MAT3400/4400-Spring 2023-Exercises for Friday, Jan. 27

Exercises from Lindstrøm's book, Section 7.1: 9, 17

Some extra exercises

We recall that $\overline{\mathbb{R}}_{+}:=[0, \infty]$ and that addition in $\mathbb{R}_{+}=[0, \infty)$ is extended to $\overline{\mathbb{R}}_{+}$by setting

$$
x+\infty=\infty+x:=\infty \quad \text { for all } x \in \overline{\mathbb{R}}_{+} .
$$

We also extend the usual order \leq on $\mathbb{R}_{+}=[0, \infty)$ to $\overline{\mathbb{R}}_{+}$by setting

$$
x \leq \infty \quad \text { for all } x \in \mathbb{R}_{+} .
$$

Note that any subset S of $\overline{\mathbb{R}}_{+}$has a least upper bound in $\overline{\mathbb{R}}_{+}$, which is denoted by $\sup S$. We have $\sup S=\infty$ if S contains ∞ or if S is an unbounded subset of \mathbb{R}_{+}, while $\sup S$ is the usual least upper bound of S in \mathbb{R}_{+}if $S \subseteq \mathbb{R}_{+}$is bounded.

Let now X be a nonempty set, $A \subseteq X$ and $\rho: X \rightarrow[0, \infty]$. We recall how the sum $\sum_{x \in A} \rho(x)$ is defined.

- If A is empty, we sum over nothing, so we set $\sum_{x \in A} \rho(x):=0$.
- Assume A is nonempty and finite. Letting $a_{1}, a_{2}, \ldots, a_{n}$ be any listing of the elements of A (without any repetition), we set

$$
\sum_{x \in A} \rho(x):=\sum_{j=1}^{n} \rho\left(a_{j}\right) .
$$

- If A is infinite, we set

$$
\sum_{x \in A} \rho(x):=\sup \left\{\sum_{x \in F} \rho(x) \mid F \subseteq A, F \text { finite }\right\} .
$$

Note: One often meets sums of the form $\sum_{j \in J} t_{j}$, where $\left\{t_{j}\right\}_{j \in J}$ is a family of elements in $\overline{\mathbb{R}}_{+}$indexed by a nonempty set J. Such a sum is simply defined by

$$
\sum_{j \in J} t_{j}:=\sum_{j \in J} \rho(j)
$$

where $\rho: J \rightarrow \overline{\mathbb{R}}_{+}$is given by $\rho(j):=t_{j}$ for each $j \in J$.

In the next two exercises, X and ρ are as above.

Exercise 1

Let $A \subseteq X$.
a) Assume that A is countably infinite and let $a_{1}, a_{2}, a_{3}, \ldots$ be a listing of the elements of A (without any repetition). Check that

$$
\sum_{x \in A} \rho(x)=\sum_{i=1}^{\infty} \rho\left(a_{i}\right)
$$

(where $\sum_{i=1}^{\infty} \rho\left(a_{i}\right)$ has its obvious meaning).
b) Assume $\sum_{x \in A} \rho(x)<\infty$ and set $A_{\rho}:=\{x \in A: \rho(x) \neq 0\}$. Show that A_{ρ} is countable and

$$
\sum_{x \in A} \rho(x)=\sum_{x \in A_{\rho}} \rho(x)
$$

Then use a) to deduce that if A_{ρ} is countably infinite and $a_{1}, a_{2}, a_{3}, \ldots$ is a listing of the elements of A_{ρ} (without any repetition), then

$$
\sum_{x \in A} \rho(x)=\sum_{i=1}^{\infty} \rho\left(a_{i}\right)
$$

Exercise 2

Recall that $\mathcal{P}(X)$ denote the σ-algebra on X which consists of all subsets of X.
Define $\mu_{\rho}: \mathcal{P}(X) \rightarrow[0, \infty]$ by

$$
\mu_{\rho}(A)=\sum_{x \in A} \rho(x), \quad A \in \mathcal{P}(X)
$$

a) Show that μ_{ρ} is measure on $\mathcal{P}(X)$.
b) Consider $X=\mathbb{R}$ and $\rho: \mathbb{R} \rightarrow \overline{\mathbb{R}}_{+}$given by

$$
\rho(x)=\left\{\begin{array}{cl}
1 / x^{2} & \text { if } x \neq 0 \\
\infty & \text { if } x=0
\end{array}\right.
$$

Let $A \subseteq \mathbb{R}$ and $x_{0} \in \mathbb{R}$. Find $\mu_{\rho}(A)$ in the following cases:
$A=\left\{x_{0}\right\} ; A=\mathbb{N} ; A=\mathbb{Z} ; A=(0,1]$.
Remark. Exercises 1, 2, 3, 4 in Section 7.1 of Lindstrøm's book are special cases of Exercise 2 a). If you have trouble with solving it, you should try to solve these four exercises first as a training.

Exercise 3

Let $\left\{t_{(n, k)}\right\}_{(n, k) \in \mathbb{N} \times \mathbb{N}}$ be a family of numbers in $\overline{\mathbb{R}}_{+}$indexed by $\mathbb{N} \times \mathbb{N}$. Set

$$
S:=\sum_{(n, k) \in \mathbb{N} \times \mathbb{N}} t_{(n, k)} \in[0, \infty]
$$

a) Since $\mathbb{N} \times \mathbb{N}$ is countable, there exists a bijective map $\sigma: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$.

Set $s_{m}=t_{\sigma(m)}$ for each $m \in \mathbb{N}$. Show that

$$
S=\sum_{m=1}^{\infty} s_{m}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} t_{(n, k)}\right)=\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} t_{(n, k)}\right)
$$

b) Let X be a set and $\mu: \mathcal{P}(X) \rightarrow[0, \infty]$ be a map.

For each $(n, k) \in \mathbb{N} \times \mathbb{N}$, let $A_{(n, k)}$ be a subset of X. For a bijection σ as in a), set $B_{m}=A_{\sigma(m)}$ for each $m \in \mathbb{N}$. Deduce from a) that
$\sum_{(n, k) \in \mathbb{N} \times \mathbb{N}} \mu\left(A_{(n, k)}\right)=\sum_{m=1}^{\infty} \mu\left(B_{m}\right)=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} \mu\left(A_{(n, k)}\right)\right)=\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} \mu\left(A_{(n, k)}\right)\right)$.

