Extra exercise 21

Consider $X=[-1,1]$ with the Lebesgue measure μ on the Lebesgue measurable subsets of X, and the function $f=\mathbf{1}_{[0,1]}$ on X.
Show that there exists no continuous function $g: X \rightarrow \mathbb{R}$ such that $f=g \quad \mu$-a.e.

Extra exercise 22

Let $f:[a, b] \rightarrow \mathbb{R}$ be monotone (increasing or decreasing) and bounded.
Show that the set $D_{f}:=\{x \in[a, b]: f$ is not continuous at $x\}$ is countable. Deduce from Lebesgue's criterion that f is Riemann-integrable.

Extra exercise 23

Set $\mathcal{L}^{1}(\mathbb{R}, \mathbb{R}):=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is Lebesgue integrable $\}$. For simplicity we just write $\mathcal{L}^{1}(\mathbb{R})$ for this space here (the point being that we could also have considered $\mathcal{L}^{1}(\mathbb{R}, \mathbb{C})$, as we will do later).
a) Show that $\mathcal{L}^{1}(\mathbb{R})$ is a subspace of the vector space of all real-valued functions on \mathbb{R} (with pointwise operations).
b) Assume g_{1}, g_{2} are real-valued functions on \mathbb{R} which are both compactly supported, and let $c_{1}, c_{2} \in \mathbb{R}$. Check that $c_{1} g_{1}+c_{2} g_{2}$ is compactly supported too.

Deduce that $C_{c}(\mathbb{R}):=\{g: \mathbb{R} \rightarrow \mathbb{R}: g$ is continuous and compactly supported $\}$ is a subspace of $\mathcal{L}^{1}(\mathbb{R})$.

- Exercises from Brevig's notes: 2.5, 2.6 and 2.7

Extra exercise 24

Show that Littlewood's third principle (i.e., Egorov's theorem) still holds if one instead assumes that the sequence $\left\{f_{n}\right\}$ converges to f pointwise on $X \mu$-a.e.

Extra exercise 25

Consider the following statement:
Assume (X, \mathcal{A}, μ) is a finite measure space and $\left\{f_{n}\right\}$ and f are measurable real-valued functions on X such that $\left\{f_{n}\right\}$ converges to f pointwise on X. Then there exists some $A \in \mathcal{A}$ such that $\mu(A)=0$ and $\left\{f_{n}\right\}$ converges uniformly on A^{c}.

Either prove this statement or find a counterexample.

- Exercises from ELA ($=$ the notes on Elem. Linear Analysis): 1.2 and 1.3

