Extra exercise 17

Let \mathcal{L} denote the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} and let μ denote the Lebesgue measure on \mathcal{L} .

Let S denote either $\overline{\mathbb{R}}$ or \mathbb{C} , let $f : \mathbb{R} \to S$ and $a \in \mathbb{R}$. Define $f_a : \mathbb{R} \to S$ by

$$f_a(x) := f(x-a)$$
 for all $x \in \mathbb{R}$.

a) Show that f is Lebesgue measurable if and only if f_a is Lebesgue measurable.

b) Assume that $g: \mathbb{R} \to \overline{\mathbb{R}}_+$ is Lebesgue measurable, so $g_a: \mathbb{R} \to \overline{\mathbb{R}}_+$ is also Lebesgue measurable (by a)). Show that

$$\int_{E+a} g_a \ d\mu = \int_E g \ d\mu$$

for every $E \in \mathcal{L}$. (We recall that $E + a := \{e + a \mid e \in E\} \in \mathcal{L}$.)

c) Consider again $f : \mathbb{R} \to S$ and $E \in \mathcal{L}$. Show that f is integrable over E if and only if f_a is integrable over E + a, in which case we have

$$\int_{E+a} f_a \, d\mu = \int_E f \, d\mu \, .$$

Extra exercise 18

Let C denote the Cantor set. We have seen that C is a closed subset of [0, 1] (hence is compact and Lebesgue measurable) which has Lebesgue measure zero. Our description of C was geometric, but C can also be defined using ternary expansions of numbers in [0, 1], namely as

$$C = \left\{ \sum_{n=1}^{\infty} \frac{a_n}{3^n} : a_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\}.$$

(cf. Brevig's notes, Sect. 1.3, in particular the proof of Theorem 1.3.3). In fact, setting

$$S := \Big\{ \{a_n\}_{n \in \mathbb{N}} : a_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \Big\},\$$

the map $g: S \to C$ given by

$$g\Big(\{a_n\}_{n\in\mathbb{N}}\Big) = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$$

is a bijection. Let now $h: S \to [0, 1]$ be given by

$$h\Big(\{a_n\}_{n\in\mathbb{N}}\Big)=\sum_{n=1}^{\infty}\,\frac{a_n/2}{2^n}.$$

Show that h is surjective, but not injective. Deduce that $f := h \circ g^{-1}$ is a surjective map from C onto [0, 1], and that C is therefore uncountable.

Note. It can be shown that there exists a bijection between C and [0, 1], i.e., that these sets have the same cardinality, but this requires the so-called Schröder-Bernstein theorem from set theory.

• Exercise from Lindstrøm's book: 8.5.2

Extra exercise 19

Let \mathcal{L} denote the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} and \mathcal{B} denote the σ -algebra of all Borel subsets of \mathbb{R} . Let μ denote the Lebesgue measure on \mathcal{B} .

It can be shown that $\mathcal{B} \neq \mathcal{L}$. However, Lebesgue measurable sets can related to Borel sets as follows. Set

$$\mathcal{N} := \{ N \subseteq \mathbb{R} : \text{there exists } C \in \mathcal{B} \text{ such that } N \subseteq C \text{ and } \mu(C) = 0 \Big\},$$

and let $A \subseteq \mathbb{R}$. Show that $A \in \mathcal{L}$ and only if there exists $B \in \mathcal{B}$ and $N \in \mathcal{N}$ such that

$$A = B \cup N \,.$$

Extra exercise 20

Let $A \subseteq \mathbb{R}$ be Lebesgue measurable and let μ denote the Lebesgue measure on the Lebesgue measurable subsets of \mathbb{R} . Show that

$$\mu(A) = \inf \left\{ \mu(G) \mid G \text{ is open in } \mathbb{R} \text{ and } A \subseteq G \right\}$$
$$= \sup \left\{ \mu(K) \mid K \text{ is compact in } \mathbb{R} \text{ and } K \subseteq A \right\}.$$

• Exercises from Brevig's notes: 2.1 and 2.2