
Solution to the compulsory assignment in MAT3400/4400, Spring 2024

Problem 1. Assume (X,B, µ) is a measure space and A ⊂ B is an algebra. Consider
the collection C ⊂ B of sets C ∈ B such that for every ε > 0 there is A ∈ A satisfying

µ(A∆C) < ε,

where A∆C = (A \ C) ∪ (C \ A).

(a) Show that C is an algebra containing A.

Solution. It is clear by definition that A ⊂ C. In particular, ∅ ∈ C. If C ∈ C, ε > 0 and
A ∈ A satisfies µ(A∆C) < ε, then µ(Ac∆Cc) < ε, since A∆C = Ac∆Cc. Hence Cc ∈ C.
It remains to show that C is closed under finite unions. Take C1, C2 ∈ C, fix ε > 0 and

choose A1, A2 ∈ A such that µ(A1∆C1) < ε and µ(A2∆C2) < ε. Since

(A1 ∪ A2)∆(C1 ∪ C2) ⊂ (A1∆C1) ∪ (A2∆C2),

we have

µ((A1 ∪ A2)∆(C1 ∪ C2)) ≤ µ(A1∆C1) + µ(A2∆C2) < 2ε.

It follows that C1 ∪ C2 ∈ C. □

(b) Show that if µ(X) < ∞, then C is a σ-algebra. Therefore if A generates B as a
σ-algebra, then C = B.

Solution. We need to show that C is closed under countable unions. Take a sequence
(Cn)

∞
n=1 in C and put C = ∪∞

n=1Cn. Consider Bn = ∪n
k=1Ck. By (a) we know that

Bn ∈ C. Fix ε > 0. As Bn ↑ C, we have µ(Bn) ↗ µ(C). Hence we can find n such that
µ(Bn) > µ(C)− ε, equivalently, µ(C \ Bn) < ε. Choose A ∈ A such that µ(A∆Bn) < ε.
We have

A∆C ⊂ (A∆Bn) ∪ (C \Bn).

Hence

µ(A∆C) ≤ µ(A∆Bn) + µ(C \Bn) < 2ε.

It follows that C ∈ C. □

Problem 2. Assume X is a set, A is an algebra of subsets of X and µ is a premeasure
on (X,A). Consider the outer measure µ∗ on X defined by µ:

µ∗(A) = inf

{
∞∑
n=1

µ(An) : An ∈ A, A ⊂
∞⋃
n=1

An

}
.

Recall that a subset A ⊂ X is called Caratheodory measurable (with respect to µ∗) if

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac) for all B ⊂ X.

By the Caratheodory theorem, the collection Σ of Caratheodory measurable sets forms
a σ-algebra containing A and µ∗|Σ is a measure on (X,Σ) that extends µ. We continue
to denote the measure µ∗|Σ by µ. Consider also the σ-algebra B ⊂ Σ generated by A.

(a) Show that for every subset A ⊂ X there is B ∈ B such that

A ⊂ B and µ∗(A) = µ(B).
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Solution. If µ∗(A) = +∞, we can take B = X. Assume now that µ∗(A) < ∞. For
every n, we can find sets Ank ∈ A (k ≥ 1) such that

A ⊂
∞⋃
k=1

Ank and µ∗(A) +
1

n
>

∞∑
k=1

µ(Ank).

Consider the sets Bn = ∪∞
k=1Ank ∈ B. Then

A ⊂ Bn and µ∗(A) +
1

n
>

∞∑
k=1

µ(Ank) ≥ µ(Bn).

It follows that for B = ∩∞
n=1Bn we have

A ⊂ B and µ∗(A) +
1

n
> µ(B) for all n.

Hence µ∗(A) ≥ µ(B). On the other hand, µ∗(A) ≤ µ∗(B) = µ(B). Thus, µ∗(A) =
µ(B). □

(b) Assume µ(X) < ∞ and consider the completion (X, B̄, µ̄) of (X,B, µ|B) (recall the
lecture from 5.02), so B̄ is the σ-algebra generated by B and all subsets A of the sets
B ∈ B such that µ(B) = 0. Show that Σ = B̄ and µ = µ̄ on Σ.

Solution. Take A ∈ Σ. By part (a) we can find B ∈ B such that A ⊂ B and µ(A) =
µ∗(A) = µ(B). Then µ(B \A) = 0. Applying (a) to B \A, we can find C ∈ B such that
B\A ⊂ C and µ(C) = 0. This shows that A = B\(B\A) ∈ B̄ and µ̄(A) = µ(B) = µ(A).
We have shown that Σ ⊂ B̄. For the opposite inclusion it suffices to check that if

B ∈ B, µ(B) = 0 and A ⊂ B, then A ∈ Σ. A formally stronger statement is that if
A ⊂ X and µ∗(A) = 0, then A ∈ Σ. In order to prove this, take any subset C ⊂ X.
Then µ∗(C ∩ A) ≤ µ∗(A) = 0. Therefore

µ∗(C ∩ A) + µ∗(C ∩ Ac) = µ∗(C ∩ Ac) ≤ µ∗(C).

Since the opposite inequality always holds, we conclude that A ∈ Σ. □

(c) Show that the same result as in (b) holds if we replace the condition µ(X) < ∞ by
the assumption that there exist An ∈ A such that An ↑ X and µ(An) < ∞ for all n.

Solution. The first part of the proof of (b) needed only that µ(A) < ∞ rather than that
µ(X) < ∞. Hence, by that proof we can conclude that for every A ∈ Σ and all n ≥ 1 we
have A ∩ An ∈ B̄ and µ̄(A ∩ An) = µ(A ∩ An). As (A ∩ An) ↑ A, it follows that A ∈ B̄
and µ̄(A) = µ(A).

The second part of the proof of (b) didn’t need any finiteness at all. □

Problem 3. Assume X is a set and µ∗ is a finite outer measure on X.

(a) Show that for any subsets A,B,C ⊂ X we have

µ∗(A∆C) ≤ µ∗(A∆B) + µ∗(B∆C).

Conclude that we can define an equivalence relation ∼ on the set P(X) of subsets of X by

A ∼ B iff µ∗(A∆B) = 0.
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Solution. The inequality in the formulation is immediate from the inclusion A∆C ⊂
(A∆B) ∪ (B∆C). Next, it is obvious that for all subsets A,B ⊂ X we have A ∼ A and
if A ∼ B, then B ∼ A. Therefore we only need to check transitivity. Assume A ∼ B and
B ∼ C. Then

µ∗(A∆C) ≤ µ∗(A∆B) + µ∗(B∆C) = 0,

hence A ∼ C. □

(b) Consider the quotient space P = P(X)/ ∼ and let π : P(X) → P be the quotient
map. Show that the following defines a metric on P :

d(π(A), π(B)) = µ∗(A∆B).

Show also that

|µ∗(A)− µ∗(B)| ≤ d(π(A), π(B)).

Conclude that we get a well-defined continuous map P → [0,+∞), π(A) 7→ µ∗(A).

Solution. The function d on P × P is well-defined, since if A ∼ A′ and B ∼ B′, then

µ∗(A′∆B′) ≤ µ(A′∆A) + µ∗(A∆B) + µ∗(B∆B′) = µ∗(A∆B)

and for the same reasons µ∗(A∆B) ≤ µ∗(A′∆B′), hence µ∗(A∆B) = µ∗(A′∆B′).
The triangle inequality for d follows from (a). The remaining conditions on a metric –

symmetry (d(x, y) = d(y, x)) and positivity (d(x, y) ≥ 0 and d(x, y) = 0 if and only if
x = y) – are immediate by definition. Therefore (P , d) is a metric space.

Next, for any A,B ⊂ X we have A ⊂ B ∪ (A∆B). Hence

µ∗(A) ≤ µ∗(B) + µ∗(A∆B).

For the same reason µ∗(B) ≤ µ∗(A) + µ∗(A∆B). Therefore

|µ∗(A)− µ∗(B)| ≤ µ∗(A∆B),

proving the inequality in the formulation. This shows in particular that µ∗(A) = µ∗(B)
if A ∼ B. It follows that π(A) 7→ µ∗(A) is a well-defined function on P .

□

(c) Consider the σ-algebra Σ of Caratheodory measurable sets. Show that if A ∈ Σ
and A ∼ B for some B ⊂ X, then B ∈ Σ. (Equivalently, the measure space (X,Σ, µ∗|Σ)
is complete.)

Solution. This can be checked using the definition of Caratheodory measurability, but
we can also refer to the second part of the solution to Problem 2(b): as both A \ B and
B \ A have outer measure zero, that part proves that both A \ B and B \ A lie in Σ,
hence B = (A \ (A \B)) ∪ (B \ A) lies in Σ as well. □

(d) Prove that the metric space (P , d) is complete. Show also that if B ⊂ P(X) is a
σ-algebra, then π(B) is closed in P . Hint: if (An)n is a sequence such that

d(π(An), π(An+1)) <
1

2n
,

then limn π(An) = limn π(Bn) = π(A), where

Bn =
∞⋃

m=n

Am and A =
∞⋂
n=1

Bn =
∞⋂
n=1

∞⋃
m=n

Am.
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Solution. Assume (An)
∞
n=1 is a sequence in P(X) such that (π(An))n is a Cauchy sequence

in P . By passing to a subsequence we may assume that d(π(An), π(An+1)) <
1
2n
. Consider

Bn =
⋃∞

m=n Am. Then An ⊂ Bn and Bn \ An ⊂ ∪∞
m=n(Am+1 \ Am). Hence

d(π(An), π(Bn)) ≤ µ∗

(
∞⋃

m=n

(Am+1 \ Am)

)
≤

∞∑
m=n

µ∗(Am+1 \ Am) <
∞∑

m=n

1

2m
=

1

2n−1
.

Therefore if the sequence (π(Bn))n converges, then (π(An))n converges to the same point.
Consider B = ∩∞

n=1Bn, so that Bn ↓ B. Then, for every n, we have B ⊂ Bn and

Bn \B =
∞⋃

m=n

(Bm \Bm+1) ⊂
∞⋃

m=n

(Am \ Am+1).

By the same computation as above we then get d(π(Bn), π(B)) < 1
2n−1 , so π(Bn) → π(B).

This proves completeness of (P , d). The proof shows that every Cauchy sequence
(π(An))n converges to a point π(A) such that A lies in the σ-algebra generated by the
sets An. Hence π(B) is closed for every σ-algebra B. □

(e) Assume now that A is an algebra of subsets of X, µ is a finite premeasure on
(X,A) and µ∗ is the outer measure on X defined by µ. Conclude from the above results
(or prove from scratch) that a subset B ⊂ X is Caratheodory measurable if and only if

π(B) ∈ π(A), that is, if and only if for every ε > 0 there is A ∈ A such that µ∗(A∆B) < ε.

Solution. By Problem 2(b) and the definition of P we have π(Σ) = π(B̄) = π(B). By
part (d), the set π(B) is closed, and by Problem 1(b) the set π(A) is dense in π(B). Hence
π(Σ) = π(A). By part (c) it follows that B ∈ Σ if and only if π(B) ∈ π(A). □
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