MAT3400/4400 - Spring 2023 - Exercises for Friday, Jan. 27

Exercises from Lindstrøm's book, Section 7.1: 9, 17

Some extra exercises

We recall that $\overline{\mathbb{R}}_+ := [0, \infty]$ and that addition in $\mathbb{R}_+ = [0, \infty)$ is extended to $\overline{\mathbb{R}}_+$ by setting

$$x + \infty = \infty + x := \infty$$
 for all $x \in \mathbb{R}_+$.

We also extend the usual order \leq on $\mathbb{R}_+ = [0, \infty)$ to $\overline{\mathbb{R}}_+$ by setting

$$x \leq \infty$$
 for all $x \in \mathbb{R}_+$

Note that any subset S of \mathbb{R}_+ has a least upper bound in \mathbb{R}_+ , which is denoted by $\sup S$. We have $\sup S = \infty$ if S contains ∞ or if S is an unbounded subset of \mathbb{R}_+ , while $\sup S$ is the usual least upper bound of S in \mathbb{R}_+ if $S \subseteq \mathbb{R}_+$ is bounded.

Let now X be a nonempty set, $A \subseteq X$ and $\rho : X \to [0, \infty]$. We recall how the sum $\sum_{x \in A} \rho(x)$ is defined.

• If A is empty, we sum over nothing, so we set $\sum_{x \in A} \rho(x) := 0$.

• Assume A is nonempty and finite. Letting a_1, a_2, \ldots, a_n be any listing of the elements of A (without any repetition), we set

$$\sum_{x \in A} \rho(x) := \sum_{j=1}^n \rho(a_j).$$

• If A is infinite, we set

$$\sum_{x \in A} \rho(x) := \sup \Big\{ \sum_{x \in F} \rho(x) \, | \, F \subseteq A \,, \, F \text{ finite} \Big\}.$$

Note: One often meets sums of the form $\sum_{j \in J} t_j$, where $\{t_j\}_{j \in J}$ is a family of elements in \mathbb{R}_+ indexed by a nonempty set J. Such a sum is simply defined by

$$\sum_{j \in J} t_j := \sum_{j \in J} \rho(j)$$

where $\rho: J \to \overline{\mathbb{R}}_+$ is given by $\rho(j) := t_j$ for each $j \in J$.

In the next two exercises, X and ρ are as above.

Exercise 1

Let $A \subseteq X$.

a) Assume that A is countably infinite and let a_1, a_2, a_3, \ldots be a listing of the elements of A (without any repetition). Check that

$$\sum_{x \in A} \rho(x) = \sum_{i=1}^{\infty} \rho(a_i)$$

(where $\sum_{i=1}^{\infty} \rho(a_i)$ has its obvious meaning).

b) Assume $\sum_{x \in A} \rho(x) < \infty$ and set $A_{\rho} := \{x \in A : \rho(x) \neq 0\}$. Show that A_{ρ} is countable and

$$\sum_{x \in A} \rho(x) = \sum_{x \in A_{\rho}} \rho(x).$$

Then use a) to deduce that if A_{ρ} is countably infinite and a_1, a_2, a_3, \ldots is a listing of the elements of A_{ρ} (without any repetition), then

$$\sum_{x \in A} \rho(x) = \sum_{i=1}^{\infty} \rho(a_i).$$

Exercise 2

Recall that $\mathcal{P}(X)$ denote the σ -algebra on X which consists of all subsets of X.

Define $\mu_{\rho} : \mathcal{P}(X) \to [0, \infty]$ by

$$\mu_{\rho}(A) = \sum_{x \in A} \rho(x), \quad A \in \mathcal{P}(X).$$

a) Show that μ_{ρ} is measure on $\mathcal{P}(X)$.

b) Consider $X = \mathbb{R}$ and $\rho : \mathbb{R} \to \overline{\mathbb{R}}_+$ given by

$$\rho(x) = \begin{cases} 1/x^2 & \text{if } x \neq 0, \\ \infty & \text{if } x = 0. \end{cases}$$

Let $A \subseteq \mathbb{R}$ and $x_0 \in \mathbb{R}$. Find $\mu_{\rho}(A)$ in the following cases: $A = \{x_0\}; A = \mathbb{N}; A = \mathbb{Z}; A = (0, 1].$

Remark. Exercises 1, 2, 3, 4 in Section 7.1 of Lindstrøm's book are special cases of Exercise 2 a). If you have trouble with solving it, you should try to solve these four exercises first as a training.

Exercise 3

Let $\{t_{(n,k)}\}_{(n,k)\in\mathbb{N}\times\mathbb{N}}$ be a family of numbers in $\overline{\mathbb{R}}_+$ indexed by $\mathbb{N}\times\mathbb{N}$. Set

$$S := \sum_{(n,k) \in \mathbb{N} \times \mathbb{N}} t_{(n,k)} \in [0,\infty].$$

a) Since $\mathbb{N} \times \mathbb{N}$ is countable, there exists a bijective map $\sigma : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Set $s_m = t_{\sigma(m)}$ for each $m \in \mathbb{N}$. Show that

$$S = \sum_{m=1}^{\infty} s_m = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} t_{(n,k)} \right) = \sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} t_{(n,k)} \right).$$

b) Let X be a set and $\mu: \mathcal{P}(X) \to [0,\infty]$ be a map.

For each $(n,k) \in \mathbb{N} \times \mathbb{N}$, let $A_{(n,k)}$ be a subset of X. For a bijection σ as in a), set $B_m = A_{\sigma(m)}$ for each $m \in \mathbb{N}$. Deduce from a) that

$$\sum_{(n,k)\in\mathbb{N}\times\mathbb{N}}\mu(A_{(n,k)}) = \sum_{m=1}^{\infty}\mu(B_m) = \sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\mu(A_{(n,k)})\right) = \sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty}\mu(A_{(n,k)})\right)$$