MAT3400/4400 - Spring 2023 - Exercises for Friday, April 14

Extra Exercise 27

Consider the measure space $([0, 1], \mathcal{A}, \mu)$ where \mathcal{A} denotes the Lebesgue measurable subsets of [0, 1] and μ is the Lebesgue measure on (X, \mathcal{A}) . Let $p \in [1, \infty)$ and $\{f_n\}_{n \in \mathbb{N}}$ be the sequence of functions on [0, 1] given by

$$\begin{split} f_1 &= \ 1_{[0,1]}, \\ f_2 &= \ 1_{[0,1/2]}, \quad f_3 &= \ 1_{[1/2,1]}, \\ f_4 &= \ 1_{[0,1/3]}, \quad f_5 &= \ 1_{[1/3,2/3]}, \quad f_6 &= \ 1_{[2/3,1]}, \\ f_7 &= \ 1_{[0,1/4]}, \quad f_8 &= \ 1_{[1/4,1/2]}, \quad f_9 &= \ 1_{[1/2,3/4]}, \quad f_{10} &= \ 1_{[3/4,1]}, \\ &\quad \text{etc} \end{split}$$

Show that the sequence $\{f_n\}_{n\in\mathbb{N}}$ converges to the zero function on X w.r.t. $\|\cdot\|_p$, and that $\{f_n(x)\}_{n\in\mathbb{N}}$ is divergent for every $x \in [0, 1]$.

Extra Exercise 28

Let X be a nonempty set, $\mathcal{A} := \mathcal{P}(X)$ (the σ -algebra consisting of all subsets of X), and μ denote the counting measure on (X, \mathcal{A}) . Note that every complex-valued function on X is then measurable (w.r.t. \mathcal{A}).

a) Let $\rho: X \to \mathbb{R}_+$. Show that

$$\int_X \rho \, d\mu = \sum_{x \in X} \, \rho(x)$$

where the sum $\sum_{x \in X} \rho(x)$ is defined as in the first exercise set (for Jan. 27). Then deduce that the measure $\mu_{\rho} : \mathcal{P}(X) \to [0, \infty]$ defined by

$$\mu_{\rho}(A) = \sum_{x \in A} \rho(x) \,,$$

satisfies that $\mu_{\rho}(A) = \int_{A} \rho \, d\mu$ for all $A \in \mathcal{P}(X)$.

b) Let $p \in [1, \infty)$ and let $f : X \to \mathbb{C}$. Deduce from a) that $||f||_p = \left(\sum_{x \in X} |f(x)|^p\right)^{1/p}$, hence that

$$\mathcal{L}^{p}(X,\mathcal{A},\mu) = \left\{ f: X \to \mathbb{C} : \sum_{x \in X} |f(x)|^{p} < \infty \right\}$$

Verify also that $\|\cdot\|_p$ is a norm on $\mathcal{L}^p(X, \mathcal{A}, \mu)$, hence that $L^p(X, \mathcal{A}, \mu) = \mathcal{L}^p(X, \mathcal{A}, \mu)$. As is common, we set $\ell^p(X) := \mathcal{L}^p(X, \mathcal{A}, \mu)$.

c) Let $1 \le p \le r < \infty$ and let $\ell^{\infty}(X)$ denote the space of all bounded complex-valued functions on X. Show that

$$\ell^p(X) \subseteq \ell^r(X) \subseteq \ell^\infty(X).$$

• Exercises from Chap. 2 of the Notes on ELA: 12, 13, 14, 15, 16