
Chapter 7

Measure and Integration

In calculus you have learned how to calculate the size of different kinds of sets: the
length of a curve, the area of a region or a surface, the volume or mass of a solid.
In probability theory and statistics you have learned how to compute the size of
other kinds of sets: the probability that certain events happen or do not happen.

In this chapter we shall develop a general theory for the size of sets, a theory
that covers all the examples above and many more. Just as the concept of a metric
space gave us a general setting for discussing the notion of distance, the concept of
a measure space will provide us with a general setting for discussing the notion of
size.

In calculus we use integration to calculate the size of sets. In this chapter we
turn the situation around: We first develop a theory of size and then use it to define
integrals of a new and more general kind. As we shall sometimes wish to compare
the two theories, we shall refer to integration as taught in calculus as Riemann
integration in honor of the German mathematician Bernhard Riemann (1826-1866)
and the new theory developed here as Lebesgue integration in honor of the French
mathematician Henri Lebesgue (1875-1941).

Let us begin by taking a look at what we might wish for in a theory of size.
Assume that we want to measure the size of subsets of a set X (if you need something
concrete to concentrate on, you may let X = R2 and think of the area of subsets
of R2, or let X = R3 and think of the volume of subsets of R3). What properties
do we want such a measure to have?

Well, if µ(A) denotes the size of a subset A of X, we would expect

(i) µ(∅) = 0.

as nothing can be smaller than the empty set. In addition, it seems reasonable
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240 7. Measure and Integration

to expect:

(ii) If A1, A2, A3 . . . is a disjoint sequence of sets, then

µ(
⋃

n∈N
An) =

∞∑

n=1

µ(An).

These two conditions are, in fact, all we need to develop a reasonable theory
of size, except for one complication: It turns out that we cannot in general expect
to measure the size of all subsets of X – some subsets are just so irregular that
we cannot assign a size to them in a meaningful way. This means that before
we impose conditions (i) and (ii) above, we need to decide which properties the
measurable sets (those we are able to assign a size to) should have. If we call the
collection of all measurable sets A, the statement A ∈ A is just a shorthand for “A
is measurable”.

The first condition is simple; since we have already agreed that µ(∅) = 0, we
must surely want to impose

(iii) ∅ ∈ A.

For the next condition, assume that A ∈ A. Intuitively, this means that we
should be able to assign a size µ(A) to A. If the size µ(X) of the entire space is
finite, we ought to have µ(Ac) = µ(X)−µ(A), and hence Ac should be measurable.
We shall impose this condition even when X has infinite size:

(iv) If A ∈ A, then Ac ∈ A.

For the third and last condition, assume that {An} is a sequence of disjoint
sets in A. In view of condition (ii), it is natural to assume that

⋃
n∈N An is in A.

We shall impose this condition even when the sequence is not disjoint (there are
arguments for this that I don’t want to get involved in at the moment):

(v) If {An}n∈N is a sequence of sets in A, then
⋃

n∈N An ∈ A.

When we now begin to develop the theory systematically, we shall take the five
conditions above as our starting point.

7.1. Measure spaces

Assume that X is a nonempty set. A collection A of subsets of X that satisfies
conditions (iii)-(v) above is called a σ-algebra. More succinctly:

Definition 7.1.1. Assume that X is a nonempty set. A collection A of subsets of
X is called a σ-algebra if the following conditions are satisfied:

(i) ∅ ∈ A.

(ii) If A ∈ A, then Ac = X \ A ∈ A.

(iii) If {An}n∈N is a sequence of sets in A, then
⋃

n∈N An ∈ A.

The sets in A are called measurable if it is clear which σ-algebra we have in mind,
and A-measurable if the σ-algebra needs to be specified. If A is a σ-algebra of subsets
of X, we call the pair (X, A) a measurable space.
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As already mentioned, the intuitive idea is that the sets in A are those that are
so regular that we can measure their size.

Before we introduce measures, we take a look at some simple consequences of
the definition above:

Proposition 7.1.2. Assume that A is a σ-algebra on X. Then

a) X ∈ A.

b) If {An}n∈N is a sequence of sets in A, then
⋂

n∈N An ∈ A.

c) If A1, A2, . . . , An ∈ A, then A1∪A2∪ . . .∪An ∈ A and A1∩A2∩ . . .∩An ∈ A.

d) If A, B ∈ A, then A \ B ∈ A.

Proof. a) By conditions (i) and (ii) in the definition, X = ∅c ∈ A.

b) By condition (ii), each Ac
n is in A, and hence

⋃
n∈N Ac

n ∈ A by condition
(iii). By one of De Morgan’s laws,

( ⋂

n∈N
An

)c
=

⋃

n∈N
Ac

n,

and hence
(⋂

n∈N An

)c
is in A. Using condition (ii) again, we see that

⋂
n∈N An is

in A.

c) If we extend the finite sequence A1, A2, . . . , An to an infinite one A1, A2,
. . . , An, ∅, ∅, . . ., we see that

A1 ∪ A2 ∪ . . . ∪ An =
⋃

n∈N
An ∈ A

by condition (iii). A similar trick works for intersections, but we have to extend
the sequence A1, A2, . . . , An to A1, A2, . . . , An, X, X, . . . instead of A1, A2, . . . , An,
∅, ∅, . . .. The details are left to the reader.

d) We have A \ B = A ∩ Bc, which is in A by condition (ii) and c) above. !

It is time to turn to measures. Before we look at the definition, there is a small
detail we have to take care of. As you know from calculus, there are sets of infinite
size – curves of infinite length, surfaces of infinite area, solids of infinite volume. We
shall use the symbol ∞ to indicate that sets have infinite size. This does not mean
that we think of ∞ as a number; it is just a symbol to indicate that something has
size bigger than can be specified by a number.

A measure µ assigns a value µ(A) (“the size of A”) to each set A in the σ-algebra
A. The value is either ∞ or a nonnegative number. If we let

R+ = [0,∞) ∪ {∞}

be the set of extended, nonnegative real numbers , µ is a function from A to R+. In
addition, µ has to satisfy conditions (i) and (ii) above, i.e.:

Definition 7.1.3. Assume that (X, A) is a measurable space. A measure on (X, A)
is a function µ : A → R+ such that

(i) µ(∅) = 0.
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(ii) (Countable additivity) If A1, A2, A3 . . . is a disjoint sequence of sets from A,
then

µ(
∞⋃

n=1

AN ) =
∞∑

n=1

µ(An).

(We treat infinite terms in the obvious way: If some of the terms µ(An) in
the sum equal ∞, then the sum itself also equals ∞.)

The triple (X, A, µ) is then called a measure space.

Let us take a look at some examples.

Example 1: Let X = {x1, x2, . . . , xn} be a finite set, and let A be the collection
of all subsets of X. For each set A ⊆ X, let

µ(A) = |A| = the number of elements in A.

Then µ is called the counting measure on X, and (X, A, µ) is a measure space. ♣

The next two examples show two simple modifications of counting measures.

Example 2: Let X and A be as in Example 1. For each element x ∈ X, let m(x)
be a nonnegative, real number (the weight of x). For A ⊆ X, let

µ(A) =
∑

x∈A

m(x).

Then (X, A, µ) is a measure space. ♣

Example 3: Let X = {x1, x2, . . . , xn, . . .} be a countable set, and let A be the
collection of all subsets of X. For each set A ⊆ X, let

µ(A) = the number of elements in A,

where we put µ(A) = ∞ if A has infinitely many elements. Again µ is called the
counting measure on X, and (X, A, µ) is a measure space. ♣

The next example is also important, but rather special.

Example 4: Let X be a any set, and let A be the collection of all subsets of X.
Choose an element a ∈ X, and define

µ(A) =






1 if a ∈ A

0 if a /∈ A.

Then (X, A, µ) is a measure space, and µ is called the point measure or Dirac mea-
sure at a. ♣

The examples we have looked at so far are important special cases, but rather
untypical of the theory – they are too simple to really need the full power of measure
theory. The next examples are much more typical, but at this stage we cannot define
them precisely, only give an intuitive description of their most important properties.
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Example 5: In this example X = R, A is a σ-algebra containing all open and
closed sets (we shall describe it more precisely later), and µ is a measure on (X, A)
such that

µ([a, b]) = b − a

whenever a ≤ b. This measure is called the Lebesgue measure on R, and we can
think of it as an extension of the notion of length to more general sets. The sets in A
are those that can be assigned a generalized “length” µ(A) in a systematic way. ♣

Originally, measure theory was the theory of the Lebesgue measure, and it
remains one of the most important examples. It is not at all obvious that such a
measure exists, and one of our main tasks in the next chapter is to show that it
does.

Lebesgue measure can be extended to higher dimensions:

Example 6: In this example X = R2, A is a σ-algebra containing all open and
closed sets, and µ is a measure on (X, A) such that

µ([a, b] × [c, d]) = (b − a)(d − c)

whenever a ≤ b and c ≤ d (this just means that the measure of a rectangle equals
its area). This measure is called the Lebesgue measure on R2, and we can think
of it as an extension of the notion of area to more general sets. The sets in A are
those that can be assigned a generalized “area” µ(A) in a systematic way.

There are obvious extensions of this example to higher dimensions: The three
dimensional Lebesgue measure assigns value

µ([a, b] × [c, d] × [e, f ]) = (b − a)(d − c)(f − e)

to all rectangular boxes and is a generalization of the notion of volume. The n-
dimensional Lebesgue measure assigns value

µ([a1, b1] × [a2, b2] × · · · × [an, bn]) = (b1 − a1)(b2 − a2) · . . . · (bn − an)

to all n-dimensional, rectangular boxes and represents n-dimensional volume. ♣

Although we have not yet constructed the Lebesgue measures, we shall feel free
to use them in examples and exercises. Let us finally take a look at two examples
from probability theory.

Example 7: Assume we want to study coin tossing, and that we plan to toss the
coin N times. If we let H denote “heads” and T “tails”, the possible outcomes can
be represented as all sequences of H’s and T’s of length N . If the coin is fair, all
such sequences have probability 1

2N .

To fit this into the framework of measure theory, let X be the set of all sequences
of H’s and T’s of length N , let A be the collection of all subsets of X, and let µ be
given by

µ(A) =
|A|
2N

,
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where |A| is the number of elements in A. Hence µ is the probability of the event
A. It is easy to check that µ is a measure on (X, A). ♣

In probability theory it is usual to call the underlying space Ω (instead of X)
and the measure P (instead of µ), and we shall often refer to probability spaces as
(Ω, A, P ).

Example 8: We are still studying coin tosses, but this time we don’t know be-
forehand how many tosses we are going to make, and hence we have to consider all
sequences of H’s and T’s of infinite length, that is, all sequences

ω = ω1,ω2,ω3, . . . ,ωn, . . . ,

where each ωi is either H or T. We let Ω be the collection of all such sequences.

To describe the σ-algebra and the measure, we first need to introduce the so-
called cylinder sets : If a = a1, a2, . . . , an is a finite sequence of H’s and T’s, we
let

Ca = {ω ∈ Ω |ω1 = a1,ω2 = a2, . . . ,ωn = an}
and call it the cylinder set generated by a. Note that Ca consists of all sequences
of coin tosses beginning with the sequence a1, a2, . . . , an. Since the probability of
starting a sequence of coin tosses with a1, a2, . . . , an is 1

2n , we want a measure such
that P (Ca) = 1

2n .

The measure space (Ω, A, P ) of infinite coin tossing consists of Ω, a σ-algebra A
containing all cylinder sets, and a measure P such that P (Ca) = 1

2n for all cylinder
sets of length n. It is not at all obvious that such a measure space exists, but it
does (as we shall prove in the next chapter), and it is the right setting for the study
of coin tossing of unrestricted length. ♣

Let us return to Definition 7.1.3 and derive some simple, but extremely useful
consequences. Note that all these properties are properties we would expect of a
measure.

Proposition 7.1.4. Assume that (X, A, µ) is a measure space.

a) (Finite additivity) If A1, A2, . . . , Am are disjoint sets in A, then

µ(A1 ∪ A2 ∪ . . . ∪ Am) = µ(A1) + µ(A2) + . . . + µ(Am),

b) (Monotonicity) If A, B ∈ A and B ⊆ A, then µ(B) ≤ µ(A).

c) If A, B ∈ A, B ⊆ A, and µ(A) < ∞, then µ(A \ B) = µ(A) − µ(B).

d) (Countable subadditivity) If A1, A2, . . . , An, . . . is a (not necessarily disjoint)
sequence of sets from A, then

µ(
⋃

n∈N
An) ≤

∞∑

n=1

µ(An).

Proof. a) We fill out the sequence with empty sets to get an infinite sequence

A1, A2, . . . , Am, Am+1, Am+2 . . . ,
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where An = ∅ for n > m. Then clearly

µ(A1 ∪ A2 ∪ . . . ∪ Am) = µ(
⋃

n∈N
An) =

∞∑

n=1

µ(An) = µ(A1) + µ(A2) + . . . + µ(An),

where we have used the two parts of Definition 7.1.3.

b) We write A = B ∪ (A \ B). By Proposition 7.1.2d), A \ B ∈ A, and hence
by part a) above,

µ(A) = µ(B) + µ(A \ B) ≥ µ(B).

c) By the argument in part b),

µ(A) = µ(B) + µ(A \ B).

Since µ(A) is finite, so is µ(B), and we may subtract µ(B) on both sides of the
equation to get the result.

d) Define a new, disjoint sequence of sets B1, B2, . . . by:

B1 = A1, B2 = A2 \ A1, B3 = A3 \ (A1 ∪A2), B4 = A4 \ (A1 ∪A2 ∪A3), . . . .

Note that
⋃

n∈N Bn =
⋃

n∈N An (make a drawing). Hence

µ(
⋃

n∈N
An) = µ(

⋃

n∈N
Bn) =

∞∑

n=1

µ(Bn) ≤
∞∑

n=1

µ(An),

where we have applied part (ii) of Definition 7.1.3 to the disjoint sequence {Bn}
and in addition used that µ(Bn) ≤ µ(An) by part b) above. !

The next properties are a little more complicated, but not unexpected. They
are often referred to as continuity of measures :

Proposition 7.1.5 (Continuity of Measure). Let {An}n∈N be a sequence of mea-
surable sets in a measure space (X, A, µ).

a) If the sequence is increasing (i.e., An ⊆ An+1 for all n), then

µ(
⋃

n∈N
An) = lim

n→∞
µ(An).

b) If the sequence is decreasing (i.e., An ⊇ An+1 for all n), and µ(A1) is finite,
then

µ(
⋂

n∈N
An) = lim

n→∞
µ(An).

Proof. a) If we put E1 = A1 and En = An \ An−1 for n> 1, the sequence {En} is
disjoint, and

⋃n
k=1 Ek = An for all N (make a drawing). Hence

µ(
⋃

n∈N
An) = µ(

⋃

n∈N
En) =

∞∑

n=1

µ(En)

= lim
n→∞

n∑

k=1

µ(Ek) = lim
n→∞

µ(
n⋃

k=1

Ek) = lim
n→∞

µ(An),

where we have used the additivity of µ twice.
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b) We first observe that {A1 \ An}n∈N is an increasing sequence of sets with
union A1 \

⋂
n∈N An. By part a), we thus have

µ(A1 \
⋂

n∈N
An) = lim

n→∞
µ(A1 \ An).

Applying part c) of the previous proposition on both sides, we get

µ(A1) − µ(
⋂

n∈N
An) = lim

n→∞
(µ(A1) − µ(An)) = µ(A1) − lim

n→∞
µ(An).

Since µ(A1) is finite, we get µ(
⋂

n∈N An) = limn→∞ µ(An), as we set out to prove.
!

Remark: The finiteness condition in part b) may look like an unnecessary conse-
quence of a clumsy proof, but it is actually needed as the following example shows:
Let X = N, let A be the set of all subsets of A, and let µ(A) = |A| (the num-
ber of elements in A). If An = {n, n + 1, . . .}, then µ(An) = ∞ for all n, but
µ(
⋂

n∈N An) = µ(∅) = 0. Hence limn→∞ µ(An) .= µ(
⋂

n∈N An).

The properties we have proved in this section are the basic tools we need to
handle measures. The next section will take care of a more technical issue.

Exercises for Section 7.1.

1. Verify that the space (X, A, µ) in Example 1 is a measure space.

2. Verify that the space (X, A, µ) in Example 2 is a measure space.

3. Verify that the space (X, A, µ) in Example 3 is a measure space.

4. Verify that the space (X, A, µ) in Example 4 is a measure space.

5. Verify that the space (X, A, µ) in Example 7 is a measure space.

6. Describe a measure space that is suitable for modeling tossing a die N times.

7. Show that if µ and ν are two measures on the same measurable space (X, A), then
for all positive numbers α, β ∈ R, the function λ : A → R+ given by

λ(A) = αµ(A) + βν(A)

is a measure.

8. Assume that (X, A, µ) is a measure space and that A ∈ A. Define µA : A → R+ by

µA(B) = µ(A ∩ B) for all B ∈ A.

Show that µA is a measure.

9. Let X be an uncountable set, and define

A = {A ⊆ X | A or Ac is countable}.

Show that A is a σ-algebra. Define µ : A → R+ by

µ(A) =






0 if A is countable

1 if Ac is countable.

Show that µ is a measure.
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10. Assume that (X, A) is a measurable space, and let f : X → Y be any function from
X to a set Y . Show that

B = {B ⊆ Y | f−1(B) ∈ A}

is a σ-algebra.

11. Assume that (X, A) is a measurable space, and let f : Y → X be any function from
a set Y to X. Show that

B = {f−1(A) | A ∈ A}

is a σ-algebra.

12. Let X be a set and A a collection of subsets of X such that:
a) ∅ ∈ A.
b) If A ∈ A, then Ac ∈ A.
c) If {An}n∈N is a sequence of sets from A, then

⋂
n∈N An ∈ A.

Show that A is a σ-algebra.

13. A measure space (X, A, µ) is called atomless if µ({x}) = 0 for all x ∈ X. Show that
in an atomless space, all countable sets have measure 0.

14. Assume that µ is a measure on R such that µ([− 1
n , 1

n ]) = 1 + 2
n for each n ∈ N.

Show that µ({0}) = 1.

15. Assume that a measure space (X, A, µ) contains sets of arbitrarily large finite mea-
sure, i.e., for each N ∈ N, there is a set A ∈ A such that N ≤ µ(A) < ∞. Show that
there is a set B ∈ A such that µ(B) = ∞.

16. Assume that µ is a measure on R such that µ([a, b]) = b − a for all closed intervals
[a, b], a < b. Show that µ((a, b)) = b − a for all open intervals. Conversely, show
that if µ is a measure on R such that µ((a, b)) = b − a for all open intervals [a, b],
then µ([a, b]) = b − a for all closed intervals.

17. Let X be a nonempty set. An algebra is a collection A of subset of X such that
(i) ∅ ∈ A.
(ii) If A ∈ A, then Ac ∈ A.
(iii) If A, B ∈ A, then A ∪ B ∈ A.
Show that if A is an algebra, then:

a) If A1, A2, . . . , An ∈ A, then A1 ∪ A2 ∪ . . . ∪ An ∈ A (use induction on n).
b) If A1, A2, . . . , An ∈ A, then A1 ∩ A2 ∩ . . . ∩ An ∈ A.
c) Put X = N and define A by

A = {A ⊆ N | A or Ac is finite}.

Show that A is an algebra, but not a σ-algebra.
d) Assume that A is an algebra closed under disjoint, countable unions (i.e.,⋃

n∈N An ∈ A for all disjoint sequences {An} of sets from A). Show that
A is a σ-algebra.

18. Let X be a nonempty set. We look at a family D of subsets of X satisfying the
following conditions:

(i) ∅ ∈ D.
(ii) If A ∈ D, then Ac ∈ D .
(iii) If {Bn} is a pairwise disjoint sequence of sets in D (i.e., Bi ∩Bj = ∅ for i *= j),

then
⋃

n∈N Bn ∈ D.
Such a family D is called a Dynkin system.

a) Show that for all sets A, B ⊆ X, we have A \ B = (Ac ∪ B)c.
b) Show that if A, B ∈ D and B ⊆ A, then A \ B ∈ D. (Hint: You may find part

a) helpful.)
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c) Show that if {An} is an increasing sequence of sets in D (i.e., An ⊆ An+1 for
all n ∈ N), then

⋃
n∈N An ∈ D.

19. Let (X, A, µ) be a measure space and assume that {An} is a sequence of sets from
A such that

∑∞
n=1 µ(An) < ∞. Let

A = {x ∈ X | x belongs to infinitely many of the sets An}.

Show that A ∈ A and that µ(A) = 0.

7.2. Complete measures

Assume that (X, A, µ) is a measure space, and that A ∈ A with µ(A) = 0. It is
natural to think that if N ⊆ A, then N must also be measurable (and have measure
0), but there is nothing in the definition of a measure that says so, and, in fact, it is
not difficult to find measure spaces where this property does not hold (see Exercise
1). This is often a nuisance, and we shall now see how it can be cured.

First, some definitions:

Definition 7.2.1. Assume that (X, A, µ) is a measure space. A set N ⊆ X is
called a null set if N ⊆ A for some A ∈ A with µ(A) = 0. The collection of all null
sets is denoted by N . If all null sets belong to A, we say that the measure space is
complete.

Note that if N is a null set that happens to belong to A, then µ(N) = 0 by
Proposition 7.1.4b).

Our purpose in this section is to show that any measure space (X, A, µ) can be
extended to a complete space (i.e., we can find a complete measure space (X, Ā, µ̄)
such that A ⊆ Ā and µ̄(A) = µ(A) for all A ∈ A).

We begin with a simple observation:

Lemma 7.2.2. If N1, N2, . . . are null sets, then
⋃

n∈N Nn is a null set.

Proof. For each n, there is a set An ∈ A such that µ(An) = 0 and Nn ⊆ An. Since⋃
n∈N Nn ⊆

⋃
n∈N An and

µ(
⋃

n∈N
An) ≤

∞∑

n=1

µ(An) = 0

by Proposition 7.1.4d),
⋃

n∈N Nn is a null set. !

The next lemma tells us how we can extend a σ-algebra to include the null sets.

Lemma 7.2.3. If (X, A, µ) is a measure space, then

Ā = {A ∪ N | A ∈ A and N ∈ N}
is the smallest σ-algebra containing A and N (in the sense that if B is any other
σ-algebra containing A and N , then Ā ⊆ B).

Proof. If we can only prove that Ā is a σ-algebra, the rest will be easy: Any σ-
algebra B containing A and N must necessarily contain all sets of the form A ∪ N
and hence be larger than Ā, and since ∅ belongs to both A and N , we have A ⊆ Ā
and N ⊆ Ā.
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To prove that Ā is a σ-algebra, we need to check the three conditions in Defi-
nition 7.1.1. Since ∅ belongs to both A and N , condition (i) is obviously satisfied,
and condition (iii) follows from the identity

⋃

n∈N
(An ∪ Nn) =

⋃

n∈N
An ∪

⋃

n∈N
Nn

and the preceding lemma.

It remains to prove condition (ii), and this is the tricky part. Given a set
A ∪ N ∈ Ā, we must prove that (A ∪ N)c ∈ Ā. Observe first that we can assume
that A and N are disjoint; if not, we just replace N by N \ A. Next observe that
since N is a null set, there is a set B ∈ A such that N ⊆ B and µ(B) = 0. We may
also assume that A and B are disjoint; if not, we just replace B by B \ A. Since

(A ∪ N)c = (A ∪ B)c ∪ (B \ N)

(see Figure 7.2.1), where (A ∪ B)c ∈ A and B \ N ∈ N , we see that (A ∪ N)c ∈ Ā
and the lemma is proved. !

A

N

B

X

(A ∪ B)c

B \ N

Figure 7.2.1. (A ∪ N)c = (A ∪ B)c ∪ (B \ N)

The next step is to extend µ to a measure on Ā. Here is the key observation:

Lemma 7.2.4. If A1, A2 ∈ A and N1, N2 ∈ N are such that A1 ∪ N1 = A2 ∪ N2,
then µ(A1) = µ(A2).

Proof. Let B2 be a set in A such that N2 ⊆ B2 and µ(B2) = 0. Then A1 ⊆
A1 ∪ N1 = A2 ∪ N2 ⊆ A2 ∪ B2, and hence

µ(A1) ≤ µ(A1 ∪ B2) ≤ µ(A2) + µ(B2) = µ(A2).

Interchanging the roles of A1 and A2, we get the opposite inequality µ(A2) ≤ µ(A1),
and hence we must have µ(A1) = µ(A2). !

We are now ready for the main result. It shows that we can always extend a
measure space to a complete measure space in a controlled manner. The measure
space (X, Ā, µ̄) in the theorem below is called the completion of the original measure
space (X, A, µ).

Theorem 7.2.5. Assume that (X, A, µ) is a measure space, let

Ā = {A ∪ N | A ∈ A and N ∈ N}
and define µ̄ : Ā → R+ by

µ̄(A ∪ N) = µ(A)
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for all A ∈ A and all N ∈ N . Then (X, Ā, µ̄) is a complete measure space, and µ̄
is an extension of µ, i.e., µ̄(A) = µ(A) for all A ∈ A.

Proof. We already know that Ā is a σ-algebra, and by the lemma above, the
definition

µ̄(A ∪ N) = µ(A)

is legitimate (i.e., it only depends on the set A ∪ N and not on the sets A ∈ A,
N ∈ N we use to represent it). Also, we clearly have µ̄(A) = µ(A) for all A ∈ A.

To prove that µ̄ is a measure, observe that since obviously µ̄(∅) = 0, we just
need to check that if {Bn} is a disjoint sequence of sets in Ā, then

µ̄(
⋃

n∈N
Bn) =

∞∑

n=1

µ̄(Bn).

For each n, pick sets An ∈ A, Nn ∈ N such that Bn = An ∪ Nn. Then the An’s
are clearly disjoint since the Bn’s are, and since

⋃
n∈N Bn =

⋃
n∈N An ∪

⋃
n∈N Nn,

we get

µ̄(
⋃

n∈N
Bn) = µ(

⋃

n∈N
An) =

∞∑

n=1

µ(An) =
∞∑

n=1

µ̄(Bn).

It remains to check that µ̄ is complete. Assume that C ⊆ D, where µ̄(D) = 0;
we must show that C ∈ Ā. Since µ̄(D) = 0, D is of the form D = A ∪ N , where A
is in A with µ(A) = 0, and N is in N . By definition of N , there is a B ∈ A such
that N ⊆ B and µ(B) = 0. But then C ⊆ A ∪ B, where µ(A ∪ B) = 0, and hence
C is in N and hence in Ā. !

In Lemma 7.2.3 we proved that Ā is the smallest σ-algebra containing A and
N . This an instance of a more general phenomenon: Given a collection B of subsets
of X, there is always a smallest σ-algebra A containing B. It is called the σ-algebra
generated by B and is often designated by σ(B). The proof that σ(B) exists is not
difficult, but quite abstract:

Proposition 7.2.6. Let X be a nonempty set and B a collection of subsets of X.
Then there exists a smallest σ-algebra σ(B) containing B (in the sense that if C is
any other σ-algebra containing B, then σ(B) ⊆ C).

Proof. Observe that there is at least one σ-algebra containing B, namely the σ-
algebra of all subsets of X. This guarantees that the following definition makes
sense:

σ(B) = {A ⊆ X | A belongs to all σ-algebras containing B}.

It suffices to show that σ(B) is a σ-algebra as it then clearly must be the smallest
σ-algebra containing B.

We must check the three conditions in Definition 7.1.1. For (i), just observe
that since ∅ belongs to all σ-algebras, it belongs to σ(B). For (ii), observe that
if A ∈ σ(B), then A belongs to all σ-algebras containing B. Since σ-algebras are
closed under complements, Ac belongs to the same σ-algebras, and hence to σ(B).
The argument for (iii) is similar: Assume that the sets An, n ∈ N, belong to σ(B).
Then they belong to all σ-algebras containing B, and since σ-algebras are closed
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under countable unions, the union
⋃

n∈N An belongs to the same σ-algebras and
hence to σ(B). !

In many applications, the underlying set X is also a metric space (e.g., X = Rd

for the Lebesgue measure). In this case the σ-algebra σ(G) generated by the collec-
tion G of open sets is called the Borel σ-algebra, a measure defined on σ(G) is called
a Borel measure, and the sets in σ(G) are called Borel sets . Most useful measures
on metric spaces are either Borel measures or completions of Borel measures.

We can now use the results and terminology of this section to give a more
detailed description of the Lebesgue measure on Rd. It turns out (as we shall prove
in the next chapter) that there is a unique measure on the Borel σ-algebra σ(G)
such that

µ([a1, b1] × [a2, b2] × · · · × [ad, bd]) = (b1 − a1)(b2 − a2) · . . . · (bd − ad)

whenever a1 < b1, a2 < b2,. . . , ad < bd (i.e., µ assigns the “right” value to all
rectangular boxes). The completion of this measure is the Lebesgue measure on
Rd.

We can give a similar description of the space of all infinite series of coin tosses
in Example 8 of Section 7.1. In this setting one can prove that there is a unique
measure on the σ-algebra σ(C) generated by the cylinder sets such that P (Ca) = 1

2n

for all cylinder sets of length n. The completion of this measure is the one used to
model coin tossing. We shall carry out this construction in Section 8.6.

Exercises to Section 7.2.

1. Let X = {0, 1, 2} and let A = {∅, {0, 1}, {2},X}.
a) Show that A is a σ-algebra.
b) Define µ : A → R+ by: µ(∅) = µ({0, 1}) = 0, µ({2}) = µ(X) = 1. Show that µ

is a measure.
c) Show that µ is not complete, and describe the completion (X, Ā, µ̄) of (X, A, µ).

2. Redo Problem 1 for X = {0, 1, 2, 3}, A = {∅, {0, 1}, {2, 3}, X}, and µ(∅) = µ({0, 1})
= 0, µ({2, 3}) = µ(X) = 1.

3. Let (X, A, µ) be a complete measure space. Assume that A, B ∈ A with µ(A) =
µ(B) < ∞. Show that if A ⊆ C ⊆ B, then C ∈ A.

4. Let A and B be two collections of subsets of X. Assume that any set in A belongs
to σ(B) and that any set in B belongs to σ(A). Show that σ(A) = σ(B).

5. Assume that X is a metric space, and let G be the collection of all open sets and F
the collection of all closed sets. Show that σ(G) = σ(F).

6. Let X be a nonempty set. An algebra is a collection A of subset of X such that
(i) ∅ ∈ A.
(ii) If A ∈ A, then Ac ∈ A.
(iii) If A, B ∈ A, then A ∪ B ∈ A.
Show that if B is a collection of subsets of X, there is a smallest algebra A containing
B.

7. Let X be a nonempty set. A monotone class is a collection M of subset of X such
that

(i) If {An} is an increasing sequence of sets from M, then
⋃

n∈N An ∈ M.
(ii) If {An} is a decreasing sequence of sets from M, then

⋂
n∈N An ∈ M.
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Show that if B is a collection of subsets of X, there is a smallest monotone class M
containing B.

8. Let X be a nonempty set. A family D of subsets of X is called a Dynkin system if
it satisfies the following conditions:

(i) ∅ ∈ D.
(ii) If A ∈ D, then Ā ∈ D .
(iii) If {Bn} is a pairwise disjoint sequence of sets in D (i.e., Bi ∩Bj = ∅ for i *= j),

then
⋃

n∈N Bn ∈ D.
Show that if B is a collection of subsets of X, there is a smallest Dynkin system D
containing B.

7.3. Measurable functions

One of the main purposes of measure theory is to provide a richer and more flexible
foundation for integration theory, but before we turn to integration, we need to
look at the functions we hope to integrate, the measurable functions. As functions
taking the values ∞ and −∞ will occur naturally as limits of sequences of ordinary
functions, we choose to include them from the beginning; hence we shall study
functions

f : X → R,

where (X, A, µ) is a measure space and R = R ∪ {−∞,∞} is the set of extended
real numbers . Don’t spend too much effort on trying to figure out what −∞ and
∞ “really” are; they are just convenient symbols for describing divergence.

To some extent we may extend ordinary algebra to R, e.g., we shall let

∞ + ∞ = ∞, −∞−∞ = −∞

and

∞ · ∞ = ∞, (−∞) · ∞ = −∞, (−∞) · (−∞) = ∞.

If r ∈ R, we similarly let

∞ + r = ∞, −∞ + r = −∞.

For products, we have to take the sign of r into account, hence

∞ · r =






∞ if r > 0

−∞ if r < 0,

and similarly for (−∞) · r. We also have a natural ordering of R: If a ∈ R, then

−∞ < a < ∞.

All the rules above are natural and intuitive. Expressions that do not have
an intuitive interpretation, are usually left undefined, e.g., is ∞−∞ not defined.
There is one exception to this rule; it turns out that in measure theory (but not in
other parts of mathematics!) it is convenient to define 0 · ∞ = ∞ · 0 = 0.

Since algebraic expressions with extended real numbers are not always defined,
we need to be careful and always check that our expressions make sense.
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We are now ready to define measurable functions:

Definition 7.3.1. Let (X, A, µ) be a measure space. A function f : X → R is
measurable (with respect to A) if

f−1([−∞, r)) ∈ A
for all r ∈ R. In other words, the set

{x ∈ X : f(x) < r}
must be measurable for all r ∈ R.

The half-open intervals in the definition are just a convenient starting point
for showing that the inverse images of open and closed sets are measurable, but to
prove this, we need a little lemma:

Lemma 7.3.2. Any nonempty, open set G in R is a countable union of open
intervals.

Proof. Call an open interval (a, b) rational if the endpoints a, b are rational num-
bers. As there are only countably many rational numbers, there are only countably
many rational intervals. It is not hard to check that G is the union of those rational
intervals that are contained in G. !
Proposition 7.3.3. If f : X → R is measurable, then f−1(I) ∈ A for all intervals
I = (s, r), I = (s, r], I = [s, r), I = [s, r] where s, r ∈ R. Indeed, f−1(A) ∈ A for all
open and closed sets A ⊆ R.

Proof. We use that inverse images commute with intersections, unions, and com-
plements (see Section 1.4) . First observe that for any r ∈ R,

f−1
(
[−∞, r]

)
= f−1

( ⋂

n∈N
[−∞, r +

1

n
)
)

=
⋂

n∈N
f−1

(
[−∞, r +

1

n
)
)
∈ A,

where we have used that each set f−1
(
[−∞, r + 1

n )
)

is in A by definition, and
that A is closed under countable intersections. This shows that the inverse images
of closed intervals [−∞, r] are measurable. Taking complements, we see that the
inverse images of intervals of the form [s,∞] and (s,∞] are measurable:

f−1([s,∞]) = f−1([−∞, s)c) =
(
f−1([−∞, s)

)
)c ∈ A

and
f−1((s,∞]) = f−1([−∞, s]c) =

(
f−1([−∞, s]

)
)c ∈ A,

To show that the inverse images of finite intervals are measurable, we just take
intersections, e.g.,

f−1((s, r)) = f−1([−∞, r) ∩ (s,∞]) = f−1([−∞, r)) ∩ f−1((s,∞]) ∈ A.

If A is open, we know from the lemma above that it is a countable union
A =

⋃
n∈N In of open intervals. Hence

f−1(A) = f−1
( ⋃

n∈N
In

)
=

⋃

n∈N
f−1(In) ∈ A.

Finally, to prove the proposition for closed sets A, we are going to use that the
complement (in R) of a closed set is an open set. We have to be a little careful,
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however, as complements in R are not the same as complements in R. Note that if
O = R \ A is the complement of A in R, then O is open, and A = Oc ∩ R, where
Oc is the complement of O in R. Hence

f−1(A) = f−1(Oc ∩ R) = f−1(O)c ∩ f−1(R) ∈ A. !

It is sometimes convenient to use other kinds of intervals than those in the
definition to check that a function is measurable:

Proposition 7.3.4. Let (X, A, µ) be a measure space and consider a function
f : X → R. If either

(i) f−1([−∞, r]) ∈ A for all r ∈ R, or

(ii) f−1([r,∞]) ∈ A for all r ∈ R, or

(iii) f−1((r,∞]) ∈ A for all r ∈ R,

then f is measurable.

Proof. In either case we just have to check that f−1([−∞, r)) ∈ A for all r ∈ R.
This can be done by the techniques in the previous proof. The details are left to
the reader. !

The next result tells us that there are many measurable functions. Recall that
a Borel measure is a measure defined on the σ-algebra generated by the open sets.

Proposition 7.3.5. Let (X, d) be a metric space and let µ be a Borel or a completed
Borel measure on X. Then all continuous functions f : X → R are measurable.

Proof. Since f is continuous and takes values in R,

f−1([−∞, r)) = f−1((−∞, r))

is an open set by Proposition 3.3.10 and measurable since the Borel σ-algebra is
generated by the open sets. !

We shall now prove a series of results showing how we can obtain new mea-
surable functions from old ones. These results are not very exciting, but they
are necessary for the rest of the theory. Note that the functions in the next two
propositions take values in R and not R.

Proposition 7.3.6. Let (X, A, µ) be a measure space. If f : X → R is measurable,
then φ ◦ f is measurable for all continuous functions φ : R → R. In particular, f2

is measurable.

Proof. We have to check that

(φ ◦ f)−1((−∞, r)) = f−1(φ−1((−∞, r)))

is measurable. Since φ is continuous, φ−1((−∞, r)) is open, and consequently
f−1(φ−1((−∞, r))) is measurable by Proposition 7.3.3. To see that f2 is measur-
able, apply the first part of the theorem to the function φ(x) = x2. !
Proposition 7.3.7. Let (X, A, µ) be a measure space. If the functions f, g : X → R
are measurable, so are f + g, f − g, and fg.
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Proof. To prove that f + g is measurable, observe first that f + g < r means that
f < r − g. Since the rational numbers are dense, it follows that there is a rational
number q such that f < q < r − g. Hence

(f + g)−1([−∞, r)) = {x ∈ X | (f + g) < r)

=
⋃

q∈Q
({x ∈ X | f(x) < q} ∩ {x ∈ X | g < r − q}) ,

which is measurable since Q is countable, and a countable union of measurable sets
is measurable. A similar argument proves that f − g is measurable.

To prove that fg is measurable, note that by Proposition 7.3.6 and what we
have already proved, f2, g2, and (f + g)2 are measurable, and hence

fg =
1

2

(
(f + g)2 − f2 − g2

)

is measurable (check the details). !

We would often like to apply the result above to functions taking values in
the extended real numbers, but the problem is that the expressions need not make
sense. As we shall mainly be interested in functions that are finite except on a set of
measure zero, there is a way out of the problem. Let us start with the terminology.

Definition 7.3.8. Let (X, A, µ) be a measure space. We say that a measurable
function f : X → R is finite almost everywhere if the set {x ∈ X : f(x) = ±∞}
has measure zero. We say that two measurable functions f, g : X → R are equal
almost everywhere if the set {x ∈ X : f(x) .= g(x)} has measure zero. We usually
abbreviate “almost everywhere” by “a.e.”.

If the measurable functions f and g are finite a.e., we can modify them to get
measurable functions f ′ and g′ which take values in R and are equal a.e. to f and
g, respectively (see Exercise 13). By the proposition above, f ′ + g′, f ′− g′ and f ′g′

are measurable, and for many purposes they are good representatives for f + g,
f − g and fg.

Let us finally see what happens to limits of sequences.1

Proposition 7.3.9. Let (X, A, µ) be a measure space. If {fn} is a sequence of
measurable functions fn : X → R, then supn∈N fn(x), infn∈N fn(x), lim supn→∞
fn(x) and lim infn→∞ fn(x) are measurable. If the sequence converges pointwise,
then limn→∞ fn(x) is a measurable function.

Proof. To see that f(x) = supn∈N fn(x) is measurable, we use Proposition 7.3.4(iii).
For any r ∈ R,

f−1((r,∞]) = {x ∈ X : sup
n∈N

fn(x) > r}

=
⋃

n∈N
{x ∈ X : fn(x) > r} =

⋃

n∈N
f−1

n ((r,∞]) ∈ A,

and hence f is measurable by Proposition 7.3.4(iii). A similar argument can be
used for infn∈N fn(x).

1If you are unfamiliar with the notions of lim inf and lim sup, take a look at Section 2.2.
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To show that lim supn→∞ fn(x) is measurable, first observe that the functions

gk(x) = sup
n≥k

fn(x)

are measurable by what we have already shown. Since

lim sup
n→∞

fn(x) = lim
k→∞

gk(x) = inf
k∈N

gk(x),

(for the last equality, use that the sequence gk(x) is decreasing) the measurability
of lim supn→∞ fn(x) follows. A completely similar proof can be used to prove that
lim infn→∞ fn(x) is measurable. Finally, if the sequence converges pointwise, then
limn→∞ fn(x) = lim supn→∞ fn(x) and is hence measurable. !

The results above are quite important. Mathematical analysis abounds in limit
arguments, and knowing that the limit function is measurable is often a key ingre-
dient in these arguments.

Exercises for Section 7.3.

1. Show that if f : X → R is measurable, the sets f−1({∞}) and f−1({−∞}) are
measurable.

2. Complete the proof of Proposition 7.3.3 by showing that f−1 of the intervals (−∞, r),
(−∞, r], [r,∞), (r,∞), (−∞,∞), where r ∈ R, are measurable.

3. Prove Proposition 7.3.4.

4. Fill in the details in the proof of Lemma 7.3.2. Explain in particular why there is
only a countable number of rational intervals and why the open set G is the union
of the rational intervals contained in it.

5. Show that if f1, f2, . . . , fn are measurable functions with values in R, then f1 + f2 +
· · · + fn and f1f2 · . . . · fn are measurable.

6. The indicator function of a set A ⊆ X is defined by

1A(x) =






1 if x ∈ A

0 otherwise.

a) Show that 1A is a measurable function if and only if A ∈ A.
b) A simple function is a function f : X → R of the form

f(x) =
n∑

i=1

ai1Ai(x),

where a1, a2, . . . , an ∈ R and A1, A2, . . . , An ∈ A. Show that all simple func-
tions are measurable.

7. Show that if f : X → R is measurable, then f−1(B) ∈ A for all Borel sets B (it may
help to take a look at Exercise 7.1.10).

8. Let {En} be a disjoint sequence of measurable sets such that
⋃∞

n=1 En = X, and let
{fn} be a sequence of measurable functions. Show that the function defined by

f(x) = fn(x) when x ∈ En

is measurable.

9. Fill in the details of the proof of the fg part of Proposition 7.3.7. You may want to
prove first that if h : X → R is measurable, then so is h

2 .

10. Prove the inf- and the lim inf-part of Proposition 7.3.9.
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11. Let us write f ∼ g to denote that f and g are two measurable functions which are
equal a.e. Show that ∼ is an equivalence relation, i.e.:

(i) f ∼ f.
(ii) If f ∼ g, then g ∼ f .
(iii) If f ∼ g and g ∼ h, then f ∼ h.

12. Let (X, A, µ) be a measure space.
a) Assume that the measure space is complete. Show that if f : X → R is mea-

surable and g : X → R equals f almost everywhere, then g is measurable.
b) Show by example that the result in a) does not hold without the completeness

condition. You may, e.g., use the measure space in Exercise 7.2.1.

13. Assume that the measurable function f : X → R is finite a.e. Define a new function
f ′ : X → R by

f ′(x) =






f(x) if f(x) is finite

0 otherwise.

Show that f ′ is measurable and equal to f a.e.

14. A sequence {fn} of measurable functions is said to converge almost everywhere to f
if there is a set A of measure 0 such that fn(x) → f(x) for all x /∈ A.

a) Show that if the measure space is complete, then f is necessarily measurable.
b) Show by example that the result in a) doesn’t hold without the completeness

assumption (take a look at Problem 12 above).

15. Let X be a set and F a collection of functions f : X → R. Show that there is a
smallest σ-algebra A on X such that all the functions f ∈ F are measurable with
respect to A (this is called the σ-algebra generated by F). Show that if X is a metric
space and all the functions in F are continuous, then A ⊆ B, where B is the Borel
σ-algebra.

7.4. Integration of simple functions

We are now ready to look at integration. The integrals we shall work with are of
the form

∫
f dµ, where f is a measurable function and µ is a measure, and the

theory is at the same time a refinement and a generalization of the classical theory
of Riemann integration that you know from calculus.

It is a refinement because if we choose µ to be the one-dimensional Lebesgue
measure, the new integral

∫
f dµ equals the traditional Riemann integral

∫
f(x) dx

for all Riemann integrable functions, but is defined for many more functions. The
same holds in higher dimensions: If µ is n-dimensional Lebesgue measure, then∫

f dµ equals the Riemann integral
∫

f(x1, . . . , xn) dx1 . . . dxn for all Riemann in-
tegrable functions, but is defined for many more functions. The theory is also a
vast generalization of the old one as it will allow us to integrate functions on all
measure spaces and not only on Rn.

One of the advantages of the new (Lebesgue) theory is that it will allow us to
interchange limits and integrals:

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ

in much greater generality than before. Such interchanges are of great importance in
many arguments, but are problematic for the Riemann integral as there is in general
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no reason why the limit function limn→∞ fn should be Riemann integrable even
when the individual functions fn are. According to Proposition 7.3.9, limn→∞ fn is
measurable whenever the fn’s are, and this makes it much easier to establish limit
theorems for the new kind of integrals.

We shall develop integration theory in three steps: In this section we shall look
at integrals of so-called simple functions which are generalizations of step func-
tions; in the next section we shall introduce integrals of nonnegative measurable
functions; and in Section 7.6 we shall extend the theory to functions taking both
positive and negative values.

Throughout this section we shall be working with a measure space (X, A, µ).
If A is a subset of X, we define its indicator function by

1A(x) =






1 if x ∈ A

0 otherwise.

The indicator function is measurable if and only if A is measurable.

A measurable function f : X → R is called a simple function if it takes only
finitely many different values a1, a2, . . . , an. We may then write

f(x) =
n∑

i=1

ai1Ai(x),

where the sets Ai = {x ∈ X | f(x) = ai} are disjoint and measurable. Note that if
one of the ai’s is zero, the term does not contribute to the sum, and it is occasionally
convenient to drop it.

If we instead start with measurable sets B1, B2, . . . , Bm and real numbers
b1, b2, . . . , bm, then

g(x) =
m∑

i=1

bi1Bi(x)

is measurable and takes only finitely many values, and hence is a simple function.
The difference between f and g is that the sets A1, A2, . . . , An in f are disjoint with
union X, and that the numbers a1, a2, . . . , an are distinct. The same need not be
the case for g. We say that the simple function f is on standard form, while g is
not (unless, of course, the bi’s happen to be distinct and the sets Bi are disjoint
and make up all of X).

You may think of a simple function as a generalized step function. The dif-
ference is that step functions are constant on intervals (in R), rectangles (in R2),
or boxes (in higher dimensions), while a simple function need only be constant on
much more complicated (but still measurable) sets.

We can now define the integral of a nonnegative simple function.

Definition 7.4.1. Assume that

f(x) =
n∑

i=1

ai1Ai(x)
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is a nonnegative simple function on standard form. Then the integral of f with
respect to µ is defined by

∫
f dµ =

n∑

i=1

aiµ(Ai).

Recall that we are using the convention that 0 · ∞ = 0, and hence aiµ(Ai) = 0 if
ai = 0 and µ(Ai) = ∞.

Note that the integral of an indicator function is
∫

1A dµ = µ(A).

To see that the definition is reasonable, assume that you are in R2. Since µ(Ai)
measures the area of the set Ai, the product aiµ(Ai) measures in an intuitive way
the volume of the solid with base Ai and height ai.

We need to know that the formula in the definition also holds when the simple
function is not on standard form. The first step is the following simple lemma:

Lemma 7.4.2. If

g(x) =
m∑

j=1

bj1Bj (x)

is a nonnegative simple function where the Bj’s are disjoint and X =
⋃m

j=1 Bj,
then ∫

g dµ =
m∑

j=1

bjµ(Bj).

Proof. The problem is that the values b1, b2, . . . , bm need not be distinct, but this
is easily fixed: If c1, c2, . . . , ck are the distinct values taken by g, let bi1 , bi2 ,. . . ,bini

be the bj ’s that are equal to ci, and let Ci = Bi1∪Bi2∪ . . .∪Bini
(make a drawing!).

Then µ(Ci) = µ(Bi1) + µ(Bi2) + . . . + µ(Bini
), and hence

m∑

j=1

bjµ(Bj) =
k∑

i=1

ciµ(Ci).

Since g(x) =
∑k

i=1 ci1Ci(x) is the standard form representation of g, we have

∫
g dµ =

k∑

i=1

ciµ(Ci) =
m∑

j=1

bjµ(Bj),

and the lemma is proved. !

The next step is also easy:

Proposition 7.4.3. Assume that f and g are two nonnegative simple functions,
and let c be a nonnegative, real number. Then

(i)
∫

cf dµ = c
∫

f dµ

(ii)
∫
(f + g) dµ =

∫
f dµ +

∫
g dµ.
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Proof. (i) is left to the reader. To prove (ii), let

f(x) =
n∑

i=1

ai1Ai(x)

g(x) =
n∑

j=1

bj1Bj (x)

be standard form representations of f and g, and define Ci,j = Ai ∩ Bj . By the
lemma above, ∫

f dµ =
∑

i,j

aiµ(Ci,j)

and ∫
g dµ =

∑

i,j

bjµ(Ci,j)

and also ∫
(f + g) dµ =

∑

i,j

(ai + bj)µ(Ci,j),

since the value of f + g on Ci,j is ai + bj . !

Remark: Using induction, we can extend part (ii) above to longer sums:
∫

(f1 + f2 + · · · + fn) dµ =

∫
f1 dµ +

∫
f2 dµ + . . . +

∫
fn dµ

for all nonnegative, simple functions f1, f2, . . . , fn.

We can now prove that the formula in Definition 7.4.1 holds for all representa-
tions of simple functions, and not only the standard ones:

Corollary 7.4.4. If f(x) =
∑

i=1 ai1Ai(x) is a step function with ai ≥ 0 for all i,
then ∫

f dµ =
n∑

i=1

aiµ(Ai).

Proof. By the results above
∫

f dµ =

∫ n∑

i=1

ai1Ai dµ =
n∑

i=1

∫
ai1Ai dµ =

n∑

i=1

ai

∫
1Ai dµ =

n∑

i=1

aiµ(Ai),

which proves the result. !

We need to prove yet another almost obvious result. We write g ≤ f to say
that g(x) ≤ f(x) for all x.

Proposition 7.4.5. Assume that f and g are two nonnegative simple functions.
If g ≤ f , then ∫

g dµ ≤
∫

f dµ.
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Proof. Since f , g, and f − g are nonnegative simple functions, we have
∫

f d u =

∫
(g + (f − g)) dµ =

∫
g dµ +

∫
(f − g) dµ ≥

∫
g dµ

by Proposition 7.4.3(ii). !

We shall end this section with a key result on limits of integrals, but first we
need some notation. Observe that if f =

∑n
i=1 ai1Ai is a simple function and B

is a measurable set, then 1Bf =
∑n

i=1 ai1Ai∩B is also a simple function. We shall
write ∫

B
f dµ =

∫
1Bf dµ

and call this the integral of f over B. The lemma below may seem obvious, but it
is the key to many later results.

Lemma 7.4.6. Assume that B is a measurable set, b a nonnegative real num-
ber, and {fn} an increasing sequence of nonnegative simple functions such that
limn→∞ fn(x) ≥ b for all x ∈ B. Then limn→∞

∫
B fn dµ ≥ bµ(B).

Proof. Observe first that we may assume that b > 0 and µ(B) > 0 as otherwise
the conclusion obviously holds. Let a be any positive number less than b, and define

An = {x ∈ B | fn(x) ≥ a}.

Since fn(x) ↑ b for all x ∈ B, we see that the sequence {An} is increasing and that

B =
∞⋃

n=1

An.

By continuity of measure (Proposition 7.1.5a)), µ(B) = limn→∞ µ(An), and hence
for any positive number m less that µ(B), we can find an N ∈ N such that µ(An) >
m when n ≥ N . Since fn ≥ a on An, we thus have

∫

B
fn dµ ≥

∫

An

a dµ = am

whenever n ≥ N . Since this holds for any number a less than b and any number m
less than µ(B), we must have limn→∞

∫
B fn dµ ≥ bµ(B). !

To get the result we need, we extend the lemma to simple functions:

Proposition 7.4.7. Let g be a nonnegative simple function and assume that {fn}
is an increasing sequence of nonnegative simple functions such that limn→∞ fn(x) ≥
g(x) for all x. Then

lim
n→∞

∫
fn dµ ≥

∫
g dµ.

Proof. Let g(x) =
∑m

i=1 bi1B1(x) be the standard form of g. If any of the bi’s is
zero, we just drop that term in the sum, so that we from now on assume that all
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the bi’s are nonzero. By Proposition 7.4.3(ii), we have
∫

B1∪B2∪...∪Bm

fn dµ =

∫
(1B1 + 1B2 + . . . + 1Bm) fn dµ

=

∫

B1

fn dµ +

∫

B2

fn dµ + . . . +

∫

Bm

fn dµ =
m∑

i=1

∫

Bi

fn dµ.

By the lemma, limn→∞
∫

Bi
fn dµ ≥ biµ(Bi), and hence

lim
n→∞

∫
fn dµ ≥ lim

n→∞

∫

B1∪B2∪...∪Bm

fn dµ = lim
n→∞

m∑

i=1

∫

Bi

fn dµ

=
m∑

i=1

lim
n→∞

∫

Bi

fn dµ ≥
m∑

i=1

biµ(Bi) =

∫
g dµ. !

We are now ready to extend the integral to all positive, measurable functions.
This will be the topic of the next section.

Exercises for Section 7.4.

1. Show that if f is a measurable function, then the level set

Aa = {x ∈ X | f(x) = a}

is measurable for all a ∈ R.

2. Check that according to Definition 7.4.1,
∫

1A dµ = µ(A) for all A ∈ A.

3. Prove part (i) of Proposition 7.4.3.

4. Show that if f1, f2, . . . , fn are simple functions, then so are

h(x) = max{f1(x), f2(x), . . . , fn(x)}

and

h(x) = min{f1(x), f2(x), . . . , fn(x)}.

5. Let µ be Lebesgue measure, and define A = Q ∩ [0, 1]. The function 1A is not
integrable in the Riemann sense. What is

∫
1A dµ?

6. Let f be a nonnegative, simple function on a measure space (X, A, µ). Show that

ν(B) =

∫

B

f dµ

defines a measure ν on (X, A).

7.5. Integrals of nonnegative functions

We are now ready to define the integral of a general nonnegative, measurable func-
tion. Throughout the section, (X, A, µ) is a measure space.

Definition 7.5.1. If f : X → R+ is measurable, we define
∫

f dµ = sup

{∫
g dµ | g is a nonnegative simple function, g ≤ f

}
.


