 3.2.5. Let M be a closed subspace of a Hilbert space H and set
M⊥ = {z ∈ H : 〈z, y〉 = 0 for all y ∈M}.

(i) If x ∈ H and xM ∈ M is the best approximation to x in M , then we
have x− xM ∈M⊥ and

x = xM + (x− xM).
Moreover, M⊥ is a closed subspace of H and we have

H = M ⊕M⊥ .

(ii) The map PM : H → H defined by PM(x) = xM for x ∈ H is called the
orthogonal projection of H on M . We sometimes write ProjM instead of
PM . It satisfies the following properties:

• PM is linear and bounded, with ‖PM‖ = 1 if M 6= {0}.

• (PM)2 = PM .

• PM(H) = M and ker(PM) = M⊥.

(iii) We also have
(M⊥)⊥ = M and PM⊥ = IH − PM .
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3. On Hilbert spaces and bounded linear operators

Proof. (i) Let x ∈ H and set x⊥ := x− xM . We claim that x⊥ lies in M⊥.
To show this, let y ∈M and ε > 0. Since (xM + ε y) ∈M , we get from

Theorem 3.2.1 that

‖x⊥‖2 = ‖x− xM‖2 ≤ ‖x− (xM + ε y)‖2 = ‖x⊥ − ε y‖2

= ‖x⊥‖2 − 2 ε Re(〈x⊥, y〉) + ε2 ‖y‖2 ,

which gives that
2 Re(〈x⊥, y〉) ≤ ε ‖y‖2 .

As this holds for every ε > 0, we obtain that Re(〈x⊥, y〉) ≤ 0. Applying this
to −y ∈M , we also get that −Re(〈x⊥, y〉) ≤ 0, i.e., Re(〈x⊥, y〉) ≥ 0. Thus,
it follows that Re(〈x⊥, y〉) = 0. If F = R, this means that 〈x⊥, y〉 = 0. If
F = C, we also have that iy ∈M , and this gives that

Im(〈x⊥, y〉) = Re(−i 〈x⊥, y〉) = Re(〈x⊥, i y〉) = 0.

Thus, 〈x⊥, y〉 = 0 in this case too. As this holds for every y ∈M , the claim
is proven.

Now, x = xM + (x− xM ), and x− xM = x⊥ ∈M⊥. This shows the first
part of (i) and that

H = M + M⊥ .

We also have that M ∩M⊥ = {0}: indeed, if y ∈M ∩M⊥, then 〈y, y〉 = 0,
so y = 0.

Finally, it is an easy exercise to check that M⊥ is a closed subspace of
H. Altogether, we get that H = M ⊕M⊥, as desired.

(ii) We also leave it as an exercise to verify that the map PM is linear,
and prove its other properties. Using Pythagoras’ identity, we get that

‖PM(x)‖2 = ‖xM‖2 ≤ ‖xM‖2 + ‖x− xM‖2 = ‖xM + (x− xM)‖2 = ‖x‖2

for all x ∈ H. This shows that PM is bounded with ‖PM‖ ≤ 1.
If y ∈ M , then y = y + 0 and 0 ∈ M⊥; this implies that PM(y) = y.

Hence, ‖PM(y)‖ = 1 if y ∈ M and ‖y‖ = 1. This implies that ‖PM‖ ≥ 1,
hence that ‖PM‖ = 1, if M 6= {0}.

Moreover, let x ∈ H. Since PM(x) = xM ∈M we get that

(PM)2(x) = PM(xM) = xM = PM(x) .

Thus (PM)2 = PM . We also see that PM(H) ⊆ M . On the other hand, if
y ∈M , then y = PM(y) ∈ PM(H). Thus M ⊆ PM(H), and it follows that
PM(H) = M .
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3.2. Geometry in Hilbert spaces

Finally, assume that x ∈ ker(PM), i.e., xM = 0. Then

x = x− 0 = x− xM ∈M⊥.

Conversely, assume that x ∈ M⊥. Since M⊥ is a subspace, xM − x =
−(x− xM ) ∈M⊥, hence xM = x+ (xM − x) ∈M⊥. Altogether, this shows
that ker(PM) = M⊥.

(iii) Let y ∈M . Then for all z ∈M⊥, we have 〈y, z〉 = 〈z, y〉 = 0. This
implies that y ∈ (M⊥)⊥. Hence we have M ⊆ (M⊥)⊥.

To show that (M⊥)⊥ ⊆ M , we first observe that by applying the first
part of the theorem to M⊥, we get that

H = M⊥ ⊕ (M⊥)⊥ .

Now let x ∈ (M⊥)⊥, and set x⊥ := x−xM ∈M⊥. Since xM ∈M ⊆ (M⊥)⊥,
we can write

x = x⊥ + xM , where x⊥ ∈M⊥ and xM ∈ (M⊥)⊥, and
x = 0 + x , where 0 ∈ M⊥ and x ∈ (M⊥)⊥.

By the uniqueness of decomposition in a direct sum, we get that x = xM ,
so x ∈ M . Thus, we have shown that (M⊥)⊥ ⊆ M , and we can conclude
that (M⊥)⊥ = M .

Finally, for x ∈ H, we have

x = (x− xM) + xM ,

where (x− xM) ∈M⊥ and xM ∈M = (M⊥)⊥. This gives that

PM⊥(x) = x− xM = (IH − PM)(x) .

Hence, PM⊥ = IH − PM . �

Remark 3.2.6. Assume that M is finite-dimensional subspace of a Hilbert
space H and that B = {u1, . . . , un} is an orthonormal basis for M . Then
we know that the orthogonal projection PM of H on M is given by

PM(x) =
n∑
j=1
〈x, uj〉uj for all x ∈ H .

A similar formula holds when M is only assumed to be a closed subspace
of H, as we will see in the next section after having discussed orthonormal
bases in Hilbert spaces. �
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An immediate, but noteworthy, consequence of Theorem 3.2.5 is:

Corollary 3.2.7. Let M be closed subspace of a Hilbert space H. Then
M = H if and only if M⊥ = {0}.

In connection with the next corollary, we recall that if S is a nonempty
subset of a vector space V , then Span (S) denote the subspace of V consisting
of all possible finite linear combinations of vectors in S.

Corollary 3.2.8. Let S denote a nonempty subset of a Hilbert space H.
Then Span (S) is dense in H if and only if S⊥ = {0}.

Proof. Set M := Span (S), which is a closed subspace of H. Then Span (S)
is dense in H if and only if M = H. As one easily verifies that S⊥ = M⊥

(cf. Exercise 3.5), the result follows from Corollary 3.2.7. �

A nonempty subset S of a normed space X is sometimes called total in
X when Span (S) is dense in X. So the corollary above says that S is total
in H if and only if S⊥ = {0}.

Example 3.2.9. Let (X,A, µ) be a measure space and L2 := L2(X,A, µ).

Let E ∈ A and set F := Ec ∈ A. If g : X → C is measurable, we will
say that g lives essentially on E when µ

(
{x ∈ F : g(x) 6= 0}

)
= 0. Then

we will let ME denote the subset of L2 given by

ME :=
{

[g] : g ∈ L2 and g lives essentially on E
}
.

Similarly, we can define MF ⊆ L2. We claim that

MF = (ME)⊥ and ME = (MF )⊥ . (3.2.2)

To prove this, assume first that [g] ∈ ME and [h] ∈ MF . Then one easily
sees that g = g 1E µ-a.e. and h = h1F µ-a.e. As E ∩ F = ∅, we get

〈[g], [h]〉 =
∫
X
g 1E h1F dµ =

∫
X
g h1E∩F dµ = 0 .

Since this is true for all [g] ∈ ME, this implies that [h] ∈ (ME)⊥. As this
holds for all [h] ∈MF , we get that MF ⊆ (ME)⊥.

To show the reverse inclusion, let [h] ∈ (ME)⊥. Then we have∫
X
g h dµ = 0 whenever [g] ∈ME .
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3.3. Orthonormal bases in Hilbert spaces

In particular, since [h1E] ∈ME, we get∫
X
|h|2 1E dµ =

∫
X

(h1E)h dµ = 0 .

Since |h|2 1E is nonnegative on X, this implies that

µ
(
{x ∈ X : |h(x)|2 1E(x) 6= 0}

)
= 0 .

As {x ∈ E : h(x) 6= 0} = {x ∈ X : |h(x)|2 1E(x) 6= 0}, we get that
µ
(
{x ∈ E : h(x) 6= 0}

)
= 0, hence that h lives essentially on F . Thus,

[h] ∈MF . This shows that (ME)⊥ ⊆MF .
Altogether, we have proved that MF = (ME)⊥. Interchanging E and F ,

we get that ME = (MF )⊥, and the proof of (3.2.2) is finished.
Since the orthogonal complement of any subset is a closed subspace, we

can conclude that ME and MF are closed subspaces of L2. Theorem 3.2.5
now gives that

L2 = ME ⊕ (ME)⊥ = ME ⊕MF .

We note that the fact that L2 = ME +̇MF is a simple consequence of the
equation

[f ] = [f 1E] + [f 1F ] , where [f 1E] ∈ME , [f 1F ] ∈MF ,

which holds for all [f ] ∈ L2. From this equation, we now see that the
orthogonal projection of L2 on ME (resp. MF ) is given by

PME
([f ]) = [f 1E] (resp. PMF

([f ]) = [f 1F ] ).
�

3.3 Orthonormal bases in Hilbert spaces
The notion of an orthonormal basis for a finite-dimensional inner product
space, which is well-known from elementary linear algebra, have a natural
generalization to Hilbert spaces.

Definition 3.3.1. A nonempty subset B of a Hilbert space H is called an
orthonormal basis for H when B is orthonormal and Span (B) is dense in H.

Suppose H is a (nonzero) finite-dimensional Hilbert space. Then an
orthonormal set B inH has to be finite, so Span (B), being finite-dimensional,
is closed in H; hence, Span (B) is dense in H if and only if Span (B) = H.
Thus we see that Definition 3.3.1 agrees with the usual one when H is
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3. On Hilbert spaces and bounded linear operators

finite-dimensional. As a curiosity, we also mention that some authors like
to define the empty set ∅ to be an orthonormal basis for the trivial Hilbert
space H = {0}.

Our first example is of great importance in Fourier analysis.

Example 3.3.2. Let H = L2([−π, π],A, µ), where A denotes the σ-algebra
of all Lebesgue measurable subsets of [−π, π], and µ is the normalized
Lebesgue measure on A, that is,

µ(A) := 1
2π λ(A) for all A ∈ A ,

where λ denotes the Lebesgue measure on R. In particular, we have
µ([−π, π]) = 1. For each n ∈ Z, let en : [−π, π] → C denote the con-
tinuous function given by

en(t) := e int for all t ∈ [−π, π] .

As should be well-known (and is easy to check), the set

B := {[en] : n ∈ Z}

is an orthonormal subset of H. We claim that Span (B) is dense in H.
To show this claim, let T denote the space of all (complex) trigonometrical

polynomials, i.e., T := Span ({en : n ∈ Z}). Clearly, we have

Span (B) = {[h] : h ∈ T } .

Further, let Cper([−π, π]) = {k ∈ C([−π, π]) : k(−π) = k(π)}. We will
use the fact (shown for example in Lindstrøm’s book) that T is dense in
Cper([−π, π]) w.r.t. the uniform norm ‖ · ‖u.

Let [f ] ∈ H and ε > 0. Using Proposition 2.1.7 we can find some
g ∈ C([−π, π]) such that

‖ [f ]− [g] ‖2 < ε/3 . (3.3.1)

Further, it is not difficult to see that we can pick k ∈ Cper([−π, π]) such
that

‖ [g]− [k] ‖2 = ‖ g − k ‖2 < ε/3 . (3.3.2)

Now, as mentioned above, we can find h ∈ T such that ‖k − h‖u < ε/3.
Since
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‖ [k]− [h] ‖2
2 =

∫
[−π,π]

|k − h|2 dµ

≤ ‖k − h‖2
u

∫
[−π,π]

dµ

= ‖k − h‖2
u µ([−π, π])

= ‖k − h‖2
u ,

we get that
‖ [k]− [h] ‖2 ≤ ‖k − h‖u < ε/3 . (3.3.3)

Using the triangle inequality, (3.3.1), (3.3.2) and (3.3.3), we obtain that

‖ [f ]− [h] ‖2 = ‖ [f ]− [g] + [g]− [k] + [k]− [h] ‖2

≤ ‖ [f ]− [g] ‖2 + ‖ [g]− [k] ‖2 + ‖ [k]− [h] ‖2

< ε/3 + ε/3 + ε/3 = ε .

This shows that [f ] ∈ Span (B). Hence, Span (B) = H, as claimed above.
We can therefore conclude that B = {[en] : n ∈ Z} is an orthonormal

basis for H.
More generally, we may consider the L2-space associated to an interval

[a, b] and the normalized Lebesgue measure µ := 1
b−a λ. Then, letting e

′
n be

defined for each n ∈ Z by

e′n(t) = e int 2π/(b−a) for all t ∈ [a, b],

one may argue in a similar way as above, and conclude that B′ = {e′n : n ∈ Z}
is an orthonormal basis for this L2-space. �

An immediate consequence of Corollary 3.2.8 is the following useful
characterization of orthonormal bases:

Proposition 3.3.3. Assume that B is an orthonormal subset of a Hilbert
space H. Then B is an orthonormal basis for H if and only if B⊥ = {0}.

Example 3.3.4. Let X be a nonempty set. Then `2(X) has a natural
orthonormal basis B which is the analogue of the standard basis {e1, . . . , en}
for Fn (which may be identified with `2({1, . . . , n})).

Indeed, for each x ∈ X, let ex ∈ `2(X) be defined by ex = 1{x}, and set

B := {ex : x ∈ X} .
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Then B is clearly orthonormal. Moreover, let f ∈ `2(X), f ∈ B⊥. For each
x ∈ X, we have 〈f, ex〉 = 0. As

〈f, ex〉 =
∑
y ∈X

f(y)ex(y) =
∑
y ∈{x}

f(y) = f(x) ,

we get that f(x) = 0 for all x ∈ X, i.e., f = 0. This shows that B⊥ = {0},
and Proposition 3.3.3 gives that B is an orthonormal basis for `2(X). Note
that B is uncountable if X is uncountable, e.g. if X = R. �

It can be shown that every (non-zero) Hilbert space has an orthonormal
basis. The proof is nonconstructive as it relies on Zorn’s lemma, i.e., on the
axiom of choice. We will take this fact as granted.

Example 3.3.5. The Gram-Schmidt orthonormalization prosess, of great
usefulness in the finite-dimensional case, can be generalized to cover the
following situation:

Let H be a Hilbert space, H 6= {0}. Let {xj}j∈N be a sequence of vectors
in H \ {0} and set S := {xj : j ∈ N}. Assume that Span (S) is dense in H.

We remark that such a sequence exists whenever H is finite-dimensional
(since repetitions are allowed in a sequence). More generally, it exists
whenever H is separable, i.e., whenever H contains a countable dense subset,
cf. Exercise 3.10.

For each n ∈ N, set Mn := Span ({x1, . . . , xn}) . We note that for each n
we have Mn ⊆Mn+1. Moreover, Span (S) = ⋃

n∈NMn.
Proceeding inductively, we can construct an orthonormal basis Bn for each
Mn as follows:

i) We set B1 :=
{

1
‖x1‖ x1

}
. Clearly, B1 is an orthonormal basis for M1.

ii) Let n ∈ N and assume that we have constructed an orthonormal basis
Bn for Mn.

If xn+1 ∈Mn, then set Bn+1 := Bn. Otherwise, set

yn+1 := xn+1 − ProjMn
(xn+1) and Bn+1 := Bn ∪

{ 1
‖yn+1‖

yn+1
}
.

It follows readily that Bn+1 is an orthonormal basis for Mn+1.

Set now B := ⋃
n∈N Bn. Then B is orthonormal, and Span (B) = Span (S),

so
Span (B) = Span (S) = H .
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Hence, B is an orthonormal basis for H.
We observe that since each Bn is finite, B is countable. Conversely, if H

has a countable orthonormal basis, then it can be shown that H is separable
(cf. Exercise 3.10). �

When H is a nontrivial finite-dimensional inner product space, and
B = {u1, . . . , un} is an orthonormal basis for H, we know that every x ∈ H
has a Fourier expansion w.r.t. B, i.e., we have

x =
n∑
j=1
〈x, uj〉uj .

As we will soon see, a similar expansion also holds in any infinite dimensional
Hilbert space.

We will use the following notation. If J is a nonempty set (possibly
uncountable), and j 7→ tj is a function from J into [0,∞), we set∑

j ∈ J
tj := sup

{ ∑
j ∈F

tj : F ⊆ J, F is finite and nonempty
}
∈ [0,∞] .

Equivalently, ∑j ∈ J tj is the integral of the nonnegative function j 7→ tj
w.r.t. the counting measure on P(J) (= the σ-algebra of all subsets of J).

We first note that Bessel’s inequality holds for any orthonormal set:

Lemma 3.3.6. Assume that B is an orthonormal set in an inner product
space H, and let x ∈ H. Then∑

u∈B

∣∣∣〈x, u〉∣∣∣2 ≤ ‖x‖2 ,

and the set Bx :=
{
u ∈ B : 〈x, u〉 6= 0

}
is countable.

Proof. Let F be a nonempty finite subset of B. As F is orthonormal, Bessel’s
inequality for F gives that∑

u∈F

∣∣∣〈x, u〉∣∣∣2 ≤ ‖x‖2 .

Thus we get that

sup
{ ∑
u∈F

∣∣∣〈x, u〉∣∣∣2 : F ⊆ B, F is finite and nonempty
}
≤ ‖x‖2,

which proves the first assertion.
Further, this implies that the set Bx,n := {u ∈ B : |〈x, u〉|2 ≥ 1/n} is

finite for every n ∈ N. Hence, Bx = ⋃
n∈N Bx,n is countable. �
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The next lemma will be useful at several occasions.

Lemma 3.3.7. Assume {uj : j ∈ N} is a countably infinite orthonormal
subset of a Hilbert space H, and let {cj}j∈N be a sequence in F satisfying
that ∞∑

j=1
|cj|2 < ∞ .

Then the series ∑∞j=1 cj uj converges to some y ∈ H, and we have that

〈y, uk〉 = ck for every k ∈ N.

Proof. A similar result is shown in Lindstrøm’s book, but we sketch the
argument for the ease of the reader. For each n ∈ N, set yn = ∑n

j=1 cj uj.
Then, for any m > n, Pythagoras’ identity gives that

‖ym − yn‖2 =
m∑

j=n+1
‖cj uj ‖2 =

m∑
j=n+1

|cj|2.

Using the assumption, the sum above can be made as small as we want by
choosing m and n large enough. Thus the sequence {yn}n∈N is Cauchy in H,
so it converges to some y ∈ H, i.e., we have y = ∑∞

j=1 cj uj . For each k ∈ N,
continuity and linearity of the inner product in the first variable gives then
that 〈y, uk〉 = ∑∞

j=1 cj 〈uj, uk〉 = ck . �

Theorem 3.3.8. Let H be a Hilbert space, H 6= {0}, and let B be an
orthonormal subset of H. Then the following conditions are equivalent:

(a) B is an orthonormal basis for H.

(b) Every x ∈ H \ {0} has a Fourier expansion

x =
∑
u∈Bx

〈x, u〉u (3.3.4)

where Bx = {u ∈ B : 〈x, u〉 6= 0} is countable (cf. Lemma 3.3.6) and
nonempty.
In the case where Bx is countably infinite, we mean by (3.3.4) that
the following holds: if Bx = {uj : j ∈ N} is any enumeration of the
distinct elements of Bx, then we have

lim
n→∞

∥∥∥x− n∑
j=1
〈x, uj〉uj

∥∥∥ = 0 , i.e., x =
∞∑
j=1
〈x, uj〉uj .

(c) For every x ∈ H we have ‖x‖2 = ∑
u∈B

∣∣∣〈x, u〉∣∣∣2.
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The formula in (c) is called Parseval’s identity.

Proof. (a) ⇒ (b): Assume that B is an orthonormal basis for H and let
x ∈ H \ {0}.

We first observe that Bx 6= ∅. Indeed, suppose that Bx = ∅. This means
that x ∈ B⊥. But B⊥ = {0} by Proposition 3.3.3, so x = 0, a contradiction.

We only consider the case where Bx is countably infinite. (The case
where Bx is finite is much easier and left to the reader). Let {uj : j ∈ N}
be an enumeration of the distinct elements of Bx. Since Bx is orthonormal,
Bessel’s inequality gives that

∞∑
j=1

∣∣∣〈x, uj〉|2 ≤ ‖x‖2.

Applying Lemma 3.3.7 with cj = 〈x, uj〉 for every j ∈ N, we get that the
series ∑∞j=1〈x, uj〉uj converges to some y ∈ H, which satisfies that

〈y, uk〉 = ck = 〈x, uk〉 for every k ∈ N.

Moreover, if u ∈ B \ Bx , we get that

〈y, u〉 =
∞∑
j=1
〈x, uj〉 〈uj, u〉 = 0 = 〈x, u〉 .

It follows that x − y ∈ B⊥ = {0}, hence that x = y. This shows that the
assertion in (b) holds in this case.

(b) ⇒ (c): Assume (b) holds, and let x ∈ H \ {0}. Again we consider
the more difficult case where Bx is countably infinite, so we may write
Bx = {uj : j ∈ N} as above. By continuity of the norm and Pythagoras’
identity, we get

‖x‖2 =
∞∑
j=1

∣∣∣〈x, uj〉∣∣∣2 .
Hence, given ε > 0, we can find n ∈ N such that ‖x‖2 −∑n

j=1

∣∣∣〈x, uj〉∣∣∣2 < ε,
giving

‖x‖2 − ε <
n∑
j=1

∣∣∣〈x, uj〉∣∣∣2 ≤ ∑
u∈B

∣∣∣〈x, u〉∣∣∣2 .
Since this holds for every ε > 0, we get that ‖x‖2 ≤ ∑

u∈B

∣∣∣〈x, u〉∣∣∣2. Com-
bining this inequality with Lemma 3.3.6, we see that (c) holds.

(c) ⇒ (a): Assume ‖x‖2 = ∑
u∈B

∣∣∣〈x, u〉∣∣∣2 for every x ∈ H. If x ∈ B⊥,
i.e., 〈x, u〉 = 0 for every u ∈ B, then we get ‖x‖2 = 0, so x = 0. Hence,
B⊥ = {0}, and Proposition 3.3.3 gives that (a) holds. �
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3. On Hilbert spaces and bounded linear operators

Remark 3.3.9. The Fourier expansion of x in Theorem 3.3.8 (b) can be
written in the form

x =
∑
u∈B
〈x, u〉u (3.3.5)

if one takes care of giving a meaning to convergence of generalized sums in
normed spaces. We discuss this in Exercise 3.16. In these notes, we will
sometimes use (3.3.5) as a short form of the Fourier expansion of x given by
(3.3.4). �

Example 3.3.10. Let M be a closed subspace of a Hilbert space H and
assume that we have found an orthonormal basis C for M . Then we can
find a formula for the orthogonal projection PM of H on M :

Let x ∈ H. If x ∈M⊥, then PM (x) = 0, so we can assume x ∈ H \M⊥.
Since C is orthonormal in H, we know that Cx := {v ∈ C : 〈x, v〉 6= 0} is
countable. Set xM := PM(x) ∈M and x⊥ := x− xM ∈M⊥, and note that
xM 6= 0. Now, for each v ∈ C, we have

〈x, v〉 = 〈xM , v〉+ 〈x⊥, v〉 = 〈xM , v〉 .

Hence, Cx = CxM
. Moreover, applying Theorem 3.3.8 to M , xM ∈M \ {0}

and C, we get that
xM =

∑
v ∈CxM

〈xM , v〉 v .

Using our previous observations, this formula can be rewritten as

PM(x) =
∑
v ∈Cx

〈x, v〉 v .

It generalizes the usual formula for PM(x) when M is finite-dimensional.�

An immediate consequence of Theorem 3.3.8 is the following:

Corollary 3.3.11. Assume a Hilbert space H contains a countably infinite
orthonormal subset B, enumerated as B = {vk : k ∈ N}. Then B is an
orthonormal basis for H if and only if

x =
∞∑
k=1
〈x, vk〉 vk

for all x ∈ H, if and only if

‖x‖2 =
∞∑
k=1

∣∣∣〈x, vk〉∣∣∣2
for all x ∈ H.
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Example 3.3.12. Let B = {[en] : n ∈ Z} denote the standard orthonormal
basis for H = L2([−π, π]) described in Example 3.3.2. For [f ] ∈ H and
n ∈ Z it is common to set

[̂f ] (n) := 〈 [f ], [en] 〉 = 1
2π

∫
[−π,π]

f(t)e−intdλ(t) ,

which is called the Fourier coefficient of [f ] at n.
In fact, it is usual to write f instead of [f ], having in mind that one

then identifies functions which agree µ-a.e. Hence, the Fourier coefficient of
f at n is denoted by f̂(n), and the Fourier expansion of f w.r.t. B is then
written as

f =
∑
n∈Z

f̂(n) en ,

meaning that
f = lim

m→∞

m∑
n=−m

f̂(n) en (w.r.t. ‖ · ‖2).

This follows from Corollary 3.3.11 by enumerating B as e0, e−1, e1, e−2, e2,
etc. Similarly, we have

‖f‖2
2 =

∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 . �

3.4 Adjoint operators
Let X be a normed space (over F). We recall that the dual space X∗ consists
of the bounded linear functionals on X (with values in F), and that X∗ is
a Banach space w.r.t. the norm ‖ϕ‖ := sup{|ϕ(x)| : x ∈ X1}, ϕ ∈ X∗. An
important goal of functional analysis is to gain new insight by exploiting
the interplay between a space and its dual. This is particularly successful
when X is a Hilbert space because the dual space may then be identified in
a natural way with the space itself.

Theorem 3.4.1. Let H be a Hilbert space (over F). For each y ∈ H, define
ϕy : H → F by

ϕy(x) := 〈x, y〉 for all x ∈ H .

Then ϕy ∈ H∗ for all y ∈ H.
Moreover, the map y 7→ ϕy is a bijection from H onto H∗, which is

isometric, and conjugate-linear in the sense that

ϕλ1y1+λ2y2 = λ1 ϕy1 + λ2 ϕy2

for all λ1, λ2 ∈ F and all y1, y2 ∈ H.
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3. On Hilbert spaces and bounded linear operators

Proof. Let y ∈ H. Then the map ϕy is clearly linear. Moreover, for all
x ∈ H, the Cauchy-Schwarz inequality gives that

|ϕy(x)| = |〈x, y〉| ≤ ‖x‖ ‖y‖ .

Hence, ϕy is bounded, with ‖ϕy‖ ≤ ‖y‖. If y 6= 0, then
∣∣∣ϕy( 1

‖y‖
y
) ∣∣∣ = 1

‖y‖
〈y, y〉 = ‖y‖,

so ‖ϕy‖ ≥ ‖y‖. Thus, ‖ϕy‖ = ‖y‖.
This shows that the map y 7→ ϕy is an isometry from H into H∗. In

particular, it is injective. To show that it is surjective, let ϕ ∈ H∗. If ϕ = 0,
then we have ϕ = ϕ0. So assume ϕ 6= 0 and set M := kerϕ. Then M is a
closed subspace of H such that M 6= H. By Corollary 3.2.7, M⊥ 6= {0}, so
we can pick z ∈M⊥ such that ‖z‖ = 1, and set

y := ϕ(z) z ∈ H .

We claim that ϕ = ϕy. Indeed, let x ∈ H and set m := ϕ(x) z−ϕ(z)x ∈
H. Then we have

ϕ(m) = ϕ(x)ϕ(z)− ϕ(z)ϕ(x) = 0 ,

so m ∈M . As z ∈M⊥, we get 〈m, z〉 = 0, i.e.,

〈ϕ(x) z, z〉 = 〈ϕ(z)x, z〉 .
Hence

ϕ(x) = ϕ(x) ‖z‖2 = 〈ϕ(x) z, z〉 = 〈ϕ(z)x, z〉 = ϕ(z) 〈x, z〉

= 〈x, ϕ(z) z〉 = 〈x, y〉 = ϕy(x) .
This shows the claim that ϕ = ϕy, hence that the map y 7→ ϕy is surjective.

Altogether, we have shown that this map is an isometric bijection from
H onto H∗, as desired.

The final assertion is an obvious consequence of the conjugate-linearity
of the inner product in the second variable. �

This theorem, which is one among a diversity of results being called the
Riesz representation theorem, has several useful consequences. Our main
application in these notes will be to use it to associate an adjoint operator
to every bounded operator on a Hilbert space. Some people like to think of
the adjoint as a kind of twin (or as a kind of shadow), which happens to
coincide with the original operator in many cases of interest.
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3.4. Adjoint operators

Theorem 3.4.2. Let H be a Hilbert space (over F). For each T ∈ B(H),
there is a unique operator T ∗ ∈ B(H), called the adjoint of T , satisfying

〈T (x), y〉 = 〈x, T ∗(y)〉 (3.4.1)

for all x, y ∈ H .

The ∗-operation on B(H), T 7→ T ∗, enjoys the following properties:
For all S, T ∈ B(H) and all α, β ∈ F, we have

• i) (αS+β T )∗ = αS∗+β T ∗ ; ii) (ST )∗ = T ∗S∗ ; iii) (T ∗)∗ = T ;

• iv) ‖T ∗‖ = ‖T‖ ; v) ‖T ∗T‖ = ‖T‖2.

Remark 3.4.3. If H and K are Hilbert spaces (over the same F), then one
may associate to each T ∈ B(H,K) a unique adjoint operator T ∗ ∈ B(K,H)
satisfying (3.4.1) for all x ∈ H and all y ∈ K, and enjoying similar properties.
We leave this as an exercise. �

Proof of Theorem 3.4.2. Let T ∈ B(H) and consider y ∈ H. Using the
linearity of T and the linearity of the inner product in the first variable, we
get that the map ϕ : H → F defined by

ϕ(x) := 〈T (x), y〉 for all x ∈ H ,

is a linear functional on H. Moreover, as we have∣∣∣〈T (x), y〉
∣∣∣ ≤ ‖T (x)‖ ‖y‖ ≤ ‖T‖ ‖x‖ ‖y‖

for all x ∈ H, ϕ is bounded with ‖ϕ‖ ≤ ‖T‖ ‖y‖. Hence, ϕ ∈ H∗, and
Theorem 3.4.1 gives that there exists a unique vector in H, that we denote
by T ∗(y), such that ϕ = ϕT ∗(y) , i.e., such that

〈T (x), y〉 = 〈x, T ∗(y)〉 (3.4.2)

for all x ∈ H. This theorem also gives that

‖T ∗(y)‖ = ‖ϕT ∗(y)‖ = ‖ϕ‖ ≤ ‖T‖ ‖y‖ . (3.4.3)

As what we have done above holds for every y ∈ H, we obtain a map
T ∗ : H → H which sends each y ∈ H to T ∗(y) ∈ H. In view of (3.4.2), it is
clear that (3.4.1) holds for all x, y ∈ H.
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3. On Hilbert spaces and bounded linear operators

To show that T ∗ is linear, let y, y′ ∈ H and α ∈ F. Then, for all x ∈ H,
we have

〈x, T ∗(α y + y′)〉 = 〈T (x), α y + y′〉
= α 〈T (x), y〉+ 〈T (x), y′〉
= α 〈x, T ∗(y)〉+ 〈x, T ∗(y′)〉
= 〈x, α T ∗(y) + T ∗(y′)〉 .

This implies that T ∗(α y + y′) = αT ∗(y) + T ∗(y′), as desired.
Next, from (3.4.3), we see that T ∗ is bounded with ‖T ∗‖ ≤ ‖T‖. To show

the asserted uniqueness property of T ∗, assume that S ∈ B(H) satisfies the
same property as T ∗, i.e.,

〈T (x), y〉 = 〈x, S(y)〉 for all x, y ∈ H .

Let y ∈ H. Then, for all x ∈ H, we get

〈x, S(y)〉 = 〈T (x), y〉 = 〈x, T ∗(y)〉 .

This implies that S(y) = T ∗(y). Thus, S = T ∗.
We leave the proof of properties i) and ii) as an exercise. To show the

other properties, let T ∈ B(H). Then, for each y ∈ H, using equation (3.4.1)
for T ∗ instead of T , we get that, for all x ∈ H, we have

〈x, (T ∗)∗(y)〉 = 〈T ∗(x), y〉 = 〈y, T ∗(x)〉
= 〈T (y), x〉 = 〈x, T (y)〉

This implies that (T ∗)∗(y) = T (y). Thus, (T ∗)∗ = T , i.e., iii) holds
Now, we have seen that ‖T ∗‖ ≤ ‖T‖ holds for all T ∈ B(H). Thus we

get
‖T‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖ ≤ ‖T‖ .

Hence ‖T ∗‖ = ‖T‖, i.e., iv) holds.
Further, using iv), we get ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. On the other

hand, for every x ∈ H, we have

‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, T ∗(T (x))〉
=
∣∣∣〈x, (T ∗T )(x)〉

∣∣∣ ≤ ‖x‖ ‖(T ∗T )(x)‖
≤ ‖T ∗T‖ ‖x‖2 .

This implies that ‖T‖2 ≤ ‖T ∗T‖. Hence we get ‖T‖2 = ‖T ∗T‖, i.e., v)
holds. �
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Example 3.4.4. Consider H = Fn for some n ∈ N with its usual inner
product, and T ∈ B(H). Let A denote the standard matrix of T . Then the
standard matrix of T ∗ is A∗ := A

t.
Here, A denotes the matrix obtained by conjugating every coefficient of

A, while Bt denotes the transpose of a matrix B. Of course, if F = R, then
we just get A∗ = At.

Alternatively, we can formulate our assertion above by saying that if
TA ∈ B(H) denotes the operator given by multiplication with a matrix
A ∈Mn(F), then we have

(TA)∗ = TA∗ .

To prove this, let x, y ∈ H. Recall that 〈x, y〉 = xt y. So we get

〈TA(x), y〉 = (Ax)t y = xtAt y = xtA∗y = 〈x, TA∗(y)〉.

Since this holds for all x, y ∈ H, this implies that (TA)∗ = TA∗ , as asserted.
More generally, if H is a nontrivial finite-dimensional Hilbert space, B is

an orthonormal basis for H, and [T ]B is the matrix of T relative to B, then
we have

[T ∗]B =
(
[T ]B

)∗
.

The verification of this fact is left as an exercise. (One may argue in a
similar way as in Example 3.4.6). �

Example 3.4.5. Assume that {λj}j∈N is bounded sequence in F, and set
M := supj∈N |λj|. If ξ ∈ `2, then we have

∞∑
j=1
|λj ξ(n)|2 ≤M2

∞∑
j=1
|ξ(j)|2 = M2 ‖ξ‖2

2 <∞ .

Thus, the map Dξ : N → F defined by (Dξ)(j) = λjξ(j) for every n ∈ N
belongs to `2 and satisfies that

‖Dξ‖2 ≤M ‖ξ‖2 for every ξ ∈ `2.

It follows that the map D : `2 → `2, given by D(ξ) = Dξ for each ξ ∈ `2, is
linear and bounded. Note that if {ej}j∈N denotes the standard orthonormal
basis of `2 (cf. Exercise 3.3.4), we have that D(ej) = λjej, hence that
‖D(ej)‖ = |λj| for every j ∈ N. This implies that ‖D‖ ≥ |λj| for every
j ∈ N, hence that ‖D‖ ≥M . Altogether we get that ‖D‖ = M = supj∈N |λj|.
The operator D is called the standard diagonal operator on `2 associated to
{λj}j∈N.
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It is easy to determine D∗: indeed, for ξ, η ∈ `2, we have

〈D(ξ), η〉 =
∑
j∈N

λjξ(j)η(j) =
∑
j∈N

ξ(j)λjη(j) = 〈ξ,D∗(η)〉,

where D∗ ∈ B(`2) is the standard diagonal operator on `2 associated to the
sequence {λj}j∈N. �

Example 3.4.6. Assume a Hilbert space H has a countably infinite or-
thonormal basis, enumerated as B = {uj}j∈N. Let T ∈ B(H). For each
(j, k) ∈ N× N, set

A(j, k) := 〈T (uk), uj〉 ∈ F.

We may think of the map A : N×N→ F, which sends each (j, k) to A(j, k),
as the (infinite) matrix of T (w.r.t. B) since, for each k ∈ N, we have

T (uk) =
∞∑
j=1
〈T (uk), uj〉uj =

∞∑
j=1

A(j, k)uj . (3.4.4)

Now, as every x ∈ H has a Fourier expansion w.r.t. B, it is clear that T is
uniquely determined as a bounded operator on H by its values on B. Thus
we see from (3.4.4) that T is uniquely determined by its matrix A.

As T ∗ ∈ B(H) and

〈T ∗(uk), uj〉 = 〈uk, T (uj)〉 = 〈T (uj), uk〉 = A(k, j),

we can conclude that the matrix of T ∗ w.r.t. B is A∗, where

A∗(j, k) := A(k, j) .

Thus we get that, for all k ∈ N, we have

T ∗(uk) =
∞∑
j=1

A∗(j, k)uj =
∞∑
j=1

A(k, j)uj .

From (3.4.4) and Parseval’s identity, we also get that
∞∑
j=1
|A(j, k)|2 = ‖T (uk)‖2 ≤ ‖T‖2 <∞

for each k ∈ N, so the `2-norms of the column vectors of A are uniformly
bounded. However, such a condition on the column vectors of a given infinite
matrix A is not sufficient in general to ensure that A is the matrix of some
operator in B(H). There are some known conditions guaranteeing this, but
we will only look below at two cases below where one can argue directly.
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Example 3.4.7. We will show how we can construct diagonal operators in
certain Hilbert spaces, generalizing what we did in Example 3.4.5 in the
case of `2. Let H be a Hilbert space having a countably infinite orthonormal
basis, enumerated as B = {uj}j∈N. Let {λj}j∈N be a bounded sequence in
F, so that

M := sup{|λj| : j ∈ N} <∞.

We claim that there exists an operator D ∈ B(H) satisfying that

D(uk) = λk uk for each k ∈ N. (3.4.5)

Indeed, consider x ∈ H. Then Parseval’s identity gives that
∞∑
j=1

∣∣∣λj 〈x, uj〉∣∣∣2 ≤ M2
∞∑
j=1

∣∣∣〈x, uj〉∣∣∣2 = M2 ‖x‖2 < ∞.

Hence, Lemma 3.3.7 gives that the vector

D(x) :=
∞∑
j=1

λj 〈x, uj〉uj

satisfies that 〈D(x), uj〉 = λj 〈x, uj〉 for each j ∈ N. Thus, using Parseval’s
identity again, we get that

‖D(x)‖2 =
∞∑
j=1

∣∣∣λj 〈x, uj〉∣∣∣2 ≤M2 ‖x‖2 .

It follows now readily that the map x 7→ D(x) gives an operator D in B(H)
satisfying (3.4.5) and ‖D‖ ≤M . Since ‖D‖ ≥ ‖D(uk)‖ = |λk| for all k ∈ N,
we also have that ‖D‖ ≥M . Hence, ‖D‖ = M .

It is quite obvious that the matrix of D (w.r.t. B) is the diagonal (infinite)
matrix Λ defined for each (j, k) ∈ N by

Λ(j, k) =
λj if j = k,

0 otherwise.
The operator D is called the diagonal operator associated to {λj}j∈N

(w.r.t. B).
From our discussion in Example 3.4.6, we get that the matrix of D∗

is Λ∗. Thus we have D∗(uk) = λk uk for all k ∈ N, so D∗ is the diagonal
operator associated to {λj }j∈N (w.r.t. B).

Note that if H = `2 and we let B = {ej}j∈N be its standard orthonormal
basis, then the diagonal operatorD associated to a bounded sequence {λj}j∈N
(w.r.t. B) coincides with the standard diagonal operator from Example 3.4.5.

�
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Example 3.4.8. Let again H be a Hilbert space having a countably infinite
orthonormal basis, enumerated as B = {uj}j∈N. We will now argue that
there exists an operator S ∈ B(H), called the right shift operator on H
(w.r.t. B), satisfying that

S(uk) = uk+1 for all k ∈ N. (3.4.6)

Since ∑∞n=2 |〈x, un−1〉|2 = ∑∞
j=1 |〈x, uj〉|2 = ‖x‖2 <∞ for all x ∈ H, we

may use Lemma 3.3.7 to define a map S : H → H by

S(x) =
∞∑
n=2
〈x, un−1〉un ,

which is then a linear isometry satisfying that S(un−1) = un for all n ≥ 2,
i.e., such that (3.4.6) holds. The matrix of S (w.r.t. B) is the (infinite)
matrix σ given by

σ(j, k) =
1 if j = k + 1,

0 otherwise.

for each (j, k) ∈ N. Thus, the matrix of S∗ (w.r.t. B) is the matrix σ∗ given
by

σ∗(j, k) = σ(k, j) =
1 if k = j + 1,

0 otherwise.

for all j, k ∈ N, so we get that

S∗(uk) =
∞∑
j=1

σ∗(j, k)uj =
0 if k = 1,
uk−1 if k ≥ 2.

The operator S∗ is called the left shift operator on H (w.r.t. B). We note
that S∗ is not isometric, in fact not even injective, because S∗(u1) = 0. �

Example 3.4.9. Let (X,A, µ) be a measure space. Set L∞ := L∞(X,A, µ)
and H := L2(X,A, µ). To each f ∈ L∞ we may associate a "multiplication"
operator Mf ∈ B(H) given by

Mf

(
[g]
)

= [fg] for all [g] ∈ H .

Indeed, this follows readily from Proposition 2.2.4 (with q = 2). Now, for
all [g], [h] ∈ H, we have

〈Mf ([g]), [h]〉 =
∫
X
fg h dµ =

∫
X
g f h dµ = 〈[g],Mf ([h])〉 .

This implies that (Mf )∗ = Mf . �
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Example 3.4.10. Let K : [a, b]× [a, b]→ C be a continuous function and
let TK denote the associated integral operator on H = L2([a, b]), which is
determined on C([a, b] by

[TK(f)](s) =
∫ b

a
K(s, t) f(t) dt for all s ∈ [a, b] ,

cf. Example 2.1.9 and Exercise 2.10. We leave it as Exercise 3.18 to check
that (TK)∗ = TK∗ , where K∗(s, t) := K(t, s) for all s, t ∈ [a, b] . �

Example 3.4.11. Let v, w ∈ H and consider the linear operator Tv,w :
H → H defined by

Tv,w(x) := 〈x, v〉w for all x ∈ H .

Note that Tv,w has rank one, i.e., its range has dimension one, if v, w ∈ H\{0}.
It is an instructive exercise (cf. Exercise 3.20) to check that Tv,w is bounded,
with norm ‖Tv,w‖ = ‖v‖ ‖w‖, and satisfies that (Tv,w)∗ = Tw,v. A bit more
challenging is to use this to show that any finite-rank operator T ∈ B(H)
may be written as a finite sum of rank one operators in B(H), and that T ∗
also has finite-rank. �

As an illustration that the adjoint operator contains valuable information
about the original operator, we include a proposition showing the connection
between the fundamental subspaces associated to these operators.

Proposition 3.4.12. Let H be a Hilbert space (over F) and let T ∈ B(H).
Then we have:

(a) ker(T ) = T ∗(H)⊥ and ker(T ∗) = T (H)⊥.

(b) T (H) = ker(T ∗)⊥ and T ∗(H) = ker(T )⊥.

Proof. Both equalities in (a) are immediate consequences of (3.4.1). Using
Exercise 3.5 with N = T (H), we get that T (H) = (T (H)⊥)⊥ = ker(T ∗)⊥.
The second equality in (b) is shown similarly (or by replacing T with T ∗ in
the first one). �

Corollary 3.4.13. Let H be a Hilbert space (over F) and let T ∈ B(H).
Then T (H) is dense in H if and only if T ∗ is 1-1.

Proof. Using Proposition 3.4.12 and Corollary 3.2.7, we get

T (H) = H ⇔ ker(T ∗)⊥ = H ⇔ ker(T ∗) = {0} .

As T ∗ is linear, we also have ker(T ∗) = {0} ⇔ T ∗ is 1-1. �
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As another illustration, we finally mention:

Proposition 3.4.14. Let H be a Hilbert space (over F) and let T ∈ B(H).
Then T is invertible in B(H) if and only if T ∗ is invertible in B(H), in
which case we have (T ∗)−1 = (T−1)∗.

Proof. Left to the reader as Exercise 3.19. �

3.5 Self-adjoint operators
In this section, we introduce a very important class of bounded operators
on a Hilbert space and discuss some of their properties.

Definition 3.5.1. LetH be a Hilbert space (over F). An operator T ∈ B(H)
is called self-adjoint when T ∗ = T , that is, we have

〈T (x), y〉 = 〈x, T (y)〉 for all x, y ∈ H .

If F = C, a self-adjoint operator in B(H) is also called Hermitian, while it
is often called symmetric if F = R.

We note that if T, T ′ ∈ B(H) are self-adjoint, and λ ∈ R, then it is
obvious that λT + T ′ is also self-adjoint.

Example 3.5.2. Let A = [aj,k] ∈ Mn(F) and let TA ∈ B(Fn) denote the
operator given by multiplication with A (cf. Example 3.4.4). Then TA is
self-adjoint if and only if A∗ = A, i.e., ak,j = aj,k for all j, k ∈ {1, . . . , n}. In
particular, when F = R, TA is self-adjoint if and only if A is symmetric. �

Example 3.5.3. Assume H is a Hilbert space with a countably infinite
orthonormal basis B = {uj}j∈N.

Let D denote the diagonal operator associated to a bounded sequence
{λj}j∈N in F (w.r.t. B), so D(uj) = λjuj for every j, cf. Example 3.4.7.
Then D is self-adjoint if and only if λj = λj for all j ∈ N, i.e., λj ∈ R for all
j ∈ N. In particular, D is always self-adjoint when F = R.

Let S denote the right shift operator on H (w.r.t. B), so S(uj) = uj+1
for every j. As we have seen in Example 3.4.8, S∗ is the left shift operator,
and it is obvious that S∗ 6= S. So S is not self-adjoint. �

Example 3.5.4. Let (X,A, µ) be a measure space and setH := L2(X,A, µ).
If f ∈ L∞(X,A, µ), then the multiplication operator Mf ∈ B(H) given by
Mf ([g]) = [fg], cf. Example 3.4.9, is self-adjoint if and only if Mf = Mf .

Thus, Mf is self-adjoint whenever f is real-valued (µ-a.e.). It can be
shown that the converse statement holds whenever (X,A, µ) satisfies the
mild assumption that it is semifinite (cf. Exercise 3.24). �
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Example 3.5.5. Let K : [a, b]× [a, b]→ C be a continuous function and let
TK denote the associated integral operator on H = L2([a, b]), cf. Example
3.4.10, which is determined on C([a, b]) by (TK(g))(s) =

∫ b
a K(s, t)f(t) dt.

Then TK is self-adjoint if and only if TK∗ = TK (where K∗(s, t) = K(t, s)).
Hence it is clear that TK is self-adjoint whenever K is real-valued. We leave
it as an exercise to check that the converse statement also holds.

�

Example 3.5.6. Let M be a closed subspace of a Hilbert space H and let
PM denote the ortogonal projection of H on M . Then PM is self-adjoint.

Indeed, let x, y ∈ H. As PM(x) ∈M and y − PM(y) ∈M⊥, we have

〈PM(x), y − PM(y)〉 = 0 .

Similarly, we have 〈x− PM(x), PM(y)〉 = 0 . Hence we get

〈PM(x), y〉 = 〈PM(x), PM(y) + y − PM(y)〉
= 〈PM(x), PM(y)〉+ 〈PM(x), y − PM(y)〉
= 〈PM(x), PM(y)〉
= 〈PM(x), PM(y)〉+ 〈x− PM(x), PM(y)〉
= 〈PM(x) + x− PM(x), PM(y)〉
= 〈x, PM(y)〉

�

An orthogonal projection map PM has another property, namely that it
is a positive operator on H. Such operators are generalizations of operators
associated with positive semidefinite matrices. We refer to Exercise 3.29 for
the definition and some of the properties of positive operators.

Next, we note that there is an abundance of self-adjoint operators.

Proposition 3.5.7. Let H be a Hilbert space (over F) and T ∈ B(H).
Then the operators T + T ∗, T ∗T and TT ∗ are all self-adjoint. Moreover,

if F = C, then 1
i

(T − T ∗) is also self-adjoint.

Proof. The reader should have no difficulty to verify these assertions by
using the properties of the ∗-operation on B(H) listed in Theorem 3.4.2. �

A noteworthy consequence is that bounded self-adjoint operators on a
complex Hilbert space have a canonical decomposition similar to the one
enjoyed by complex numbers.
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Corollary 3.5.8. Let H be a Hilbert space over C and let T ∈ B(H). Set

Re(T ) := 1
2
(
T + T ∗

)
, Im(T ) := 1

2 i
(
T − T ∗

)
.

Then Re(T ) and Im(T ) are both self-adjoint, and we have

T = Re(T ) + i Im(T ) .

Proof. The first assertion follows readily from Proposition 3.5.7. The second
one is elementary. �

Consider a bounded operator T on a Hilbert space H 6= {0}. The
numerical range of T is defined as the subset of F given by

WT :=
{
〈T (x), x〉 : x ∈ H, ‖x‖ = 1

}
.

Some properties of T are reflected in the geometric properties of WT and
WT , cf. Exercise 3.34. We will mainly be interested in the numerical radius
of T , which is defined by

NT := sup{ |λ| : λ ∈ WT} = sup{ |〈T (x), x〉| : x ∈ H, ‖x‖ = 1} .

We note that the Cauchy-Schwarz inequality implies that NT ≤ ‖T‖.
A remarkable fact, proven below, is that NT agrees with ‖T‖ when T is

self-adjoint. We first observe that if T is self-adjoint, then WT ⊆ R. Indeed,
if T ∗ = T , then for every x ∈ H, we have

〈T (x), x〉 = 〈x, T (x)〉 = 〈T (x), x〉 ,

and the claim clearly follows.

Theorem 3.5.9. Let H be a Hilbert space, H 6= {0}, and let T ∈ B(H) be
self-adjoint. Then we have

‖T‖ = NT .

Proof. It suffices to prove that ‖T‖ ≤ NT , hence that

‖T (x)‖ ≤ NT for all x ∈ H1. (3.5.1)

We first note that if v ∈ H, then |〈T (v), v〉| ≤ NT ‖v‖2.
Indeed, if v = 0, the claim is trivial. Otherwise, if v 6= 0 and u := 1

‖v‖ v,
so v = ‖v‖u, then∣∣∣〈T (v), v〉

∣∣∣ = ‖v‖2
∣∣∣〈T (u), u〉

∣∣∣ ≤ NT ‖v‖2 .
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Let now x ∈ H1. If T (x) = 0, then the inequality in (3.5.1) is trivially
satisfied, so we can assume that T (x) 6= 0 and set y := 1

‖T (x)‖ T (x) ∈ H1.
Then we have

‖T (x)‖ = 1
‖T (x)‖ 〈T (x), T (x)〉 = 〈T (x), y〉. (3.5.2)

Similarly, ‖T (x)‖ = 〈y, T (x)〉. As T is self-adjoint, we get

‖T (x)‖ = 〈T (y), x〉. (3.5.3)

Combining (3.5.2) and (3.5.3), and using our previous observations, as well
as the parallellogram law and the fact that ‖x‖ ≤ 1, ‖y‖ = 1, we get

‖T (x)‖ = 1
2
(
〈T (x), y〉+ 〈T (y), x〉

)
= 1

4
(
〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉

)
≤ 1

4 NT

(
‖x+ y‖2 + ‖x− y‖2

)
= 1

2 NT

(
‖x‖2 + ‖y‖2

)
≤ NT .

This shows that (3.5.1) is satisfied, as desired. �

Having in mind the spectral theorem for symmetric real matrices, it
is legitimate to wonder whether it could be true that every self-adjoint
operator T ∈ B(H) is diagonalizable in the sense that there always exists an
orthonormal basis for H consisting of eigenvectors for T . However, as the
next example illustrates, a self-adjoint operator may not have any eigenvalue
at all, so this can not be true in general.

Example 3.5.10. Let H = L2([0, 1]) (with usual Lebesgue measure) and
let T = Mf be the self-adjoint operator in B(H) given by multiplication
with the bounded continuous function f(t) = t on [0, 1], cf. Example 3.5.4.
Then we leave it as an exercise (cf. Exercise 3.30) to verify that T has no
(complex) eigenvalues. �

We will see in the next chapter that every compact self-adjoint operator
can be diagonalized in the sense mentioned above. Theorem 3.5.9 will
help us to make the first step in this direction, by showing that a compact
self-adjoint operator T has at least one an eigenvalue, namely ‖T‖ or −‖T‖.
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3.6 Unitary operators
In this section, we look at another important class of operators on Hilbert
spaces. As a warm-up, we first characterize the linear operators which are
isometric. If H is a Hilbert space, a map T : H → H is said to preserve the
inner product if it satisfies that

〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ H.

Proposition 3.6.1. Let H 6= {0} be a Hilbert space (over F) and let
S : H → H. Then the following conditions are equivalent:

(i) S ∈ B(H) and S∗S = IH ;

(ii) S is linear and preserves the inner product ;

(iii) S is a linear isometry.

Proof. (i) ⇒ (ii): Assume S ∈ B(H) satisfies S∗S = IH . Then S is linear
and for all x, y ∈ H, we have

〈S(x), S(y)〉 = 〈x, (S∗S)(y)〉 = 〈x, y〉 ,

so (ii) holds.
(ii) ⇒ (iii): Any map preserving the inner product is isometric, so this is
evident.
(iii) ⇒ (i): Assume S is a linear isometry. Then S ∈ B(H) and T :=
S∗S − IH ∈ B(H) is self-adjoint. Then for any x ∈ H, we have

〈T (x), x〉 = 〈(S∗S − I)(x), x〉 = 〈S(x), S(x)〉 − 〈x, x〉 = ‖S(x)‖2−‖x‖2 = 0

Thus, WT = {0}, so, using Theorem 3.5.9, we get that ‖T‖ = NT = 0.
Hence, T = 0, i.e., S∗S = IH , so (i) holds. �

Example 3.6.2. Assume H is finite-dimensional and S : H → H is a
linear isometry, so S∗S = IH , cf. Proposition 3.6.1. As S is injective, it is
also surjective (since dim(S(H)) = dim(H)− dim(ker(S)) = dim(H), so
S(H) = H). Thus, S is bijective, so it has an inverse S−1 (which is also a
linear isometry). Since S∗S = IH , we get that S−1 = S∗. In particular, we
also have SS∗ = IH . �

Remark 3.6.3. When H is infinite-dimensional, then a linear isometry S
is not necessarily surjective. A typical example is the right shift operator S
considered in Example 3.4.6, whose range does not contain the first basis
vector; in this case, we have S∗S = IH , while SS∗ 6= IH (cf. Exercise 3.22).
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�

Definition 3.6.4. LetH be a Hilbert space (over F). An operator U ∈ B(H)
is called unitary when it satisfies

U∗U = UU∗ = IH .

Thus, U ∈ B(H) is unitary if and only if U is bijective and U−1 = U∗.
When F = R, it is customary to say orthogonal instead of unitary.

Proposition 3.6.5. Let H be a Hilbert space (over F) and let U : H → H.
Then the following conditions are equivalent :

(i) U ∈ B(H) and U is unitary ;

(ii) U is bijective, linear and preserves the inner product ;

(iii) U is a surjective linear isometry.

Proof. (i) ⇒ (ii): If U ∈ B(H) is unitary, then U is bijective and linear,
and Proposition 3.6.1 gives that it preserves the inner product. Hence, (ii)
holds.
(ii) ⇒ (iii): This implication is evident.
(iii) ⇒ (i): Suppose U is a surjective linear isometry. As a linear isometry
is injective, U is bijective. Moreover, Proposition 3.6.1 gives that U∗U = IH .
So we get that U−1 = U∗, i.e., U is unitary, and (i) holds. �

Example 3.6.6. Assume H has a countably infinite orthonormal basis B
and D is the diagonal operator associated to a bounded sequence {λj}j∈N
in F (w.r.t. B).

Then it is straightforward to check that D is unitary if and only if
λjλj = 1, i.e., |λj| = 1, for all j ∈ N. �

Example 3.6.7. Let (X,A, µ) be a measure space and setH := L2(X,A, µ).
For f ∈ L∞, consider the multiplication operator Mf ∈ B(H). Then we
clearly have

(Mf )∗Mf = M|f |2 = Mf (Mf )∗,

so we see that Mf is unitary whenever |f | = 1 µ-a.e. The converse holds if
µ is semifinite, cf. Exercise 3.31. �
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Example 3.6.8. Let H = `2(Z). We may then define the bilateral forward
shift operator U : H → H by

[U(ξ)](j) = ξ(j − 1) for all ξ ∈ H and all j ∈ Z.

Indeed, since ∑j∈Z |ξ(j − 1)|2 = ∑
j∈Z |ξ(j)|2 < ∞, we see that U(ξ) ∈ H

and ‖U(ξ)‖2 = ‖ξ‖2 for every ξ ∈ H. Thus U is isometric.
We may now conclude from Proposition 3.6.5 that U is unitary. Its adjoint

U∗ = U−1 is called the bilateral backward shift operator (on H = `2(Z)). We
note that if B = {en}n∈Z denotes the canonical basis of H = `2(Z) as in
Example 3.3.4, then we have

U(en) = en+1 and U∗(en) = en−1 for all n ∈ Z. �

Example 3.6.9. Let H = L2(R,A, µ), where A denote the Lebesgue-
measurable subsets of R and µ is the usual Lebesgue measure on A. For
each x ∈ R and f ∈ L2(R,A, µ), define fx : R→ C by fx(y) = f(y − x) for
every y ∈ R. Then fx is Lebesgue-measurable, and, using the translation
invariance of µ, we get that

‖fx‖2
2 =

∫
R
|fx(y)|2dµ(y) =

∫
R
|f(y − x)|2dµ(y) =

∫
R
|f(y′)|2dµ(y′) = ‖f‖2

2.

It follows that the map Ux : H → H given by Ux([f ]) = [fx] for each
f in L2(R,A, µ) is a well-defined unitary operator on H, satisfying that
(Ux)∗ = U−x (and Ux+x′ = UxUx′ for all x, x′ ∈ R). You are asked to provide
all the missing details in Exercise 3.33. �

Let now H,K be Hilbert spaces (over F). A bijective, linear map U from
H onto K which preserves the inner product is often called an isomorphism
of Hilbert spaces. As in Proposition 3.6.5, one shows that it is equivalent to
require that U is a surjective linear isometry, or that U ∈ B(H,K) is unitary
in the sense that we have U∗U = IH and UU∗ = IK . (Here, U∗ ∈ B(K,H)
denotes the adjoint of U , cf. Remark 3.4.3). We will therefore say that H
and K are isomorphic as Hilbert spaces when such a map U : H → K exists.

Theorem 3.6.10. Let H 6= {0} be a Hilbert space over C, and let B be
an orthonormal basis of H. Then H and `2(B) are isomorphic as Hilbert
spaces.

Proof. Let x ∈ H and define x̂ : B → C by

x̂(u) := 〈x, u〉 for all u ∈ B.
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Note that Parseval’s identity says that ∑u∈B |x̂(u)|2 = ‖x‖2 . In particular,
we have x̂ ∈ `2(B) and ‖x̂‖ = ‖x‖. Thus we can define an isometric map
U : H → `2(B) by

U(x) = x̂ for all x ∈ H.
It is elementary to check that U is linear. Moreover, U is surjective. Indeed,
let ξ ∈ `2(B). As ∑u∈B |ξ(u)|2 <∞, the set

Bξ := {u ∈ B : ξ(u) 6= 0}

must be countable. Let {uj}j∈N be an enumeration of Bξ , where N =
{1, . . . , n} for some n ∈ N or N = N. Note that if N = N, we have∑∞
j=1 |ξ(uj)|2 <∞ , and this implies readily that the sequence

{∑k
j=1 ξ(uj)uj

}
k∈N

is Cauchy, hence convergent in H.
Thus we may define x ∈ H by x := ∑

j∈N ξ(uj)uj, and we then have

x̂(u) = 〈x, u〉 =
∑
j∈N

ξ(uj)〈uj, u〉 =
ξ(uk) if u = uk for some k ∈ N ,

0 if u ∈ B \ Bξ ,

i.e., x̂(u) = ξ(u) for all u ∈ B. Hence, U(x) = ξ, showing that U is surjective.
We can now conclude that U is an isomorphism of Hilbert spaces from

H to `2(B), as we wanted to show. �

Remark 3.6.11. Theorem 3.6.10 is also true when H 6= {0} is a Hilbert
space over R, but one has then to replace `2(B) with the real `2-space

`2
R(B) :=

{
ξ : B → R :

∑
u∈B
|ξ(u)|2 <∞,

}
considered as a Hilbert space over R.

Remark 3.6.12. If H 6= {0} is a Hilbert space over C, and B,B′ are both
orthonormal bases of H, then we get from Theorem 3.6.10 that `2(B) and
`2(B′) are isomorphic as Hilbert spaces. It can be shown that this implies
that (and in fact is equivalent to) B and B′ having the same cardinality,
meaning that there exists a bijection between B and B′. (A similar statement
holds if H 6= {0} is a Hilbert space over R). �
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3.7 Exercises
In the exercises of this chapter, H always denotes a Hilbert space over F,
unless otherwise stated.

Exercise 3.1. Let X be an inner product space. Check that the parallelo-
gram law and the polarization identities hold.

Exercise 3.2. Let H be a Hilbert space which is infinite-dimensional, i.e.,
is not finite-dimensional (as a vector space). Argue first that there exists an
orthonormal sequence {xn}n∈N in H. Then use this sequence to show that
the unit ball H1 is not compact.

Exercise 3.3. Consider X := `∞(N) as a metric space w.r.t. d(f, g) =
‖f − g‖u. Let A be the subset of X given by

A :=
{
a(N) : N ∈ N

}
,

where a(N)(n) = 1 if 1 ≤ n ≤ N and a(N)(n) = 0 if n > N .

a) Show that A is closed in X.

b) Let x ∈ X be given by x(n) = 1 + 1/n for all n ∈ N.
Show that d(x,A) = 1 and that 1 < d(x, a(N)) for all N ∈ N.

Exercise 3.4. Let c ∈ H, r > 0 and set B := Br(c) = {y ∈ H : ‖y−c‖ ≤ r}.
Check that B is closed and convex, and give a formula for xB when x ∈ H\B.

Exercise 3.5. Let S denote a nonempty subset of H.

a) Show that S⊥ is a closed subspace of H.

b) Set M := Span (S). Verify that S⊥ = M⊥. Then deduce that
M = (S⊥)⊥. Deduce also that if N is a subspace of H, then N = (N⊥)⊥.

Exercise 3.6. Let M be a closed subspace of H and x ∈ H.

a) Check that the associated map PM : H → H is linear.

b) Show that PM(x) = y for some y ∈M if and only if x− y ∈M⊥.
Then show that PM (x) is the unique vector y inM such that x−y ∈M⊥.

Exercise 3.7. Assume P ∈ B(H) satisfies that P 2 = P and ‖P‖ = 1.
Show that P (H) is closed and H = P (H)⊕ kerP . Then show that P is

the orthogonal projection of H on M := P (H).
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Exercise 3.8. Let (X,A, µ) be a measure space.
a) Show that

〈[f ], [g]〉 :=
∫
X
f g dµ

gives a well-defined inner product on L2 := L2(X,A, µ) (cf. Example 3.1.12).
b) Let E ∈ A. Set AE = {A ∩ E : A ∈ A} and µE = µ|AE

. We recall
that (E,AE, µE) is a measure space.

Show that there exists an isometric isomorphism from L2(E,AE, µE)
onto the space ME defined in Example 3.2.9, i.e.,

ME =
{

[g] : g ∈ L2 and g lives essentially on E
}
.

Exercise 3.9. Consider H = L2([a, b],A, µ), where A denotes the σ-algebra
of all Lebesgue measurable subsets of [a, b], and µ is the usual Lebesgue
measure on A. Set

M :=
{

[g] ∈ H : g ∈ L2([a, b],A, µ),
∫

[a,b]
g dµ = 0

}
.

Check that M is a closed subspace of H. Then, given [f ] ∈ H, find an
expression for the best approximation of [f ] in M .

Exercise 3.10. Let H 6= {0}. Show that the following conditions are
equivalent:

(a) H is separable;

(b) There is a sequence satisfying the assumptions in Example 3.3.5;

(c) H has a countable orthonormal basis.

Note that Example 3.3.5 shows that (b) ⇒ (c). So it suffices to show that
(a) ⇒ (b), and (c) ⇒ (a).

Exercise 3.11. In the context of Fourier analysis described in Example
3.3.12 (see also Example 3.3.2), the formula

‖f‖2
2 =

∑
n∈Z

∣∣∣f̂(n)
∣∣∣2

is called Parseval’s identity. (The more general equality obtained in Theorem
3.3.8 c) is also often called Parseval’s identity.)

a) Set f(t) = t for all t ∈ [−π, π]. Compute the Fourier coefficients of f .
b) Use a) and Parseval’s identity to show that ∑∞n=1

1
n2 = π2

6 .

c) Set g(t) = et for all t ∈ [−π, π]. Use Parseval’s identity to obtain a
formula for the sum of the series ∑∞n=1

1
n2+1 .
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Exercise 3.12. Let H = L2([−1, 1],A, µ), where A denote the Lebesgue-
measurable subsets of [−1, 1] and µ is the restriction of the usual Lebesgue
measure to A.

For each n ∈ {0} ∪ N, let pn+1 : [−1, 1]→ C be defined by pn+1(t) = tn,
and set S :=

{
[pn+1] : n ∈ {0} ∪ N

}
⊆ H.

a) Show that Span (S) is dense in H.
b) Apply the Gram-Schmidt orthonormalization process to S to obtain

an orthonormal basis B =
{

[qn+1] : n ∈ {0} ∪ N
}
for H, where each qn+1 is

the polynomial on [−1, 1] given by

qn+1(t) =

√
n+ 1

2

2n n!
dn

dtn

(
(t2 − 1)n

)
.

(These polynomials are called the normalized Legendre polynomials.)

Exercise 3.13. Let H be the L2-space on [−π, π] w.r.t. to the normalized
Lebesgue measure µ, as in Example 3.3.2. Set

Heven := {[f ] ∈ H : f is even} and Hodd := {[f ] ∈ H : f is odd} .

We recall that a function f : [−π, π]→ C is called even if f(−t) = f(t) for
all t, while it is called odd if f(−t) = −f(t) for all t.

a) Show that Heven is a closed subspace of H and that (Heven)⊥ = Hodd.
Then describe the orthogonal projection P of H on Heven.
Hint: It might be helpful to consider the map [f ]→ [f̃ ], where f̃(t) := f(−t).

b) Find an orthonormal basis for Heven and one for Hodd.

Exercise 3.14. Let H1, H2 be Hilbert spaces over F and consider

H := H1 ×H2 = {(x1, x2) : x1 ∈ H1, x2 ∈ H2}

as a vector space over F when equipped with its natural pointwise operations.
For (x1, x2), (y1, y2) ∈ H, set

〈(x1, x2), (y1, y2)〉 := 〈x1, y1〉 + 〈x2, y2〉 .

a) Check that this gives an inner product on H such that H is a Hilbert
space. Check also that the associated norm on H is given by

‖(x1, x2)‖ = (‖x1‖2 + ‖x2‖2)1/2.
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b) Set H̃1 := {(x1, 0) : x1 ∈ H1} and H̃2 := {(0, x2) : x2 ∈ H2},
Check that H̃1 and H̃2 are closed subspaces of H and that H̃j is isomor-

phic to Hj (j = 1, 2).
Check also that H = H̃1 ⊕ H̃2 and describe the orthogonal projection

from H on H̃1 (resp. H̃2).
Note: The Hilbert space H is called the external direct sum of H1 and H2.

Exercise 3.15. Let H1 and H2 be Hilbert spaces over F, and let H be the
external direct sum of H1 and H2, as defined in Exercise 3.14. Assume B1
and B2 are orthonormal bases for H1 and H2, respectively.

Find an orthonormal basis B for H in terms of B1 and B2.

Exercise 3.16. The concept of generalized sums can be used to provide an
alternative way of describing Fourier expansions in Hilbert spaces.

Let X be a normed space, J be a nonempty set, {xj}j∈J be a family of
elements of X, and x ∈ X. Then one says that the generalized sum ∑

j∈J xj
converges to x when the following holds: given ε > 0, there exists a finite
subset F0 ⊆ J such that for all finite subsets F of J containing F0, we have∥∥∥x−∑

j∈F
xj ‖ < ε ,

in which case we write
x =

∑
j∈J

xj .

Consider a Hilbert space H and x ∈ H.
a) Show that we have

x =
∑
u∈B
〈x, u〉u .

b) Show also that ifM is a closed subspace of H and C is an orthonormal
basis for M , then we have

PM(x) =
∑
v∈C
〈x, v〉 v .

Exercise 3.17. Let T ∈ B(H). Assume H0 is a dense subspace of H which
is invariant under T , and let T0 ∈ B(H0) denote the restriction of T to H0.
Further, assume there exists some S0 ∈ B(H0) such that

〈T0(x), y〉 = 〈x, S0(y)〉 for all x, y ∈ H0 .

Show that T ∗ = S, where S ∈ B(H) is the unique extension of S0 provided
by Theorem 1.4.2.
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Exercise 3.18. Show that the formula for (TK)∗ in Example 3.4.10 is
correct.

Hint : Consider H0 = [g] : g ∈ C([a, b])} and use Exercise 3.17.

Exercise 3.19. Prove Proposition 3.4.14.

Exercise 3.20. Let v, w ∈ H and consider the linear operator Tv,w : H → H
defined by

Tv,w(x) := 〈x, v〉w for all x ∈ H .

Note that Tv,w has rank one if v, w ∈ H \ {0}.
a) Show that Tv,w is bounded with norm ‖Tv,w‖ = ‖v‖ ‖w‖. Then show

that (Tv,w)∗ = Tw,v.
b) Show that every T ∈ B(H) which has rank one is of the form T = Tv,w

for some v, w ∈ H \ {0}.
c) Assume T ∈ B(H) is a finite-rank operator, T 6= 0. Show that T may

be written as a finite sum of rank one operators in B(H).
Hint : Start by picking an orthonormal basis for T (H).
d) Show that if T ∈ B(H) is a finite-rank operator, then so is T ∗.

Exercise 3.21. Let T ∈ B(H) and let M be a closed subspace of H.
Show that

M is invariant under T if and only if M⊥ is invariant under T ∗.

Exercise 3.22. Let T ∈ B(H).
a) Show that ker(T ) = ker(T ∗T ) and T ∗(H) = (T ∗T )(H) .
b) Assume T is normal, i.e., satisfies T ∗T = TT ∗. Show that

ker(T ∗) = ker(T ) and T ∗(H) = T (H) .

c) Assume T is normal and has an eigenvalue λ. Show that λ is an
eigenvalue of T ∗, and that ET ∗

λ
= ET

λ .
d) Assume H has a countably infinite orthonormal basis B = {uj}j∈N

and let S ∈ B(H) be the right shift operator (w.r.t. B). Set T = S∗.
Check that TT ∗ = S∗S = IH , while T ∗T = SS∗ = P , where P is the

orthogonal projection of H on {u1}⊥. Deduce that T is not normal.
Next, check that 0 is an eigenvalue for T , while 0 is not an eigenvalue

of T ∗ = S. (Note: This shows that the assertion in c) does not necessarily
hold when T is not normal.)

Finally, if you are in the right mood, show that S has no eigenvalues,
while every λ satisfying |λ| < 1 is an eigenvalue of T .
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Exercise 3.23. Let H andK be Hilbert spaces over F, and let T ∈ B(H,K).
a) Show that there exists a unique operator T ∗ ∈ B(K,H) (called the

adjoint of T ) satisfying that

〈T (x), y〉 = 〈x, T ∗(y)〉 for all x ∈ H and all y ∈ K.

b) Let T ′ ∈ B(H,K) and α, β ∈ F. Let also L be a Hilbert space over F, and
let S ∈ B(K,L), so that ST ∈ B(H,L). Show that the following properties
hold:

• i) (αT +β T ′)∗ = αT ∗+β T ′ ∗ ; ii) (ST )∗ = T ∗S∗ ; iii) (T ∗)∗ = T ;

• iv) ‖T ∗‖ = ‖T‖ ; v) ‖T ∗T‖ = ‖T‖2.

Exercise 3.24. Let (X,A, µ) be a measure space. One says that (X,A, µ)
is semifinite when the following condition holds: if E ∈ A and µ(E) =∞,
then there exists F ⊆ E, F ∈ A such that 0 < µ(F ) <∞.

a) Show that (X,A, µ) is semifinite whenever it is σ-finite.
Assume from now on that (X,A, µ) is semifinite. Set H := L2(X,A, µ).

Let f ∈ L∞ and consider the multiplication operator Mf ∈ B(H) defined in
Example 3.5.4.

b) Show that ‖Mf‖ = ‖f‖∞.
c) Show that if Mf is self-adjoint, then f is real-valued µ-a.e. (As

observed in Example 3.4.9, the converse is true without any restriction on
(X,A, µ).)

Exercise 3.25. Assume P ∈ B(H) is a self-adjoint projection, i.e., it
satisfies that P ∗ = P = P 2. Show that P is the orthogonal projection of H
on M := P (H) (which is a closed subspace of H).

Exercise 3.26. Let H 6= {0}.
a) Assume T ∈ B(H) is self-adjoint. Deduce from Theorem 3.5.9 that

T = 0 if and only if 〈T (x), x〉 = 0 for all x ∈ H.
b) Suppose F = R. Give an example with H = R2 showing that the

equivalence in a) may fail when T is not self-adjoint.
c) Assume F = C and let T ∈ B(H). Show that T = 0 if and only if

〈T (x), x〉 = 0 for all x ∈ H.

Exercise 3.27. Show that the set B(H)sa := {T ∈ B(H) : T ∗ = T} is
closed in B(H).
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Exercise 3.28. Let H 6= {0}. If T ∈ B(H) is self-adjoint, we have seen that
WT ⊆ R; of course, if F = R, this gives no information on T as this inclusion
is then true for any T in B(H). We assume therefore in this exercise that
H 6= {0} is a Hilbert space over C.

Let T ∈ B(H). Then show that the following assertions are equivalent:

(i) T is self-adjoint;

(ii) WT ⊆ R;

(iii) 〈T (x), x〉 ∈ R for all x ∈ H.

Exercise 3.29. A self-adjoint operator T in B(H) is called positive when

〈T (x), x〉 ≥ 0 for all x ∈ H , (3.7.1)

in which case we write T ≥ 0.
(We note that if F = C and T ∈ B(H) satisfies (3.7.1), then T is

automatically self-adjoint, as follows from the previous exercise.)

a) Let S ∈ B(H), and let R ∈ B(H) be self-adjoint.
Check that S∗S ≥ 0 and R 2 ≥ 0. Then show that

‖S‖ ≤ 1 ⇔ (IH − S∗S) ≥ 0 .

b) Let M be a closed subspace of H. Check that PM ≥ 0.

c) Assume that T, T ′ ∈ B(H) are positive and λ ∈ [0,∞).
Check that T + T ′ and λT are also positive.

d) Show that the set of positive operators in B(H) is closed in B(H).

Exercise 3.30. Let H = L2([0, 1]) (with usual Lebesgue measure) and let
T = Mf be the self-adjoint operator in B(H) given by multiplication with
the function f(t) = t on [0, 1], cf. Example 3.5.4. Show that T has no
(complex) eigenvalues.

Exercise 3.31. Let (X,A, µ) be a semifinite measure space (cf. Exercise
3.24), and let f ∈ L∞. Suppose that the multiplication operator Mf on
H = L2(X,A, µ) is unitary. Then show that |f | = 1 µ-a.e.
(As observed in Example 3.6.7, the converse statement is true without any
restriction on (X,A, µ).)
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Exercise 3.32. AssumeH 6= {0} is separable (cf. Exercise 3.10) and infinite-
dimensional. Let then B be an orthonormal basis for H indexed by Z, say
B = {vk}k∈Z. One may then define the bilateral shift operator V : H → H
(w.r.t. B) by

V (x) =
∑
k∈Z
〈x, vk〉 vk+1 for all x ∈ H, i.e., by

V (x) = lim
n→∞

n∑
k=−n

〈x, vk〉 vk+1 for all x ∈ H.

a) Show that V is a unitary operator in B(H).
b) Describe V as a multiplication operator when H = L2([−π, π]) (with

normalized Lebesgue measure µ) and vk(t) = eikt for every k ∈ Z.
c) Assume F = C. Let U : H → `2(Z) denote the isomorphism of Hilbert

spaces defined in the proof of Theorem 3.6.10. Show that UV U∗ is the
bilateral forward shift operator on `2(Z).

Exercise 3.33. Provide all the details missing in Example 3.6.9.

Exercise 3.34. Let T be a bounded operator on a Hilbert space H 6= {0}.
Check that the following properties of WT and NT hold:

(a) WT ∗ =
{
λ : λ ∈ WT

}
; hence, NT ∗ = NT .

(b) WT contains all the possible eigenvalues of T .

(c) WαT+βIH
= αWT + β for all α, β ∈ F.

(d) WUTU∗ = WT , hence NUTU∗ = NT , for every unitary U ∈ B(H).

(e) WT is a compact subset of F when H is finite-dimensional.

It can also be shown that WT is a convex subset of F. This result is called
the Toeplitz-Hausdorff Theorem, but the proof is beyond the scope of these
notes.
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CHAPTER 4

On compact operators

4.1 Introduction to compact operators
between normed spaces

In this section, X and Y will denote normed spaces, both over F, unless
otherwise specified.

Definition 4.1.1. An operator T ∈ L(X, Y ) is called compact if the se-
quence {T (xn)}n∈N has a convergent subsequence in Y whenever {xn}n∈N is
a bounded sequence in X.

We set K(X, Y ) := {T ∈ L(X, Y ) : T is compact }.

To appreciate this definition, the concept of relative compactness for
subsets of a metric space will be helpful.

A subset A of a metric space (Z, d) is called relatively compact in Z
if its closure A is a compact subset of Z. (Some authors say precompact
instead of relatively compact.) Equivalently, and this may be taken as the
definition for our purposes, a subset A of Z is relatively compact in Z if
and only if every sequence in A has a subsequence which converges in Z. In
comparison, we recall that A is compact if and only if every sequence in A
has a subsequence which converges in A.

We also remark that a subset A of Z is bounded whenever A is relatively
compact in Z: indeed, if A is not bounded, then we can pick (any) z ∈ Z
and find a sequence {an}n∈N in A such that d(an, z) > n for all n ∈ N; it is
then rather easy to see that {an}n∈N has no convergent subsequence in Z,
so A is not relatively compact.

Proposition 4.1.2. Let T ∈ L(X, Y ). Then T is compact if and only if
T (B) is relatively compact in Y whenever B is a bounded subset of X.
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Proof. Assume first that T is compact and let B ⊆ X be bounded. We want
to show that T (B) is relatively compact in Y . So let {yn}n∈N be a sequence
in T (B). For each n ∈ N we may then write yn = T (xn) for some xn ∈ B.
As the sequence {xn}n∈N lies in B, it is bounded. Hence, by compactness of
T , {yn}n∈N = {T (xn}n∈N has a convergence subsequence in Y . Thus, T (B)
is relatively compact, as desired.

Conversely, assume that T maps bounded subsets of X into relatively
compact subsets of Y . We want to show that T is compact. So let {xn}n∈N
be a bounded sequence in X. Set B := {xn : n ∈ N}. Then B is a bounded
subset of X, so T (B) = {T (xn) : n ∈ N} is relatively compact in Y . As
{T (xn)}n∈N is a sequence in T (B), we can conclude that it has a convergent
subsequence in Y . Thus, T is compact, as desired. �

Corollary 4.1.3. Assume T ∈ L(X, Y ) is compact. Then T is bounded.
Thus, K(X, Y ) ⊆ B(X, Y ).

Proof. Set B := X1. Since B is a bounded subset of X, we get from
Proposition 4.1.2 that T (B) is relatively compact subset of Y . This implies
that T (B) is bounded. Hence we can find M > 0 such that ‖T (x)‖ ≤ M
for all x ∈ X1, and it follows that T is bounded with ‖T‖ ≤M . �

An important class of compact operators consists of the finite-rank
operators in B(X, Y ). We recall that T ∈ L(X, Y ) is said to have finite-rank
if T (X) is finite-dimensional.

Proposition 4.1.4. Assume that T ∈ B(X, Y ) has finite-rank. Then T is
compact.

Proof. Assume {xn}n∈N is a bounded sequence in X, and let M > 0 be such
that ‖xn‖ ≤M for all n ∈ N. Then we have

‖T (xn)‖ ≤ ‖T‖ ‖xn‖ ≤ ‖T‖M

for all n ∈ N. Now, the ball B := {y ∈ Y : ‖y‖ ≤ ‖T‖M} is closed in Y .
Considering T (X) as a normed space w.r.t. to the norm it inherits from Y ,
we get that the set K := T (X)∩B is a closed and bounded subset of T (X).
Since T (X) is finite-dimensional (by assumption), we get from Proposition
1.3.2 that K is compact in T (X). As {T (xn)}n∈N is a sequence in K, we
can therefore conclude that it has a convergent subsequence. This shows
that T is compact. �
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Example 4.1.5. Consider X = C([0, 1],R) with the uniform norm ‖ · ‖u.
For g ∈ X, define T (g) : [0, 1]→ R by

[T (g)](s) =
∫ 1

0
sin(s− t) g(t) dt for all s ∈ [0, 1] .

Since sin(s− t) = sin(s) cos(t)− cos(s) sin(t), we have that

[T (g)](s) =
( ∫ 1

0
cos(t) g(t) dt

)
sin(s)−

( ∫ 1

0
sin(t) g(t) dt

)
cos(s)

for all s ∈ [0, 1]. It follows that T (g) ∈ X. Moreover, the map T : X → X
sending g to T (g) is clearly linear. As T (X) is 2-dimensional, T has finite-
rank. Further, since

∣∣∣[T (g)](s)
∣∣∣ ≤ ∫ 1

0
| sin(s− t)g(t)| dt ≤

∫ 1

0
|g(t)| dt ≤ ‖g‖u

for all s ∈ [0, 1], we get that ‖T (g)‖u ≤ ‖g‖u for all g ∈ X. Hence, T is
bounded. We can therefore conclude that T is compact.

More generally, using the Arzelà-Ascoli Theorem (cf. Lindstrøm’s book),
it can be shown that if a function K : [a, b]× [c, d]→ R is continuous, then
the associated integral operator T : C([c, d],R)→ C([a, b],R), defined by

[T (g)](s) =
∫ d

c
K(s, t) g(t) dt for all s ∈ [a, b] ,

is compact.

Theorem 4.1.6. K(X, Y ) is a subspace of B(X, Y ). Moreover, if Y is
a Banach space, then K(X, Y ) is closed in B(X, Y ), and it follows that
K(X, Y ) is a Banach space.

Proof. We leave the proof of the first assertion as an exercise. So assume that
Y is Banach space, and let {Tn}n∈N be a sequence in K(X, Y ) converging
to some T ∈ B(X, Y ). To show that K(X, Y ) is closed in B(X, Y ), we have
to show that T is compact.

So let {xn}n∈N be a bounded sequence in X. Choose M > 0 such that
‖xn‖ ≤M for all n ∈ N.

• Since T1 is compact, there exists a subsequence {xnk
}k∈N of {xn}n∈N

such that T1(xnk
)→ y1 as k →∞ for some y1 ∈ Y .

We set x1,k := xnk
for each k ∈ N. We then have T1(x1,n) → y1 as

n→∞.
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• Similarly, since {x1,n}n∈N is bounded and T2 is compact, we can find a
sequence {x2,n}n∈N, which is a subsequence of {x1,n}n∈N, and therefore
of {xn}n∈N, such that T2(x2,n)→ y2 as n→∞ for some y2 ∈ Y .

• Proceeding inductively, for each m ∈ N, m ≥ 2, we can find a sequence
{xm,n}n∈N, which is a subsequence of {xm−1,n}n∈N, and therefore of
{xn}n∈N, such that Tm(xm,n)→ ym as n→∞ for some ym ∈ Y .

We now set x′k := xk,k ∈ X for each k ∈ N, and claim that

{T (x′k)}k∈N is a Cauchy sequence in Y . (4.1.1)

Since Y is complete, we will then be able to conclude that {T (x′k)}k∈N is
convergent, hence that {T (xn)}n∈N, which will show that T is compact.

To establish (4.1.1), we first observe that for any k, l,m ∈ N, we have

‖T (x′l)− T (x′k)‖ ≤ ‖(T − Tm)(x′l) + Tm(x′l)− Tm(x′k) + (Tm − T )(x′k)‖
≤ ‖(T − Tm)(x′l)‖+ ‖Tm(x′l)− Tm(x′k)‖+ ‖(Tm − T )(x′k)‖
≤ ‖T − Tm‖ ‖x′l‖+ ‖Tm(x′l)− Tm(x′k)‖+ ‖Tm − T‖ ‖x′k‖
≤ ‖Tm(x′l)− Tm(x′k)‖+ 2M ‖T − Tm‖ .

Let then ε > 0 and choose m ∈ N such that ‖T − Tm‖ < ε/3M . By
construction, for each k ≥ m, we have that Tm(x′k) = Tm(xk,k) is an element
of the sequence {Tm(xm,n)}n∈N, which is convergent to ym. It follows that
the sequence {Tm(x′k)}k∈N is convergent, hence that it is Cauchy. So we can
pick N ∈ N such that ‖Tm(x′l)− Tm(x′k)‖ < ε/3 for all k, l ≥ N . This gives
that

‖T (x′l)−T (x′k)‖ ≤ ‖Tm(x′l)−Tm(x′k)‖+2M ‖T−Tm‖ < ε/3+2M (ε/3M) = ε

for all k, l ≥ N . Hence we have shown that the claim (4.1.1) is true.
Finally, as Y is a Banach space, we know that B(X, Y ) is a Banach

space too, and this implies that K(X, Y ), being closed in B(X, Y ), is also a
Banach space. �

An immediate consequence is the following:

Corollary 4.1.7. Assume Y is a Banach space and set

F(X, Y ) := {T ∈ B(X, Y ) : T has finite-rank }.

Then we have
F(X, Y ) ⊆ K(X, Y ).
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Example 4.1.8. Let 1 ≤ p < ∞ and set X := `p(N), which we know is
a Banach space w.r.t. ‖ · ‖p. For each λ ∈ `∞(N), we may consider the
multiplication operator Mλ ∈ B(X) given by

[Mλ(x)](n) = λ(n)x(n)

for all x ∈ X and all n ∈ N. One readily checks that ‖Mλ‖ = ‖λ‖∞.
Now, assume that λ ∈ c0(N), i.e., limn→∞ λ(n) = 0. ThenMλ is compact.

Indeed, for each k ∈ N, let λ(k) ∈ `∞(N) be defined by

λ(k)(n) =
λ(n) if 1 ≤ k ≤ n,

0 otherwise,

for every n ∈ N. Then it is clear that each Mλ(k) has finite-rank; moreover,

‖Mλ −Mλ(k)‖ = ‖λ− λ(k)‖∞ → 0 as k →∞.

Thus Mλ ∈ F(X,X) ⊆ K(X,X). �

We set K(X) := K(X,X), so that K(X) is a subspace of B(X). If
X is finite-dimensional, then every operator in B(X) has finite-rank, so
K(X) = B(X). On the other hand, if X is infinite-dimensional, then
K(X) 6= B(X), the reason being that the identity operator IX is not compact
in this case: indeed, if X is infinite-dimensional, then IX(X1) = X1 is closed,
but not compact, (cf. Exercise 1.2).

We also mention (cf. Exercise 4.1) that K(X) is a two-sided ideal in
B(X), meaning that we have

ST ∈ K(X) if S ∈ B(X) and T ∈ K(X), or if S ∈ K(X) and T ∈ B(X).

This property implies that no operator in K(X) can have a bounded inverse
when X is infinite-dimensional (because if some T ∈ K(X) had an inverse
T−1 ∈ B(X), then we would have that IX = T−1T ∈ K(X), hence that
dim(X) <∞).

We end this section with an interesting result concerning the possible
eigenvalues of a compact operator, and their associated eigenspaces.

Theorem 4.1.9. Let T ∈ K(X). Then the following facts hold:
(a) Let δ > 0. Then {λ ∈ F : λ is an eigenvalue of T and |λ| > δ} is a

finite set.
(b) If λ ∈ F is a non-zero eigenvalue of T , then the associated eigenspace

Eλ := {x ∈ X : T (x) = λx} is finite-dimensional.
(c) The set of eigenvalues of T (which may be empty) is countable and

bounded. If this set is countably infinite and {λk : k ∈ N} is an enumeration
of it, then limk→∞ λk = 0.
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As we will be mostly interested in compact self-adjoint operators act-
ing on Hilbert spaces in this course, for which much more can be said
(cf. Theorem 4.3.4), we skip the proof of this theorem.

4.2 Compact operators on Hilbert spaces

In view of Corollary 4.1.7, it is natural to wonder whether any compact
operator from a normed space to a Banach space may be approximated in
operator norm by bounded finite-rank operators. This problem was open
until 1973, when a counterexample was exhibited by P. Enflo. Happily, the
situation is as nice as possible when the target space is a Hilbert space.

Theorem 4.2.1. Let X be a normed space and H be a Hilbert space (both
over F). Then we have

F(X,H) = K(X,H) .

Proof. By Corollary 4.1.7, we only have to show that K(X,H) ⊆ F(X,H).
So let T ∈ K(X,H) and ε > 0. We need to prove that there exists
S ∈ F(X,H) such that ‖T − S‖ ≤ ε. Clearly, we can assume T 6= 0.

Set A := T (X1). Since X1 is bounded and T is compact, the set A
is compact in H. As H is a metric space, this implies that A is totally
bounded (cf. Proposition 3.5.12 in Lindstrøm’s book). Hence we can cover
A with some open balls B1, . . . , Bn of radius ε/4, having respective centers
a1, . . . , an ∈ A. For each j = 1, . . . , n, we can then find xj ∈ X1 such that
‖aj − T (xj)‖ < ε/4.

Set now F := Span ({T (x1), . . . , T (xn)}), which is a finite dimensional
subspace of H, and let PF denote the orthogonal projection of H on F . Since
the range of PFT is contained in F , PFT has finite-rank, so PFT ∈ F(X,H).
We claim that

‖T − PFT‖ ≤ ε .

Indeed, let x ∈ X1. Then T (x) ∈ A, so T (x) ∈ Bj for some j ∈ {1, . . . , n}.
Hence,

‖T (x)− T (xj)‖ ≤ ‖T (x)− aj‖+ ‖aj − T (xj)‖ < ε/4 + ε/4 = ε/2 .
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Further, since T (xj) ∈ F , we have that PF (T (xj)) = T (xj). Thus, using
also that ‖PF‖ = 1, we obtain that

‖(T − PFT )(x)‖ = ‖T (x)− T (xj) + (PFT )(xj)− (PFT )(x)‖
≤ ‖T (x)− T (xj)‖+ ‖PF

(
T (xj)− T (x)

)
‖

≤ ‖T (x)− T (xj)‖+ ‖PF‖‖T (xj)− T (x)‖
= 2 ‖T (x)− T (xj)‖
< 2 · ε/2 = ε .

As this holds for every x ∈ X1, the claim follows. Hence, setting S := PFT ,
we are done. �

Remark 4.2.2. Let X be a normed space and H be a Hilbert space, and
let T ∈ K(X,H). Then it can be shown that T (X) is separable. We leave
this as an exercise. �

Theorem 4.2.1 immediately gives:

Corollary 4.2.3. Let H be a Hilbert space. Set K(H) := K(H,H) and
F(H) := F(H,H). Then we have

F(H) = K(H) .

An application of this result is the following:

Corollary 4.2.4. Let H be a Hilbert space and let T ∈ K(H). Then
T ∗ ∈ K(H). In other words, K(H) is closed under the adjoint operation.

Proof. Using Corollary 4.2.3, we can find a sequence {Tn}n∈N in F(H) such
that ‖T − Tn‖ → 0 as n→∞. Now, it is not difficult to see that F(H) is
closed under the adjoint operation (cf. Exercise 3.20). Hence, {T ∗n }n∈N is a
sequence in F(H), and we have

‖T ∗ − T ∗n ‖ = ‖(T − Tn)∗‖ = ‖T − Tn‖ → 0 as n→∞.

Thus, T ∗ ∈ F(H) = K(H). �

We recall from the previous section that if H is finite-dimensional, then
K(H) = B(H) = F(H), while K(H) 6= B(H) if H is infinite-dimensional.
An elementary argument showing that IH is not compact when H is infinite-
dimensional goes as follows: letting {uj}j∈N be any orthonormal sequence in
H, we have ‖uj − uk‖ =

√
2 for all j, k ∈ N, and it follows that the sequence

{IH(uj)}j∈N = {uj}j∈N does not have any convergent subsequence.
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4. On compact operators

Let H be an infinite-dimensional Hilbert space H. An interesting class of
compact operators on H containing F(H) consists of the so-called Hilbert-
Schmidt operators. For simplicity, we only consider the case where H is
separable. We note that every orthonormal basis for H is then countable:
indeed, assume (for contradiction) that H had an uncountable orthonormal
basis B. Then, as ‖u − u′‖ =

√
2 for all distinct u, u′ ∈ B, we see that

any dense subset of H would have to be uncountable, contradicting the
separability of H.

Lemma 4.2.5. Assume H is a separable, infinite-dimensional Hilbert space
(over F). Let B = {uj}j∈N and C = {vj}j∈N be orthonormal bases for H,
and let T ∈ B(H). Then we have

∞∑
j=1
‖T (uj)‖2 =

∞∑
j=1
‖T (vj)‖2 .

Proof. Using Parseval’s identity (two times), we get
∞∑
j=1
‖T (uj)‖2 =

∞∑
j=1

∞∑
k=1

∣∣∣〈T (uj), vk〉
∣∣∣2 =

∞∑
j=1

∞∑
k=1

∣∣∣〈uj, T ∗(vk)〉∣∣∣2
=
∞∑
j=1

∞∑
k=1

∣∣∣〈T ∗(vk), uj〉∣∣∣2 =
∞∑
k=1

∞∑
j=1

∣∣∣〈T ∗(vk), uj〉∣∣∣2
=
∞∑
k=1
‖T ∗(vk)‖2 .

Note that the change of order of summation at the second but last step
above is allowed since we are dealing with sums of non-negative numbers.
Applying what we have done to the case where B = C, i.e., uj = vj for every
j ∈ N, we get that

∞∑
j=1
‖T (vj)‖2 =

∞∑
k=1
‖T ∗(vk)‖2 .

Thus we obtain that
∞∑
j=1
‖T (uj)‖2 =

∞∑
k=1
‖T ∗(vk)‖2 =

∞∑
j=1
‖T (vj)‖2 ,

as desired. �

Remark 4.2.6. An analogous result is true when H is finite-dimensional
and B, C are orthonormal bases for H. �
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4.2. Compact operators on Hilbert spaces

Definition 4.2.7. Let H be a separable, infinite-dimensional Hilbert space
(over F). An operator T ∈ B(H) is called an Hilbert-Schmidt operator when
we have ∞∑

j=1
‖T (uj)‖2 <∞

for some orthonormal basis B = {uj}j∈N of H, in which case we set

‖T‖2 :=
( ∞∑
j=1
‖T (uj)‖2

)1/2
.

Lemma 4.2.5 shows that the definition of T being a Hilbert-Schmidt operator,
and the value of ‖T‖2, do not depend on the choice of orthonormal basis for
H. We set

HS(H) := {T ∈ B(H) : T is a Hilbert-Schmidt operator} .

Proposition 4.2.8. Let H be a separable, infinite-dimensional Hilbert space
(over F).

Then HS(H) is a subspace of K(H), which contains F(H) and is closed
under the adjoint operation.

Moreover, the map T → ‖T‖2 is a norm on HS(H), which satisfies

‖T‖ ≤ ‖T‖2

for every T ∈ HS(H).

Proof. We first note that it is evident from the proof of Lemma 4.2.5 that
T ∗ ∈ HS(H) whenever T ∈ HS(H).

Let B = {uj}j∈N be an orthonormal basis for H, and let T, T ′ ∈ HS(H).
Define ξ, ξ′ ∈ `2(N) by

ξ(j) := ‖T (uj)‖ and ξ′(j) := ‖T ′(uj)‖ for each j ∈ N,

so that ‖ξ‖2 = ‖T‖2 and ‖ξ′‖2 = ‖T ′‖2. Using the triangle inequality, first
in H, and then in `2(N), we get

∞∑
j=1
‖(T + T ′)(uj)‖2 ≤

∞∑
j=1

(
‖T (uj)‖+ ‖T ′(uj)‖

)2
= ‖ξ + ξ′‖2

2

≤ (‖ξ‖2 + ‖ξ′‖2)2 = (‖T‖2 + ‖T ′‖2)2 < ∞ .

This shows that T + T ′ ∈ HS(H) and

‖T + T ′‖2 ≤ ‖T‖2 + ‖T ′‖2 .

81



4. On compact operators

Moreover, one easily checks that λT ∈ HS(H) and ‖λT‖2 = |λ| ‖T‖2 for
every λ ∈ F. If ‖T‖2 = 0, then we get that ‖T (uj)‖ = 0 for every j ∈ N,
and this clearly implies that T = 0.

Hence, we have shown so far that HS(H) is a subspace of B(H) which
is closed under the adjoint operation, and that ‖ · ‖2 is a norm on HS(H).

To show that ‖T‖ ≤ ‖T‖2 , let x ∈ H \ {0}. Set v1 = 1
‖x‖x and let

{vj}j≥2 be an orthonormal basis for {x}⊥. Then {vj}j∈N is an orthonormal
basis for H, so we get

‖T (x)‖2 = ‖x‖2 ‖T (v1)‖2 ≤ ‖x‖2
∞∑
j=1
‖T (vj)‖2 = ‖T‖2

2 ‖x‖2 .

Thus, ‖T‖ ≤ ‖T‖2.
Next, we show that T ∈ K(H). For each n ∈ N, let Pn denote the

orthogonal projection of H on Span ({u1, . . . un}) and set Tn := TPn. Then
we have

∞∑
j=1
‖Tn(uj)‖2 =

n∑
j=1
‖T (uj)‖2 <∞ ,

so Tn ∈ HS(H) for each n ∈ N. Hence,

‖T − Tn‖ ≤ ‖T − Tn‖2 =
( ∞∑
j=n+1

‖T (uj)‖2
)1/2
→ 0 as n→∞ .

Since Tn ∈ F(H) for each n, Theorem 4.1.7 gives that T ∈ K(H). Hence,
HS(H) ⊆ K(H).

It only remains to show that F(H) ⊆ HS(H), but we leave this as an
exercise. �

Remark 4.2.9. For additional properties of HS(H), see Exercise 4.6.

Remark 4.2.10. If H 6= {0} is finite-dimensional and B = {uj}nj=1 is an
orthonormal basis for H, then we get a norm on B(H) by setting

‖T‖2 :=
( n∑
j=1
‖T (uj)‖2

)1/2

(which does not depend on the choice of orthonormal basis for H).
Letting A = [ai,j] denotes the matrix of T w.r.t. B, one readily checks

that
‖T‖2 =

( n∑
i,j=1
|ai,j|2

)1/2
,

i.e., ‖T‖2 coincides with the so-called Fröbenius-norm of A. �
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4.2. Compact operators on Hilbert spaces

Example 4.2.11. Set H = L2([a, b],A, µ), where A denotes the Lebesgue
measurable subsets of a closed interval [a, b] and µ is the Lebesgue measure
on A. Let K : [a, b]× [a, b]→ C be a continuous function and let TK ∈ B(H)
denote the associated integral operator on H, which is the extension of the
integral operator TK : C([a, b])→ C([a, b]) given by

[TK(f)](s) =
∫ b

a
K(s, t)f(t) dt for f ∈ C([a, b]) and s ∈ [a, b].

cf. Example 2.1.9 and Exercise 2.10. Then TK is a Hilbert-Schmidt operator
on H (so TK is compact by Proposition 4.2.8).

To show this, we start by picking an orthonormal basis B = {[uj ]}j∈N for
H, where each uj is a continuous functions on [a, b]. (One may for example
construct B by applying the Gram-Schmidt orthonormalization process to
the monomials {tj−1 : j ∈ N}). We note that B := {[ uj ]}j∈N is then also an
orthonormal basis for H.

Let now s ∈ [a, b] and let ks ∈ C([a, b]) be given by ks(t) = K(s, t) for
all t ∈ [a, b]. Note that for each j ∈ N, we have

[TK(uj)](s) =
∫ b

a
K(s, t)uj(t) dt =

∫
[a,b]

ks(t)uj(t) dµ(t) = 〈[ks], [uj]〉 .

Moreover, Parseval’s identity gives that

‖ [ks] ‖2 =
( ∞∑
j=1

∣∣∣〈[ks], [uj]〉∣∣∣2)1/2
.

Thus, we obtain that
∞∑
j=1

∣∣∣ [TK(uj)](s)
∣∣∣2 =

∞∑
j=1

∣∣∣〈[ks], [uj]〉∣∣∣2 = ‖ [ks] ‖2
2 .

Now, using this and the Monotone Convergence Theorem, we get
∞∑
j=1
‖TK([uj]) ‖2

2 =
∞∑
j=1

∫
[a,b]

∣∣∣ [TK(uj)](s)
∣∣∣2 dµ(s)

=
∫

[a,b]

( ∞∑
j=1

∣∣∣ [TK(uj)](s)
∣∣∣2) dµ(s)

=
∫

[a,b]
‖ [ks] ‖2

2 dµ(s)

=
∫

[a,b]

( ∫
[a,b]
|ks(t)|2 dµ(t)

)
dµ(s)

=
∫ b

a

∫ b

a
|K(s, t)|2 dt ds <∞,

which shows that TK ∈ HS(H) with ‖TK‖2 ≤ (
∫ b
a

∫ b
a |K(s, t)|2 ds dt)1/2.
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4. On compact operators

In the previous example, one may allow the kernel K to be discontinuous
and still obtain an Hilbert-Schmidt operator TK , as long as K is square-
integrable w.r.t. to the product Lebesgue measure on [a, b]× [a, b]. However,
this requires a better knowledge of measure theory than we assume in these
notes.

4.3 The spectral theorem for a compact
self-adjoint operator

Throughout this section we let H denote a Hilbert space (over F) different
from {0}. Our main goal is to generalize the spectral theorem for symmetric
real matrices known from linear algebra, and prove that every compact
self-adjoint compact operator T on H is diagonalizable in the sense that
there exists an orthonormal basis for H consisting of eigenvectors of T .

We begin with a series of lemmas.

Lemma 4.3.1. Assume T ∈ K(H) has a nonzero eigenvalue λ ∈ F. Then
the associated eigenspace Eλ := ker(T − λI) is finite-dimensional.

Proof. Assume for contraction that Eλ is infinite-dimensional. We may then
find a sequence {vn}n∈N of unit vectors in Eλ which are pairwise orthogonal.
By compactness of T , {T (vn)}n∈N has a convergent subsequence. So we may
as well assume that {T (vn)}n∈N is convergent, hence that it is a Cauchy
sequence. However, we have that

‖T (vn)− T (vm)‖2 = ‖λ vn − λ vm‖2 = 2 |λ|2 6= 0
for all m,n ∈ N. So {T (vn)}n∈N is not a Cauchy sequence, giving a contra-
diction. �

Lemma 4.3.2. Let T ∈ B(H) be self-adjoint, and assume T has an eigen-
value λ ∈ F. Then λ ∈ R.

Moreover, if λ′ is an eigenvalue of T distinct from λ, then Eλ ⊥ Eλ′,
i.e., 〈x, y〉 = 0 whenever x ∈ Eλ and y ∈ Eλ′.

Proof. Let x ∈ Eλ. If ‖x‖ = 1, then we have
λ = λ 〈x, x〉 = 〈λx, x〉 = 〈T (x), x〉 ∈ WT ⊆ R ,

so λ ∈ R. Moreover, assume that λ′ is an eigenvalue of T distinct from λ,
and let y ∈ Eλ′ . Then we have that λ′ ∈ R, so

λ 〈x, y〉 = 〈T (x), y〉 = 〈x, T (y)〉 = λ′ 〈x, y〉 .

Since λ′ 6= λ, we get that 〈x, y〉 = 0. �
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4.3. The spectral theorem for a compact self-adjoint operator

Lemma 4.3.3. Let T ∈ K(H) be self-adjoint. Then T has an eigenvalue
λ ∈ R such that |λ| = ‖T‖.

Proof. If T = 0, then the assertion is trivial. So assume that T 6= 0. Using
Theorem 3.5.9, we can find a sequence {xn}n∈N of unit vectors in H such
that |〈T (xn), xn〉| → ‖T‖ as n→∞. Since 〈T (xn), xn〉 ∈ R for every n, we
can assume (by passing to a subsequence and relabelling) that

〈T (xn), xn〉 → λ as n→∞, where λ = ±‖T‖. (4.3.1)

Moreover, since T is compact, we can also assume (by passing again to a
subsequence and relabelling) that T (xn) → y as n → ∞ for some y ∈ H.
Note that the Cauchy-Schwarz inequality gives that∣∣∣〈T (xn), xn〉

∣∣∣ ≤ ‖T (xn)‖ for every n ∈ N,

so, letting n→∞, we get that ‖y‖ ≥ |λ| > 0, so y 6= 0.
Now, using that T is self-adjoint, λ is real, ‖xn‖ = 1, and (4.3.1), we get

‖T (xn)− λxn‖2 = 〈T (xn)− λxn, T (xn)− λxn〉
= ‖T (xn)‖2 − 2λ 〈T (xn), xn〉+ λ2‖xn‖2

≤ ‖T‖2 − 2λ 〈T (xn), xn〉+ λ2

= 2λ
(
λ− 〈T (xn), xn〉

)
→ 0 as n→∞.

Thus, ‖T (xn)− λxn‖ → 0 as n→∞, and this gives that

‖y − λxn‖ ≤ ‖y − T (xn)‖+ ‖T (xn)− λxn‖ → 0 as n→∞.

Hence,
T (y) = lim

n→∞
T (λxn) = λ lim

n→∞
T (xn) = λ y .

Since y 6= 0, λ is an eigenvalue of T , as we wanted to show. �

We are now ready for the spectral theorem for a compact self-adjoint
operator T . Intuitively, we could hope to be able to construct an orthonormal
basis of eigenvectors for T by using Lemma 4.3.3 repeatedly as follows:

Start by picking a unit eigenvector v0 of T associated to the eigenvalue
λ0 = ±‖T‖. Next, consider the restriction T1 of T to the closed subspace
M1 := {v0}⊥. Pick a unit eigenvector v1 ∈ M1 of T1 associated to the
eigenvalue λ1 = ±‖T1‖. Then continue this process inductively.

There are several technicalities involved in working out the details of
this approach. We will follow a more pedestrian route, which also provides
more information about T .
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4. On compact operators

Theorem 4.3.4. Let T ∈ K(H) be self-adjoint, T 6= 0. Then there exists
an orthonormal basis E for H which consists of eigenvectors of T .

More precisely, the following facts hold:
(a) The set L consisting of all nonzero eigenvalues of T is a nonempty,

countable subset of the interval
[
−‖T‖, ‖T‖

]
, containing ‖T‖ or −‖T‖.

(b) If L is countably infinite, and {λk : k ∈ N} is an enumeration of L,
then we have limk→∞ λk = 0.

(c) The eigenspace Eλ := ker(T −λI) is finite-dimensional for each λ ∈ L.
(The dimension of Eλ is called the (geometric) multiplicity of λ.)

(d) For each λ ∈ L, let Eλ be an orthonormal basis for Eλ, and set

E ′ :=
⋃
λ∈L
Eλ .

Then E ′ is an orthonormal basis for T (H) = ker(T )⊥, which is count-
able.

(e) If ker(T ) = {0}, set E0 := ∅ ; otherwise, let E0 be an orthonormal
basis for ker(T ). Then E := E0 ∪ E ′ is an orthonormal basis for H
which consists of eigenvectors of T .

(f) Let Pλ denote the orthogonal projection of H on Eλ for each λ ∈ L.
Then PλPλ′ = 0 whenever λ 6= λ′ belong to L. Moreover, T has a
spectral decomposition

T =
∑
λ∈L

λPλ (w.r.t. operator norm), meaning that

limn→∞ ‖T −
∑n
k=1 λk Pλk

‖ = 0 if L is countably infinite
and {λk : k ∈ N} is an enumeration of L, as in (b).

Proof. (a): The set L is a subset of R by Lemma 4.3.2, which contains ‖T‖
or −‖T‖ by Lemma 4.3.3. If λ ∈ L, and v is an associated eigenvector in
H1, we have

|λ| = |〈λv, v〉| = |〈T (v), v〉| ≤ ‖T‖ .
Thus, L ⊆ [−‖T‖, ‖T‖]

To show that L is countable, let ε > 0 and consider the subset of L given
by Lε := {λ ∈ L : |λ| ≥ ε}. Then Lε is finite.

Indeed, assume Lε is nonempty. Then for each λ ∈ L, we can pick
vλ ∈ H1 such that T (vλ) = λvλ; for λ, λ′ ∈ Lε, λ 6= λ′, we then have
λvλ ⊥ λ′vλ′ by Lemma 4.3.2, so we get

‖T (vλ)− T (vλ′)‖2 = ‖λvλ − λ′vλ′‖2 = |λ|2 + |λ′|2 ≥ 2ε2 .
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4.3. The spectral theorem for a compact self-adjoint operator

Hence, if Lε was infinite, we could find a sequence in H1 which T maps into
a sequence with no convergent subsequence, contradicting the compactness
of T . Thus, Lε is finite.

Now, since L = ⋃
n∈N L1/n, it follows that L is countable.

(b): Assume L is countably infinite and {λk : k ∈ N} is an enumeration
of L. Let ε > 0 be given. Then, as in (a), we get that the set K := {k ∈ N :
|λk| ≥ ε} is finite. So there exists N ∈ N such that K ⊆ {1, . . . , N}. For
every k ≥ N + 1, we then have |λk| < ε. This shows that limk→∞ λk = 0.

(c): This is a consequence of Lemma 4.3.1.
(d): We first remark that since T is self-adjoint, we have

T (H) = T ∗(H) = (kerT )⊥.

Next, it follows from Lemma 4.3.2 that Eλ ⊥ Eλ′ whenever λ 6= λ′ belong to
L. So it is clear that E ′ is an orthonormal set in H, which is countable since
each Eλ is finite and L is countable. Hence, E ′ is a countable orthonormal
basis for M := Span (E ′), and it remains only to show that M = ker(T )⊥,
i.e., that M⊥ = ker(T ).

• ker(T ) ⊆M⊥: Assume y ∈ ker(T ). Then for each λ ∈ L and v ∈ Eλ,
we have

λ 〈v, y〉 = 〈T (v), y〉 = 〈v, T (y)〉 = 〈v, 0〉 = 0 .
Since λ 6= 0, this shows that y ∈ (E ′)⊥ = M⊥.

• M⊥ ⊆ ker(T ): It is easy to check that M is invariant under T . Hence,
M⊥ is invariant under T ∗ = T (cf. Exercise 3.21). We may therefore
consider the restriction S of T to M⊥. Then S ∈ K(M⊥): if not, then
there would exist a bounded sequence in M⊥, hence in H, which is
mapped by S, hence by T , to a sequence with no convergent subse-
quence, contradicting the compactness of T . Moreover, S is self-adjoint
(this is an easy exercise).
Now, assume that S 6= 0. Then Lemma 4.3.3 gives that S has an
nonzero eigenvalue µ. This implies that µ is a nonzero eigenvalue of T ,
i.e., µ ∈ L. But if v ∈M⊥ is an eigenvector for S associated with µ,
we then have that v ∈ Eµ ⊆M , so v ∈M ∩M⊥ = {0}, contradicting
that v 6= 0 (since v is an eigenvector).
This means that S has to be 0. Thus we get T (y) = S(y) = 0 for all
y ∈M⊥, as desired.

(e): If ker(T ) = {0}, then we get from (d) that E = E ′ is an orthonormal
basis for ker(T )⊥ = {0}⊥ = H. If ker(T ) 6= {0}, then we have E0 ⊆ ker(T )
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and E ′ ⊆ ker(T )⊥, so it is clear that E is an orthonormal set. Moreover, we
have that

H = Span (E) .
Indeed, let x ∈ H. Then we may write

x = xM + xM⊥ ,

where xM ∈ M = Span (E ′) and xM⊥ ∈ M⊥ = ker(T ) = Span (E0). So
we may choose {xn}n∈N ⊆ Span (E ′) and {yn}n∈N ⊆ Span (E0) such that
limn→∞ xn = xM and limn→∞ yn = xM⊥ . This gives that

lim
n→∞

(xn + yn) = xM + xM⊥ = x .

Hence, x ∈ Span (E). This shows that E is an orthonormal basis for H.
(f): The first assertion follows readily from the fact that Eλ ⊥ Eλ′

whenever λ 6= λ′, cf. Lemma 4.3.2. Next, we consider the case where L is
countably infinite and {λk : k ∈ N} is an enumeration of L, leaving the
easier case where L is finite to the reader.

For each k ∈ N, set nk := dim(Eλk
) < ∞, and let {vk,1, . . . , vk,nk

} be
an enumeration of Eλk

. Then we have

E ′ =
⋃
k∈N
Eλk

= {vk,l : k ∈ N, 1 ≤ l ≤ nk}.

Consider x ∈ H. Since T (x) ∈ T (H) and E ′ is an orthonormal basis for
T (H), we get from Corollary 3.3.11 that

T (x) = lim
m→∞

m∑
k=1

nk∑
l=1
〈T (x), vk,l〉 vk,l = lim

m→∞

m∑
k=1

nk∑
l=1
〈x, T (vk,l)〉 vk,l

= lim
m→∞

m∑
k=1

λk
( nk∑
l=1
〈x, vk,l〉 vk,l

)
=
∞∑
k=1

λk Pλk
(x) .

Let now ε > 0. We have to show that there exists N ∈ N such that
‖T −∑n

k=1 λk Pλk
‖ ≤ ε for all n ≥ N .

Using (b), we can choose N ∈ N such that |λk| < ε for all k > N .
Then for all n ≥ N and all x ∈ H, using continuity of the norm in H and
Pythagoras’ identity, we get∥∥∥(T − n∑

k=1
λk Pλk

)
(x)
∥∥∥2

=
∥∥∥ ∞∑
k=n+1

λk Pλk
(x)
∥∥∥2

=
∞∑

k=n+1
|λk|2 ‖Pλk

(x)‖2

≤ ε2
∞∑

k=n+1
‖Pλk

(x)‖2 ≤ ε2 ‖x‖2

and the assertion follows. �
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Sometimes, the following consequence of the spectral theorem is useful.

Corollary 4.3.5. Let T ∈ K(H) be self-adjoint, T 6= 0. Then there exist
an orthonormal family {uj}j∈J in H and a family {ρj}j∈J in R \ {0}, both
indexed over the same countable set J , such that

T (x) =
∑
j∈J

ρj 〈x, uj〉uj for all x ∈ H. (4.3.2)

Each ρj is an eigenvalue of T and uj is an associated eigenvector.

Proof. We use the notation from Theorem 4.3.4). Since E ′ = ∪λ∈LEλ is
countable, we may let {uj : j ∈ J} be an enumeration of E ′, where the index
set J is countable. Moreover, for each j ∈ J , we may then let ρj ∈ R \ {0}
denote the eigenvalue of T corresponding to uj . (The family {ρj}j∈J gives a
list of all nonzero eigenvalues of T , repeated according to their multiplicites.)
Since E ′ = {uj : j ∈ J} is an orthonormal basis for T (H), as in the proof of
(f), we get

T (x) =
∑
j∈J
〈T (x), uj〉uj =

∑
j∈J
〈x, T (uj)〉uj =

∑
j∈J

ρj 〈x, uj〉uj

for all x ∈ H. �

Let us say that an operator T ∈ B(H) is diagonalizable if there exists an
orthonormal basis for H whose elements are eigenvectors for T . Then the
spectral theorem (Theorem 4.3.4) says that T is diagonalizable whenever T
is compact and self-adjoint. Let us say that an operator T ∈ B(H) is normal
if T ∗ commutes with T , i.e., T ∗T = TT ∗. Clearly, self-adjoint operators and
unitary operators are normal. A more precise version of Theorem 4.3.4 is as
follows.

Theorem 4.3.6. Assume T is a compact operator on H. If F = R, then
T is diagonalizable if and only if T is self-adjoint. On the other hand, if
F = C, then T is diagonalizable if and only if T is normal.

This theorem can be deduced from Theorem 4.3.4. We leave the proof
to the reader (cf. Exercises 4.13 and 4.14).

As another corollary of Theorem 4.3.4, we end this section by showing
how an analogue of the singular value decomposition (SVD) for matrices
may be obtained for compact operators.

Let S ∈ K(H), S 6= 0. Then T := S∗S is self-adjoint and compact,
and T 6= 0 (as ‖T‖ = ‖S∗S‖ = ‖S‖2 6= 0). Hence, the spectral theorem
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4. On compact operators

(Theorem 4.3.4) gives that we can find a countable orthonormal basis {vj}j∈N
for

T (H) = ker(T )⊥ = ker(S∗S)⊥ = ker(S)⊥

consisting of eigenvectors for T . For each j ∈ N , let µj denote the eigenvalue
of T associated with vj. Note that

µj = 〈µj vj, vj〉 = 〈T (vj), vj〉 = 〈S(vj), S(vj)〉 = ‖S(vj)‖2 ≥ 0

for every j ∈ N . Since each µj is nonzero, we get that all µj’s are positive.
For each j ∈ N , set

σj := √µj > 0 and uj := 1
σj
S(vj) .

The σj’s are called the singular values of S. For all j, k ∈ N we have

〈uj, uk〉 = 1
σjσk

〈S(vj), S(vk)〉 = 1
σjσk

〈T (vj), vk〉

= µj
σjσk

〈vj, vk〉 =
1 if j = k,

0 otherwise,

so {uj : j ∈ N} is an orthonormal set in the range of S. Further, we have
the following decomposition of S:

S(x) =
∑
j∈N

σj 〈x, vj〉uj for all x ∈ H . (4.3.3)

Indeed, let x ∈ H and set M := T (H), so M⊥ = ker(S).
With z := x− PM(x) ∈M⊥, we get that

x = PM(x) + z =
∑
j∈N
〈x, vj〉 vj + z ,

so
S(x) =

∑
j∈N
〈x, vj〉S(vj) + S(z) =

∑
j∈N

σj 〈x, vj〉uj,

as asserted in (4.3.3).

It readily follows that {uj : j ∈ N} is an orthonormal basis for S(H).

Finally we remark that the spectral theorem also gives that σj = √µj → 0
as j →∞ when N is countably infinite, and that

‖S‖ = ‖S∗S‖1/2 = ‖T‖1/2 = max{µj : j ∈ N}1/2 = max{σj : j ∈ N} .
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4.4. Application: The Fredholm Alternative

4.4 Application: The Fredholm Alternative
A useful application of linear algebra, and one of its original motivation,
is the study of systems of linear equations, i.e., of equations of the type
Ax = b, where A ∈Mm×n(F), b ∈ Fm and the (unknown) vector x belongs
to Fn. More generally, one may consider equations of the form

T (v) = w (4.4.1)

where V,W are vector spaces (over F), T ∈ L(V,W ), w ∈ W and the
(unknown) vector x belongs to V . Whether such an equation is consistent,
i.e., has some solution(s), relies on whether w lies in the range of T . If
this is the case, and v0 ∈ V is any vector satisfying (4.4.1), i.e., such that
T (v0) = w, then it follows readily that the solution set of (4.4.1) is given by

v0 + ker(T ) :=
{
v0 + u | u ∈ ker(T )

}
(4.4.2)

where v0 ∈ V is any vector satisfying (4.4.1), i.e., such that T (v0) = w.

In the rest of this section, we consider the case where V = W = H is a
Hilbert space (6= {0}), and T ∈ B(H). We can then exploit the relationship
between the fundamental subspaces of T and T ∗, cf. Proposition 3.4.12.

For example, using that T (H) = ker(T ∗)⊥, we get that if T has closed
range (i.e., T (H) is closed), then the equation (4.4.1) will be consistent if
and only if w is orthogonal to ker(T ∗).

In particular, if T has closed range and ker(T ∗) = {0} (i.e., T ∗ is one-to-
one), then T must be surjective, hence (4.4.1) is consistent for all w ∈ H.
Similarly, if T ∗ has closed range and ker(T ) = {0}, then it follows that T ∗
is surjective, so the equation T ∗(v′) = w′ is consistent for all w′ ∈ H.

On the other hand, if it happens that T is surjective, then we get that
ker(T ∗) = {0}, hence that the equation T ∗(v′) = w′ will have either no
solution or a unique solution. Similarly, if T ∗ is surjective, then ker(T ∗) =
{0}, and (4.4.1) will have either no solution or a unique solution.

A problem is that bounded operators in general do not have a closed
range (see for example Exercises 4.17 and 4.18). Moreover, it may often
be a difficult task to decide whether the range of some given T ∈ B(H) is
closed or not. However, we note that if T ∈ B(H) has finite-rank, then it
has closed range (as T (H) is finite-dimensional). In the case where H is
finite-dimensional, much more can be said.

The following terminology will be useful.
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4. On compact operators

Definition 4.4.1. An operator F ∈ B(H) is said to satisfy the Fredholm
alternative if one of the following two (mutually exclusive) situations occurs:

(a) ker(F ) = ker(F ∗) = {0}, and the equations F (v) = w, F ∗(v′) = w′

have both a unique solution for all w,w′ ∈ H;

(b) 1 ≤ dim(ker(F )) = dim(ker(F ∗)) < ∞, the equation F (v) = w is
consistent if and only if w ∈ ker(F ∗)⊥, and the equation F ∗(v′) = w′

is consistent if and only if w′ ∈ ker(F )⊥.

Example 4.4.2. Assume that H is finite-dimensional and F ∈ B(H), i.e.,
F ∈ L(H). Then F satisfies the Fredholm alternative.

The crux is that we have dim(ker(F ∗)) = dim(ker(F )). To show this,
we use the formula dim(M) + dim(M⊥) = dim(H),
which is easily verified for any subspace M of H, and the dimension formula
for F . We get that
dim(ker(F ∗)) = dim(F (H)⊥) = dim(H)− dim(F (H)) = dim(ker(F )).

Combining this fact with our previous observations, it is straightforward to
deduce that either (a) or (b) in Definition 4.4.1 holds. �

When TK is an integral operator on L2([a, b]), and µ ∈ C, an equation of
the form (TK − µI)(f) = g, i.e., TK(f)− µf = g, is often called a Fredholm
integral equation of the second kind. Such equations, and Fredholm integral
equations of the first kind (i.e., equations of the form TK(f) = g), were
studied by I. Fredholm at the beginning of the 20th century. They arise in
some practical problems in signal theory and in physics. He showed that if
µ 6= 0, then the operator TK − µI satisfies the Fredholm alternative. Now,
as we have seen in Example 4.2.11, TK is compact operator. It can in fact
be shown that if T is a compact operator on H and µ ∈ F \ {0}, then any
operator of the form T − µI satisfies the Fredholm alternative.

To give an idea of the proof of this result, consider T ∈ K(H) and
µ ∈ F \ {0}. Then it can be shown that the following facts hold:

(i) T − µI has closed range;

(ii) dim(ker(T − µI)) = dim(ker((T − µI)∗)) <∞.

Since T ∗ is compact, we also get that T ∗ − µI = (T − µI)∗ has closed
range. Using these properties, and the general principles outlined before,
one readily arrives at the conclusion that T − µI satisfies the Fredholm
alternative, as asserted above. We don’t have time in this course to prove

92



4.4. Application: The Fredholm Alternative

that (i) and (ii) hold. Instead, we will illustrate how the spectral theorem
for compact self-adjoint operators can be applied to give a direct proof of
the following result.

Theorem 4.4.3. Assume T ∈ K(H) is self-adjoint and µ ∈ F \ {0}. Then
F = T − µI satisfies the Fredholm alternative.

Proof. Assume first that µ is not an eigenvalue of T , i.e., ker(T −µI) = {0}.
Then the spectral theorem implies that the equation (T − µI)(x) = y
has a unique solution for all y ∈ H. (You are asked to check this in
Exercise 4.9.) Thus, F = T − µI is surjective, and this implies that
ker(F ∗) = ker(T − µI) = {0}, i.e., µ is not an eigenvalue of T . Arguing as
above, we get that the equation (T − µI)(x′) = y′, i.e., (T − µI)∗(x′) = y′

has a unique solution for all y′ ∈ H. This shows that (a) in Definition 4.4.1
holds in this case.

Next, assume that µ is an eigenvalue of T , i.e., ker(T −µI) 6= {0}. Then
µ ∈ R, so F ∗ = F . Moreover, as µ 6= 0, we have that T 6= 0, and the spectral
theorem tells us that 1 ≤ dim(ker(F )) = dim(ker(T − µI)) <∞. Hence,
to show that (b) in Definition 4.4.1 holds, it remains only to prove that the
equation F (x) = y is consistent if and only if y ∈ ker(F )⊥. This means that
we have to prove that the equation

T (x)− µx = y (4.4.3)

is consistent if and only if 〈y, z〉 = 0 for all z ∈ Eµ := ker(T − µI).
To prove this, let E ′ = {uj}j∈J be an enumeration of the orthonormal

basis for T (H) obtained in the spectral theorem for T , and let ρj ∈ R \ {0}
denote the eigenvalue of T corresponding to each uj (as in the proof of
Corollary 4.3.5).

Since H is the direct sum of ker(T ) and ker(T )⊥ = T (H), we may write
y ∈ H as

y = y0 +
∑
j∈J
〈y, uj〉uj,

where y0 denote the orthogonal projection of y onto ker(T ). Likewise, we
may assume that the (unknown) vector x in equation (4.4.3) is written as

x = x0 +
∑
j∈J

cj uj,

where x0 ∈ ker(T ) and {cj}j∈J ∈ `2(J) are to be determined, if possible.
Plugging this into equation (4.4.3), we get the equivalent equation

−µx0 +
∑
j∈J

(ρj − µ) cj uj = y0 +
∑
j∈J
〈y, uj〉uj.
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4. On compact operators

Clearly, we can set x0 := (−1/µ) y0, and equation (4.4.3) is then consistent
if and only if the sequence {cj}j∈J ∈ `2(J) can be chosen so that

(ρj − µ) cj = 〈y, uj〉 for all j ∈ J. (4.4.4)

Now, as µ is a nonzero eigenvalue of T , we have that µ = ρk for some k ∈ J .
Let uj1 , . . . , ujn denote the vectors in E ′ giving an orthonormal basis for
Eµ = Eρk

. If j 6∈ {j1, . . . , jn}, we have ρj 6= µ, so

cj := 1
ρj − µ

〈y, uj〉

will satisfy (4.4.4) for every such j.
On the other hand, if j ∈ {j1, . . . , jn}, we have ρj−µ = 0. Hence, (4.4.4)

will be satisfied for j = j1, . . . , jn if and only if we have 〈y, uj〉 = 0 for
j = j1, . . . , jn, i.e., if and only if 〈y, z〉 = 0 for all z ∈ Eµ. Moreover, when
this condition holds, we can choose cj1 , . . . , cjn freely and, regardless of this
choice, the constructed sequence {cj}j∈J is easily seen to belong to `2(J)
(cf. Exercise 4.20), meaning that the associated vector x gives a solution to
(4.4.3). Thus, we have proved the desired equivalence. �

4.5 Exercises
Exercise 4.1. Let X, Y, Z denote normed spaces over F. Consider λ ∈ F,
T, T ′ ∈ B(X, Y ) and S ∈ B(Y, Z), so ST ∈ B(X,Z).

a) Show that λT + T ′ ∈ K(X, Y ) if T, T ′ ∈ K(X, Y ).

b) Show that ST ∈ K(X,Z) if T ∈ K(X, Y ).

c) Show that ST ∈ K(X,Z) if S ∈ K(Y, Z).

d) Set K(X) = K(X,X). Deduce that
ST ∈ K(X) if S ∈ B(X) and T ∈ K(X), or if S ∈ K(X) and T ∈ B(X).

Exercise 4.2. Let X = `p(N), λ ∈ `∞(N), and Mλ ∈ B(X) be the
associated multiplication operator, cf. Example 4.1.8.

Show that λ ∈ c0(N) if Mλ is compact.
(It therefore follows that Mλ is compact if and only if λ ∈ c0(N).)

Exercise 4.3. Let X be a normed space, H be a Hilbert space, and let
T ∈ K(X,H). Show that T (X) is separable.
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Exercise 4.4. Let H be an infinite-dimensional Hilbert space and let
T ∈ K(H). Show that 〈T (un), un〉 → 0 as n → ∞ whenever {un}n∈N
is an orthonormal sequence in H.

Exercise 4.5. Let H be a Hilbert space and assume P ∈ B(H) satisfies
P 2 = P .

Show that P has finite-rank if (and only if) P is compact.

Exercise 4.6. Let H be a separable Hilbert space, H 6= {0}.
a) Show that F(H) ⊆ HS(H), and that F(H) is dense in HS(H)

w.r.t. ‖ · ‖2.
b) Assume that T ∈ HS(H) and S ∈ B(H). Show that both ST and

TS belong to HS(H), and that we have

‖ST‖2 ≤ ‖S‖ ‖T‖2 , ‖TS‖ ≤ ‖T‖2 ‖S‖ .

c) Let B = {uj}j∈J be an orthonormal basis for H, where J = {1, . . . , n}
if dim(H) = n <∞, while J = N otherwise.

For T, T ′ ∈ HS(H), set

〈T, T ′〉2 :=
∑
j∈J
〈T (uj), T ′(uj)〉 .

Show that this gives a well-defined inner product on HS(H), and check that
the associated norm is the Hilbert-Schmidt norm ‖ · ‖2.

d) Show that HS(H) is complete w.r.t. ‖ · ‖2, so that HS(H) is a Hilbert
space w.r.t. the inner product from c).

Exercise 4.7. LetH = L2(R,A, µ) whereA denote all Lebesgue measurable
subsets of R and µ is the Lebesgue measure. For which f ∈ L∞ is the
multiplication operator Mf ∈ B(H) compact?

Exercise 4.8. Let H be a Hilbert space, T ∈ K(H) and λ ∈ F, λ 6= 0.
Assume that there exists a sequence {xn}n∈N of unit vectors in H such that
‖T (xn)− λxn‖ → 0 as n→∞. Show that λ is an eigenvalue of T .

Exercise 4.9. Let H be a Hilbert space, and let T ∈ K(H) be self-adjoint.
Assume µ ∈ F, µ 6= 0 is not an eigenvalue of T , i.e. T − µIH is injective.

Let y ∈ H, let E ′ = {uj}j∈J be an enumeration of the orthonormal basis
for M = T (H) obtained in the spectral theorem for T , and let ρj 6= 0 denote
the eigenvalue of T corresponding to uj (as in the proof of Corollary 4.3.5).
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a) Show that the series ∑
j∈J

〈y, uj〉
ρj − µ

uj

converges to some h ∈ H.

b) Set z := y − PM(y) and x := h− 1
µ
z. Show that (T − µIH)(x) = y.

c) Deduce that T − µIH is surjective (hence that it is bijective).

Exercise 4.10. Consider H = L2([−π, π]) (with respect to the normalized
Lebesgue measure). Let g ∈ C([−π, π]) be periodic, i.e., satisfies that
g(−π) = g(π), and extend g to a periodic function g̃ on R with period 2π.
Define G : [−π, π]× [−π, π]→ C by

G(s, t) = g̃(s− t) .

a) Check that G is continuous, so that the associated integral operator
TG belongs to HS(H) (hence is compact).

c) Decide when TG is self-adjoint.

b) Let k ∈ Z and recall that ek(t) = eikt for all t ∈ [−π, π]. Check that
ek is an eigenvector for the operator TG. Deduce that TG is diagonalizable
(with respect to {ek}k∈Z).

c) Show that ‖TG‖2 = ‖g‖2 =
(

1
2π
∫ π
−π |g(t)|2 dt

)1/2
.

Exercise 4.11. Consider H = L2([0, 1]) (with respect to Lebesgue measure)
and the integral operator TK ∈ B(H) associated to the kernel given by

K(s, t) = min(s, t)

for all (s, t) in [0, 1]× [0, 1], cf. Example 4.2.11.

a) Explain why TK is self-adjoint and compact. Then check that the set
U := {[un] : n ∈ N}, where

un(t) :=
√

2 sin
(
(n− 1

2)π t
)

for all t ∈ [0, 1], n ∈ N ,

is an orthonormal set of eigenvectors for TK .

b) It can be shown that U is an orthonormal basis for H. Is it possible
to deduce this from a) and the spectral theorem for TK ?
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Exercise 4.12. Let S, T ∈ B(H).

a) Assume there exists an orthonormal basis for H whose elements are
eigenvectors for both S and T . Check that S commutes with T .

b) Assume S and T are compact and self-adjoint, and that S commutes
with T . Show that there exists an orthonormal basis for H whose elements
are eigenvectors for both S and T .

Hint: Start by considering an eigenvalue λ of T and study how S acts
on the corresponding eigenspace ET

λ .

Exercise 4.13. Assume H is a Hilbert space over R, and let T ∈ B(H).

a) Assume that T is diagonalizable (as defined in Remark 4.3.6). Check
that T is self-adjoint.

b) Let T be compact. Deduce that T is diagonalizable if and only if T is
self-adjoint.

Exercise 4.14. Assume H is a Hilbert space over C, and let T ∈ B(H).

a) Assume that T is diagonalizable (as defined in Remark 4.3.6). Check
that T is normal.

b) Show that T is normal if and only if Re(T ) and Im(T ) commutes
with each other.

c) Let T be compact. Show that T is diagonalizable if and only if T is
normal.

Hint: The implication (⇒) follows from a). For (⇐), use b) and Exercise
4.12 b).

Exercise 4.15. Let H be a separable Hilbert space with a countably infinite
orthonormal basis B = {vj}j∈N. Let {µj}j∈N be a bounded sequence in F
and let D ∈ B(H) denote the associated diagonal operator (w.r.t. B).

a) Show that D is compact if and only if limj→∞ µj = 0.

(Note: If you have looked at Example 4.1.8 and solved Exercise 4.2, this
should not be difficult).

b) Show that D is Hilbert-Schmidt if and only if {µj}j∈N ∈ `2(N), in
which case we have

‖D‖2 =
( ∞∑
j=1
|µj|2

)1/2
.
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Exercise 4.16. Let H be a separable Hilbert space of infinite dimension
and let T ∈ K(H) be selfadjoint, T 6= 0. Assume that you have found an
orthonormal basis B = {vj}j∈N for H consisting of eigenvectors for T , and
let µj ∈ R denote the eigenvalue of T corresponding to each vj.

a) Show that the sequence {µj}j∈N is bounded, hence that T is the
diagonal operator (w.r.t. B) associated with this sequence. Deduce from the
previous exercise that limj→∞ µj = 0.

b) As in the spectral theorem, set
L := {λ ∈ R | λ is a nonzero eigenvalue of T}.

Set also
L̃ := {λ ∈ R | λ is an eigenvalue of T},

so L = L̃ \ {0}. Show the following assertions:

(i) L̃ = {µj | j ∈ N} and L = {µj | j ∈ N, µj 6= 0}.

(ii) If λ ∈ L and Nλ := {j ∈ N | µj = λ}, then Nλ is a finite subset of N
and {vj | j ∈ Nλ} is an o.n.b. for Eλ.

(iii) If µj 6= 0 for all j ∈ N, then ker(T ) = {0}.

(iv) If N0 := {j ∈ N | µj = 0} is nonempty, then {vj | j ∈ N0} is an
o.n.b. for ker(T ).

Exercise 4.17. Let H = L2([0, 1]) (with usual Lebesgue measure) and let
T = Mf be the self-adjoint operator in B(H) given by multiplication with
the function f(t) = t on [0, 1], cf. Example 3.5.4.

Show that T (H) is not closed, i.e., that T does not have closed range.
Show also that T is not compact.

Exercise 4.18. Let H = `2(N), let λ ∈ `∞(N) be given by λ(n) = 1
n
for

all n ∈ N, and let T = Mλ ∈ B(H) denote the associated multiplication
operator. Note that T is compact, as follows from Example 4.1.8.

Show that T (H) = H and T (H) 6= H, so T does not have closed range.

Exercise 4.19. Let H be a Hilbert space and T ∈ B(H). Let us say that T
is bounded from below if there exists some α > 0 such that α ‖x‖ ≤ ‖T (x)‖
for all x ∈ H. For example, T is bounded from below when T is an isometry.

Show that if T is bounded from below, then T has closed range.

Exercise 4.20. Finish the proof of Theorem 4.4.3 by checking that the
sequence {cj}j∈J constructed in the final paragraph (under the assumption
that y is orthogonal to Eµ) belongs to `2(J).
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CHAPTER 5

An introduction to
Sturm-Liouville theory

The purpose of this chapter is to illustrate how the spectral theorem for a
compact self-adjoint operator on a Hilbert space may be used to study some
classical Sturm-Liouville problems. For simplicity we will only discuss the
so-called regular case.

5.1 Regular Sturm-Liouville systems
When [a, b] ⊂ R and n ∈ N, we let Cn([a, b]) denote the space of n times
continuously differentiable complex functions on [a, b]. A regular Sturm-
Liouville system on [a, b] is a second order linear differential equation of the
form

− (py′)′ + q y = λ ρ y , (5.1.1)

where

• p ∈ C1([a, b]) is real-valued and p(x) 6= 0 for all x ∈ [a, b],

• q, ρ ∈ C([a, b]) are real-valued and ρ(x) 6= 0 for all x ∈ [a, b],

• λ ∈ C,

and the unknown function y = y(x), which necessarily has to lie in C2([a, b]),
is required to satisfy boundary conditions of the type

α1 y(a) + α2 y
′(a) = 0 , β1 y(b) + β2 y

′(b) = 0 , (5.1.2)

for some (α1, α2), (β1, β2) ∈ R2 \ {(0, 0)}.



5. An introduction to Sturm-Liouville theory

Ideally, the Sturm-Liouville problem is to determine the values of λ
for which there exist non-trivial solutions of equation (5.1.1) satisfying the
conditions (5.1.2), and to describe these solutions. These values of λ are
called the eigenvalues of the system, and the corresponding solutions y are
called eigenfunctions of the system. A concrete answer to this problem is
not possible in general, but as we will see, one may still obtain some valuable
theoretical information about it.

Since we only intend to give a small taste of Sturm-Liouville theory, we
will assume that p(x) = ρ(x) = 1 for all x ∈ [a, b], in which case equation
(5.1.1) simplifies to

− y′′ + qy = λy . (5.1.3)

A suitably scaled version of this equation appears for example as the one
dimensional time-independent Schrödinger equation in quantum mechanics
(where it is usually considered on the whole real line).

Set Y =
{
y ∈ C2([a, b]) : y satisfies the boundary conditions (5.1.2)

}
.

We will consider Y and C([a, b]) as inner product spaces w.r.t. to the inner
product given by

〈f, g〉 =
∫ b

a
f(x)g(x) dx.

Letting D : Y → C[a, b] be the linear operator defined by

D(y) = −y′′ + qy ,

it is clear that our Sturm-Liouville system may be written as

D(y) = λy where y ∈ Y. (5.1.4)

Although the associated Sturm-Liouville problem looks like a familiar
eigenvalue/eigenvector problem, it is not obvious how to proceed. The fact
that Y and C([a, b]) are not Hilbert spaces (they are not complete) can easily
be fixed because both can be considered as dense subspaces of L2([a, b]).
(We leave it as an exercise to show this for Y ). However, the trouble is
that D is not a bounded operator (check this!), so it does not extend to a
bounded operator on L2([a, b]). We will have to work quite a bit to recast
the problem into one involving a compact selfadjoint operator.

• We will first study the second order differential equation

− y′′ + qy = λy with y ∈ C2([a, b]) (5.1.5)
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5.2. A second order differential equation

and show that its solution space

Sλ := {y ∈ C2([a, b]) : −y′′ + qy = λy}

is 2-dimensional for every λ ∈ C.1 Note that trying to find out when
there exists some y ∈ Sλ \ {0} which also belongs to Y , which would
solve our problem, is not possible because a concrete description of Sλ
is not available in general.

• Next, we will establish some spectral properties of the operator D.

• Thirdly, we will assume that D is 1-1. We will then show that D is
onto C([a, b]), and that there exists a compact self-adjoint operator
TG : L2([a, b])→ L2([a, b]) such that its restriction to C([a, b]) is the
inverse of D. Applying the spectral theorem to TG will lead us to a
theoretical answer to our Sturm-Liouville problem in this case.

• Finally, we will explain how to handle the general case where D is not
assumed to be 1-1.

5.2 A second order differential equation
We recall that λ ∈ C. In this section it is not important that the function
q ∈ C([a, b]) is assumed to be real-valued.

Theorem 5.2.1. Let c ∈ [a, b] and z1, z2 ∈ C. Then there exists a unique
function y ∈ C2([a, b]) satisfying that

− y′′ + qy = λy and y(c) = z1, y
′(c) = z2. (5.2.1)

Proof. Suppose first that y ∈ C2([a, b]) satisfies (5.2.1), that is,

y′′ = (λ− q)y , y(c) = z1 and y ′(c) = z2 . (5.2.2)

For every u ∈ [a, b], we get

y ′(u)− z2 = y ′(u)− y ′(c) =
∫ u

c
y′′(t) dt =

∫ u

c
(λ− q(t)) y(t) dt.

1This fact holds for the solution space of any homogeneous second order linear
ordinary differential equation, as some students may have seen in a previous course. We
will give a self-contained proof in our case.
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5. An introduction to Sturm-Liouville theory

This gives that

y(x)− z1 − z2(x− c) = y(x)− y(c)− z2(x− c)

=
∫ x

c
(y ′(u)− z2) du

=
∫ x

c

∫ u

c
(λ− q(t)) y(t) dt du

=
∫ x

c

∫ x

t
(λ− q(t)) y(t) du dt

=
∫ x

c
(x− t)(λ− q(t)) y(t) dt

for all x ∈ [a, b], hence that y satisfies that the integral equation

y(x) = z1 +z2(x−c)+
∫ x

c
(x−t)(λ−q(t)) y(t) dt for all x ∈ [a, b]. (5.2.3)

Conversely, if y ∈ C([a, b]) satisfies (5.2.3), then it is an easy exercise to
check that y belongs to C2([a, b]) and satisfies (5.2.2).

Now, let T : C([a, b]) → C([a, b]) be the integral operator defined for
each f in C([a, b]) by

[T (f)](x) = z1 + z2(x− c) +
∫ x

c
(x− t)(λ− q(t)) f(t) dt

for all x ∈ [a, b]. We consider here C([a, b]) as a complete metric space
w.r.t. the metric d(f, g) := ‖f − g‖∞ = sup{|f(x)− g(x)| : x ∈ [a, b]}.

Set K := sup
{
|(x− t)(λ− q(t))| : x, t ∈ [a, b]

}
<∞. Let f, g ∈ C([a, b])

and x ∈ [a, b]. By induction on n ∈ N, one easily shows that∣∣∣∣[T n(f)− T n(g)](x)
∣∣∣∣ ≤ 1

n! K
n |x− c|n ‖f − g‖∞ .

This implies that

‖T n(f)− T n(g)‖∞ ≤
Kn (b− a)n

n! ‖f − g‖∞ .

It clearly follows that T n is a contraction when n is so large that Kn (b−a)n

n! < 1.
Hence, Banach’s fixed point theorem 2 gives that T has a unique fixed point,
say y, in C([a, b]). This means that y is the unique function in C([a, b]) such
that y = T (y), i.e., such that y satisfies (5.2.3). Taking into account what
we proved in the first part of the proof, we are done. �

2cf. Lindstrøm’s book Spaces, Exercise 3.4.7.
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5.2. A second order differential equation

Corollary 5.2.2. Let λ ∈ C, c ∈ [a, b], and recall that

Sλ = {y ∈ C2([a, b]) : −y′′ + qy = λy}.

Then the map Tλ,c : Sλ → C2 defined by Tλ,c(y) =
(
y(c), y′(c)

)
for every

y ∈ Sλ is an isomorphism. Hence, dimSλ = 2.

Proof. Theorem 5.2.1 shows that the map Tλ,c is 1-1 and onto. It is obvious
that it is linear. �

Remark 5.2.3. It should be noted that Theorem 5.2.1 is essentially an
existence result (although our method of proof gives a way to approximate
the unique solution of (5.2.1) by picking some y0 ∈ C([a, b]) and computing
T n(y0) for large enough n). Explicit formulas for a basis of Sλ are only known
when q is a constant function. To illustrate Corollary 5.2.2, we recall these.
Assume q(x) = ω for all x ∈ [a, b] for some ω ∈ C. Then −y′′ + qy = λy can
be rewritten as the homogeneous equation y′′+ (λ−ω)y = 0, which we know
can be solved by considering the characteristic equation z2 + (λ− ω) = 0:

If λ 6= ω, then, letting (ω − λ)1/2 denote a square root of ω − λ in C, we
get that Sλ consists of the functions of the form

y(x) = C1 e
(ω−λ)1/2x + C2 e

−(ω−λ)1/2x, x ∈ [a, b],

where C1, C2 ∈ C. Thus {e(ω−λ)1/2x, e−(ω−λ)1/2x} is a basis for Sλ in this
case.
If λ = ω, the equation is y′′ = 0 and {1, x} is obviously a basis for Sω. �

Remark 5.2.4. Suppose that q is real-valued, λ ∈ R and y ∈ Sλ. Then it
is not difficult to verify that y ∈ Sλ, so that Re y and Im y also lie in Sλ.
Moreover, if it happens that y(c) and y′(c) both are real numbers for some
c ∈ [a, b], then the function y has to be real-valued: indeed, we then have
(Im y)(c) = 0 = (Im y)′(c), so Theorem 5.2.1 implies that Im y is the zero
function on [a, b]. �

Remark 5.2.5. Consider y1, y2 ∈ C2([a, b]). Define Wy1,y2 ∈ C1([a, b]) by

Wy1,y2(x) =
∣∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣ for each x ∈ [a, b].

Wy1,y2(x) is called the Wronsky determinant of (y1, y2) at x.
Assume that y1, y2 ∈ Sλ and let c ∈ [a, b]. Corollary 5.2.2 implies that the

set {y1, y2} is a basis for Sλ if and only if the vectors (y1(c), y′1(c)), (y2(c), y′2(c))
are linearly independent in C2, i.e., Wy1,y2(c) 6= 0. Note that this gives that
if {y1, y2} is a basis for Sλ, then Wy1,y2(x) 6= 0 for all x ∈ [a, b].
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5. An introduction to Sturm-Liouville theory

The Wronsky determinant appears in the following lemma (sometimes
called Lagrange’s lemma), which will be useful to us later:

Lemma 5.2.6. Define D̃ : C2([a, b])→ C([a, b]) by
D̃(y) = −y′′ + qy for every y ∈ C2([a, b]),

and let f, g ∈ C2([a, b]). Then the following identity holds:
D̃(f)g − D̃(g)f = (fg′ − gf ′)′ = (Wf,g)′ .

Proof. We have
(Wf,g)′ = (fg′ − gf ′)′ = fg′′ + f ′g′ − gf ′′ − g′f ′ = fg′′ − gf ′′

= −f ′′g + qfg − qgf + fg′′ = D̃(f)g − D̃(g)f. �

5.3 Some spectral properties
Let (α1, α2), (β1, β2) ∈ R2 \ {(0, 0)} and q ∈ C([a, b]) be real-valued. We
recall that

Y =
{
y ∈ C2([a, b]) | y satisfies the boundary conditions (5.3.1)

}
,

where
α1 y(a) + α2 y

′(a) = 0 , β1 y(b) + β2 y
′(b) = 0 , (5.3.1)

and D : Y → C[a, b] is the operator defined by D(y) = −y′′ + qy for y ∈ Y .
Let λ ∈ C and set Eλ := {y ∈ Y : D(y) = λy}. We say that λ is an

eigenvalue of D if the subspace Eλ is non-trivial, in which case Eλ is called
the eigenspace of D associated to λ. We note that Eλ ⊂ Sλ, so Corollary
5.2.2 implies that dimEλ ≤ 2.

Proposition 5.3.1. Let f, g ∈ Y . Then we have

i) D(f)g −D(g)f = (fg′ − gf ′)′,

ii) 〈D(f), g〉 = 〈f,D(g)〉.

Proof. i) Since D = D̃|Y , this identity follows from Lagrange’s lemma
(Lemma 5.2.6). ii) It is easy to check that g ∈ Y and D(g) = D(g). Thus,
using i), we get

〈D(f), g〉 − 〈f,D(g)〉 =
∫ b

a
[D(f)g − fD(g)](t) dt

=
∫ b

a
(fg′ − gf ′)′(t) dt =

[
(fg′ − gf ′)(t)

]b
a

= f(b)g′(b)− g(b)f ′(b)− f(a)g′(a) + g(a)f ′(a).
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Now, since f and g both satisfy 5.3.1, we have[
f(b) f ′(b)
g(b) g ′(b)

] [
β1
β2

]
=
[

0
0

]
.

Since (β1, β2) 6= (0, 0), this implies that f(b)g′(b)− g(b)f ′(b) = 0.
Arguing in a similar way, one can also show that f(a)g′(a)−g(a)f ′(a) = 0.

Inserting these two equalities in our computation above, we get that

〈D(f), g〉 − 〈f,D(g)〉 = 0,

as desired. �

Part ii) of Proposition 5.3.1 shows that the operator D enjoys a property
similar to self-adjointness. Proceeding exactly as we did for bounded self-
adjoint operators on Hilbert spaces, one deduces that the following result
holds.

Corollary 5.3.2. All the possible eigenvalues of D are real, and the associ-
ated eigenspaces are orthogonal to each other.

Note that we don’t know yet whether D has any eigenvalues. Anyhow,
we can say more about its eigenspaces (if any).

Proposition 5.3.3. All possible eigenspaces of D are one-dimensional.

Proof. Let λ ∈ C. Recall that D̃ : C2([a, b]) → C([a, b]) is defined by
D̃(y) = −y′′+ qy for y ∈ C2([a, b]), so D = D̃ |Y . We first consider the space

Lλ := {y ∈ C2([a, b]) : D̃(y) = λy and y satisfies (5.3.2)},
where

α1 y(a) + α2 y
′(a) = 0. (5.3.2)

Note that the condition (5.3.2) says that the vector (y(a), y ′(a)) belongs
to M := Span{(−α2, α1)}. Now, Corollary 5.2.2 (with c = a) gives that
Lλ = T−1

λ,a(M). Since dimM = 1 and Tλ,a is an isomorphism, we get that
Lλ is a one-dimensional subspace of Sλ.

Similarly, one shows that

Rλ := {y ∈ C2([a, b]) : D̃(y) = λy and y satisfies (5.3.3)},

where
β1 y(b) + β2 y

′(b) = 0, (5.3.3)
is also a one-dimensional subspace of Sλ.

105



5. An introduction to Sturm-Liouville theory

Clearly, we have Eλ = Lλ∩Rλ. So there are only two possibilities: either
Eλ = {0} or dimEλ = 1. Hence, if λ is an eigenvalue of D, we must have
dimEλ = 1. �

Remark 5.3.4. We use the notation introduced in the proof above. Assume
that λ ∈ C is not an eigenvalue of D, and pick u ∈ Lλ, u 6= 0, v ∈ Rλ,
v 6= 0. It is clear from this proof that Lλ = Span{u} and Rλ = Span{v}.
As Lλ ∩Rλ = Eλ = {0}, the vectors u and v must be linearly independent.
Since they both lie in Sλ, which is 2-dimensional by Corollary 5.2.2, we can
then conclude that {u, v} is a basis for Sλ. �

5.4 A special case
We go back to the Sturm-Liouville problem for the equation D(y) = λy,
y ∈ Y . As long as we are not able to show that D has eigenvalues, it is not
possible for us to make efficient use of its spectral properties. Ideally, we
would like to show that D is diagonalizable, in the sense that there exists
a sequence of eigenfunctions of D in Y which forms an orthonormal basis
for L2([a, b]). The trick to make progress on this problem is to turn our
attention to the inverse of D, whenever this makes sense.

We therefore assume throughout this section that D : Y → C([a, b]) is 1-1.
We will see how to get rid of this assumption in the next section.

We will first show that D(Y ) = C([a, b]), i.e., D is onto, and that the
inverse operator

D−1 : C([a, b])→ Y

is an integral operator associated to a continuous kernel G : [a, b]×[a, b]→ C.

It should be noted here that, given a function f ∈ C([a, b]), the standard
way to show that the differential equation −y′′ + qy = f has a solution is to
pick a basis for the associated homogeneous equation and use the method
called variation of parameters. We will not discuss this method here and
follow a shorter path.

Since the operator D is linear, the fact that D is 1-1 means that its
kernel is trivial, that is, 0 is not an eigenvalue of D. As we saw in Remark
5.3.4, we can then pick a basis {u, v} for

S0 = {y ∈ C2([a, b]) : D̃(y) = 0} = {y ∈ C2([a, b]) : y′′ = qy}

such that
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• u satisfies the condition α1 u(a) + α2 u
′(a) = 0,

• v satisfies the condition β1 v(b) + β2 v
′(b) = 0.

Since q is real-valued, we can also assume that u and v are real-valued,
cf. Remark 5.2.4.

We note that Remark 5.2.5 tells us that Wu,v(x) 6= 0 for all x ∈ [a, b].
Moreover, as D̃(u) = D̃(v) = 0, Lemma 5.2.6 gives that

(Wu,v)′ = D̃(u)v − D̃(v) = 0.

Hence, Wu,v is a constant function on [a, b]. This means that

Wu,v(x) = u(x)v′(x)− v(x)u′(x) = W for all x ∈ [a, b]

for some W ∈ R \ {0}.
We can now define the associated Green’s function G : [a, b]× [a, b]→ R

by

G(x, t) = − 1
W
·


u(x)v(t) if a ≤ x ≤ t ≤ b,

u(t)v(x) if a ≤ t ≤ x ≤ b.

It is then straightforward to see that G is continuous. Hence we may form
the associated integral operator TG : L2([a, b])→ L2([a, b]), which is given
by

[TG(f)](x) =
∫ b

a
G(x, t) f(t) dt

for all f ∈ L2([a, b]) and x ∈ [a, b]. It is clear that TG maps C([a, b]) into
itself. In fact, it maps C([a, b]) into Y :

Proposition 5.4.1. Let f ∈ C([a, b]) and set y := TG(f). Then y ∈ Y .
Moreover, D(y) = f .

Proof. Let x ∈ [a, b]. Using the definitions of G and TG we get

y(x) = −
∫ x

a
W−1 v(x)u(t)f(t) dt−

∫ b

x
W−1 u(x)v(t)f(t) dt.

This implies that −Wy(x) = v(x)A(x) + u(x)B(x), where

A(x) :=
∫ x

a
u(t)f(t) dt and B(x) :=

∫ b

x
v(t)f(t) dt.
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Thus we get

−Wy′(x) = v′(x)A(x) + v(x)A′(x) + u′(x)B(x) + u(x)B′(x)
= v′(x)A(x) + v(x)u(x)f(x) + u′(x)B(x)− u(x)v(x)f(x)
= v′(x)A(x) + u′(x)B(x).

Since v′, A, u′ and B all lie in C1([a, b]), we see that y ∈ C2([a, b]).
Further, using that A(a) = 0 and α1u(a) + α2u

′(a) = 0, we get

α1y(a) + α2y
′(a) = −1

W

(
α1v(a)A(a) + α1u(a)B(a) + α2v

′(a)A(a) + α2u
′(a)B(a)

)
= −1
W

(
α1u(a) + α2u

′(a)
)
B(a) = 0.

In a similar way we get β1 v(b) + β2 v
′(b) = 0. Thus we have shown that

y ∈ Y .
To verify the second assertion, we first compute −Wy′′. Since u′′ = qu,

v′′ = qv, and v′u− u′v = W on [a, b], we get

−Wy′′ = (v′A+ u′B)′ = v′′A+ v′A′ + u′′B + u′B′

= q(vA+ uB) + (v′u− u′v)f
= −qWy + (v′u− u′v)f
= W (f − qy).

Thus, −y′′ = f − qy, which gives

D(y) = −y′′ + qy = f − qy + qy = f ,

as desired. �

The first part of Proposition 5.4.1 shows that D is onto C([a, b]). Since
D is also 1-1 (by assumption), D has an inverse map D−1 : C([a, b])→ Y ,
which is defined as follows:

Given some f ∈ C([a, b]), then

D−1(f) := y ,

where y ∈ Y is the unique function in Y such that D(y) = f .
We now see that the second part of Proposition 5.4.1 tells us that

D−1(f) = TG(f) for every f ∈ C([a, b]), i.e., D−1 = (TG) |C([a,b]).
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Since G(x, t) = G(t, x) for all (x, t) in [a, b]× [a, b] (check this!), we get
that TG is self-adjoint. As TG is also compact (indeed, it is a Hilbert-Schmidt
operator on L2([a, b]), cf. Example 4.2.11), we are in the position to apply
the spectral theorem to TG.

However, we will also need to know that TG maps L2([a, b]) into C([a, b]).
This is true for any integral operator with continuous kernel:

Lemma 5.4.2. Assume K : [a, b] × [a, b] → C is continuous. Then the
associated integral operator TK : L2([a, b])→ L2([a, b]) maps L2([a, b]) into
C([a, b]).

Proof. Let f ∈ L2([a, b]) and let ε > 0. Note that the Cauchy-Schwarz
inequality gives that

M :=
∫

[a,b]
|f | dm ≤

( ∫
[a,b]

1 dm
)1/2 ( ∫

[a,b]
|f |2 dm

)1/2
=
√
b− a ‖f‖2 <∞,

where m denotes the Lebesgue measure on [a, b]. As the continuous function
K is automatically uniformly continuous on the compact setR := [a, b]×[a, b],
we can find δ > 0 such that∣∣∣K(x1, t1)−K(x2, t2)

∣∣∣ < ε/M

whenever (x1, t1), (x2, t2) ∈ R and |x2 − x1| < δ, |t2 − t1| < δ.

Let now x0 ∈ [a, b]. Then for every t ∈ [a, b] and all x ∈ [a, b] such that
|x− x0| < δ, we have ∣∣∣K(x, t)−K(x0, t)

∣∣∣ < ε/M .

Thus we get∣∣∣∣[TK(f)](x)− [TK(f)](x0)
∣∣∣∣ =

∣∣∣∣ ∫
[a,b]

(
K(x, t)−K(x0, t)

)
f(t) dm(t)

∣∣∣∣
≤
∫

[a,b]

∣∣∣K(x, t)−K(x0, t)
∣∣∣ |f(t)| dm(t)

≤ ε/M
∫

[a,b]
|f | dm = ε

for all x ∈ [a, b] such that |x− x0| < δ. This shows that TK(f) is continuous
at x0.

Since x0 was an arbitrary point of [a, b], TK(f) ∈ C([a, b]). �
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Theorem 5.4.3. Assume that D is 1-1, and consider the Sturm-Liouville
problem

D(y) = λy with y ∈ Y.
Then the following assertions hold:

• The eigenvalues for this problem form a countable set {λk : k ∈ N} of
non-zero distinct real numbers satisfying that |λk| → ∞ as k →∞.

• For each k ∈ N the eigenspace Eλk
= {y ∈ Y : D(y) = λk y} is

one-dimensional.

• If yk is a unit vector in Eλk
for each k ∈ N, then {yk : k ∈ N} is an

orthonormal basis for L2([a, b]).

Proof. We first observe that 0 is not an eigenvalue of TG :
Indeed, since Y is dense in H := L2([a, b]), and Y = TG(C([a, b]), we

have
H = Y ⊂ TG(H) ⊂ H,

hence TG(H) = H. Thus, we get ker(TG)⊥ = TG(H) = H, i.e., ker(TG) =
{0}.

Applying the spectral theorem to TG, we obtain that the eigenvalues
of TG form a countable set {µk : k ∈ N} of non-zero distinct real numbers
satisfying that µk → 0 as k →∞.

Let k ∈ N, and set λk = µ−1
k 6= 0. Let fk ∈ H be an eigenfunction for

TG associated to µk. Since TG(fk) = µk fk , we get

fk = λk TG(fk) . (5.4.1)

As Lemma 5.4.2 gives that TG(fk) ∈ C([a, b]), this gives that fk ∈ C([a, b]).
Hence, TG(TG(fk)) ∈ Y . But (5.4.1) implies that

fk = λ 2
k TG

(
TG(fk)

)
,

so we get that fk ∈ Y . Now, applying D to (5.4.1), we get

D(fk) = λk fk .

This shows that λk is an eigenvalue of D, and fk is an eigenfunction for
D associated to λk. Now, Proposition 5.3.3 tells us that Eλk

:= {y ∈ Y :
D(y) = λk y} is one-dimensional. Hence, we have Eλk

= Span {fk}. Further,
one readily checks that Eλk

is also the eigenspace of TG associated to µk.
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We note that D can not have other eigenvalues than the λk’s (for if D
had one such eigenvalue, then TG would have an eigenvalue different from
all µk’s, which is not the case). Further, we note that

lim
k→∞
|λk| = lim

k→∞
|µk|−1 =∞

since limk→∞ µk = 0.
Finally, if we set yk := ±(‖fk‖2)−1 fk ∈ Eλk

for each k ∈ N, then we also
get from the spectral theorem for TG that {yk : k ∈ N} is an orthonormal
basis for H consisting of eigenfunctions for D. �

Example 5.4.4. To illustrate this theorem, let us consider the Sturm-
Liouville system

−y′′ = λy on [0, π], with Y = {y ∈ C2([0, π]) : y(0) = y(π) = 0}.

Thus we have D(y) = −y′′, y ∈ Y .
Let λ ∈ C. We consider first the case λ = 0. It is straightforward to

check that the only function y in Y satisfying −y′′ = 0 is y = 0. Thus, 0 is
not an eigenvalue of D, i.e., D is 1-1, so Theorem 5.4.3 applies in this case.
We can determine the eigenvalues and the eigenfunctions of D explicitly as
follows.

Assume λ 6= 0, and write λ1/2 = r + i s with (r, s) ∈ R2 \ {(0, 0)}.3

A basis for Sλ := {y ∈ C2([0, π]) : −y′′ = λy} is given by

{eiλ1/2x, e−iλ
1/2x} = {e−sx(cos(rx) + i sin(rx)), esx(cos(rx)− i sin(rx))}.

If y ∈ Sλ, say y(x) = C1 e
−sx(cos(rx) + i (sx)) +C2 e

sx(cos(rx)− i sin(rx)),
then y ∈ Y if and only ifC1 + C2 = 0,

C1 e
−sπ(cos(rπ) + i sin(rπ)) + C2 e

sπ(cos(rπ)− i sin(rπ)) = 0.

This gives that Eλ = Sλ ∩ Y is non-trivial if and only if

e−sπ(cos(rπ) + i sin(rπ)) = esπ(cos(rπ)− i sin(rπ)),

and it is elementary to deduce that this happens if and only if s = 0 and r = k
for some k ∈ Z \ {0}, in which case λ = k2 ∈ N and Eλ = Span{sin(kx)}.

3We could here have used that we know that all the possible eigenvalues of D are
real, so that we need only to consider λ ∈ R \ {0}. However this would not shorten our
discussion significantly.
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This means that the distinct eigenvalues of this Sturm-Liouville system
are λk = k2, k ∈ N, with associated normalized eigenfunctions yk(x) =√

2/π sin(kx). This is in accordance with Theorem 5.4.3. Note that this
theorem implies that the set

{√
2/π sin(kx) : k ∈ N

}
is an orthonormal

basis for L2([0, π]).
For completeness, we also compute the Green’s function G and TG(f)

for f ∈ C([0, π]). One computes easily that

L0 = {y ∈ C2([0, π]) : y′′ = 0, y(0) = 0} = Span{u},

where u(x) = x, while

R0 = {y ∈ C2([0, π]) : y′′ = 0, y(π) = 0} = Span{v},

where v(x) = x− π. Thus we get that

W = Wu,v(x) = u(x)v′(x)− v(x)u′(x) = x− (x− π) = π

for all x ∈ [0, π]. Moreover, the Green’s function G : [0, π]× [0, π]→ C is
then given by

G(x, t) = 1
π
·

x (π − t) if 0 ≤ x ≤ t ≤ π,

t (π − x) if 0 ≤ t ≤ x ≤ π,

and we obtain that

[TG(f)](x) =
∫ π

0
G(x, t) f(t) dt = 1

π

(
(π−x)

∫ x

0
tf(t) dt+x

∫ π

x
(π−t)f(t) dt

)
for all f ∈ C([0, π]) and x ∈ [0, π].

Note that determining the eigenvalues of TG by direct computation is not
an easy task. Anyhow, you should verify that sin(kx) is an eigenfunction
for TG associated with the eigenvalue µk = k−2 for each k ∈ N. �

5.5 The general case
In this final section, we consider the general case, i.e., we don’t assume that
D is 1-1. The idea now is to show that there exists some µ ∈ R which
is not an eigenvalue of D, and consider the operator Dµ : Y → C([a, b])
defined by Dµ(y) = −y′′ + qy − µy. Then 0 will not be an eigenvalue of
Dµ (otherwise there would be some y ∈ Y \ {0} such that Dµ(y) = 0, i.e.,
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D(y) = µy, and µ would be an eigenvalue of D, giving a contradiction).
Hence, we will be able to apply Theorem 5.4.3 to the Sturm-Liouville system
Dµ(y) = λ′y with y ∈ Y , and deduce some interesting consequences for our
original Sturm-Liouville problem.

Since we know that the possible eigenvalues of D are all real numbers,
we may think: why not just pick some µ ∈ C \ R? The problem with such
a choice is that the function qµ(x) := q(x) − µ for x ∈ [a, b] will not be
real-valued, hence that the Sturm-Liouville system associated with Dµ will
not match our requirements.

Lemma 5.5.1. There exists some µ ∈ R which is not an eigenvalue of D.

Proof. We know that L2([a, b]) has a countable orthonormal basis, say
{uk}k∈N.4 We will show that this implies that D has a countable number of
distinct eigenvalues. Since R is uncountable, the assertion to be proven will
clearly follow.

Assume (for contradiction) that D has an uncountable number of distinct
eigenvalues. Then we can pick a unit vector in each of the associated
eigenspaces. As all eigenspaces of D are orthogonal to each other, this
means that there exists an orthonormal subset Γ of Y which is uncountable.

Let k ∈ N. Then it follows from Bessel’s inequality that

Mk := sup
A⊂Γ, A finite

{∑
γ∈A
|〈uk, γ〉|2

}
≤ ‖uk‖2

2 = 1 < ∞.

This implies that the set

Uk,n :=
{
γ ∈ Γ : |〈uk, γ〉| ≥

1
n

}
is finite for every n ∈ N: indeed, if Uk,n was infinite for some n, then we
could find an infinite sequence {γm}m∈N of distinct elements in Uk,n, and
this would give that

Mk ≥ sup
m∈N

{ m∑
`=1
|〈uk, γ`〉|2

}
≥ sup

m∈N

{
m · 1

n2

}
=∞ ,

contradicting that Mk < ∞. Setting now Uk := {γ ∈ Γ : 〈uk, γ〉 6= 0}, we
get that

Uk =
⋃
n∈N

Uk,n

4One may for example take uk(x) =
√

2/(b− a) sin
(
kπ(x− a)/(b− a)

)
for x ∈ [a, b]

and k ∈ N, cf. Example 5.4.4 when [a, b] = [0, π].
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is countable (being a countable union of finite sets). Hence, the countable
union U := ⋃

k∈N Uk is a countable subset of Γ. As Γ is uncountable, there
must exist some γ ∈ Γ \ U . But then γ 6∈ Uk for every k ∈ N, so we have

〈uk, γ〉 = 0 for every k ∈ N.

This says that γ is orthogonal to every uk, so we must have γ = 0 (since
{uk}k∈N is an orthonormal basis for L2([a, b])). But this gives a contradiction,
since every element of Γ is a unit vector. We can therefore conclude that D
has a countable number of distinct eigenvalues. �

We can now state our main result about regular Sturm-Liouville systems:
Theorem 5.5.2. Consider the Sturm-Liouville problem

D(y) = λy with y ∈ Y.
Then the following assertions hold:

• The eigenvalues for this problem form a countable set {λk : k ∈ N} of
distinct real numbers satisfying that |λk| → ∞ as k →∞.

• For each k ∈ N the eigenspace Eλk
= {y ∈ Y : D(y) = λk y} is

one-dimensional.

• If yk is a unit vector in Eλk
for each k ∈ N, then {yk : k ∈ N} is an

orthonormal basis for L2([a, b]).

Proof. By Lemma 5.5.1 we can find some µ ∈ R which is not an eigenvalue of
D. We define Dµ : Y → C([a, b]) by Dµ(y) = −y′′+qy−µy and consider the
Sturm-Liouville system Dµ(y) = λ′y on Y . Then, as 0 is not an eigenvalue
of Dµ, we may apply Theorem 5.4.3 to Dµ. This gives:

• The eigenvalues of Dµ form a countable set {λ′k : k ∈ N} of non-zero
distinct real numbers satisfying that |λ′k| → ∞ as k →∞.

• For each k ∈ N the eigenspace E ′λ′
k

= {y ∈ Y : Dµ(y) = λ′k y} is
one-dimensional.

• If vk is a unit vector in E ′λ′
k
for each k ∈ N, then {vk : k ∈ N} is an

orthonormal basis for L2([a, b]).

Now, for y ∈ Y , we obviously have D(y) = λy if and only if Dµ(y) = (λ−µ)y.
This implies that the set consisting of all eigenvalues of D is the countable
set of distinct real numbers given by {λk : k ∈ N}, where λk := λ′k + µ for
each k ∈ N.
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Moreover, the eigenspace Eλk
of D associated to each λk is then equal

to E ′λ′
k
, hence is one-dimensional.

Finally, if yk is a unit vector in Eλk
for each k ∈ N, then we have

yk = ± vk for every k ∈ N, so the last assertion clearly follows. �

5.6 Exercises
Exercise 5.1. Find the eigenvalues and eigenfunctions of the Sturm-Liouville
system −y′′ = λy on the given interval with the following boundary condi-
tions:

a) [a, b] = [0, π], y ′(0) = 0, y ′(π) = 0.
b) [a, b] = [0, π], y ′(0) = 0, y(π) = 0.
c) [a, b] = [0, 2π], y(0) = 0, y(2π) = 0.
d) [a, b] = [0, 1], y(0) = 0, y(1) + y ′(1) = 0.

Exercise 5.2. Consider a Sturm-Liouville system D(y) = λ y on Y as in
(5.1.4), with boundary conditions as in (5.1.2).
Assume that the following two extra conditions holds:

a) q(x) ≥ 0 for all x ∈ [a, b],

b) α1α2 ≤ 0 and β1β2 ≥ 0.

Show that the eigenvalues of D are all non-negative.

Exercise 5.3. Consider a Sturm-Liouville system D(y) = λ y as in (5.1.4),
but where

Y = {y ∈ C2([a, b]) | y(a) or y′(a) = 0 ; y(b) or y′(b) = 0}.

Show that the distinct eigenvalues of D may ordered so that

λ1 < λ2 < λ3 < · · · and lim
k→∞

λk =∞ .

Exercise 5.4. Assume D is 1-1, as in section 4. Show that the distinct
eigenvalues of D satisfy

∞∑
k=1

1
|λk| 2

< ∞ .

Exercise 5.5. Show that the space

Y = {y ∈ C2([a, b]) : y satisfies the conditions (5.1.2)}

is dense in L2([a, b]).
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