MAT3400/4400 - Spring 19 - Exercises for Friday, Mars 10

Extra-exercise 14

Let \mathcal{J} denote the family of subsets of \mathbb{R} given by

$$\mathcal{J} = \{\emptyset\} \cup \{(a,b]: a, b \in \mathbb{R}, a < b\} \cup \{(-\infty,b]: b \in \mathbb{R}\} \cup \{(a,\infty): a \in \mathbb{R}\},\$$

(already met in Extra-exercise 4)

Check that \mathcal{J} is a semialgebra.

Extra-exercise 15

Let S be a semialgebra of subsets of a nonempty set X and let λ be a premeasure on S. Let \mathcal{R} be the algebra consisting of all unions of finitely many disjoint sets in S and let ρ be the premeasure on \mathcal{R} given by $\rho(A) = \sum_{j=1}^{n} \lambda(S_j)$ whenever $A = S_1 \cup \cdots \cup S_n$ for some disjoint sets S_1, \ldots, S_n in S.

Let ν^* denote the outer measure on $\mathcal{P}(X)$ associated with \mathcal{S} and λ , and let μ^* denote the outer measure on $\mathcal{P}(X)$ associated with \mathcal{R} and ρ .

Check that $\nu^* = \mu^*$. (This is the content of the remark on p. 302 in [L]). This means that

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \lambda(S_j) : \{S_j\}_{j \in \mathbb{N}} \text{ is a } \mathcal{S}\text{-covering of } A \right\}$$

for every $A \subseteq X$.

- From Lindstrøm's book, Section 8.3: 3
- From Lindstrøm's book, Section 8.4: 2, 3, 5

Note. In exercises 2 and 5 above, measurable means Lebesgue measurable.

Extra-exercise 16

Let $E \subseteq \mathbb{R}$ be Borel measurable, and let $a, r \in \mathbb{R}, r \neq 0$.

Show that E + a and rE are also Borel measurable.

Hint. Consider the collections of subsets of \mathbb{R} given by

 $\mathcal{B} + a := \{E + a \mid E \text{ is a Borel subset of } \mathbb{R}\} \text{ and } r\mathcal{B} := \{rE \mid E \text{ is a Borel subset of } \mathbb{R}\}.$