Extra exercise 17

Let \mathcal{L} denote the σ-algebra of all Lebesgue measurable subsets of \mathbb{R} and let μ denote the Lebesgue measure on \mathcal{L}.
Let S denote either $\overline{\mathbb{R}}$ or \mathbb{C}, let $f: \mathbb{R} \rightarrow S$ and $a \in \mathbb{R}$. Define $f_{a}: \mathbb{R} \rightarrow S$ by

$$
f_{a}(x):=f(x-a) \quad \text { for all } x \in \mathbb{R}
$$

a) Show that f is Lebesgue measurable if and only if f_{a} is Lebesgue measurable.
b) Assume that $g: \mathbb{R} \rightarrow \overline{\mathbb{R}}_{+}$is Lebesgue measurable, so $g_{a}: \mathbb{R} \rightarrow \overline{\mathbb{R}}_{+}$is also Lebesgue measurable (by a)). Show that

$$
\int_{E+a} g_{a} d \mu=\int_{E} g d \mu
$$

for every $E \in \mathcal{L}$. (We recall that $E+a:=\{e+a \mid e \in E\} \in \mathcal{L}$.)
c) Consider again $f: \mathbb{R} \rightarrow S$ and $E \in \mathcal{L}$. Show that f is integrable over E if and only if f_{a} is integrable over $E+a$, in which case we have

$$
\int_{E+a} f_{a} d \mu=\int_{E} f d \mu
$$

Extra exercise 18

Let C denote the Cantor set. We have seen that C is a closed subset of $[0,1]$ (hence is compact and Lebesgue measurable) which has Lebesgue measure zero. Our description of C was geometric, but C can also be defined using ternary expansions of numbers in $[0,1]$, namely as

$$
C=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}: a_{n} \in\{0,2\} \text { for each } n \in \mathbb{N}\right\} .
$$

(cf. Brevig's notes, Sect. 1.3, in particular the proof of Theorem 1.3.3). In fact, setting

$$
S:=\left\{\left\{a_{n}\right\}_{n \in \mathbb{N}}: a_{n} \in\{0,2\} \text { for each } n \in \mathbb{N}\right\},
$$

the map $g: S \rightarrow C$ given by

$$
g\left(\left\{a_{n}\right\}_{n \in \mathbb{N}}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}
$$

is a bijection. Let now $h: S \rightarrow[0,1]$ be given by

$$
h\left(\left\{a_{n}\right\}_{n \in \mathbb{N}}\right)=\sum_{n=1}^{\infty} \frac{a_{n} / 2}{2^{n}} .
$$

Show that h is surjective, but not injective. Deduce that $f:=h \circ g^{-1}$ is a surjective map from C onto $[0,1]$, and that C is therefore uncountable.
Note. It can be shown that there exists a bijection between C and $[0,1]$, i.e., that these sets have the same cardinality, but this requires the so-called Schröder-Bernstein theorem from set theory.

- Exercise from Lindstrøm's book: 8.5.2

Extra exercise 19

Let \mathcal{L} denote the σ-algebra of all Lebesgue measurable subsets of \mathbb{R} and \mathcal{B} denote the σ-algebra of all Borel subsets of \mathbb{R}. Let μ denote the Lebesgue measure on \mathcal{B}.

It can be shown that $\mathcal{B} \neq \mathcal{L}$. However, Lebesgue measurable sets can related to Borel sets as follows. Set

$$
\mathcal{N}:=\{N \subseteq \mathbb{R}: \text { there exists } C \in \mathcal{B} \text { such that } N \subseteq C \text { and } \mu(C)=0\}
$$

and let $A \subseteq \mathbb{R}$. Show that $A \in \mathcal{L}$ and only if there exists $B \in \mathcal{B}$ and $N \in \mathcal{N}$ such that

$$
A=B \cup N
$$

Extra exercise 20

Let $A \subseteq \mathbb{R}$ be Lebesgue measurable and let μ denote the Lebesgue measure on the Lebesgue measurable subsets of \mathbb{R}. Show that

$$
\begin{aligned}
\mu(A) & =\inf \{\mu(G) \mid G \text { is open in } \mathbb{R} \text { and } A \subseteq G\} \\
& =\sup \{\mu(K) \mid K \text { is compact in } \mathbb{R} \text { and } K \subseteq A\}
\end{aligned}
$$

- Exercises from Brevig's notes: 2.1 and 2.2

