MAT3400/4400 - Spring 2023 - Exercises for Friday, Feb. 3

- From Lindstrøm's book, section 7.1: 10, 15, 16
- From Lindstrøm's book, section 7.2: 1, 4, 5

Extra-exercise 4

Let \mathcal{J} be the collection of subsets of \mathbb{R} given by

$$\mathcal{J} = \{\emptyset\} \cup \{(a, b] : a, b \in \mathbb{R}, a < b\} \cup \{(-\infty, b] : b \in \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}.$$

Recall that $\mathcal{B}_{\mathbb{R}}$ denotes the Borel σ -algebra on \mathbb{R} . Show that

$$\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{J}),$$

i.e., $\mathcal{B}_{\mathbb{R}}$ is the least σ -algebra on \mathbb{R} containing \mathcal{J} .

 \bullet From Lindstrøm's book, section 7.3 : 3 (as a sample, show one of the implications.)

Extra-exercise 5

Let (X, \mathcal{A}) be a measurable space and let $f: X \to \overline{\mathbb{R}}$.

- a) Assume that f is constant on X. Check that f is measurable (w.r.t. A).
- b) Assume that $\mathcal{A} = \{\emptyset, X\}$ (and note that it is almost immediate that \mathcal{A} is a σ -algebra on X).

Show that if f is measurable (w.r.t. \mathcal{A}), then f is constant on X.

Extra-exercise 6

Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$. Show that f is measurable (w.r.t. \mathcal{A}) if and only if $f^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}_{\mathbb{R}}$.

(*Hint.* For the implication (\Rightarrow) , use Exercise 7.1.10).