Solution - Mandatory assignment MAT3400/4400 Spring 2023

Problem 1. Let (X, \mathcal{A}, μ) be a measure space, Y be a nonempty set, and $\phi: X \rightarrow Y$ be a map. We consider

$$
\mathcal{B}_{\phi}:=\left\{B \subseteq Y \mid \phi^{-1}(B) \in \mathcal{A}\right\}
$$

which is known to be a σ-algebra on Y.
Define $\mu_{\phi}: \mathcal{B}_{\phi} \rightarrow[0, \infty]$ by

$$
\mu_{\phi}(B):=\mu\left(\phi^{-1}(B)\right) \quad \text { for all } B \in \mathcal{B}_{\phi} .
$$

a) - μ_{ϕ} is a measure on $\left(Y, \mathcal{B}_{\phi}\right)$:

We first note that $\mu_{\phi}(\emptyset)=\mu\left(\phi^{-1}(\emptyset)\right)=\mu(\emptyset)=0$. Next, let $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of disjoint sets in \mathcal{B}_{ϕ}, and set $A_{n}:=\phi^{-1}\left(B_{n}\right) \in \mathcal{A}$ for each n. Then the A_{n} 's are disjoint, since

$$
A_{j} \cap A_{k}=\phi^{-1}\left(B_{j}\right) \cap \phi^{-1}\left(B_{k}\right)=\phi^{-1}\left(B_{j} \cap B_{k}\right)=\phi^{-1}(\emptyset)=\emptyset
$$

whenever $j \neq k$. Hence, using that μ is a measure, we get

$$
\begin{aligned}
\mu_{\phi}\left(\bigcup_{n=1}^{\infty} B_{n}\right) & =\mu\left(\phi^{-1}\left(\bigcup_{n=1}^{\infty} B_{n}\right)\right)=\mu\left(\bigcup_{n=1}^{\infty} \phi^{-1}\left(B_{n}\right)\right)=\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \\
& =\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(\phi^{-1}\left(B_{n}\right)\right)=\sum_{n=1}^{\infty} \mu_{\phi}\left(B_{n}\right),
\end{aligned}
$$

showing that μ_{ϕ} is a measure.
b) Let $f: Y \rightarrow \overline{\mathbb{R}}$ be a measurable function (w.r.t. \mathcal{B}_{ϕ}).

- The composition $f \circ \phi: X \rightarrow \overline{\mathbb{R}}$ is measurable (w.r.t. $\mathcal{A})$:

Let $t \in \mathbb{R}$ and set $B_{t}:=f^{-1}([-\infty, t))$. Note that $B_{t} \in \mathcal{B}_{\phi}$ since f is measurable (w.r.t. \mathcal{B}_{ϕ}). This means that $\phi^{-1}\left(B_{t}\right) \in \mathcal{A}$. We therefore get that

$$
\begin{gathered}
(f \circ \phi)^{-1}([-\infty, t))=\{x \in X:(f \circ \phi)(x)<t\}=\{x \in X: f(\phi(x))<t\} \\
=\left\{x \in X: \phi(x) \in B_{t}\right\}=\phi^{-1}\left(B_{t}\right) \in \mathcal{A} .
\end{gathered}
$$

Since this holds for every $t \in \mathbb{R}$, we have thus shown that $f \circ \phi: X \rightarrow \overline{\mathbb{R}}$ is measurable (w.r.t. \mathcal{A}).
c) • For every $f: Y \rightarrow[0, \infty]$ which is measurable (w.r.t. \mathcal{B}_{ϕ}), we have

$$
\int_{Y} f d \mu_{\phi}=\int_{X} f \circ \phi d \mu
$$

We first show that this formula holds whenever $f=\mathbf{1}_{B}$ with $B \in \mathcal{B}_{\phi}$. Since

$$
\mathbf{1}_{\phi^{-1}(B)}(x)=\left\{\begin{array}{ll}
1 & \text { if } \phi(x) \in B \\
0 & \text { otherwise }
\end{array}=\mathbf{1}_{B}(\phi(x))=\left(\mathbf{1}_{B} \circ \phi\right)(x)\right.
$$

for every $x \in X$, we get that

$$
\int_{Y} \mathbf{1}_{B} d \mu_{\phi}=\mu_{\phi}(B)=\mu\left(\phi^{-1}(B)\right)=\int_{X} \mathbf{1}_{\phi^{-1}(B)} d \mu=\int_{X} \mathbf{1}_{B} \circ \phi d \mu
$$

as desired. Next, consider a nonnegative simple function, say $f=\sum_{j=1}^{n} c_{j} \mathbf{1}_{B_{j}}$ with $c_{1}, \ldots, c_{n} \geq 0$ and $B_{1}, \ldots, B_{n} \in \mathcal{B}$. By linearity of the integral, and using the first part, we get

$$
\begin{gathered}
\int_{Y} f d \mu_{\phi}=\sum_{j=1}^{n} c_{j} \int_{Y} \mathbf{1}_{B_{j}} d \mu_{\phi}=\sum_{j=1}^{n} c_{j} \int_{X} \mathbf{1}_{B_{j}} \circ \phi d \mu \\
=\int_{X}\left(\sum_{j=1}^{n} c_{j} \mathbf{1}_{B_{j}}\right) \circ \phi d \mu=\int_{X} f \circ \phi d \mu,
\end{gathered}
$$

which shows that the formula holds for all such f 's.
Finally, assume $f: Y \rightarrow[0, \infty]$ is measurable (w.r.t. \mathcal{B}_{ϕ}). Then using Lebesgue's key result, we can find an increasing sequence $\left\{f_{n}\right\}$ of nonnegative simple functions on X converging pointwise to f. Then $\left\{f_{n} \circ \phi\right\}$ is a sequence of nonnegative measurable functions on Y converging pointwise to $f \circ \phi$. Hence, using the MCT (twice) and what we just showed, we get

$$
\int_{Y} f d \mu_{\phi}=\lim _{n \rightarrow \infty} \int_{Y} f_{n} d \mu_{\phi}=\lim _{n \rightarrow \infty} \int_{X} f_{n} \circ \phi d \mu=\int_{X} f \circ \phi d \mu,
$$

as we wanted to show.
d) • $\phi(X) \in \mathcal{B}_{\phi} \quad$ because $\phi^{-1}(\phi(X))=\{x \in X: \phi(x) \in \phi(X)\}=X \in \mathcal{A}$.

- Let $B \in \mathcal{B}_{\phi}$. Then $\mu_{\phi}(B)=\mu_{\phi}(B \cap \phi(X))$:

Indeed, since

$$
\phi^{-1}(B \cap \phi(X))=\phi^{-1}(B) \cap \phi^{-1}(\phi(X))=\phi^{-1}(B) \cap X=\phi^{-1}(B)
$$

we have $\mu_{\phi}(B \cap \phi(X))=\mu\left(\phi^{-1}(B \cap \phi(X))\right)=\mu\left(\phi^{-1}(B)\right)=\mu_{\phi}(B)$.

- Let $B \in \mathcal{B}_{\phi}$ and $f: Y \rightarrow[0, \infty]$ be measurable (w.r.t. \mathcal{B}_{ϕ}). Then we have

$$
\begin{equation*}
\int_{B} f d \mu_{\phi}=\int_{B \cap \phi(X)} f d \mu_{\phi}=\int_{\phi^{-1}(B)} f \circ \phi d \mu \tag{1}
\end{equation*}
$$

Indeed, using c), we get

$$
\begin{aligned}
\int_{B} f d \mu_{\phi} & =\int_{X} f \mathbf{1}_{B} d \mu_{\phi}=\int_{X}\left(f \mathbf{1}_{B}\right) \circ \phi d \mu=\int_{X}(f \circ \phi)\left(\mathbf{1}_{B} \circ \phi\right) d \mu \\
& =\int_{X}(f \circ \phi) \mathbf{1}_{\phi^{-1}(B)} d \mu=\int_{\phi^{-1}(B)} f \circ \phi d \mu
\end{aligned}
$$

To show the first equality, note that

$$
\mu_{\phi}\left(\phi(X)^{c}\right)=\mu_{\phi}\left(\phi(X)^{c} \cap \phi(X)\right)=\mu_{\phi}(\emptyset)=0
$$

As $B \cap \phi(X)^{c} \subseteq \phi(X)^{c}$, this implies that $\mu_{\phi}\left(B \cap \phi(X)^{c}\right)=0$. Hence we get

$$
\int_{B} f d \mu_{\phi}=\int_{B \cap \phi(X)} f d \mu_{\phi}+\int_{B \cap \phi(X)^{c}} f d \mu_{\phi}=\int_{B \cap \phi(X)} f d \mu_{\phi} .
$$

e) Let \mathcal{B} be a σ-algebra on Y and assume that the map $\phi: X \rightarrow Y$ satisfies the following two conditions:
(i) $\phi^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}$,
(ii) $\phi(X) \in \mathcal{B}$.

- We have that $\mathcal{B} \subseteq \mathcal{B}_{\phi}$:

Indeed, let $B \in \mathcal{B}$. Then $\phi^{-1}(B) \in \mathcal{A}$ by (i), i.e., $B \in \mathcal{B}_{\phi}$. This shows the asserted inclusion.

Thus, we may restrict μ_{ϕ} to \mathcal{B} and get a measure on (Y, \mathcal{B}), that we also denote by μ_{ϕ}.

- Let $B \in \mathcal{B}$ and $f: Y \rightarrow[0, \infty]$ be measurable (w.r.t. \mathcal{B}). Then equation (1) holds:

We first note that, since $\mathcal{B} \subseteq \mathcal{B}_{\phi}$, we have that $B \in \mathcal{B}_{\phi}$. We also have that f is measurable (w.r.t. \mathcal{B}_{ϕ}). Indeed, if $t \in \mathbb{R}$, then $f^{-1}([-\infty, t)) \in \mathcal{B}$, so $f^{-1}([-\infty, t)) \in \mathcal{B}_{\phi}$. Since $\phi(X) \in \mathcal{B}$, this means that we can apply d) to get that equation (1) holds with f and B.

Problem 2. We consider $X=[0,2 \pi]$ (with its standard metric) and $Y=\mathbb{R}^{2}$ (with the Euclidean metric). Set $\mathcal{A}:=\mathcal{B}_{[0,2 \pi]}$ and let μ be the Lebesgue measure on $([0,2 \pi], \mathcal{A})$. Further, let $\phi:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be the map given by

$$
\phi(x):=(\cos x, \sin x), \quad 0 \leq x \leq 2 \pi .
$$

a) Set $\mathcal{B}:=\mathcal{B}_{\mathbb{R}^{2}}$.

- The map ϕ satisfies the two conditions stated in Problem 1e):

As the component functions of ϕ are continuous, the map ϕ is continuous, so $\phi^{-1}(U)$ is an open subset of $[0,2 \pi]$ whenever U is an open subset of \mathbb{R}^{2} (cf. MAT2400). This gives that $\phi^{-1}(U) \in \mathcal{A}$, i.e., $U \in \mathcal{B}_{\phi}$, for every open $U \subseteq \mathbb{R}^{2}$ (where \mathcal{B}_{ϕ} is defined as in Problem 1). As \mathcal{B}_{ϕ} is a σ-algebra, this implies that \mathcal{B}_{ϕ} contains the σ-algebra generated by the open subsets of \mathbb{R}^{2}, i.e., we have $\mathcal{B} \subseteq \mathcal{B}_{\phi}$. This says precisely that $\phi^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}$, i.e., condition (i) in 1e) holds.

Since $\phi(X)=\left\{(s, t): s^{2}+t^{2}=1\right\}$ is obviously a closed subset of \mathbb{R}^{2}, we also have $\phi(X) \in \mathcal{B}$, i.e., condition (ii) in 1e) holds.

We can now push forward μ to a measure μ_{ϕ} on $\left(\mathbb{R}^{2}, \mathcal{B}_{\mathbb{R}^{2}}\right)$, cf. Problem 1 .
b) Set $B:=\left\{(s, t) \in \mathbb{R}^{2}: 0 \leq s, t \leq 1\right\} \in \mathcal{B}_{\mathbb{R}^{2}}$.

- $\mu_{\phi}\left(\mathbb{R}^{2}\right)$ and $\mu_{\phi}(B)$ can be computed using the definition of μ_{ϕ} : Indeed, since $\phi^{-1}\left(\mathbb{R}^{2}\right)=[0,2 \pi]$ and $\phi^{-1}(B)=[0, \pi / 2] \cup\{2 \pi\}$ (make a drawing!), we get that

$$
\begin{aligned}
& \mu_{\phi}\left(\mathbb{R}^{2}\right)=\mu\left(\phi^{-1}\left(\mathbb{R}^{2}\right)\right)=\mu([0,2 \pi])=2 \pi \quad \text { and } \\
& \mu_{\phi}(B)=\mu\left(\phi^{-1}(B)\right)=\mu([0, \pi / 2])+\mu(\{2 \pi\})=\pi / 2
\end{aligned}
$$

- Set $f(s, t):=s^{2}+1$ for all $(s, t) \in \mathbb{R}^{2}$. Then $\int_{B} f d \mu_{\phi}$ can be computed as follows:

We first note that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, so it is Borel measurable, i.e., measurable (w.r.t. \mathcal{B}). Using the formula in Problem 1, we get

$$
\int_{B} f d \mu_{\phi}=\int_{[0, \pi / 2] \cup\{2 \pi\}} f(\cos x, \sin x) d \mu(x)=\int_{[0, \pi / 2]}\left(\cos ^{2} x+1\right) d \mu(x) .
$$

Since $x \mapsto \cos ^{2} x+1$ is continuous, it is Riemann-integrable on $[0, \pi / 2]$, so we get

$$
\int_{B} f d \mu_{\phi}=\int_{0}^{\pi / 2}\left(\cos ^{2} x+1\right) d x=\left[\frac{1}{4} \sin (2 x)+\frac{3}{2} x\right]_{x=0}^{x=\pi / 2}=\frac{3}{4} \pi .
$$

Problem 3. Let \mathcal{B} denote the Borel σ-algebra on \mathbb{R} and let μ be the Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

- Let $f: \mathbb{R} \rightarrow[0, \infty]$ be measurable (w.r.t. \mathcal{B}). Then we have

$$
\int_{\mathbb{R}} f d \mu=\lim _{n \rightarrow \infty} \int_{[-n, n]} f d \mu
$$

Indeed, set $f_{n}=f \mathbf{1}_{[-n, n]}$ for each $n \in \mathbb{N}$. Then $\left\{f_{n}\right\}$ is readily seen to be an increasing sequence of nonnegative measurable functions (w.r.t. \mathcal{B}) converging pointwise to f. So the MCT gives that

$$
\int_{\mathbb{R}} f d \mu=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f \mathbf{1}_{[-n, n]} d \mu=\lim _{n \rightarrow \infty} \int_{[-n, n]} f d \mu
$$

- Set $f(x):=e^{-|x|}$ for all $x \in \mathbb{R}$. Then $\int_{\mathbb{R}} f d \mu$ can be computed as follows:

Since f is continuous on \mathbb{R}, it is Riemann-integrable on $[-n, n]$ for each $n \in \mathbb{N}$. Thus, using the first part, we get

$$
\begin{gathered}
\int_{\mathbb{R}} f d \mu=\lim _{n \rightarrow \infty} \int_{[-n, n]} e^{-|x|} d \mu(x)=\lim _{n \rightarrow \infty} \int_{-n}^{n} e^{-|x|} d x \\
=\lim _{n \rightarrow \infty}\left[-2 e^{-x}\right]_{x=0}^{x=n}=\lim _{n \rightarrow \infty} 2\left(1-e^{-n}\right)=2 .
\end{gathered}
$$

Problem 4. Let \mathcal{B} denote the Borel σ-algebra on $(0, \infty)$ and let μ be the Lebesgue measure on $((0, \infty), \mathcal{B})$. For each $n \in \mathbb{N}$, let $f_{n}:(0, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
f_{n}(x):=\frac{n \sin \left(\frac{x}{n}\right)}{x\left(1+x^{2}\right)}, \quad x>0 .
$$

a) - Each f_{n} is integrable (w.r.t. μ):

Being continuous on $(0, \infty)$, each f_{n} is measurable (w.r.t. \mathcal{B}). Moreover, since $|\sin (t)| \leq t$ for each $t>0$, we have that

$$
\left|f_{n}(x)\right| \leq \frac{x / n}{x\left(1+x^{2}\right)}=\frac{1}{n\left(1+x^{2}\right)} \leq \frac{1}{1+x^{2}}
$$

for every $n \in \mathbb{N}$ and $x>0$.
Set $g(x):=\left(1+x^{2}\right)^{-1}$ for $x \geq 0$. We also denote the Lebesgue measure on $[0, \infty]$ by μ. Being continuous, g is Borel measurable on $[0, \infty]$, and

$$
\int_{(0, \infty)} g d \mu=\int_{[0, \infty)} g d \mu \quad(\text { since } \mu(\{0\})=0) .
$$

Hence the MCT gives (in a similar way as in Problem 3) that

$$
\begin{aligned}
& \quad \int_{(0, \infty)} g d \mu=\int_{[0, \infty)} g d \mu=\lim _{n \rightarrow \infty} \int_{[0, n]} \frac{1}{1+x^{2}} d \mu(x) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{1}{1+x^{2}} d x=\lim _{n \rightarrow \infty} \arctan n=\pi / 2<\infty .
\end{aligned}
$$

Thus g is integrable on $(0, \infty)$ (w.r.t. μ). As $\left|f_{n}\right| \leq g$ on $(0, \infty)$, we get

$$
\int_{(0, \infty)}\left|f_{n}\right| d \mu \leq \int_{(0, \infty)} g \mathrm{~d} \mu<\infty
$$

for every $n \in \mathbb{N}$, showing that each f_{n} is integrable (w.r.t. μ).
b) - We have that

$$
\lim _{n \rightarrow \infty} \int_{(0, \infty)} f_{n} d \mu=\frac{\pi}{2}
$$

Indeed, we have seen above that $\left|f_{n}\right| \leq g$ on $(0, \infty)$ for each n, and that g is integrable on $(0, \infty)$ (w.r.t. μ). Further, for every $x>0$, we have

$$
\lim _{n \rightarrow \infty} \frac{n \sin (x / n)}{x}=\lim _{n \rightarrow \infty} \frac{\sin (x / n)}{x / n}=1
$$

hence

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\frac{1}{1+x^{2}}=g(x)
$$

Thus, applying the LDCT, we get that

$$
\lim _{n \rightarrow \infty} \int_{(0, \infty)} f_{n} d \mu=\int_{(0, \infty)} g d \mu=\frac{\pi}{2}
$$

