Solution to the compulsory assignment in MAT3400/4400, Spring 2024

Problem 1. Assume (X, \mathcal{B}, μ) is a measure space and $\mathcal{A} \subset \mathcal{B}$ is an algebra. Consider the collection $\mathcal{C} \subset \mathcal{B}$ of sets $C \in \mathcal{B}$ such that for every $\varepsilon>0$ there is $A \in \mathcal{A}$ satisfying

$$
\mu(A \Delta C)<\varepsilon
$$

where $A \Delta C=(A \backslash C) \cup(C \backslash A)$.
(a) Show that \mathcal{C} is an algebra containing \mathcal{A}.

Solution. It is clear by definition that $\mathcal{A} \subset \mathcal{C}$. In particular, $\emptyset \in \mathcal{C}$. If $C \in \mathcal{C}, \varepsilon>0$ and $A \in \mathcal{A}$ satisfies $\mu(A \Delta C)<\varepsilon$, then $\mu\left(A^{c} \Delta C^{c}\right)<\varepsilon$, since $A \Delta C=A^{c} \Delta C^{c}$. Hence $C^{c} \in \mathcal{C}$.

It remains to show that \mathcal{C} is closed under finite unions. Take $C_{1}, C_{2} \in \mathcal{C}$, fix $\varepsilon>0$ and choose $A_{1}, A_{2} \in \mathcal{A}$ such that $\mu\left(A_{1} \Delta C_{1}\right)<\varepsilon$ and $\mu\left(A_{2} \Delta C_{2}\right)<\varepsilon$. Since

$$
\left(A_{1} \cup A_{2}\right) \Delta\left(C_{1} \cup C_{2}\right) \subset\left(A_{1} \Delta C_{1}\right) \cup\left(A_{2} \Delta C_{2}\right),
$$

we have

$$
\mu\left(\left(A_{1} \cup A_{2}\right) \Delta\left(C_{1} \cup C_{2}\right)\right) \leq \mu\left(A_{1} \Delta C_{1}\right)+\mu\left(A_{2} \Delta C_{2}\right)<2 \varepsilon .
$$

It follows that $C_{1} \cup C_{2} \in \mathcal{C}$.
(b) Show that if $\mu(X)<\infty$, then \mathcal{C} is a σ-algebra. Therefore if \mathcal{A} generates \mathcal{B} as a σ-algebra, then $\mathcal{C}=\mathcal{B}$.

Solution. We need to show that \mathcal{C} is closed under countable unions. Take a sequence $\left(C_{n}\right)_{n=1}^{\infty}$ in \mathcal{C} and put $C=\cup_{n=1}^{\infty} C_{n}$. Consider $B_{n}=\cup_{k=1}^{n} C_{k}$. By (a) we know that $B_{n} \in \mathcal{C}$. Fix $\varepsilon>0$. As $B_{n} \uparrow C$, we have $\mu\left(B_{n}\right) \nearrow \mu(C)$. Hence we can find n such that $\mu\left(B_{n}\right)>\mu(C)-\varepsilon$, equivalently, $\mu\left(C \backslash B_{n}\right)<\varepsilon$. Choose $A \in \mathcal{A}$ such that $\mu\left(A \Delta B_{n}\right)<\varepsilon$. We have

$$
A \Delta C \subset\left(A \Delta B_{n}\right) \cup\left(C \backslash B_{n}\right)
$$

Hence

$$
\mu(A \Delta C) \leq \mu\left(A \Delta B_{n}\right)+\mu\left(C \backslash B_{n}\right)<2 \varepsilon
$$

It follows that $C \in \mathcal{C}$.

Problem 2. Assume X is a set, \mathcal{A} is an algebra of subsets of X and μ is a premeasure on (X, \mathcal{A}). Consider the outer measure μ^{*} on X defined by μ :

$$
\mu^{*}(A)=\inf \left\{\sum_{n=1}^{\infty} \mu\left(A_{n}\right): A_{n} \in \mathcal{A}, A \subset \bigcup_{n=1}^{\infty} A_{n}\right\}
$$

Recall that a subset $A \subset X$ is called Caratheodory measurable (with respect to μ^{*}) if

$$
\mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right) \quad \text { for all } \quad B \subset X
$$

By the Caratheodory theorem, the collection Σ of Caratheodory measurable sets forms a σ-algebra containing \mathcal{A} and $\left.\mu^{*}\right|_{\Sigma}$ is a measure on (X, Σ) that extends μ. We continue to denote the measure $\left.\mu^{*}\right|_{\Sigma}$ by μ. Consider also the σ-algebra $\mathcal{B} \subset \Sigma$ generated by \mathcal{A}.
(a) Show that for every subset $A \subset X$ there is $B \in \mathcal{B}$ such that

$$
A \subset B \quad \text { and } \underset{1}{\mu^{*}}(A)=\mu(B)
$$

Solution. If $\mu^{*}(A)=+\infty$, we can take $B=X$. Assume now that $\mu^{*}(A)<\infty$. For every n, we can find sets $A_{n k} \in \mathcal{A}(k \geq 1)$ such that

$$
A \subset \bigcup_{k=1}^{\infty} A_{n k} \quad \text { and } \quad \mu^{*}(A)+\frac{1}{n}>\sum_{k=1}^{\infty} \mu\left(A_{n k}\right) .
$$

Consider the sets $B_{n}=\cup_{k=1}^{\infty} A_{n k} \in \mathcal{B}$. Then

$$
A \subset B_{n} \quad \text { and } \quad \mu^{*}(A)+\frac{1}{n}>\sum_{k=1}^{\infty} \mu\left(A_{n k}\right) \geq \mu\left(B_{n}\right)
$$

It follows that for $B=\cap_{n=1}^{\infty} B_{n}$ we have

$$
A \subset B \quad \text { and } \quad \mu^{*}(A)+\frac{1}{n}>\mu(B) \quad \text { for all } n
$$

Hence $\mu^{*}(A) \geq \mu(B)$. On the other hand, $\mu^{*}(A) \leq \mu^{*}(B)=\mu(B)$. Thus, $\mu^{*}(A)=$ $\mu(B)$.
(b) Assume $\mu(X)<\infty$ and consider the completion $(X, \overline{\mathcal{B}}, \bar{\mu})$ of $\left(X, \mathcal{B},\left.\mu\right|_{\mathcal{B}}\right)$ (recall the lecture from 5.02), so $\overline{\mathcal{B}}$ is the σ-algebra generated by \mathcal{B} and all subsets A of the sets $B \in \mathcal{B}$ such that $\mu(B)=0$. Show that $\Sigma=\overline{\mathcal{B}}$ and $\mu=\bar{\mu}$ on Σ.

Solution. Take $A \in \Sigma$. By part (a) we can find $B \in \mathcal{B}$ such that $A \subset B$ and $\mu(A)=$ $\mu^{*}(A)=\mu(B)$. Then $\mu(B \backslash A)=0$. Applying (a) to $B \backslash A$, we can find $C \in \mathcal{B}$ such that $B \backslash A \subset C$ and $\mu(C)=0$. This shows that $A=B \backslash(B \backslash A) \in \overline{\mathcal{B}}$ and $\bar{\mu}(A)=\mu(B)=\mu(A)$.
We have shown that $\Sigma \subset \overline{\mathcal{B}}$. For the opposite inclusion it suffices to check that if $B \in \mathcal{B}, \mu(B)=0$ and $A \subset B$, then $A \in \Sigma$. A formally stronger statement is that if $A \subset X$ and $\mu^{*}(A)=0$, then $A \in \Sigma$. In order to prove this, take any subset $C \subset X$. Then $\mu^{*}(C \cap A) \leq \mu^{*}(A)=0$. Therefore

$$
\mu^{*}(C \cap A)+\mu^{*}\left(C \cap A^{c}\right)=\mu^{*}\left(C \cap A^{c}\right) \leq \mu^{*}(C) .
$$

Since the opposite inequality always holds, we conclude that $A \in \Sigma$.
(c) Show that the same result as in (b) holds if we replace the condition $\mu(X)<\infty$ by the assumption that there exist $A_{n} \in \mathcal{A}$ such that $A_{n} \uparrow X$ and $\mu\left(A_{n}\right)<\infty$ for all n.

Solution. The first part of the proof of (b) needed only that $\mu(A)<\infty$ rather than that $\mu(X)<\infty$. Hence, by that proof we can conclude that for every $A \in \Sigma$ and all $n \geq 1$ we have $A \cap A_{n} \in \overline{\mathcal{B}}$ and $\bar{\mu}\left(A \cap A_{n}\right)=\mu\left(A \cap A_{n}\right)$. As $\left(A \cap A_{n}\right) \uparrow A$, it follows that $A \in \overline{\mathcal{B}}$ and $\bar{\mu}(A)=\mu(A)$.

The second part of the proof of (b) didn't need any finiteness at all.

Problem 3. Assume X is a set and μ^{*} is a finite outer measure on X.
(a) Show that for any subsets $A, B, C \subset X$ we have

$$
\mu^{*}(A \Delta C) \leq \mu^{*}(A \Delta B)+\mu^{*}(B \Delta C)
$$

Conclude that we can define an equivalence relation \sim on the set $\mathcal{P}(X)$ of subsets of X by

$$
A \sim B \quad \text { iff } \quad \underset{2}{\mu^{*}}(A \Delta B)=0
$$

Solution. The inequality in the formulation is immediate from the inclusion $A \Delta C \subset$ $(A \Delta B) \cup(B \Delta C)$. Next, it is obvious that for all subsets $A, B \subset X$ we have $A \sim A$ and if $A \sim B$, then $B \sim A$. Therefore we only need to check transitivity. Assume $A \sim B$ and $B \sim C$. Then

$$
\mu^{*}(A \Delta C) \leq \mu^{*}(A \Delta B)+\mu^{*}(B \Delta C)=0
$$

hence $A \sim C$.
(b) Consider the quotient space $\mathcal{P}=\mathcal{P}(X) / \sim$ and let $\pi: \mathcal{P}(X) \rightarrow \mathcal{P}$ be the quotient map. Show that the following defines a metric on \mathcal{P} :

$$
d(\pi(A), \pi(B))=\mu^{*}(A \Delta B)
$$

Show also that

$$
\left|\mu^{*}(A)-\mu^{*}(B)\right| \leq d(\pi(A), \pi(B))
$$

Conclude that we get a well-defined continuous map $\mathcal{P} \rightarrow[0,+\infty), \pi(A) \mapsto \mu^{*}(A)$.
Solution. The function d on $\mathcal{P} \times \mathcal{P}$ is well-defined, since if $A \sim A^{\prime}$ and $B \sim B^{\prime}$, then

$$
\mu^{*}\left(A^{\prime} \Delta B^{\prime}\right) \leq \mu\left(A^{\prime} \Delta A\right)+\mu^{*}(A \Delta B)+\mu^{*}\left(B \Delta B^{\prime}\right)=\mu^{*}(A \Delta B)
$$

and for the same reasons $\mu^{*}(A \Delta B) \leq \mu^{*}\left(A^{\prime} \Delta B^{\prime}\right)$, hence $\mu^{*}(A \Delta B)=\mu^{*}\left(A^{\prime} \Delta B^{\prime}\right)$.
The triangle inequality for d follows from (a). The remaining conditions on a metric symmetry $(d(x, y)=d(y, x))$ and positivity $(d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y)$ - are immediate by definition. Therefore (\mathcal{P}, d) is a metric space.

Next, for any $A, B \subset X$ we have $A \subset B \cup(A \Delta B)$. Hence

$$
\mu^{*}(A) \leq \mu^{*}(B)+\mu^{*}(A \Delta B)
$$

For the same reason $\mu^{*}(B) \leq \mu^{*}(A)+\mu^{*}(A \Delta B)$. Therefore

$$
\left|\mu^{*}(A)-\mu^{*}(B)\right| \leq \mu^{*}(A \Delta B)
$$

proving the inequality in the formulation. This shows in particular that $\mu^{*}(A)=\mu^{*}(B)$ if $A \sim B$. It follows that $\pi(A) \mapsto \mu^{*}(A)$ is a well-defined function on \mathcal{P}.
(c) Consider the σ-algebra Σ of Caratheodory measurable sets. Show that if $A \in \Sigma$ and $A \sim B$ for some $B \subset X$, then $B \in \Sigma$. (Equivalently, the measure space ($X, \Sigma,\left.\mu^{*}\right|_{\Sigma}$) is complete.)

Solution. This can be checked using the definition of Caratheodory measurability, but we can also refer to the second part of the solution to Problem 2(b): as both $A \backslash B$ and $B \backslash A$ have outer measure zero, that part proves that both $A \backslash B$ and $B \backslash A$ lie in Σ, hence $B=(A \backslash(A \backslash B)) \cup(B \backslash A)$ lies in Σ as well.
(d) Prove that the metric space (\mathcal{P}, d) is complete. Show also that if $\mathcal{B} \subset \mathcal{P}(X)$ is a σ-algebra, then $\pi(\mathcal{B})$ is closed in \mathcal{P}. Hint: if $\left(A_{n}\right)_{n}$ is a sequence such that

$$
d\left(\pi\left(A_{n}\right), \pi\left(A_{n+1}\right)\right)<\frac{1}{2^{n}},
$$

then $\lim _{n} \pi\left(A_{n}\right)=\lim _{n} \pi\left(B_{n}\right)=\pi(A)$, where

$$
B_{n}=\bigcup_{m=n}^{\infty} A_{m} \quad \text { and } \quad A=\bigcap_{n=1}^{\infty} B_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

Solution. Assume $\left(A_{n}\right)_{n=1}^{\infty}$ is a sequence in $\mathcal{P}(X)$ such that $\left(\pi\left(A_{n}\right)\right)_{n}$ is a Cauchy sequence in \mathcal{P}. By passing to a subsequence we may assume that $d\left(\pi\left(A_{n}\right), \pi\left(A_{n+1}\right)\right)<\frac{1}{2^{n}}$. Consider $B_{n}=\bigcup_{m=n}^{\infty} A_{m}$. Then $A_{n} \subset B_{n}$ and $B_{n} \backslash A_{n} \subset \cup_{m=n}^{\infty}\left(A_{m+1} \backslash A_{m}\right)$. Hence

$$
d\left(\pi\left(A_{n}\right), \pi\left(B_{n}\right)\right) \leq \mu^{*}\left(\bigcup_{m=n}^{\infty}\left(A_{m+1} \backslash A_{m}\right)\right) \leq \sum_{m=n}^{\infty} \mu^{*}\left(A_{m+1} \backslash A_{m}\right)<\sum_{m=n}^{\infty} \frac{1}{2^{m}}=\frac{1}{2^{n-1}}
$$

Therefore if the sequence $\left(\pi\left(B_{n}\right)\right)_{n}$ converges, then $\left(\pi\left(A_{n}\right)\right)_{n}$ converges to the same point.
Consider $B=\cap_{n=1}^{\infty} B_{n}$, so that $B_{n} \downarrow B$. Then, for every n, we have $B \subset B_{n}$ and

$$
B_{n} \backslash B=\bigcup_{m=n}^{\infty}\left(B_{m} \backslash B_{m+1}\right) \subset \bigcup_{m=n}^{\infty}\left(A_{m} \backslash A_{m+1}\right)
$$

By the same computation as above we then get $d\left(\pi\left(B_{n}\right), \pi(B)\right)<\frac{1}{2^{n-1}}$, so $\pi\left(B_{n}\right) \rightarrow \pi(B)$.
This proves completeness of (\mathcal{P}, d). The proof shows that every Cauchy sequence $\left(\pi\left(A_{n}\right)\right)_{n}$ converges to a point $\pi(A)$ such that A lies in the σ-algebra generated by the sets A_{n}. Hence $\pi(\mathcal{B})$ is closed for every σ-algebra \mathcal{B}.
(e) Assume now that \mathcal{A} is an algebra of subsets of X, μ is a finite premeasure on (X, \mathcal{A}) and μ^{*} is the outer measure on X defined by μ. Conclude from the above results (or prove from scratch) that a subset $B \subset X$ is Caratheodory measurable if and only if $\pi(B) \in \overline{\pi(\mathcal{A})}$, that is, if and only if for every $\varepsilon>0$ there is $A \in \mathcal{A}$ such that $\mu^{*}(A \Delta B)<\varepsilon$. Solution. By Problem 2(b) and the definition of \mathcal{P} we have $\pi(\Sigma)=\pi(\overline{\mathcal{B}})=\pi(\mathcal{B})$. By part (d), the set $\pi(\mathcal{B})$ is closed, and by Problem $1(\mathrm{~b})$ the set $\pi(\mathcal{A})$ is dense in $\pi(\mathcal{B})$. Hence $\pi(\Sigma)=\overline{\pi(\mathcal{A})}$. By part (c) it follows that $B \in \Sigma$ if and only if $\pi(B) \in \overline{\pi(\mathcal{A})}$.

