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Introduction

Topology (from Greek topos [place/location] and logos [discourse/reason/logic]) can be viewed
as the study of continuous functions, also known as maps. Let X and Y be sets, and f : X → Y
a function from X to Y . In order to make sense of the assertion that f is a continuous function,
we need to specify some extra data. After all, continuity roughly asserts that if x and y are
elements of X that are “close together” or “nearby”, then the function values f(x) and f(y)
are elements of Y that are also close together. Hence we need to give some sense to a notion of
closeness for elements in X, and similarly for elements in Y .

In many cases this can be done by specifying a real number d(x, y) for each pair of elements
x, y ∈ X, called the distance between x and y, and saying at x and y are close together if
d(x, y) is sufficiently small. This leads to the notion of a metric space (X, d), when the distance
function (or metric) d satisfies some reasonable properties.

The only information available about two elements x and y of a general set X is whether
they are equal or not. Thus a set X appears as an unorganized collection of its elements, with
no further structure. When (X, d) is equipped with a metric, however, it acquires a shape or
form, which is why we call it a space, rather than just a set. Similarly, when (X, d) is a metric
space we refer to the x ∈ X as points, rather than just as elements.

However, metric spaces are somewhat special among all shapes that appear in Mathematics,
and there are cases where one can usefully make sense of a notion of closeness, even if there
does not exist a metric function that expresses this notion. An example of this is given by the
notion of pointwise convergence for real functions. Recall that a sequence of functions fn for
n = 1, 2, . . . converges pointwise to a function g if for each point t in the domain the sequence
fn(t) of real numbers converges to the number g(t). There is no metric d on the set of real
functions that expresses this notion of convergence.

To handle this, and many other more general examples, one can use a more general concept
than that of metric spaces, namely topological spaces. Rather than specifying the distance
between any two elements x and y of a set X, we shall instead give a meaning to which subsets
U ⊂ X are “open”. Open sets will encode closeness as follows:

If U is open and x ∈ U , then all y ∈ X that are “sufficiently close” to x also satisfy
y ∈ U .

The shape of X is thus defined not by a notion of distance, but by the specification of which
subsets U of X are open. When this specification satisfies some reasonable conditions, we call
X together with the collection of all its open subsets a “topological space”. The collection of
all open subsets will be called the topology on X, and is usually denoted T .

As you can see, this approach to the study of shapes involves not just elements and functions,
like the theory of metric spaces, but also subsets and even collections of subsets. In order to
argue effectively about topological spaces, it is therefore necessary to have some familiarity
with the basic notions of set theory. We shall therefore start the course with a summary of the
fundamental concepts concerning sets and functions.
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Having done this, we can reap some rewards. For instance, the definition of what it means
for a function f : X → Y , from a topological space X to a topological space Y , to be continuous,
is simply:

For each open subset V in Y the preimage f−1(V ) is open in X.

This may be compared with the (ε, δ)-definition for a function f : X → Y , from a metric space
(X, d) to another metric space (Y, d), to be continuous:

For each point x in X and each ε > 0 there exists a δ > 0 such that for each point
y in X with d(x, y) < δ we have d(f(x), f(y)) < ε.

It may be worth commenting that the definition of a topological space may seem more
abstract and difficult to fully comprehend than the subsequent definition of a continuous map.
The situation is analogous to that in linear algebra, where we say that a function f : V → W
between real vector spaces is linear if it satisfies

f(λx+ µy) = λf(x) + µf(y)

for all vectors x, y ∈ V and all real numbers λ and µ (the Greek letters “lambda” and “mu”).
However, to make sense of this, we must first give the abstract definition of a real vector

space, as a set V of vectors with a vector sum operation +: V × V → V and a scalar multipli-
cation · : R × V → V satisfying a list of properties. That list in turn presupposes that the set
of real numbers R is a field, which also involves the two operations addition and multiplication
and about nine axioms, expressing associativity, commutativity, existence of neutral elements
and inverses, for both sum and product, plus the distributive law relating the two operations.

The moral is that the axiomatizations of the most fundamental objects, such as topological
spaces and real vector spaces, may be so general as to make it difficult to immediately grasp
their scope. However, it is often the relations between these objects that we are most interested
in, such as the properties of continuous functions or linear transformations, and these will then
often appear to be relatively concrete.

Once we have established the working definitions of topological spaces and continuous func-
tions, or maps, we shall turn to some of the most useful properties that such topological spaces
may satisfy, including being connected (not being a disjoint union of open proper subsets), com-
pact (not having too many open subsets) or Hausdorff (having enough open subsets). Then
we discuss consequences of these properties, such as general forms of the intermediate value
theorem, existence of maximal values, or uniqueness of limits, and many more. In the case of
real functions of one real variable, these are familiar from first-year Calculus, but the general-
ized results apply to a vastly wider range of shapes, including the plane and higher-dimensional
Euclidean spaces, infinite-dimensional function spaces, and finite partially ordered sets.

These lecture notes are intended for the course MAT4500 at the University of Oslo, following
James R. Munkres’ (1930–) textbook “Topology”. The §-signs refer to the sections in that book.

Once the foundations of Topology have been set, as in this course, one may proceed to
its proper study and its applications. A well-known example of a topological result is the
classification of surfaces, or more precisely, of connected compact 2-dimensional manifolds. Its
conclusion is that two facts about a surface suffice to determine it up to topological equivalence,
namely, whether the surface “can be oriented”, and “how many handles it has”. The number
of handles is also known as the genus. A sphere has genus 0, while a torus has genus 1, and the
surface of a mug with two handles has genus 2.

An interesting result about the relation between the global topological type of a surface and
its local geometry is the Gauss–Bonnet theorem. For a surface F equipped with a so-called
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Riemannian metric, this is a formula ∫
F
K dA = 2π · χ

expressing the integral of the locally defined curvature K of the surface in terms of the globally
defined genus g, or more precisely in terms of the Euler characteristic χ = 2 − 2g. (That’s
the Greek letter “chi”.) For example, a sphere of radius r has curvature 1/r2 everywhere, and
surface area 4πr2. The integral of the curvature over the whole surface is the product of these
two quantities, i.e., 4π. This equals 2π times the Euler characteristic of the sphere, which is
2. These results will be covered in the course MAT4510 Geometric Structures, followed by
MAT4520 on Manifolds.

Let [0, 1] ⊂ R be the unit interval. One form of the intermediate value theorem tells us
that any continuous function f : [0, 1]→ [0, 1] has a fixed-point, i.e., an element x ∈ [0, 1] such
that f(x) = x. We can prove this as a consequence of the fact that [0, 1] is connected, while
{0, 1} is disconnected. Moving up one dimension, let [0, 1]2 ⊂ R2 be the unit square. We
will also prove that any continuous function g : [0, 1]2 → [0, 1]2 has a fixed-point, i.e., a point
(x, y) ∈ [0, 1]2 such that g(x, y) = (x, y). This will be a consequence of the fact that the square
[0, 1]2 is simply-connected, but the boundary of this square is not simply-connected. Going
on to more complicated spaces, the subject of algebraic topology provides tools for analyzing
the higher-dimensional analogues of connectedness and simple-connectedness. For instance, the
n-dimensional sphere Sn, consisting of the unit vectors in Rn+1, admits a continuous vector
field of nonzero vectors if and only if n is odd. Thus you “cannot comb a hairy ball flat” in any
even dimension. This theory is developed in the courses MAT4530 and MAT4540 on Algebraic
Topology.

When considering surfaces given by algebraic equations among complex numbers, such as

x2 + y2 = 1

or
x5 + y2 = 1

(with x, y ∈ C) there is also a subtle relationship between the topological type of the solution
surface (known as an algebraic curve, since it has real dimension 2 but complex dimension 1) and
the number of rational solutions to the equation (with x, y ∈ Q). The first equation describes a
sphere, and has infinitely many rational solutions, while the second equation describes a curve
of genus 2, and has only finitely many rational solutions. It was conjectured by Louis Mordell
(1888–1972), and proved by Gerd Faltings (1954–) in 1983, that any rationally defined algebraic
curve of genus greater than one has only finitely many rational points. In other words, if the
defining equation has rational coefficients, and a topological condition is satisfied, then there are
only finitely many rational solutions. For more on algebraic curves, see the courses MAT4210
and MAT4215 on Algebraic Geometry, and MAT4240 on Elliptic Curves.

These notes were written in 2010, and revised in 2018. Thanks are due to Per Størset, who
sent me a list of nearly 30 corrections in January 2019. The notes will be (lightly) revised again
in 2023.
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Chapter 1

Set Theory and Logic

1.1 (§1) Fundamental Concepts

1.1.1 Membership

In naive set theory, a set (norsk: mengde) is any collection of Mathematical objects, called its
elements. We often use uppercase letters, like A or B, to denote sets, and lowercase letters, like
x or y, to denote its elements.

If A is a set, and x is one of its elements, we write x ∈ A and say that “x is an element
of A”. Otherwise, if x is not an element of A, we write x /∈ A. The symbol “∈” thus denotes
membership in a collection.

We can specify sets by listing its elements, as in the set of decimal digits:

D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ,

or by selecting the elements of some previously given set that satisfy some well-defined condition:

P = {n ∈ N | n is a prime} ,

read as “the set of n ∈ N such that n is a prime”. Here

N = {1, 2, 3, . . . }

is the set of natural numbers (= positive integers). In this case 691 ∈ P , while 693 /∈ P , since
691 is a prime, while 693 = 3 ·3 ·7 ·11 is not a prime. When the condition begins with a symbol
similar to “|”, we may use a colon instead, as in:

B(x, ε) = {y ∈ R : |y − x| < ε} .

We may also specify the list of elements by means of an expression, as in the set

S = {n2 | n ∈ N}

of squares. We shall sometimes use informal notations, like P = {2, 3, 5, . . . } and S = {1, 4, 9, . . . },
when it should be clear from the context what we really mean.

Note that for any object x, the singleton set {x} is different from x itself, so x ∈ {x} but
x 6= {x}. Be careful with the braces!

The empty set ∅ = {} has no elements, so x /∈ ∅ for all objects x. If a set A has one or
more elements, so that x ∈ A for some object x, then we say that A is nonempty.
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1.1.2 Inclusion and equality

Let A and B be sets. We say that A is a subset of B, and write A ⊂ B, if each element of
A is also an element of B. In logical terms, the condition is that x ∈ A only if x ∈ B, so
(x ∈ A) =⇒ (x ∈ B). We might also say that A is contained in B. For example, {1} ⊂ {1, 2}.

Less commonly, we might say that A is a superset of B, or that A contains B, and write
A ⊃ B, if each element of B is also an element of A. In logical terms, the condition is that
x ∈ A if x ∈ B, so (x ∈ A) ⇐= (x ∈ B). This is of course equivalent to B ⊂ A. For example,
{1, 2} ⊃ {2}.

We say that A is equal to B, written A = B, if A ⊂ B and B ⊂ A. This means that x ∈ A
if and only if x ∈ B, so (x ∈ A) ⇐⇒ (x ∈ B). For example, {1, 2} = {1, 1, 2}, since the notion
of a set only captures whether an element is an element of a set, not how often it is listed.

If A is not a subset of B we might write A 6⊂ B, and if A is not equal to B we write A 6= B.
If A ⊂ B but A 6= B, so that A is a proper subset of B, we write A ( B.

(In other texts you may find the alternate notations A ⊆ B and A ⊂ B for A ⊂ B and
A ( B, respectively.)

1.1.3 Intersection and union

Let A and B be sets. The intersection A ∩ B is the set of objects that are elements in A and
in B:

A ∩B = {x | x ∈ A and x ∈ B} .
Clearly A∩B ⊂ A and A∩B ⊂ B. We say that A meets B if A∩B 6= ∅ is nonempty, so that
there exists an x with x ∈ A ∩B, or equivalently, with x ∈ A and x ∈ B.

The union A ∪B is the set of objects that are elements in A or in B:

A ∪B = {x | x ∈ A or x ∈ B} .

Note that “or” in the mathematical sense does not exclude the possibility that both x ∈ A and
x ∈ B. Hence A ⊂ A ∪B and B ⊂ A ∪B.

In addition to the commutative and associative laws, these operations satisfy the following
two distributive laws, for all sets A, B and C:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

1.1.4 Difference and complement

Let A and B be sets. The difference A− B is the set of objects of A that are not elements in
B:

A−B = {x ∈ A | x /∈ B} .
Note that A−B ⊂ A, (A−B) ∩B = ∅ and (A−B) ∪B = A ∪B.

We shall also call A − B the complement of B in A. (Some texts denote the difference set
by A \ B, or introduce a notation like {B for the complement of B in A, if B ⊂ A and the
containing set A is implicitly understood.)

The complement of a union is the intersection of the complements, and the complement of
an intersection is the union of the complements. These rules are known as De Morgan’s laws:

A− (B ∪ C) = (A−B) ∩ (A− C)

A− (B ∩ C) = (A−B) ∪ (A− C) ,

named after Augustus De Morgan (1806–1871).
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1.1.5 Collections of sets, the power set

A set is again a mathematical object, and may therefore be viewed as an element of another
set. When considering a set whose elements are sets, we shall usually refer to it as a collection
of sets (norsk: samling), and denote it with a script letter like A or B. (Sometimes sets of sets
are called families.)

For example, each student at the university may be viewed as a mathematical object. We
may consider the set of all students:

S = {s | s is a student at UiO} .

Similarly, each course offered at the university may be viewed as another mathematical object.
There is a set of courses

C = {c | c is a course at UiO} .

For each course c ∈ C, we may consider the set Ec of students enrolled in that course:

Ec = {s ∈ S | s is enrolled in c} .

Now we may consider the collection E of these sets of enrolled students:

E = {Ec | c ∈ C} .

This E is a set of sets. Its elements are the sets of the form Ec, for some course c ∈ C. These
sets in turn have elements, which are students at the university.

It may happen that no students are enrolled for a specific course c. In that case, Ec = ∅.
If this is the case for two different courses, c and d, then both Ec = ∅ and Ed = ∅. Hence it
may happen that Ec = Ed in E , even if c 6= d in C.

For a given set A, the collection of all subsets B ⊂ A is called the power set of A, and is
denoted P(A):

P(A) = {B | B ⊂ A} .

For example, the power set P({a, b}) = {∅, {a}, {b}, {a, b}} of the two-element set {a, b} has
four elements.

1.1.6 Arbitrary intersections and unions

Given a collection A of sets, the intersection of the elements of A is⋂
A∈A

A = {x | for every A ∈ A we have x ∈ A}

and the union of the elements of A is⋃
A∈A

A = {x | there exists an A ∈ A such that x ∈ A} .

When A = {A,B}, these are the same as the previously defined sets A ∩ B and A ∪ B,
respectively. When A = {A} is a singleton set, both are equal to A.

When A = ∅ is empty, the intersection
⋂
A∈A A could be interpreted as the “set of all

x”, but this leads to set-theoretic difficulties. We shall therefore only use that notation in the
context of subsets A of a fixed “universal set” X, in which case

⋂
A∈∅A = X. There is no

difficulty with the empty union:
⋃
A∈∅A = ∅.
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Returning to the example of students and courses, the intersection

A =
⋂
Ec∈E

Ec

is the set of those students that are enrolled to every single course at the university, which most
likely is empty. The union

B =
⋃
Ec∈E

Ec

is the subset of S consisting of those students that are enrolled to one or more courses. They
might be referred to as the active students. The complement, S−B, is the set of students that
are not enrolled to any courses. They might be referred to as the inactive students.

1.1.7 Cartesian products

Given two sets A and B, the cartesian product A×B consists of the ordered pairs of elements
(x, y) with x ∈ A and y ∈ B:

A×B = {(x, y) | x ∈ A and y ∈ B} .

The notion of an ordered pair (x, y) is different from that of the set {x, y}. For example,
(x, y) = (x′, y′) if and only if x = x′ and y = y′. (If desired, one can define ordered pairs in
terms of sets by letting (x, y) = {{x}, {x, y}}.)

The cartesian product of two copies of the real numbers, R2 = R × R, is the set consisting
of pairs (x, y) of real numbers. Thinking of these two numbers as the (horizontal and vertical)
coordinates of a point in the plane, one is led to René Descartes’ (1596–1650) formulation of
analytic geometry, as opposed to Euclid’s (ca. 300 BC) synthetic approach to geometry.

1.1.8 Russel’s paradox

Given a set A, we may ask whether A ∈ A or A /∈ A, precisely one of which will be true.
Following Bertrand Russel (1872–1970), let

R = {A | A /∈ A}

be the collection of sets for which the latter holds. Question: Is R ∈ R or R /∈ R?
Well, if R ∈ R, then R has the property satisfied by the elements of R, which with A = R

states that R /∈ R. So in this case we have R ∈ R and R /∈ R, which is a contradiction. Hence
we cannot have R ∈ R.

On the other hand, if R /∈ R, then R does not have the property satisfied by the elements
of R, which with A = R states that R /∈ R is false. This means that R ∈ R. Hence R /∈ R and
R ∈ R, which is another contradiction. Hence we cannot have R /∈ R.

There seems to be no sensible answer to our question. The source of this paradox lies in the
assumption that any collection of mathematical objects will form a set, so that the collection R
is an example of a set A. Less naive implementations of set theory avoid this paradox by
imposing more restrictive rules for how sets can be formed, so that A /∈ A is not the defining
property of a new set.

A reformulation of this issue runs as follows: The village barber shaves those villagers that
do not shave themselves, and only those. Who shaves the village barber?
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1.2 (§2) Functions

1.2.1 Domain, range and graph

A function f from a set A to a set B is a rule that to each element x ∈ A associates a unique
element f(x) ∈ B. We call A the domain (or source) of f , and B the range (or codomain, or
target) of f . We use notations like f : A→ B or

A
f−→ B

to indicate that f is a function with domain A and range B. Note that the sets A and B are
part of the data in the definition of the function f , even though we usually emphasize the rule
taking x to f(x). To show both aspects of the function, we might write

f : A −→ B

x 7−→ f(x) .

Sometimes that rule is defined by some explicit procedure or algorithm for computing f(x)
from x, such as in

f(x) =

{
3x+ 1 if x is odd

x/2 if x is even

for natural numbers x, but we make no such assumption in general.
In set theoretic terms, we can define a function f : A→ B to be the subset of A×B given

by its graph, i.e., the subset

Γf = {(x, f(x)) ∈ A×B | x ∈ A} .

(Here Γ is the upper-case Greek letter “Gamma”.) The subsets Γ ⊂ A × B that arise in this
way are characterized by the property that for each x ∈ A there exists one and only one y ∈ B
such that (x, y) ∈ Γ.

Hence we can define a function f to be a triple of sets (A,B,Γ), with Γ ⊂ A×B having the
property that for each element x ∈ A there exists a unique y ∈ B with (x, y) ∈ Γ. In this case
we let f(x) = y and call y the value of f at the argument x. We call A the domain and B the
range of f .

1.2.2 Image, restriction, corestriction

Let f : A→ B be a function. The image of f is the subset

f(A) = {f(x) ∈ B | x ∈ A}

of the range B, whose elements are all the values of f . The image may, or may not, be equal
to the range. (Other texts may refer to the image of f as its range, in which case they usually
have no name for the range/codomain/target.)

If S ⊂ A is a subset of the domain, we define the restriction of f to S to be the function
f |S : S → B given by (f |S)(x) = f(x) for all x ∈ S. In terms of graphs, f |S corresponds to the
subset

Γf ∩ (S ×B)

of S ×B, where Γf ⊂ A×B is the graph of f .
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If T ⊂ B is a subset of the range with the property that f(A) ⊂ T , then there is also a
well-defined function g : A → T given by g(x) = f(x) for all x ∈ T . In terms of graphs, g
corresponds to the subset

Γf ∩ (A× T )

of A × T . There does not seem to be a standard notation for this “corestriction” of f . Note
that this construction only makes sense when the new range T contains the image of f .

1.2.3 Injective, surjective, bijective

Let f : A → B. We say that f is injective (or one-to-one) if f(x) = f(y) only if x = y, for
x, y ∈ A. We say that f is surjective (or onto) if for each y ∈ B there exists a x ∈ A with
f(x) = y. Note that f is surjective if and only if its image equals its range, f(A) = B.

We say that f is bijective (or a one-to-one correspondence) if it is both injective and sur-
jective, so that for each y ∈ B there exists one and only one x ∈ A with f(x) = y. A bijective
function is also called a bijection.

When f : A → B is bijective, we can define a new function f−1 : B → A, with the domain
and range interchanged, by the rule that takes y ∈ B to the unique x ∈ A such that f(x) = y.
Hence f−1(y) = x precisely when y = f(x). We call f−1 the inverse function of f .

Note that the graph of f−1 is obtained from the graph of f by interchanging the two factors
in the cartesian product A×B. It is the subset

Γf−1 = {(y, x) ∈ B ×A | (x, y) ∈ Γf}

of B ×A.
The inverse function is not defined when f is not bijective. If the restriction f |S of f to a

subset S ⊂ A is injective, and we let T = f(S) be the image of the restricted function, then
the resulting function g : S → T is bijective, and has an inverse function g−1 : T → S. (Various
abuses of notations are common here.)

1.2.4 Composition

Let f : A → B and g : B → C be functions, such that the range of f equals the domain of g.
The composite function g ◦ f : A→ C is then defined by the rule

(g ◦ f)(x) = g(f(x))

for all x ∈ A. We often abbreviate g ◦ f to gf . The graph Γgf of gf is the subset

{(x, z) ∈ A× C | there exists a y ∈ B with (x, y) ∈ Γf and (y, z) ∈ Γg}

of A× C.
When f : A→ B is bijective, with inverse function f−1 : B → A, the composite f−1◦f : A→

A is defined and equals the identity function idA : A→ A taking x ∈ A to x ∈ A. Furthermore,
the composite f ◦ f−1 : B → B is defined, and equals the identity function idB : B → B taking
y ∈ B to y ∈ B.

Composition of functions is unital and associative, so that f ◦ idA = f = idB ◦ f and
(h ◦ g) ◦ f = h ◦ (g ◦ f) (for h : C → D), but hardly ever commutative. Even if A = B = C, so
that both g ◦ f and f ◦ g are defined and have the same domains and ranges, it is usually not
the case that g(f(x)) = f(g(x)) for all x ∈ A, so usually g ◦ f 6= f ◦ g. One exception is the
case when f = g.
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The composite g ◦ f : A → C of two bijections f : A → B and g : B → C is again bijective,
with inverse (g ◦ f)−1 = f−1 ◦ g−1.

Let f : A→ B and S ⊂ A. Define the inclusion function i : S → A by the rule i(x) = x for
all x ∈ S. This is not the identity function, unless S = A. The composite f ◦ i : S → B equals
the restriction f |S : S → B, since these functions have the same sources and ranges, and both
map x ∈ S to f(x) ∈ B.

Let T ⊂ B and assume that f(A) ⊂ T . Let j : T → B be the inclusion function given by
the rule j(y) = y for all y ∈ T . Then the corestriction g : A → T of f is characterized by the
property that j ◦ g = f .

1.2.5 Images of subsets

Let f : A → B be a function. For each subset S ⊂ A we let the image f(S) ⊂ B of S under f
be the set of values

f(S) = {f(x) ∈ B | x ∈ S}

of f , as the argument x ranges over S. When S = A, this agrees with the image of f .
When S = {x} is a singleton set, f({x}) = {f(x)} is also a singleton set, distinct from the

one element f(x) that it contains.
The rule taking S to f(S) defines a function

f : P(A) −→P(B)

S 7−→ f(S) .

Using the same symbol for this function P(A) → P(B) and the original function f : A → B
is an abuse of notation. Since the two functions are defined on disjoint sets, namely for x ∈ A
and S ∈P(A), respectively, one can usually avoid confusion by inspecting the argument of f ,
but some care is certainly appropriate.

The image function f respects inclusions and unions: If S ⊂ T ⊂ A, then

f(S) ⊂ f(T ) .

Similarly, if S, T ⊂ A, meaning that S ⊂ A and T ⊂ A, then

f(S ∪ T ) = f(S) ∪ f(T ) .

For intersections, we only have the inclusion

f(S ∩ T ) ⊂ f(S) ∩ f(T )

in general. The inclusions S ∩ T ⊂ S and S ∩ T ⊂ T imply inclusions f(S ∩ T ) ⊂ f(S) and
f(S ∩ T ) ⊂ f(T ), and these imply the displayed inclusion. If f is injective, we have equality,
but in general this can be a proper inclusion.

For complements, we have the inclusion

f(T )− f(S) ⊂ f(T − S)

for S, T ⊂ A, with equality if f is injective, but no equality in general.
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1.2.6 Preimages of subsets

Let f : A→ B as before. For each subset T ⊂ B we let the preimage f−1(T ) ⊂ A of T under f
be the set of arguments

f−1(T ) = {x ∈ A | f(x) ∈ T}

for which f takes values in T . When T = B this is all of A. (The preimage is also called the
inverse image.)

When T = {y} is a singleton set, the preimage f−1(y) = {x ∈ A | f(x) = y} of the element y
is the same as the preimage f−1({y}) = {x ∈ A | f(x) ∈ {y}} of the singleton set {y}, so we
often allow ourselves to write f−1(y) in place of f−1({y}).

The rule taking T to f−1(T ) defines a function

f−1 : P(B) −→P(A)

T 7−→ f−1(T ) .

Note that we use this notation also in the cases where f is not bijective, i.e., even if the inverse
function f−1 : B → A is not defined. So the use of the notation f−1(T ) for the preimage of T
under f does not imply that f is invertible.

In the special case when f : A→ B is bijective, so that the inverse function f−1 : B → A is
defined, we have the equality of sets

{x ∈ A | f(x) ∈ T} = {f−1(y) ∈ A | y ∈ T}

so that the preimage f−1(T ) of T under f is equal to the image f−1(T ) of T under f−1. Hence
the potential conflict of notations does not lead to any difficulty.

The preimage function f−1 respects inclusions, unions, intersections and complements: If
S ⊂ T ⊂ B, then

f−1(S) ⊂ f−1(T ) .

If S, T ⊂ B, then

f−1(S ∪ T ) = f−1(S) ∪ f−1(T ) ,

f−1(S ∩ T ) = f−1(S) ∩ f−1(T )

and
f−1(S − T ) = f−1(S)− f−1(T ) .

The image and preimage constructions satisfy the relations

S ⊂ f−1(f(S)) and f(f−1(T )) ⊂ T

for f : A→ B, S ⊂ A and T ⊂ B.

1.3 (§5) Cartesian Products

1.3.1 Indexed families

Let A be a collection of sets. An indexing function for A is a surjective function f : J → A
from some set J to A . We call J the index set, and we call the collection A together with the
indexing function f an indexed family of sets.

If
A = {A1, A2, . . . , An} = {Ai}ni=1
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is a finite collection, with n ≥ 0, we may let J = {1, 2, . . . , n} and let f(i) = Ai for 1 ≤ i ≤ n.
If

A = {A1, A2, . . . } = {Ai}i∈N
is a countably infinite sequence of sets, we may let J = N and let f(i) = Ai for i ∈ N. In
general, we often use the notation Aα = f(α), so that f is the rule taking α to Aα, and the
indexed family is denoted

{Aα}α∈J .

The surjectivity of f ensures that each set A ∈ A occurs as Aα = f(α) for some α ∈ J . We
do not require that f is injective, so we may have Aα = Aβ even if α 6= β in J .

1.3.2 General intersections and unions

We use the following alternate notations for general intersections and unions of sets. Let A be
a collection of sets, with indexing function f : J → A as above.

If A is nonempty (so J is nonempty, too), we define⋂
α∈J

Aα =
⋂
A∈A

A

to be the set of x such that x ∈ Aα for each α ∈ J , which is the same as the set of x such that
x ∈ A for each A ∈ A .

In general, we define ⋃
α∈J

Aα =
⋃
A∈A

A

to be the set of x such that x ∈ Aα for some α ∈ J , or equivalently, such that x ∈ A for some
A ∈ A .

If A = {A1, A2, . . . , An} for n ≥ 0 we also write

n⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩An

for the intersection of the sets in A (with the usual caveat when n = 0), and

n⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪An

for the union, and similarly in the countably infinite case.

1.3.3 Finite cartesian products

Let n ≥ 0. Given a set X, an n-tuple of elements in X is a function

x : {1, 2, . . . , n} → X .

Writing xi = x(i) for its value at 1 ≤ i ≤ n, the function is determined by its list of values,
which is the ordered n-tuple

(xi)
n
i=1 = (x1, x2, . . . , xn) .

A family of sets A = {A1, A2, . . . , An} indexed by the set J = {1, 2, . . . , n} is equivalent to
an ordered n-tuple of sets (A1, A2, . . . , An). Let

X = A1 ∪A2 ∪ · · · ∪An
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be the union of the n sets. We define the cartesian product of this indexed family, denoted

n∏
i=1

Ai = A1 ×A2 × · · · ×An ,

to be the set of all n-tuples (x1, x2, . . . , xn) in X such that xi ∈ Ai for each 1 ≤ i ≤ n.
If all of the sets Ai are equal, so that each Ai = X, we write

Xn = X ×X × · · · ×X

(n copies of X) for the n-fold cartesian product of X, also known as the n-th (cartesian) power
of X. It is the set of all n-tuples in X.

1.3.4 Countable cartesian products

We use similar notation for sequences in X, which are functions

x : N→ X

or ordered sequences
(xi)i∈N = (x1, x2, . . . ) .

(These are also called ω-tuples, where ω is the Greek letter “omega”. Here ω denotes the
smallest infinite ordinal, corresponding to the well-ordered set underlying N.) Given a sequence
of sets A = (Ai)i∈N = (A1, A2, . . . ) we let X =

⋃
i∈NAi be the union, and define the cartesian

product ∏
i∈N

Ai = A1 ×A2 × . . .

to be the set of all sequences (x1, x2, . . . ) in X such that xi ∈ Ai for each i ∈ N.
When all Ai = X, we write

Xω =
∏
i∈N

X

for the countably infinite product of copies of X. It is the set of sequences in X.

1.3.5 General cartesian products

Let J be any indexing set. Given a set X, a J-tuple of elements in X is a function

x : J → X .

Writing xα = x(α) for its value at α ∈ J , the α-th coordinate of x, we can also denote the
J-tuple x by its values (xα)α∈J .

Let {Aα}α∈J be an indexed family of sets, with union X =
⋃
α∈J Aα. Its cartesian product,

denoted ∏
α∈J

Aα ,

is the set of all J-tuples (xα)α∈J of elements in X such that xα ∈ Aα for each α ∈ J . In other
words, it is the set of functions

x : J →
⋃
α∈J

Aα

such that x(α) ∈ Aα for each α ∈ J .
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When all Aα = X, we write

XJ =
∏
α∈J

X

for the J-fold product of copies of X, also known as the J-th power of X. It is the set of
functions x : J → X.

1.4 (§6) Finite Sets

1.4.1 Cardinality

For each nonnegative integer n, the set

{1, 2, . . . , n}

of natural numbers less than or equal to n is called a section of the natural numbers N. For
n = 0 this is the empty set ∅; for n = 1 it is the singleton set {1}.

Lemma 1.4.1. If there exists an injective function

f : {1, 2, . . . ,m} → {1, 2, . . . , n}

then m ≤ n.

Proof. We prove this by induction on n ≥ 0. For n = 0 this is clear, since there only exists a
function {1, 2, . . . ,m} → ∅ if m = 0. For the inductive step, let n ≥ 1 and suppose that the
lemma holds for n − 1. Let f : {1, 2, . . . ,m} → {1, 2, . . . , n} be injective. Let f(m) = k. Then
f restricts to an injective function g : {1, 2, . . . ,m− 1} → {1, 2, . . . , n}− {k}. Define a bijection
h : {1, 2, . . . , n}− {k} → {1, 2, . . . , n− 1} by h(x) = x for x 6= n, and h(n) = k. (If k = n we let
h be the identity.) The composite h ◦ g : {1, 2, . . . ,m− 1} → {1, 2, . . . , n− 1} is injective, so by
the inductive hypothesis we know that m− 1 ≤ n− 1. It follows that m ≤ n, as desired.

Corollary 1.4.2. There does not exist an injective function f : {1, 2, . . . ,m} → {1, 2, . . . , n} if
m > n.

Proposition 1.4.3. If there exists a bijection f : {1, 2, . . . ,m} → {1, 2, . . . , n} then m = n.

Proof. Both f and its inverse f−1 are injective, so by the previous lemma we have m ≤ n and
n ≤ m. Thus m = n.

Corollary 1.4.4. There does not exist a bijective function f : {1, 2, . . . ,m} → {1, 2, . . . , n} if
m 6= n.

Definition 1.4.5. A set A is finite if there exists a bijective function f : A→ {1, 2, . . . , n} for
some n ≥ 0. In this case, we say that A has cardinality n.

For example, the empty set is finite with cardinality 0, and each singleton set is finite with
cardinality 1. The converse statements also hold.

Lemma 1.4.6. The cardinality of a finite set A is a well-defined non-negative integer. That is,
if there exist bijections f : A→ {1, 2, . . . , n} and g : A→ {1, 2, . . . ,m} for some m,n ≥ 0, then
m = n.

Proof. The composite
f ◦ g−1 : {1, 2, . . . ,m} → {1, 2, . . . , n}

is a bijection, with inverse g ◦ f−1, so m = n by the proposition above.
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1.4.2 Subsets

Lemma 1.4.7. Let A ⊂ {1, 2, . . . , n} be a subset. There exists a bijection f : A→ {1, 2, . . . ,m}
for some m ≤ n. Hence A is a finite set, of cardinality ≤ n.

Proof. We prove this by induction on n ≥ 0. For n = 0 it is clear, since the only subset of
∅ is ∅. For the inductive step, let n ≥ 1 and suppose that the lemma holds for n − 1. Let
A ⊂ {1, 2, . . . , n} be a subset. If n /∈ A, then A ⊂ {1, 2, . . . , n − 1}, so there exists a bijection
f : A→ {1, 2, . . . ,m} for some m ≤ n−1 by the inductive hypothesis. Hence m ≤ n. Otherwise,
we have n ∈ A. Let B = A−{n}. Then B ⊂ {1, 2, . . . , n− 1}, and by the inductive hypothesis
there exists a bijection g : B → {1, 2, . . . , k} for some k ≤ n−1. Let m = k+1, so m ≤ n. Define
the bijection f : A→ {1, 2, . . . ,m} by f(x) = g(x) if x ∈ B and f(n) = m. This completes the
inductive step.

Proposition 1.4.8. Let A ( {1, 2, . . . , n} be a proper subset. Then the cardinality of A is
strictly less than n, so there does not exist a bijection f : A→ {1, 2, . . . , n}.

Proof. Since A is a proper subset, we can choose a k ∈ {1, 2, . . . , n} with k /∈ A. Define a
bijection h : {1, 2, . . . , n} → {1, 2, . . . , n} by h(k) = n, h(n) = k and h(x) = x for the remaining
x. Let B = h(A), so that h|A : A → B is a bijection. Then B ⊂ {1, 2, . . . , n − 1}, so by
the lemma above there is a bijection g : B → {1, 2, . . . ,m} with m ≤ n − 1. The composite
g◦(h|A) : A→ {1, 2, . . . ,m} is then a bijection. Hence the cardinality of A is m ≤ n−1 < n.

Theorem 1.4.9. If A is a finite set, then there is no bijection of A with a proper subset of
itself.

Proof. Suppose that B ( A is a proper subset, and that there exists a bijection f : A → B.
Since A is finite there is a bijection g : A→ {1, 2, . . . n} for some n ≥ 0, where n is the cardinality
of A. Let C = g(B) ⊂ {1, 2, . . . , n}. Then g|B : B → C is a bijection, and C is a proper subset
of {1, 2, . . . , n}. Hence there is a bijection h : C → {1, 2, . . . ,m} for some m < n. If there exists
a bijection f : A→ B, then the composite bijection h ◦ (g|B) ◦ f : A→ {1, 2, . . . ,m} would say
that the cardinality of A is m, and not equal to n. This contradicts the fact that the cardinality
is well-defined, hence no such bijection f exists.

Corollary 1.4.10. The set N of natural numbers is not finite.

Proof. The function f : N→ N− {1} defined by f(x) = x+ 1 is a bijection of N with a proper
subset of itself. If N were finite, no such bijection could exist by Theorem 1.4.9.

Corollary 1.4.11. Any subset B of a finite set A is finite. If B is a proper subset of a finite
set A, then its cardinality is strictly less than the cardinality of A.

This is in contrast to the case of infinite sets A, which admit proper subsets B of the same
(infinite) cardinality as A itself.

1.4.3 Injections and surjections

Proposition 1.4.12. Let A be a set. The following are equivalent:

(1) A is finite.

(2) There exists a surjective function {1, 2, . . . , n} → A for some integer n ≥ 0.

(3) There exists an injective function A→ {1, 2, . . . , n} for some integer n ≥ 0.
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Proof. (1) =⇒ (2): Since A is finite there exists a bijection f : A → {1, 2, . . . , n} for some
integer n ≥ 0. Then f−1 is surjective, as required.

(2) =⇒ (3): Let g : {1, 2, . . . , n} → A be surjective. Define a function h : A→ {1, 2, . . . , n}
by letting h(x) be the smallest element of the subset

g−1(x) = {i | g(i) = x} .

of {1, 2, . . . , n}. This subset is nonempty since g is surjective. Then h is injective, since if x 6= y
then g−1(x) and g−1(y) are disjoint, so their smallest elements must be different.

(3) =⇒ (1): If f : A → {1, 2, . . . , n} is injective, let B = f(A) ⊂ {1, 2, . . . , n}. The
corestriction of f is then a bijection g : A→ B. By a previous lemma there is a bijective function
h : B → {1, 2, . . . ,m} for some m ≤ n. The composite bijection h ◦ g : A→ {1, 2, . . . ,m} shows
that A is finite.

Proposition 1.4.13. Finite unions and finite products of finite sets are finite.

Proof. Let A and B be finite. Choose bijections f : {1, 2, . . . ,m} → A and g : {1, 2, . . . , n} → B
for suitable m,n ≥ 0. We define a surjection

h : {1, 2, . . . ,m+ n} → A ∪B

by

h(x) =

{
f(x) if 1 ≤ x ≤ m
g(x−m) if m+ 1 ≤ x ≤ m+ n.

Here we regard A and B as subsets of A ∪B. Hence A ∪B is finite by the proposition above.
By the case n = 2, the formula

A1 ∪ · · · ∪An = (A1 ∪ · · · ∪An−1) ∪An ,

and induction on n, it follows that if A1, . . . , An are finite then A1 ∪ · · · ∪ An is finite, for all
n ≥ 0.

The cartesian product A×B is the union of the subsets A× {y} for all y ∈ B. Hence if A
and B are finite then this is a finite union of finite sets, so A×B is finite.

By the case n = 2, the formula

A1 × · · · ×An = (A1 × · · · ×An−1)×An ,

and induction on n, it follows that if A1, . . . , An are finite then A1 × · · · × An is finite, for all
n ≥ 0.
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Chapter 2

Topological Spaces and Continuous
Functions

2.1 (§12) Topological Spaces

2.1.1 Open sets

Definition 2.1.1. Let X be a set. A topology on X is a collection T of subsets of X, such
that:

(1) ∅ and X in T .

(2) For any subcollection {Uα}α∈J of T , the union
⋃
α∈J Uα is in T .

(3) For any finite subcollection {U1, . . . , Un} of T the intersection U1 ∩ · · · ∩ Un is in T .

A topological space (X,T ) is a set X with a chosen topology T .

The subsets U ⊂ X with U ∈ T are said to be open. Note that this defines the property of
being open. With this terminology, the axioms above assert that:

(1) ∅ and X are open (as subsets of X).

(2) The union of any collection of open subsets of X is open.

(3) The intersection of any finite collection of open subsets of X is open.

With the convention that ∅ is the union of the empty collection of subsets of X, and X is
the intersection of the empty collection of subsets of X, one may agree that (1) follows from
(2) and (3), but condition (1) is usually included for clarity. We express (2) by saying that
T is closed under (arbitrary) unions, and express (3) by saying that T is closed under finite
intersections.

To check that T is closed under finite intersections, it suffices to prove that if U1, U2 ∈ T
then U1 ∩ U2 ∈ T . This follows by induction on n from the formula

U1 ∩ · · · ∩ Un = (U1 ∩ · · · ∩ Un−1) ∩ Un .

2.1.2 Discrete and trivial topologies

Let X be any set. Here are two extreme examples of topologies on X.
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Definition 2.1.2. The discrete topology on X is the topology Tdisc where all subsets U ⊂ X
are defined to be open. Hence the collection of open subsets equals the power set of X: Tdisc =
P(X). It is clear that the axioms of a topology are satisfied, since it is so easy to be open in
this topology. We call (X,Tdisc) a discrete topological space.

The terminology can be explained as follows. Note that for each point x ∈ X, the singleton
set {x} is a subset of X, hence is a open in the discrete topology. Thus all other points y 6= x of
X are separated away from x by this open set {x}. We therefore think of X with the discrete
topology as a space of separate, isolated points, with no close interaction between different
points. In this sense, the space is discrete.

Definition 2.1.3. The trivial topology on X is the topology Ttriv where only the subsets ∅ and
X are defined to be open. Hence Ttriv = {∅, X}. It is clear that the axioms of a topology are
satisfied, since there are so few collections of open subsets. We call (X,Ttriv) a trivial topological
space. (Some texts call this the indiscrete topology.)

This terminology probably refers to the fact that the trivial topology is the minimal example
of a topology on X, in the sense that only those subsets of X that axiom (1) demand to be
open are open, and no others.

2.1.3 Finite topological spaces

Definition 2.1.4. If X is a finite set, and T is a topology on X, we call (X,T ) a finite
topological space.

When X is finite, the power set P(X) and any topology T ⊂ P(X) is finite, so the
distinction between finite and arbitrary unions plays no role. Hence to check conditions (2)
and (3) for a topology, it suffices to check that if U1, U2 ∈ T then U1∪U2 ∈ T and U1∩U2 ∈ T .

In the case when X is empty, or a singleton set, the discrete topology on X is equal to the
trivial topology on X, and these are the only possible topologies on X.

Example 2.1.5. Let X = {a, b} be a 2-element set. There are four different possible topologies
on X:

(1) The minimal possibility is the trivial topology Ttriv = {∅, X}.

(2) An intermediate possibility is Ta = {∅, {a}, X}.

(3) Another intermediate possibility is Tb = {∅, {b}, X}.

(4) The maximal possibility is the discrete topology Tdisc = {∅, {a}, {b}, X}.

We already explained why cases (1) and (4) are topologies. Examples (2) and (3) are known
as Sierpinski spaces, named after Wac law Sierpiński (1882–1969). To see that Ta is a topology
on {a, b}, note that {b} does not occur as the union or the intersection of any collection of sets
in Ta. Interchanging the role of a and b we also see that Tb is a topology.

In the Sierpinski space (X = {a, b},Ta), the element a is separated away from the other
point by the open set {a}, while the element b not separated away from the other point by any
open set. For the only open set containing b is {a, b}, which also contains a. This means that
a is “arbitrarily close” to b, even if b is not arbitrarily close to a. This kind of asymmetry of
“closeness” in topological spaces is not seen in metric spaces.

In these examples each collection of subsets containing the trivial topology defined a topol-
ogy. When X has cardinality 3 this is no longer true.
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Example 2.1.6. Let X = {a, b, c}. There are 29 different topologies on X. Here are nine of
them:

(1) The trivial topology T1 = Ttriv = {∅, X}.

(2) T2 = {∅, {a}, X}.

(3) T3 = {∅, {a, b}, X}.

(4) T4 = {∅, {a}, {a, b}, X}.

(5) T5 = {∅, {a, b}, {c}, X}.

(6) T6 = {∅, {a}, {b}, {a, b}, X}.

(7) T7 = {∅, {a}, {a, b}, {a, c}, X}.

(8) T8 = {∅, {a}, {c}, {a, b}, {a, c}, X}.

(9) The discrete topology T9 = Tdisc = P(X) (with 8 elements).

The reader should check that each of these is closed under unions and intersections. The
remaining topologies on X arise by permuting the elements a, b and c.

Example 2.1.7. Let X = {a, b, c}. Here are some collections of subsets of X that are not
topologies:

(1) {{a}, {c}, {a, b}, {a, c}} does not contain ∅ and X.

(2) {∅, {a}, {b}, X} is not closed under unions.

(3) {∅, {a, b}, {a, c}, X} is not closed under intersections.

2.1.4 The cofinite topology

Definition 2.1.8. Let X be a set. Let the cofinite topology Tcof be the collection of subsets
U ⊂ X whose complement X − U is finite, together with the empty set U = ∅.

The word “cofinite” refers to the fact that complements of finite sets are open, since if
F ⊂ X is finite, then U = X − F has complement X − U = X − (X − F ) = F , which is finite.
Calling Tcof a “topology” requires justification:

Lemma 2.1.9. The collection Tcof is a topology on X.

Proof. We check the three conditions for a topology.
(1): The subset ∅ is in Tcof by definition. The subset X is in Tcof since its complement

X −X = ∅ is finite.
(2): Let {Uα}α∈J be a subcollection of Tcof , so for each α ∈ J we have that X−Uα is finite,

or Uα = ∅. Let V =
⋃
α∈J Uα. We must prove that X − V is finite, or that V = ∅.

If each Uα is empty, then V is empty. Otherwise, there is a β ∈ J such that X−Uβ is finite.
Since Uβ ⊂ V , the complements satisfy X − V ⊂ X − Uβ. Hence X − V is a subset of a finite
set, and is therefore finite, as desired.

(3): Let {U1, . . . , Un} be a finite subcollection of Tcof , so for each 1 ≤ i ≤ n we have that
X − Ui is finite, or Ui = ∅. Let W = U1 ∩ · · · ∩ Un. We must prove that X −W is finite, or
W = ∅.
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If some Ui is empty, then W ⊂ Ui is empty. Otherwise, X − Ui is finite for each 1 ≤ i ≤ n.
By De Morgan’s law,

X −W = X − (U1 ∩ · · · ∩ Un) = (X − U1) ∪ · · · ∪ (X − Un) .

The right hand side is a finite union of finite sets, hence is again finite. Thus X −W is finite,
as desired.

When X is a finite set, the condition that X − U is finite is always satisfied, so in this case
the cofinite topology equals the discrete topology: Tcof = Tdisc.

2.1.5 Coarser and finer topologies

Definition 2.1.10. Let T and T ′ be two topologies on the same set X. We say that T is
coarser than T ′, or equivalently that T ′ is finer than T , if T ⊂ T ′. This means that each
subset U ⊂ X that is open in (X,T ) is also open in (X,T ′).

Remark 2.1.11. The coarse vs. fine terminology may be suggested by comparing a beach with
fine sand to one with coarse gravel. There are more grains of sand than pieces of gravel, and
there are more open subsets in the finer topology than in the coarser one. More precisely, the
space occupied by a piece of gravel can be precisely filled by a pile of sand, and each open subset
in the coarse topology is also open in the fine topology. However, no pile of gravel will fill only
the space occupied by a grain of sand, and some open subsets in the fine topology will not be
open in the coarse topology.

Lemma 2.1.12. The trivial topology is coarser than any other topology, and the discrete topol-
ogy is finer than any other topology.

Proof. For any topology T on X we have

Ttriv = {∅, X} ⊂ T ⊂P(X) = Tdisc .

The set of topologies on X becomes partially ordered by the “coarser than”-relation. Note
that two topologies need not be comparable under this relation. For example, neither one of
the two Sierpinski topologies Ta and Tb on {a, b} is coarser (or finer) than the other.

When X is an infinite set, the cofinite topology is strictly coarser than the discrete topology:
Tcof ( Tdisc. For example, in this case each finite, nonempty subset F ⊂ X is open in the
discrete topology, but not open in the cofinite topology. To see this, note that for F to be open
in Tcof its complement X − F would have to be finite. Then X = F ∪ (X − F ) would be the
union of two finite sets, and therefore would be finite. This contradicts the assumption that X
is infinite. Such finite, nonempty subsets F ⊂ X exist. For example, each singleton set F = {x}
for x ∈ X will do. Hence Tcof 6= Tdisc for infinite X.

Example 2.1.13. Let X = N be the set of natural numbers. The discrete topology Tdisc on
N is strictly finer than the cofinite topology Tcof on N, which is strictly finer than the trivial
topology Ttriv on N.

Remark 2.1.14. Given two topological spaces X and Y , a function f : X → Y will be said to
be continuous if:

for each open V ⊂ Y the preimage f−1(V ) is open in X.
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Suppose given two topologies T and T ′ on X, with T ⊂ T ′, so that T ′ is finer than T ,
and T is coarser than T ′. To an analyst considering real-valued functions

f : X −→ R

(where R has a fixed, metric, topology ), it is harder for f to be continuous with respect to T
than with respect to T ′. The analyst would therefore say that T is the stronger topology, and
T ′ is the weaker topology.

On the other hand, to a topologist considering paths

g : [0, 1] −→ X

(where [0, 1] ⊂ R has a fixed topology), it is easier for g to be continuous with respect to T
than with respect to T ′. The topologist would therefore say that T is the weaker topology,
and T ′ is the stronger topology.

These terminologies both presume that the condition to be continuous is some sort of obstacle
or barrier to be overcome, and that the stronger the barrier is, the harder it is to satisfy the
condition. However, they disagree about the nature, or direction, of the obstacle.

When comparing topologies we use the coarser vs. finer terminology, to avoid the confusion
that might arise from the two, conflicting, interpretations of stronger vs. weaker.

2.1.6 Metric spaces

Definition 2.1.15. A metric on a set X is a function d : X ×X → R such that:

(1) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality).

A metric space (X, d) is a set X with a chosen metric d.

Example 2.1.16. The real line X = R is a metric space, with distance function d(x, y) = |y−x|.
More generally, X = Rn is a metric space with the Euclidean distance

d(x, y) = ‖y − x‖ =
√

(y1 − x1)2 + · · ·+ (yn − xn)2

for x = (x1, . . . , xn) and y = (y1, . . . , yn). We call Rn with this metric Euclidean n-space.

Definition 2.1.17. Let (X, d) be a metric space. For each point x ∈ X and each positive real
number ε > 0, let

Bd(x, ε) = {y ∈ X | d(x, y) < ε}

be the ε-ball around x in (X, d).

Definition 2.1.18. Let (X, d) be a metric space. The metric topology Td on X is the collection
of subsets U ⊂ X satisfying the property: for each x ∈ U there exists an ε > 0 such that
Bd(x, ε) ⊂ U .

Lemma 2.1.19. The collection Td is a topology on X.
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Proof. We check the three conditions for a topology.
(1): The subset ∅ is in Td since there are no x ∈ ∅ for which anything needs to be checked.

The subset X is in T since for each x ∈ U we can take ε = 1, since Bd(x, 1) ⊂ X.
(2): Let {Uα}α∈J be a subcollection of Td. Let V =

⋃
α∈J Uα and consider any x ∈ V . By

the definition of the union there exists an α ∈ J with x ∈ Uα. By the property satisfied by
the Uα in Td, there exists an ε > 0 such that Bd(x, ε) ⊂ Uα. Since Uα ⊂ V it follows that
Bd(x, ε) ⊂ V . Hence V ∈ Td.

(3): Let {U1, . . . , Un} be a finite subcollection of Td. Let W = U1 ∩ · · · ∩ Un and consider
any x ∈ W . For each 1 ≤ i ≤ n we have W ⊂ Ui so x ∈ Ui. By the defining property of Td

there exists an εi > 0 such that Bd(x, εi) ⊂ Ui. Let ε = min{ε1, . . . , εn}. This makes sense since
n is finite, and ε > 0. Then Bd(x, ε) ⊂ Bd(x, εi) ⊂ Ui for each 1 ≤ i ≤ n, which implies that
Bd(x, ε) ⊂W . Hence W ∈ Td.

Definition 2.1.20. Let (X, d) be a metric space and let A ⊂ X be any subset. Let dA : A×A→
R be the restriction of d to A× A ⊂ X ×X. Then dA is a metric on A, so (A, dA) is a metric
space. We call (A, dA) a metric subspace of (X, d).

Example 2.1.21. Let the n-sphere

Sn = {x ∈ Rn+1 : ‖x‖ = 1}

be the unit sphere in Euclidean (n + 1)-space. It is a metric subspace, with the restricted
distance function dr = dSn given by dr(x, y) = ‖y − x‖ for x, y ∈ Sn ⊂ Rn+1. When n = 1 we
call S1 ⊂ R2 the unit circle. By definition, S0 = {+1,−1} consists of two points, and S−1 = ∅
is empty. Note that the restricted Euclidean metric dr is different from the intrinsic metric di
given by minimizing curve length within Sn. Nonetheless, these two metrics will give the same
underlying topology on Sn. In fact, the metrics are related by

dr(x, y) = 2 sin(di(x, y)/2)

so the collection of ε-balls Bdr(x, ε) ⊂ Sn for ε > 0 is equal to the collection of ε-balls Bdi(x, ε) ⊂
Sn for ε > 0, just with a different parametrization in terms of ε. Hence the collections of open
sets are equal: Tdr = Tdi .

2.2 (§13) Basis for a Topology

2.2.1 Bases

Remark 2.2.1. Recall that given two topological spaces Z and X, a function g : Z → X is
continuous if for each open U ⊂ X the preimage g−1(U) is open in Z. Suppose that

U =
⋃
α∈J

Bα

can be written as the union of a collection {Bα}α∈J of open subsets Bα ⊂ X. Then

g−1(U) =
⋃
α∈J

g−1(Bα) .

If each g−1(Bα) is open in Z, then so is their union, by condition (2) for a topology. Hence
this will imply that g−1(U) is open. Thus, to verify that g is continuous, it is enough to find a
subcollection B of the topology T on X such that:
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(1) Each open subset of X can be written as a union
⋃
α∈J Bα of sets Bα ∈ B.

(2) g−1(B) is open in Z, for each B ∈ B.

A collection B ⊂ T satisfying condition (1) will be called a basis for the topology T on X.
In this situation, to prove that a given function g : Z → X is continuous it suffices to verify
condition (2), with B ∈ B replacing U ∈ T .

It will often be convenient to define a topology T by only specifying a basis B for that
topology. The open subsets of X will then be precisely the unions of subcollections of B. In
this way the basis B determines, or generates, T . However, different bases B and B′ may well
generate the same topology. (Compare with the role of bases for vector spaces.)

We now define what it means for a collection B of subsets of X to be a basis. Then we
define the topology T generated by B, and prove that it satisfies the axioms for a topology.
Thereafter we show that T precisely consists of the unions of subcollections of B, i.e., that the
open sets in the topology T are precisely the sets

U =
⋃
α∈J

Bα

where {Bα}α∈J ranges through the subcollections of B.

Definition 2.2.2. Let X be a set. A collection B of subsets of X is a basis (for a topology) if

(1) For each x ∈ X there exists a B ∈ B with x ∈ B.

(2) If B1, B2 ∈ B and x ∈ B1 ∩B2 then there exists a B3 ∈ B with x ∈ B3 ⊂ B1 ∩B2.

The sets B ∈ B are called basis elements. They are elements in B and subsets of X.

Example 2.2.3. Let X = R2 be the plane, and let B be the set of all open circular regions in
the plane. This is the set of all ε-balls (or ε-disks)

B(x, ε) = {y ∈ R2 : ‖y − x‖ < ε}

with respect to the Euclidean metric d(x, y) = ‖y−x‖ in the plane. We verify the two conditions
for a basis:

(1): For each x ∈ R2 the 1-ball B(x, 1) = {y ∈ R2 : ‖y − x‖ < 1} lies in B and x ∈ B(x, 1).
(2): For B1 = B(x1, ε1) and B2 = B(x2, ε2) in B, consider any x ∈ B1 ∩ B2. Then x ∈ R2

and ‖x− x1‖ < ε1 and ‖x− x2‖ < ε2. Let

ε = min{ε1 − ‖x− x1‖, ε2 − ‖x− x2‖} .

Then ε > 0, and we claim that B3 = B(x, ε) ⊂ B1 ∩B2. Since x ∈ B3, this will finish the proof.
We prove that B3 ⊂ B1, by means of the triangle inequality. A similar proof shows that

B3 ⊂ B2, so that B3 ⊂ B1 ∩B2. Consider any y ∈ B3, with

‖y − x‖ < ε ≤ ε1 − ‖x− x1‖ .

Then
‖y − x1‖ ≤ ‖y − x‖+ ‖x− x1‖ < ε1 − ‖x− x1‖+ ‖x− x1‖ = ε1

(using the triangle inequality for y, x and x1). Hence y ∈ B1 = B(x1, ε1). Since y ∈ B3 was
arbitrarily chosen, we have proved that B3 ⊂ B1, as required.
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Example 2.2.4. Let X = R2 be the xy-plane, and let B′ be the set of all open rectangular
regions

(a, b)× (c, d) ⊂ R× R

with a < b and c < d. This is the rectangle bounded by the vertical lines x = a and x = b, and
the horizontal lines y = c and y = d. We verify the two conditions for a basis:

(1): For each (x, y) ∈ R2, the open rectangle (x − 1, x + 1) × (y − 1, y + 1) lies in B′ and
contains (x, y).

(2): Consider B1 = (a1, b1)× (c1, d1), B2 = (a2, b2)× (c2, d2) and (x, y) ∈ B1 ∩ B2, so that
a1 < x < b1, c1 < y < d1, a2 < x < b2 and c2 < y < d2. Let a3 = max{a1, a2}, b3 = min{b1, b2},
c3 = max{c1, c2} and d3 = min{d1, d2}. Then B3 = (a3, b3)× (c3, d3) satisfies

(x, y) ∈ B3 = B1 ∩B2

so (a stronger form of) condition (2) is satisfied.

Example 2.2.5. Let X be a set, and let Bdisc be the collection of singleton sets {x} for x ∈ X.
It is a basis for the discrete topology Tdisc on X.

Definition 2.2.6. Let B be a basis for a topology on X. The topology T generated by B is
the collection of subsets U ⊂ X such that

for each x ∈ U there exists a B ∈ B with x ∈ B ⊂ U .

In other words, a subset U ⊂ X is defined to be open in this topology if for each x ∈ U there
exists a basis element B ⊂ U with x ∈ B.

Lemma 2.2.7. The collection T generated by a basis B is a topology on X.

Proof. We check the three conditions for a topology.
(1): The subset U = ∅ is in T , since there are no x ∈ U for which a condition must be

satisfied. The subset U = X is in T , since for each x ∈ X there exists a B ∈ B with x ∈ B,
by condition (1) for a basis, and then B ⊂ U = X.

(2): Let {Uα}α∈J be a subcollection of T . Let V =
⋃
α∈J Uα be its union. We must show

that V ∈ T . Consider any x ∈ V . By the definition of the union, there exists an α ∈ J with
x ∈ Uα. Since Uα ∈ T , this means that there exists a basis element B ∈ B with x ∈ B ⊂ Uα.
Here Uα ⊂ V , so x ∈ B ⊂ V . Since this holds for each x ∈ V , it follows that V ∈ T .

(3): Let {Ui}ni=1 be a finite subcollection of T . Let W = U1 ∩ · · · ∩ Un be its intersection.
We must show that W ∈ T . By induction on n, it suffices to do this in the case n = 2. Hence
assume that W = U1 ∩U2. Consider any x ∈W . Since W ⊂ U1 we have x ∈ U1, so there exists
a basis element B1 ∈ B with x ∈ B1 ⊂ U1. Furthermore, since W ⊂ U2 we have x ∈ U2, so
there exists a basis element B2 ∈ B with x ∈ B2 ⊂ U2. Hence x ∈ B1 ∩B2 ⊂ U1 ∩U2 = W . By
consition (2) for a basis, these exists a basis element B3 ∈ B with x ∈ B3 ⊂ B1 ∩B2. It follows
that x ∈ B3 ⊂W . Since x was arbitrarily chosen in W , we have verified that W ∈ T .

Proposition 2.2.8. Let B be a basis for a topology T on X, i.e., let T be the topology
generated by B.

(1) Each B ∈ B is open in X. Hence each union of basis elements is also open in X.

(2) Conversely, each open U ⊂ X is a union of basis elements.
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Proof. (1): Let B ∈ B be any basis element. For each x ∈ B we obviously have x ∈ B and
B ⊂ B. Hence B ∈ T is open. It follows that any union of basis elements is a union of open
sets, hence is open.

(2): Let U ∈ T be open. For each x ∈ U there exists a Bx ∈ B with x ∈ Bx and Bx ⊂ U .
Then

U =
⋃
x∈U

Bx

is the union of the collection of basis elements {Bx | x ∈ U}. To check the displayed equality,
note that for each x ∈ U we have x ∈ Bx, so x ∈

⋃
x∈U Bx. Hence U ⊂

⋃
x∈U Bx. On the other

hand, each Bx ⊂ U , so
⋃
x∈U Bx ⊂ U .

Example 2.2.9. In any metric space (X, d), the collections of ε-balls

B = {Bd(x, ε) | x ∈ X, ε > 0}

is a basis. The proof is the same as for R2 with the Euclidean metric, writing d(x, y) in place
of ‖y − x‖. The topology generated by B is equal to the metric topology, Td. Hence a subset
U ⊂ X is open if and only if it is a union of ε-balls.

Example 2.2.10. Let R be the real line. With the usual metric d(x, y) = |y − x|, the ε-
neighborhoods

B(x, ε) = (x− ε, x+ ε)

are open intervals, and each open interval

(a, b) = {x ∈ R | a < x < b}

with a < b has this form for x = (a+ b)/2, ε = (b−a)/2. Let B be the collection of all intervals
(a, b) ⊂ R for a < b. It is a basis for the standard topology on R, that is, the metric topology Td.

In this topology, open intervals are open subsets. Furthermore, the open subsets are precisely
the unions of (arbitrary collections of) open intervals. By the general theory, finite intersections
of open subsets are open, and arbitrary unions of opens subsets are open. To see that infinite
intersections of open subsets need not be open, consider the example

[0, 1] =
⋂
n∈N

(−1/n, 1 + 1/n) .

Here (−1, 3), (−1/2, 3/2), (−1/3, 4/3), . . . are open, but their intersection is not.

Here is a “recognition principle” for when a collection C is a basis for a given topology T .

Lemma 2.2.11. Let (X,T ) be a topological space. Suppose C ⊂ T is a subcollection such that
for each open U ∈ T and point x ∈ U there exists an element C ∈ C with x ∈ C and C ⊂ U .
Then C is a basis for the topology T .

Proof. We first check that C is a basis.
(1): The set X is open in itself, so for each x ∈ X there exists a C ∈ C with x ∈ C.
(2): Let C1, C2 ∈ C . Since C1 and C2 are open, so is the intersection C1 ∩ C2. Hence, for

each x ∈ C1 ∩ C2 there exists a C3 ∈ C with x ∈ C3 and C3 ⊂ C1 ∩ C2.
Next we check that the topology T ′ generated by C equals T .
T ⊂ T ′: If U ∈ T and x ∈ U there exists a C ∈ C with x ∈ C and C ⊂ U , by hypothesis,

so U ∈ T ′ by definition.
T ′ ⊂ T : If U ∈ T ′ then U is a union of elements of C by the proposition above. Each

element of C is in T , hence so is the union U .
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2.2.2 Comparing topologies using bases

Lemma 2.2.12. Let B and B′ be bases for the topologies T and T ′ on X, respectively. The
following are equivalent:

(1) T ′ is finer than T , so T ⊂ T ′.

(2) For each basis element B ∈ B and each point x ∈ B there is a basis element B′ ∈ B′ with
x ∈ B′ and B′ ⊂ B.

Proof. (1) =⇒ (2): Let B ∈ B and x ∈ B. Since B ∈ T and T ⊂ T ′ we have B ∈ T ′. Since
T ′ is the topology generated by B′ there exists a B′ ∈ B′ with x ∈ B′ and B′ ⊂ B.

(2) =⇒ (1): Let U ∈ T . For each x ∈ U there exists a B ∈ B with x ∈ B and B ⊂ U ,
since B generates T . By hypothesis there exists a B′ ∈ B′ with x ∈ B′ and B′ ⊂ B. Hence
B′ ⊂ U . Since this holds for each x ∈ U , it follows that U ∈ T ′.

Note that in order to have T ⊂ T ′ it is not necessary to have B ⊂ B′ (each basis element
B ∈ B does not need to be a basis element in B′), but for each x ∈ B there should be some
potentially smaller basis element B′ ∈ B′ with x ∈ B′ ⊂ B.

Corollary 2.2.13. Two bases B and B′ for topologies on X generate the same topology if
and only if (1) for each x ∈ B ∈ B there is a basis element B′ ∈ B′ with x ∈ B′ ⊂ B, and
furthermore, (2) for each x ∈ B′ ∈ B′ there is a basis element B ∈ B with x ∈ B ⊂ B′.

Example 2.2.14. The basis B of open circular regions in the plane and the basis B′ of open
rectangular regions generate the same topology on R2, namely the metric topology.

2.2.3 Subbases

Starting with any collection S of subsets of a set X, we can form a basis B for a topology by
taking all finite intersections

B = S1 ∩ · · · ∩ Sn
of elements in S . The open sets in the topology T generated by B are then all unions of such
basis elements B, which are all unions of all finite intersections of sets in S . Such a collection
S is called a subbasis for the topology T . To avoid ambiguity about the intersection of an
empty collection, we mildly restrict the collection S as follows:

Definition 2.2.15. A subbasis for a topology on X is a collection S of subsets of X, with union
equal to X. The basis associated to S is the collection B consisting of all finite intersections

B = S1 ∩ · · · ∩ Sn

of elements S1, . . . , Sn ∈ S , for n ≥ 1. By the topology T generated by the subbasis S we
mean the topology generated by the associated basis B.

Clearly S ⊂ B ⊂ T .

Lemma 2.2.16. Let S be a subbasis on X. The associated collection B is a basis for a
topology.

Proof. (1): Each x ∈ X lies in some S ∈ S , hence is an element of the basis element B = S ∈ B.
(2): Suppose that B1 = S1 ∩ · · · ∩ Sn and B2 = Sn+1 ∩ · · · ∩ Sn+m are basis elements,

and x ∈ B1 ∩ B2. Let B3 = B1 ∩ B2 = S1 ∩ · · · ∩ Sm+n. Then B3 is a basis element, and
x ∈ B3 = B1 ∩B2.
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2.3 (§15) The Product Topology on X × Y

2.3.1 A basis for the product topology

Recall (from §5) that for two sets A and B, the cartesian product A × B is the set of ordered
pairs (x, y), with x ∈ A and y ∈ B.

Definition 2.3.1. Let X and Y be topological spaces. The product topology on X × Y is the
topology generated by the basis

B = {U × V | U open in X and V open in Y }

consisting of all sets U × V ⊂ X × Y , where U ranges over all open subsets of X and V ranges
over all open subsets of Y .

Lemma 2.3.2. The collection B (as above) is a basis for a topology on X × Y .

Proof. (1): X × Y is itself a basis element.
(2): Let B1 = U1 × V1 and B2 = U2 × V2 be two basis elements. In view of the identity

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2)

we have that B1 ∩ B2 = B3, where B3 = U3 × V3 is the basis element given by the product of
the two open sets U3 = U1 ∩ U2 and V3 = V1 ∩ V2.

The union of two basis elements

(U1 × V1) ∪ (U2 × V2)

is usually not a basis element. The open sets in the product topology on X × Y are the unions⋃
α∈J

(Uα × Vα)

of arbitrary collections {Bα = Uα × Vα}α∈J of basis elements.

Theorem 2.3.3. Let X have the topology generated by a basis B and let Y have the topology
generated by a basis C . Then the collection

D = {B × C | B ∈ B and C ∈ C }

is a basis for the product topology on X × Y .

Proof. We apply Lemma 2.2.11. The elements B×C of the collection D are open in the product
topology, since each B ∈ B is open in X and each C ∈ C is open in Y , so B × C is one of the
basis elements for the product topology.

Let (x, y) ∈ W ⊂ X × Y where W is open in the product topology. By definition of the
topology generated by a basis, there exists a basis element U × V for the product topology,
such that (x, y) ∈ U × V ⊂ W . Since x ∈ U , U is open in X and B is a basis for the
topology on X, there exists a basis element B ∈ B such that x ∈ B ⊂ U . Similarly, there
exists a basis element C ∈ C such that y ∈ C ⊂ V . Then B × C is in the collection D , and
(x, y) ∈ B × C ⊂ U × V ⊂W .

Example 2.3.4. The collection B′ of open rectangular regions

(a, b)× (c, d)

for a < b and c < d is a basis for the product topology on R × R, since the collection of open
intervals (a, b) for a < b is a basis for the standard topology on R. As previously noted, this
product topology is the same as the metric topology.
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2.3.2 A subbasis for the product topology

Definition 2.3.5. Let π1 : X × Y → X denote the (first) projection π1(x, y) = x, and let
π2 : X × Y → Y denote the (second) projection π2(x, y) = y, for x ∈ X and y ∈ Y .

Lemma 2.3.6. The preimage of U ⊂ X under π1 : X × Y → X equals

π−1
1 (U) = U × Y .

Similarly, the preimage of V ⊂ Y under π2 : X × Y → Y equals

π−1
2 (V ) = X × V .

Proof. An element (x, y) lies in π−1
1 (U) if and only if x = π1(x, y) lies in U , which for y ∈ Y is

equivalent to asking that (x, y) lies in U × Y . The second case is similar.

Note the identity
(U × Y ) ∩ (X × V ) = U × V

of subsets of X × Y . Hence each basis element B = U × V for the product topology on X × Y
is the intersection of two subsets of the form S1 = π−1

1 (U) = U ×Y and S2 = π−1
2 (V ) = X ×V .

It follows that the basis for the product topology is generated by a smaller subbasis:

Definition 2.3.7. Let

S = {U × Y | U ⊂ X open} ∪ {X × V | V ⊂ Y open}
= {π−1

1 (U) | U ⊂ X open} ∪ {π−1
2 (V ) | V ⊂ Y open} .

Lemma 2.3.8. The collection S (as above) is a subbasis for the product topology on X × Y .

Proof. The finite intersections of elements in the subbasis are all of the form

π−1
1 (U) ∩ π−1

2 (V ) = U × V

for U open in X and V open in Y , hence the subbasis generates the usual basis for the product
topology.

2.4 (§16) The Subspace Topology

2.4.1 Subspaces

Definition 2.4.1. Let (X,T ) be a topological space, and let A ⊂ X be a subset. The collection

TA = {A ∩ U | U ∈ T }

of subsets of A is called the subspace topology on A. With this topology, (A,TA) is called a
subspace of X.

Lemma 2.4.2. The collection TA (as above) is a topology on A.

Proof. (1): ∅ = A ∩∅ and A = A ∩X are in TA, since ∅ and X are in T .
(2): Each subcollection of TA can be indexed as {A∩Uα}α∈J for some subcollection {Uα}α∈J

of T . Then ⋃
α∈J

(A ∩ Uα) = A ∩
⋃
α∈J

Uα
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by the distributive law, and
⋃
α∈J Uα is in T , hence this union is in TA.

(3): Each finite subcollection of TA can be indexed as {A ∩ U1, . . . , A ∩ Un} for some finite
subcollection {U1, . . . , Un} of T . Then

(A ∩ U1) ∩ · · · ∩ (A ∩ Un) = A ∩ (U1 ∩ · · · ∩ Un)

and U1 ∩ · · · ∩ Un is in T , hence this intersection is in TA.

When (A,TA) is a subspace of (X,T ), and V ⊂ A ⊂ X, there are two possible meanings
of the assertion “V is open”, namely V ∈ T or V ∈ TA. In general, these two meanings are
different.

Definition 2.4.3. We say that “V is open in X”, or that “V is an open subset of X”, to
indicate that V ∈ T , while we say that “V is open in A”, or that “V is an open subset of A”,
to indicate that V ∈ TA. The latter means that V = A ∩ U for some U that is open in X.

Lemma 2.4.4. If B is a basis for a topology T on X, and A ⊂ X, then the collection

BA = {A ∩B | B ∈ B}

is a basis for the subspace topology TA on A.

Proof. We apply Lemma 2.2.11 for the topological space (A,TA) and the collection BA. Each
subset A ∩B in BA is open in A, since each basis element B ∈ B is open in X. Furthermore,
each open subset of A has the form A ∩ U for some open subset U of X. If x ∈ A ∩ U is any
point, then x ∈ U , so since B is a basis for the topology T there exists a B ∈ B with x ∈ B
and B ⊂ U . Then A ∩B ∈ BA, x ∈ A ∩B, and A ∩B ⊂ A ∩ U . By the cited lemma, BA is a
basis for the topology TA.

Example 2.4.5. Give X = R the standard topology generated by the open intervals (a, b), and
let A = [0, 1). The subspace topology on A has a basis consisting of the intersections [0, 1)∩(a, b),
i.e., the subsets [0, b) and (a, b) for 0 < a < b ≤ 1. For instance, [0, 1/2) = [0, 1) ∩ (−1/2, 1/2)
and (0, 1/2) = [0, 1) ∩ (0, 1/2) are both open subsets of [0, 1) in the subspace topology.

Example 2.4.6. Let (X, d) be a metric space, with basis B = {Bd(x, ε) | x ∈ X, ε > 0} for the
metric topology T = Td. Here

Bd(x, ε) = {y ∈ X | d(x, y) < ε} .

Let A ⊂ X be any subset, with metric dA = d|A×A given by dA(x, y) = d(x, y) for all x, y ∈ A.
The metric space (A, dA) has basis B′ = {BdA(x, ε) | x ∈ A, ε > 0} for the metric topology
T ′ = TdA , where

BdA(x, ε) = {y ∈ A | dA(x, y) < ε} .

Note that
BdA(x, ε) = A ∩Bd(x, ε)

for all x ∈ A. Hence B′ ⊂ BA and T ′ ⊂ TA, where TA is the subspace topology on A.
To prove that the two topologies are equal, so that TA = T ′, we use Lemma 2.2.12 to

check that TA ⊂ T ′. Thus consider any basis element A ∩ Bd(x, ε) in TA and any element
y ∈ A ∩ Bd(x, ε). Then δ = ε − d(x, y) is positive, and BdA(y, δ) is a basis element in B′,
y ∈ BdA(y, δ) and BdA(y, δ) ⊂ A ∩Bd(x, ε).

Definition 2.4.7. By an open subspace of X we mean an open subset A ⊂ X with the subspace
topology.
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Lemma 2.4.8. Let A be an open subspace of X. Then a subset V ⊂ A is open in A if and only
if it is open in X.

Proof. Suppose first that V is open in A, in the subspace topology. Then V = A ∩ U for some
U that is open in X. Since A is open in X, it follows that the intersection, V = A ∩ U is open
in X.

Conversely, suppose that V ⊂ A is open in X. Then V = A∩V , so V is also open in A.

2.4.2 Products vs. subspaces

Lemma 2.4.9. Let X and Y be topological spaces, with subspaces A and B, respectively. Then
the product topology on A × B is the same as the subspace topology on A × B as a subset of
X × Y .

Proof. The subspace topology on A is generated by the basis with elements A ∩ U , where U
ranges over all open subsets of X. Likewise, the subspace topology on B is generated by the
intersections B ∩V , where V ranges over all open subsets of Y . Hence the product topology on
A×B is generated by the basis with elements

(A ∩ U)× (B ∩ V )

where U and V range over the open subsets of X and Y , respectively.
On the other hand, the collection of products U × V is a basis for the product topology on

X × Y , so the collection of intersections

(A×B) ∩ (U × V )

is a basis for the subspace topology on A×B, where U and V still range over the open subsets
of X and Y . In view of the identity

(A ∩ U)× (B ∩ V ) = (A×B) ∩ (U × V )

these two bases are in fact equal, hence they generate the same topology.

Example 2.4.10. With A = S1 ⊂ R2 and B = [0, 2π] ⊂ R, the product space

A×B = S1 × [0, 2π] ⊂ R2 × R ∼= R3

is a cylinder. If we view R as R×{0} ⊂ R2, there is room to bend the interval B ∼= [0, 2π]×{0} ⊂
R2 to bring its ends closer together, eventually forming the loop B′ = S1 ⊂ R2. The product
space

A×B′ = S1 × S1 ⊂ R2 × R2 ∼= R4

is obtained from the cylinder S1 × [0, 2π] by bringing the two end circles together. This can be
realized within R3 by the torus surface. Hence S1×S1 is topologically “the same” as the torus
surface.

Example 2.4.11. Let S2 = {p ∈ R3 | ‖p‖ = 1} be the unit sphere, with the subspace topology
from R3, which is the same as the metric topology associated to the restriction to S2 of the
Euclidean metric on R3. The tangent plane TpS

2 of S2 at a point p ∈ S2 consists of the vectors
in R3 that are perpendicular to p:

TpS
2 = {v ∈ R3 | p ⊥ v} .
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The tangent vector v at p is often drawn as an arrow from p to p + v, but we view TpS
2 as a

vector subspace of R3, with the origin at (0, 0, 0), not at p. The set of pairs (p, v) with p ∈ S2

and v ∈ TpS2 form (the total space of) the tangent bundle

TS2 = {(p, v) | p ∈ S2, v ∈ R3, p ⊥ v} =
⋃
p∈S2

{p} × TpS2 .

Since
TS2 ⊂ S2 × R3 =

⋃
p∈S2

{p} × R3

we can view it as a subspace of the product of S2 and R3. There is a projection map

π : TS2 −→ S2

(p, v) 7−→ p

given by sending TpS
2 to {p}, for each p ∈ S2. The point preimage π−1(p) is called a fiber of

the tangent bundle, and is identified with the tangent plane TpS
2. A vector field on S2 is a

function

X : S2 −→ TS2

p 7−→ X(p)

sending each point p ∈ S2 to a tangent vector X(p) ∈ TpS2 at that point. Equivalently, it is
a function X : S2 → TS2 such that the composite π ◦ X : S2 → S2 takes p to p, i.e., equals
the identity function. The vector field is everwhere nonzero if X(p) 6= 0 for each p ∈ S2. It is
continuous if X : S2 → TS2 is a continuous function with respect to the given topologies on S2

and TS2, in the sense we shall discuss in § 18.

Theorem 2.4.12 (Hairy ball theorem). It is impossible for a continuous vector field on S2 to
be everywhere nonzero.

We may outline a proof at the end of the course. As an example, there is a continuous vector
field pointing south/down at every point other than the north and south poles, i.e., away from
(0, 0,±1), but in order to be continuous, this vector field must tend to zero at both poles. There
are also examples of continuous vector fields with only one zero, but none that are completely
without zeroes. This is a topological feature of the tangent bundle π : TS2 → S2.

In this case we could view X as a function V : S2 → R3 with p ⊥ V (p) for each p ∈ S2, so
that X(p) = (p, V (p)) in S2×R3, and continuity (resp. nonvanishing) of X would be equivalent
to continuity (resp. nonvanishing) of V . But there are other differentiable surfaces that are not
naturally presented as subspaces of some RN , and for which it is inconvenient to view vector
fields as special functions from the surface to RN .

2.5 (§17) Closed Sets and Limit Points

2.5.1 Closed subsets

Definition 2.5.1. A subset K of a topological space X is said to be closed if (and only if) the
complement X−K is open. In other words, the closed subsets of X are the subsets of the form
X − U where U is open.

Example 2.5.2. The interval [a, b] = {x ∈ R | a ≤ x ≤ b} is closed in R (with the standard
topology), since the complement R− [a, b] = (−∞, a) ∪ (b,∞) is open.
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Example 2.5.3. In the discrete topology Tdisc on a set X, every subset is closed. In the trivial
topology Ttriv, only the subsets ∅ and X are closed.

Example 2.5.4. In the cofinite topology Tcof on a set X, the closed subsets are the finite
subsets F ⊂ X, together with X itself. When X = C is the set of complex numbers, these are
the same as the zero sets

V (f) = {z ∈ C | f(z) = 0}

for all complex polynomials f ∈ C[z]: If

f(z) = (z − r1)(z − r2) · · · (z − rn)

then V (f) = {r1, r2, . . . , rn}, while if f(z) = 0 then V (f) = C. The cofinite topology on C is
therefore the same as the Zariski topology on the maximal ideal spectrum of C[z], as introduced
and generalized in algebraic geometry by Oscar Zariski (1899–1986).

Theorem 2.5.5. Let X be a topological space.

(1) ∅ and X are closed (as subsets of X).

(2) The intersection of any collection of closed subsets of X is closed.

(3) The union of any finite collection of closed subsets of X is closed.

Proof. (1): ∅ = X −X and X = X −∅ are closed.
(2): If {Kα}α∈J is any collection of closed subsets of X, then the complements Uα = X−Kα

are all open, so that {Uα}α∈J is a collection of open subsets of X. To prove that the intersection⋂
α∈J Kα is closed, we must check that its complement is open. By De Morgan’s law

X −
⋂
α∈J

Kα =
⋃
α∈J

(X −Kα) =
⋃
α∈J

Uα

is a union of open sets, hence is open, as desired.
(3): If {K1, . . . ,Kn} is a finite collection of closed subsets of X, then the complements

Ui = X −Ki are all open, so that {U1, . . . , Un} is a finite collection of open subsets of X. To
prove that the union K1 ∪ · · · ∪Kn is closed, we must check that its complement is open. By
De Morgan’s law

X − (K1 ∪ · · · ∪Kn) = (X −K1) ∩ · · · ∩ (X −Kn) = U1 ∩ · · · ∩ Un

is a finite intersection of open sets, hence is open, as desired.

Clearly the collection C = {X−U | U ∈ T } of closed subsets of a topological space (X,T )
uniquely determine the topology T , and any collection C of subsets, called closed subsets,
satisfying the three conditions of the theorem above, will determine a topology T = {X −K |
K ∈ C } in this way.

When (A,TA) is a subspace of (X,T ), and K ⊂ A ⊂ X, there are two possible meanings of
the assertion “K is closed”, namely X−K ∈ T or A−K ∈ TA. In general, these two meanings
are different.

Definition 2.5.6. We say that “K is closed in A”, or that “K is a closed subset of A”, if K
is a subset of A and K is closed in the subspace topology on A, so that A −K is open in the
subspace topology on A.
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Theorem 2.5.7. Let A be a subspace of X. A subset K ⊂ A is closed in A if and only if there
exists a closed subset L ⊂ X with K = A ∩ L.

Proof. Let U range through the open sets in X. Then L = X − U ranges through the closed
sets in X. Moreover, A ∩ U ranges through the open sets in A, so K = A − A ∩ U ranges
through the closed sets in A. Since A − A ∩ U = A ∩ (X − U), these are the same as the sets
A ∩ L where L ranges through the closed sets in X.

Definition 2.5.8. By a closed subspace of X we mean a closed subset A ⊂ X with the subspace
topology.

Lemma 2.5.9. Let A be a closed subspace of X. Then a subset K ⊂ A is closed in A if and
only if it is closed in X.

Proof. Suppose first that K is closed in A, in the subspace topology. Then K = A∩L for some
L that is closed in X. Since A is closed in X, it follows that the intersection, K = A ∩ L is
closed in X. Conversely, suppose that K ⊂ A is closed in X. Then K = A ∩K, so K is also
closed in A.

2.5.2 Closure and interior

Definition 2.5.10. Let X be a topological space and A ⊂ X a subset. The closure ClA of
A in X (often denoted Ā) is the intersection of all the closed subsets of X that contain A.
The interior IntA of A in X (sometimes denoted Å) is the union of all the open subsets of X
that are contained in A. The boundary BdA of A in X (often denoted ∂A) is the difference
BdA = ClA− IntA.

Since unions of open sets are open, and intersections of closed sets are closed, the following
lemmas are clear.

Lemma 2.5.11. (1) The closure ClA is a closed subset of X.

(2) A ⊂ ClA.

(3) If A ⊂ K ⊂ X with K closed, then ClA ⊂ K.

Lemma 2.5.12. (1) The interior IntA is an open subset of X.

(2) IntA ⊂ A.

(3) If U ⊂ A ⊂ X with U open, then U ⊂ IntA.

Example 2.5.13. Let X = R and A = [a, b) with a < b. The closure of A is the closed interval
[a, b], the interior of A is the open interval (a, b), and the boundary of A is {a, b}. The closure
cannot be smaller, since [a, b) is not closed, and the interior cannot be larger, since [a, b) is not
open.

Example 2.5.14. If X has the discrete topology, IntA = A = ClA for each A ⊂ X, since each
A is both open and closed.

If X has the indiscrete topology, and A ⊂ X is a proper, non-empty subset, then IntA = ∅
and ClA = X.

If X = {a, b} has the Sierpinski topology Ta = {∅, {a}, X}, where {a} is open and {b} is
closed, then Cl{a} = X, Int{a} = {a}, Bd{a} = {b}, Cl{b} = {b}, Int{b} = ∅ and Bd{b} = {b}.
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Lemma 2.5.15. The complement of the closure is the interior of the complement, and the
complement of the interior is the closure of the complement:

X − ClA = Int(X −A)

X − IntA = Cl(X −A)

Hence BdA = ClA ∩ Cl(X −A).

Proof. Since ClA =
⋂
{K | A ⊂ K, K closed in X},

X − ClA =
⋃
{X −K | A ⊂ K, K closed in X}

=
⋃
{U | U ⊂ X −A, U open in X} = Int(X −A) ,

since A ⊂ K is equivalent to X −K ⊂ X −A, where we substitute U for X −K.
The second assertion follows by considering X − A in place of A. The third comes from

ClA− IntA = ClA ∩ (X − IntA).

Example 2.5.16. Let X = R and A = Q, the set of rational numbers. The closure of A equals
R, while the interior of A is empty. For every ε-ball (x − ε, x + ε) in R contains both rational
and irrational numbers, so the interiors of A and X−A are both empty. We say that Q is dense
in R.

Definition 2.5.17. A subset A ⊂ X is dense if ClA = X.

2.5.3 Closure in subspaces

To emphasize the role of the ambient space, we might write ClX(A) for the closure of A in X.

Theorem 2.5.18. Let X be a topological space, Y ⊂ X a subspace, and A ⊂ Y a subset. Let
Ā denote the closure of A in X. Then the closure of A in Y equals Y ∩ Ā:

ClY (A) = Y ∩ ClX(A)

Proof. Let L range through the collection C of closed subsets of X that contain A. Then
Ā =

⋂
L∈C L. Also Y ∩ L ranges through the closed subsets of Y that contain A, so

ClY (A) =
⋂
L∈C

Y ∩ L = Y ∩
⋂
L∈C

L = Y ∩ Ā .

Example 2.5.19. Let X = R, Y = Q and A = Q ∩ [0, π). The closure of A in X is [0, π], and
the closure of A in Y is Q∩ [0, π] = Q∩ [0, π) (since π is not rational). Hence A is closed in Y .

2.5.4 Neighborhoods

Definition 2.5.20. Let X be a topological space, U ⊂ X a subset and x ∈ X a point. We say
that U is a neighborhood of x (norsk: “U er en omegn om x”) if x ∈ U and U is open in X.

One way to formalize that we consider “all points y sufficiently close to x”, for a given point
x ∈ X, is to consider “ all points y ∈ U for some neighborhood U of x”.

We say that a set A meets, or intersects, a set B if A ∩ B is not empty. Here is a criterion
for detecting which points x ∈ X lie in the closure of A:
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Theorem 2.5.21. Let A be a subset of a topological space X. A point x ∈ X lies in the closure
Ā if and only if A meets every open set U in X that contains x. Equivalently, x ∈ Ā if and
only if A meets U for each neighborhood U of x.

Proof. Consider the complement X − A and its interior. We have x ∈ Int(X − A) if and only
if there exists an open U with x ∈ U such that U ⊂ X −A. The negation of x ∈ Int(X −A) is
x ∈ X − Int(X − A) = Ā. The negation of U ⊂ X − A is A ∩ U 6= ∅. The negation of “there
exists an open U with x ∈ U such that U ⊂ X − A” is therefore “for each open U with x ∈ U
we have A ∩ U 6= ∅”. Hence x is in the closure of A if and only if A meets each neighborhood
U of x.

It suffices to check this for neighborhoods in a basis:

Theorem 2.5.22. Let B be a basis for a topology on X, and let A ⊂ X. A point x ∈ X lies
in Ā if and only if A meets each basis element B ∈ B with x ∈ B.

Proof. If there exists an open U with x ∈ U such that U ⊂ X − A then there exists a basis
element B ∈ B with x ∈ B such that B ⊂ X − A, and conversely. Hence we may replace “an
open U” by “a basis element B” in the previous proof.

Example 2.5.23. Let A = {1/n | n ∈ N} ⊂ R. Then 0 ∈ Ā, since each basis element (a, b) for
the standard topology on R with 0 ∈ (a, b) contains (−ε, ε) for some ε > 0, hence also contains
1/n ∈ A for each n > 1/ε. The closure of A is Ā = {0} ∪A. This is a closed subset of R, since
the complement is the union of the open sets (−∞, 0), (1/(n+ 1), 1/n) for n ∈ N, and (1,∞).

2.5.5 Convergence to a limit

Definition 2.5.24. Let (x1, x2, . . . ) = (xn)n∈N be a sequence of points in a topological space
X, so xn ∈ X for each n ∈ N. We say that (xn)n∈N converges to a point y ∈ X if for each
neighborhood U of y there is an N ∈ N such that xn ∈ U for all n ≥ N . In this case we call y
a limit of the sequence (xn)n∈N, and may write xn → y as n→∞.

A sequence (xn)n∈N in X can also be viewed as a function f : N → X, with f(n) = xn for
each n ∈ N.

Example 2.5.25. Consider the Sierpinski spaceX = {a, b} with the topology Ta = {∅, {a}, X}.
The constant sequence (xn)n∈N with xn = a for all n ∈ N converges to a, since the only neigh-
borhoods of a are {a} and {a, b}, both of which contain xn for all n. Hence a is a limit of
(a, a, . . . ).

However, the same sequence also converges to b, since the only neighborhood of b is {a, b},
which also contains xn for all n. Hence b is also a limit for (a, a, . . . ).

On the other hand, the constant sequence (yn)n∈N with yn = b for all n ∈ N converges to b,
since the only neighborhood {a, b} of b contains yn for all n.

This constant sequence does not converge to a, since the neighborhood {a} of a does not
contain yn for any n, hence there is no N ∈ N such that yn ∈ {a} for all n ≥ N .

Lemma 2.5.26. Let (xn)n∈N be a sequence in X, converging to a point y ∈ X. If A is a subset
of X, and each xn ∈ A, then y ∈ Cl(A).

Proof. Let y ∈ U ⊂ X with U open. Then, by convergence, there exists an N such that xn ∈ U
for all n ≥ N . In particular xN ∈ A ∩ U , so A ∩ U 6= ∅. Since this holds for all neighborhoods
U of y, it follows that y ∈ Cl(A).
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2.5.6 Hausdorff spaces

To obtain unique limits for convergent sequences, and be able to talk about the limit of a
sequence, we must assume that the topology is sufficiently fine to separate the individual points.
Such additional hypotheses are called separation axioms (German: Trennungsaxiome). The
most common separation axiom is known as the Hausdorff property, named after Felix Hausdorff
(1868–1942).

Definition 2.5.27. A topological space X is called a Hausdorff space if for each pair of points
x, y ∈ X, with x 6= y, there exist open sets U, V ⊂ X with x ∈ U , y ∈ V and U ∩ V = ∅. In
other words, there exist neighborhood U and V of x and y, respectively, that are disjoint.

Example 2.5.28. The set X = {a, b} with the discrete topology is a Hausdorff space, since
the only pair of distinct points is a and b, and the open subsets {a} and {b} are neighborhoods
of a and b, respectively, with empty intersection.

The set X = {a, b} with the Sierpinski topology Ta = {∅, {a}, X} is not a Hausdorff space,
since the only neighborhood of b is V = X, and no neighborhood U of a can be disjoint from X.

Lemma 2.5.29. Each metric space (X, d) is Hausdorff.

Proof. Let x, y ∈ X be two distinct points. Then δ = d(x, y) > 0. Consider the neighborhoods
U = Bd(x, δ/2) and V = Bd(y, δ/2) of x and y, respectively. Then U ∩ V = ∅ by the triangle
inequality.

Remark 2.5.30. If (X,T ) is Hausdorff, clearly (X,T ′) is also Hausdorff if T ′ is a finer
topology than T . In rough terms, the Hausdorff property asserts that there are “enough” open
sets, locally in X.

2.5.7 Uniqueness of limits in Hausdorff spaces

Theorem 2.5.31. If X is a Hausdorff space, then a sequence (xn)n∈N of points in X converges
to at most one point in X.

Proof. Suppose that (xn)n∈N converges to y and z. We must prove that y = z.
Suppose, to achieve a contradiction, that y 6= z. Then there exist neighborhoods U of y

and V of z with U ∩ V = ∅. Since (xn)n∈N converges to y there exists an N ∈ N such that
xn ∈ U for all n ≥ N . Since (xn)n∈N converges to z there exists an M ∈ N such that xn ∈ V
for all n ≥M . Hence, for n ≥ max{N,M} we have xn ∈ U ∩ V , which is impossible, since this
intersection is empty.

Definition 2.5.32. If X is a Hausdorff space, and a sequence (xn)n∈N of points in X converges
to a point y ∈ X, we say that y is the limit of (xn)n∈N, and write

y = lim
n→∞

xn .

2.5.8 Closed sets and limits points in Hausdorff spaces

Theorem 2.5.33. Each finite subset A ⊂ X in a Hausdorff space is closed.

Proof. The set A is the union of a finite collection of singleton sets {x}, so it suffices to prove
that each singleton set {x} is closed in X.

Consider any other point y ∈ X, with x 6= y. By the Hausdorff property there are open
subsets U, V ⊂ X with x ∈ U and y ∈ V , such that U ∩ V = ∅. Then x /∈ V , so X − V is a
closed set that contains {x}. Hence Cl{x} ⊂ X − V , so y /∈ Cl{x}. Since Cl{x} cannot contain
any other points than x, it follows that {x} = Cl{x} and {x} is closed.
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[[We omit the T1 version of the following.]]

Theorem 2.5.34. Let A be a subset of a Hausdorff space X. A point x ∈ X is a limit point of
A if and only if each neighborhood U of x meets A in infinitely many points.

Proof. If U ∩ A consists of infinitely many points, then it certainly contains other points than
x, so U meets A− {x}.

Conversely, if U ∩A is finite, then then U ∩ (A− {x}) = {x1, . . . , xn} is closed, so

V = U − {x1, . . . , xn} = U ∩ (X − {x1, . . . , xn})

is open. Then x ∈ V , V is open, and V ∩ (A− {x}) = ∅, so x is not a limit point of A.

2.5.9 Products and subspaces of Hausdorff spaces

Lemma 2.5.35. If X and Y are Hausdorff spaces, then so is X × Y .

Proof. Let (x, y) and (x′, y′) be distinct points in X × Y . Then x 6= x′ or y 6= y′. If x 6= x′

there are open subsets U, V ⊂ X with x ∈ U , x′ ∈ V and U ∩ V = ∅. Then U × Y, V × Y are
open subsets of X × Y , with (x, y) ∈ U × Y , (x′, y′) ∈ V × Y and (U × Y )∩ (V × Y ) = ∅. The
argument if y 6= y′ is very similar, obtained by interchanging the roles of X and Y .

Lemma 2.5.36. If X is a Hausdorff space and A is a subspace of X, then A is a Hausdorff
space.

Proof. Let x, y ∈ A with x 6= y. Then x, y ∈ X with x 6= y, so since X is Hausdorff there exist
open sets U, V ⊂ X with x ∈ U , y ∈ V and U ∩ V = ∅. Then A ∩ U and A ∩ V are open sets
in A, since A is a subspace, and x ∈ A ∩ U , y ∈ A ∩ V and (A ∩ U) ∩ (A ∩ V ) is contained in
U ∩ V = ∅, hence is empty. This confirms that A is Hausdorff.

2.6 (§18) Continuous Functions

2.6.1 Continuity in terms of preimages

Definition 2.6.1. Let X and Y be topological spaces. A function f : X → Y is said to be
continuous if for each open set V in Y the preimage

f−1(V ) = {x ∈ X | f(x) ∈ V }

is open in X. A continuous function is also called a map.

Lemma 2.6.2. Let X, Y and Z be topological spaces. If f : X → Y and g : Y → Z are
continuous functions, then the composite g ◦ f : X → Z is continuous.

Proof. LetW ⊂ Z be open. Then g−1(W ) ⊂ Y is open since g is continuous, and f−1(g−1(W )) ⊂
X is open since f is continuous. But this set equals (g ◦ f)−1(W ), so g ◦ f is continuous.

Lemma 2.6.3. Let X and Y be topological spaces, and suppose that B is a basis for the topology
on Y . Then a function f : X → Y is continuous if and only if for each basis element B ∈ B
the preimage f−1(B) is open in X.

Proof. Each basis element B is open in Y , so if f is continuous then f−1(B) is open in X.
Conversely, each open V ⊂ Y is a union V =

⋃
α∈J Bα of basis elements, and

f−1(V ) =
⋃
α∈J

f−1(Bα) ,

so if each f−1(Bα) is open in X, so is f−1(V ).
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Lemma 2.6.4. Let X and Y be topological spaces, and suppose that S is a subbasis for the
topology on Y . Then a function f : X → Y is continuous if and only if for each subbasis element
S ∈ S the preimage f−1(S) is open in X.

Proof. We build on the previous lemma.
Each subbasis element S is a basis element in the associated basis B, so if f is continuous

then f−1(S) is open in X.
Conversely, each basis element B ∈ B is a finite intersection B = S1 ∩ · · · ∩ Sn of subbasis

elements, and
f−1(B) = f−1(S1) ∩ · · · ∩ f−1(Sn) ,

so if each f−1(Si) is open in X, so is f−1(B).

Example 2.6.5. If (X, d) and (Y, d′) are metric spaces, then f : X → Y is continuous if and
only if for each x ∈ X and ε > 0 there is a δ > 0 such that Bd(x, δ) ⊂ f−1(Bd′(f(x), ε)), i.e.,
such that for all y ∈ X with d(x, y) < δ we have d′(f(x), f(y)) < ε.

Example 2.6.6. Let Rd and Rcof be the real numbers with the standard (metric) topology and
the cofinite topology, respectively. The identity function

id : Rcof → Rd

(given by id(x) = x) is not continuous, since (a, b) is not open in the cofinite topology, for a < b.
However, the identity function

id : Rd → Rcof

(still given by id(x) = x) is continuous, since R − F is open in the standard topology, for F
finite.

2.6.2 Continuity at a point

Theorem 2.6.7. Let X and Y be topological spaces, and f : X → Y a function. Then f is
continuous if and only if for each x ∈ X and each neighborhood V of f(x) there is a neighborhood
U of x with f(U) ⊂ V .

Definition 2.6.8. We say that f is continuous at x if for each neighborhood V of f(x) there
is a neighborhood U of x with f(U) ⊂ V . Hence f : X → Y is continuous if and only if it is
continuous at each x ∈ X.

Proof. If f is continuous, x ∈ X and V is a neighborhood of f(x), then U = f−1(V ) is a
neighborhood of x with f(U) ⊂ V .

Conversely, if V is open in Y and x ∈ f−1(V ) then V is a neighborhood of f(x), so by
hypothesis there is a neighborhood Ux of x with f(Ux) ⊂ V . Then x ∈ Ux ⊂ f−1(V ). Taking
the union over all x ∈ f−1(V ) we find that

⋃
x∈f−1(V ) Ux = f−1(V ) is a union of open sets,

hence is open.

2.6.3 Continuity in terms of closed sets and the closure

Theorem 2.6.9. Let X and Y be topological spaces, and f : X → Y a function. The following
are equivalent:

(1) f is continuous.

(2) For every subset A ⊂ X we have f(Ā) ⊂ f(A).
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(3) For every closed L in Y the preimage f−1(L) is closed.

Proof. (1) =⇒ (2): Assume that f is continuous and A ⊂ X. Each point in f(Ā) has the
form f(x) for some x ∈ Ā. We must show that f(x) ∈ f(A). Let V be a neighborhood of f(x).
By continuity, f−1(V ) is a neighborhood of x. Since x ∈ Ā, the intersection A ∩ f−1(V ) is
nonempty. Choose a y ∈ A ∩ f−1(V ). Then f(y) ∈ f(A) ∩ V , since y ∈ A implies f(y) ∈ f(A)
and y ∈ f−1(V ) implies f(y) ∈ V . In particular, f(A) meets V . Since V was an arbitrary
neighborhood of f(x) we have f(x) ∈ f(A).

(2) =⇒ (3): Let L ⊂ Y be closed, and let A = f−1(L). We will show that A = Ā, so that
A is closed. Now f(A) ⊂ L, so f(A) ⊂ L, since L is closed. By hypothesis f(Ā) ⊂ f(A), so
f(Ā) ⊂ L, hence Ā ⊂ f−1(L) = A. This implies A = Ā.

(3) =⇒ (1): Let V ⊂ Y be open, then L = Y − V is closed. By hypothesis

f−1(L) = f−1(Y − V ) = X − f−1(V )

is closed, so f−1(V ) is open. Hence f is continuous.

2.6.4 Homeomorphism = topological equivalence

Definition 2.6.10. A bijective function f : X → Y between topological spaces with the prop-
erty that both f and f−1 : Y → X are continuous, is called a homeomorphism. If there exists a
homeomorphism f : X → Y we say that X and Y are homeomorphic (to one another), or that
they are topologically equivalent, or that they have the same topological type, and write X ∼= Y .
(Another common notation for homeomorphism is X ≈ Y .)

Lemma 2.6.11. Being homeomorphic is an equivalence relation on any set of topological spaces:

(1) For each space X the identity function id : X → X, with id(x) = x for all x ∈ X, is a
homeomorphism.

(2) If f : X → Y is a homeomorphism, then so is the inverse map f−1 : Y → X.

(3) If f : X → Y and g : Y → Z are homeomorphisms, then so is the composite map gf : X →
Z.

Lemma 2.6.12. Let f : X → Y be a bijective function between topological spaces. The following
are equivalent:

(1) f is a homeomorphism.

(2) A set U ⊂ X is open in X if and only if the image f(U) ⊂ Y is open in Y .

(3) A set V ⊂ Y is open in Y if and only if the preimage f−1(V ) ⊂ X is open in X.

Proof. To say that f is continuous means that V ⊂ Y open implies f−1(V ) ⊂ X open. To say
that f−1 is continuous means that U ⊂ X open implies f(U) ⊂ Y open. Now each U ⊂ X has
the form U = f−1(V ) for a unique V ⊂ Y , with f(U) = f(f−1(V )) = V . Hence to say that
f−1 is continuous also means that f−1(V ) ⊂ X open implies V ⊂ Y open.

This proves that (1) and (3) are equivalent. Replacing f by f−1 proves that (1) and (2) are
equivalent.

In other words, f is a homeomorphism if and only the image function

f : P(X)→P(Y )
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induces a bijection from the topology on X to the topology on Y , or equivalently, if the preimage
function

f−1 : P(Y )→P(X)

induces a bijection from the topology on Y to the topology on X.

Remark 2.6.13. Any property of X that can be expressed in terms of its elements and its
open subsets is called a topological property of X. If f : X → Y is a homeomorphism, then any
topological property of X is logically equivalent to the corresponding topological property of Y
obtained by replacing each element x ∈ X by its image f(x) ∈ Y , and each open subset U ⊂ X
by its image f(U) ⊂ Y . Such topological properties are thus preserved by homeomorphisms.

Example 2.6.14. For instance, being a finite topological space, having the discrete, trivial or
cofinite topology, or being a Hausdorff space, are all examples of topological properties. So if X
is a Hausdorff space and X ∼= Y , then Y is a Hausdorff space. We shall study other topological
properties, like compactness and connectedness, in later sections.

2.6.5 Examples

Example 2.6.15. The two closed intervals X = [0, 1] and Y = [a, b] with a < b, each with the
subspace topology from R, are homeomorphic:

[0, 1] ∼= [a, b] .

One example of a homeomorphism f : [0, 1] → [a, b] is given by the linear function f(x) =
a + (b − a)x = (1 − x)a + xb. The inverse f−1 : [a, b] → [0, 1] is given by the linear function
f−1(y) = (y− a)/(b− a). It is well known that both f and f−1 are continuous. Hence any two
closed intervals [a, b] and [c, d] are homeomorphic, for a < b and c < d.

Example 2.6.16. Any two open intervals of the form (a, b), (a,∞), (−∞, b) or R = (−∞,∞)
are homeomorphic, for a < b. First, (0, 1) and (a, b) are homeomorphic:

(0, 1) ∼= (a, b) .

The linear map f : (0, 1)→ (a, b) given by f(x) = a+(b−a)x = (1−x)a+xb is a homeomorphism,
with inverse f−1 : (a, b)→ (0, 1) given by f−1(y) = (y − a)/(b− a). Next (0, 1) and (1,∞) are
homeomorphic:

(0, 1) ∼= (1,∞) .

The function f : (0, 1) → (1,∞) given by f(x) = 1/x is a homeomorphism, with inverse
f−1 : (1,∞)→ (0, 1) given by f−1(y) = 1/y. Using f(x) = x+ c or f(x) = −x it is easy to see
that (1,∞) ∼= (a,∞) and (−∞, b) ∼= (−b,∞) for any a and b. Finally, function f : (−1, 1)→ R
given by f(x) = x/(1− x2) is a homeomorphism:

(−1, 1) ∼= R .

To find the inverse we rewrite the equation x/(1 − x2) = y as yx2 + x − y = 0 and solve for
x ∈ (−1, 1) as a function of y ∈ R, namely

f−1(y) =
−1 +

√
1 + 4y2

2y
=

2y

1 +
√

1 + 4y2
.

It is well known that both f and f−1 are continuous, hence R is homeomorphic to (−1, 1), and
therefore to any open interval (a, b). Alternatively, tan: (−π/2, π/2) → R and arctan: R →
(−π/2, π/2) are both known to be continuous, hence mutually inverse homeomorphisms.
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Example 2.6.17. For a < b, any two intervals of the form [a, b), (a, b], [a,∞) or (−∞, b]
are homeomorphic. For example, [0, 1) ∼= (0, 1] via f(x) = 1 − x, while (0, 1] ∼= [1,∞) via
f(x) = 1/x.

Example 2.6.18. Let X = {a, b}, and let Ta = {∅, {a}, X} and Tb = {∅, {b}, X} be the two
Sierpinski topologies. These are homeomorphic

(X,Ta) ∼= (X,Tb)

by the function f : X → X given by f(a) = b and f(b) = a, which is equal to its own inverse.
Note that the image function f : P(X)→P(X) takes Ta bijectively to Tb, with inverse given
by the preimage function f−1 : P(X) → P(X). In other words, any statement S about the
elements and open sets of (X,Ta) corresponds to a logically equivalent statement S′ about the
elements and open sets of (X,Tb), given by interchanging the roles of a and b. Note also that
the identity function id : (X,Ta)→ (X,Tb) is not a homeomorphism—it is not even continuous.

2.6.6 Nonexamples

Example 2.6.19. Each of the identity functions

Rdisc
id−→ Rd

id−→ Rcof
id−→ Rtriv

is a bijection that is continuous but not a homeomorphism, since the inverse functions

Rtriv
id−→ Rcof

id−→ Rd
id−→ Rdisc

are not continuous.

Example 2.6.20. Let X = [0, 1) and Y = S1, where

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}

is the unit circle in the xy-plane, with the subspace topology. Let f : X → Y be given by
f(t) = (cos(2πt), sin(2πt)) for t ∈ [0, 1). It is a continuous bijection, but the inverse function
g = f−1 : S1 → [0, 1) is not continuous at f(0) = (1, 0). For U = [0, 1/2) is open in [0, 1),
while the preimage g−1(U) is not open in S1. This preimage equals the image f(U), which is
the part of S1 that lies strictly in the upper half-plane (where y > 0), together with the point
(1, 0). Each neighborhood of (1, 0) in S1 will contain points of the form (cos θ, sin θ) for some
−π/2 < θ < 0, hence is not contained in f(U). This implies that f(U) is not open.

Example 2.6.21. We shall see later that there do not exist homeomorphisms (0, 1) ∼= [0, 1),
(0, 1) ∼= [0, 1] or [0, 1) ∼= [0, 1], so (0, 1), [0, 1) and [0, 1] represent three different topological
types.

2.6.7 Constructing maps

Theorem 2.6.22. Let A be a subset of a topological space X. The subspace topology on A is
the coarsest topology for which the inclusion i : A → X is continuous, where i(a) = a for all
a ∈ A.

Proof. For i to be continuous in a topology T ′ on A, the inverse image i−1(U) = A ∩ U must
be open in A for each open U ⊂ X, and conversely. This just means that T ′ must contain the
subspace topology on A.
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Corollary 2.6.23. The restriction f |A : A → Y of any continuous function f : X → Y to a
subspace A ⊂ X is continuous.

Lemma 2.6.24. The corestriction g : X → B of any continuous function f : X → Y is contin-
uous, where B ⊂ Y is a subspace containing f(X).

Proof. Each open subset V ⊂ B has the form B ∩ U , where U ⊂ Y is open, hence g−1(V ) =
{x ∈ X | g(x) ∈ V } = {x ∈ X | f(x) ∈ U} = f−1(U) is open.

Definition 2.6.25. A map f : X → Y is called an embedding (also spelled as imbedding) if the
corestriction g : X → f(X) is a homeomorphism, where the image f(X) ⊂ Y has the subspace
topology.

Lemma 2.6.26. A map f : X → Y is an embedding if and only if it factors as the composite
of a homeomorphism h : X → B and the inclusion j : B → Y of a subspace. In particular, any
embedding is an injective map.

Proof. It is clear that an embedding f factors in this way, with B = f(X). Conversely, if
f = j ◦ h with j : B → Y the inclusion, then f(X) = B and h : X → B equals the corestriction
of f .

Example 2.6.27. The map f : [0, 1)→ R2 given by f(t) = (cos(2πt), sin(2πt)) is an example of
an injective continuous function that is not an embedding, since the corestriction g : [0, 1)→ S1

to its image is not a homeomorphism.

Theorem 2.6.28. Let f : X → Y be a function, and suppose that X = A1 ∪ · · · ∪An is covered
by a finite collection of closed subsets Ai ⊂ X. Then f is continuous if (and only if) each
restriction f |Ai : Ai → Y is continuous.

Proof. Let L ⊂ Y be closed. For each 1 ≤ i ≤ n, the preimage (f |Ai)−1(L) is closed in Ai, since
f |Ai is continuous, hence is closed in X, since Ai is closed. Then

f−1(L) = (f |A1)−1(L) ∪ · · · ∪ (f |An)−1(L)

is a finite union of closed subsets of X, hence is closed.

Theorem 2.6.29. Let f : X → Y be a function, and suppose that X =
⋃
α∈J Aα is covered by

a collection of open subsets Aα ⊂ X. Then f is continuous if (and only if) each restriction
f |Aα : Aα → Y is continuous.

Proof. Let V ⊂ Y be open. For each α ∈ J , the preimage (f |Aα)−1(V ) is open in Aα, since
f |Aα is continuous, hence is open in X, since Aα is open. Then

f−1(V ) =
⋃
α∈J

(f |Aα)−1(V )

is a union of open subsets of X, hence is open.

[[See Munkres p. 107/109 for examples.]]

Lemma 2.6.30. Let P = {p} be a singleton set, with the unique topology. For each topological
space X the unique map f : X → P is continuous.

Proof. The only open subsets of P are ∅ and P , with preimages ∅ and X, respectively, and
these are open.

Corollary 2.6.31. Each constant function c : X → Y to a point p ∈ Y is continuous, where
c(x) = p for all x ∈ X.
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2.6.8 Maps into products

Let X and Y be topological spaces, and give X ×Y the product topology. Recall, or introduce,
the notations π1 : X × Y → X for the (first) projection π1(x, y) = x and π2 : X × Y → Y for
the (second) projection π2(x, y) = y.

Lemma 2.6.32. π1 : X × Y → X and π2 : X × Y → Y are continuous.

Proof. For each open subset U ⊂ X the preimage π−1
1 (U) = U × Y is in the (sub-)basis for the

product topology on X × Y . In particular, it is open. Hence π1 is continuous. The case for π2

is very similar.

Theorem 2.6.33. Let W be any topological space. A function f : W → X ×Y is continuous if
and only if both of its components f1 = π1◦f : W → X and f2 = π2◦f : W → Y are continuous.

Proof. The “only if” part follows from the continuity of π1 and π2, and the fact that the
composite of two maps is a map.

For the “if” part, note that for each open U ⊂ X we have

f−1
1 (U) = f−1(U × Y )

and for each open subset V ⊂ Y we have

f−1
2 (V ) = f−1(X × V ) .

If f1 and f2 are continuous, then f−1
1 (U) and f−1

2 (V ) are open. Hence so is their intersection

f−1
1 (U) ∩ f−1

2 (V ) = f−1(U × Y ) ∩ f−1(X × V ) = f−1(U × Y ∩X × V ) = f−1(U × V ) .

Letting U and V vary, U × V ranges over the “standard” basis for the product topology on
X × Y , and we have just seen that the preimage f−1(U × V ) of each of these basis elements is
open in W . This suffices to prove that f is continuous.

Example 2.6.34. Let W = (a, b) ⊂ R and X = Y = R. A function f : (a, b) → R2 can be
written f(t) = (f1(t), f2(t)). Then f is continuous if and only if both of the component functions
f1 and f2 are continuous.

Corollary 2.6.35. The product topology on X × Y is the coarsest topology for which both of
the projection maps π1 : X × Y → X and π2 : X × Y → Y are continuous.

Proof. The projection maps are continuous for the product topology. Conversely, for π1 and π2

to be continuous with respect to a topology T ′ on X × Y is equivalent to asking that U × Y
and X × V lie in T ′ for all open U ⊂ X and V ⊂ Y . This is in turn equivalent to asking that

U × V = (U × Y ) ∩ (X × V )

lies in T ′, for all open U ⊂ X and V ⊂ Y , i.e., that T ′ is finer than the product topology.

2.6.9 Maps out of products

Let Z be any topological space. The analysis of continuous functions X × Y → Z is not as
simple as the case of maps W → X×Y , but for reasonable spaces X (or Y ) there are reasonable
answers.

First, ignoring topology, there is a bijective correspondence between functions

f : X × Y −→ Z
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(of two variables, x ∈ X and y ∈ Y ) and functions

g : X −→ Func(Y,Z)

where Func(Y,Z) = {h : Y → Z} is the set of all functions from Y to Z. The correspondence
sends f to g : x 7→ g(x) where g(x) : Y → Z is given by

f(x, y) = g(x)(y) .

Letting f vary, we have a bijection (of sets)

Func(X × Y,Z) ∼= Func(X,Func(Y,Z)) .

Taking topologies into account, we might ask for a similar description of the subset

Cont(X × Y,Z) ⊂ Func(X × Y, Z)

of continuous functions X × Y → Z. Here Cont(Y, Z) = {continuous h : Y → Z}. (We might
later abbreviate this to C (Y,Z).)

Suppose hereafter that f : X × Y → Z is continuous. For each x ∈ X, the inclusion

ix : Y −→ X × Y
y 7→ (x, y)

is an embedding, topologically identifying Y with its image {x} × Y ⊂ X × Y in the subspace
topology. In particular, ix is continuous, so for each x ∈ X the function

g(x) = f ◦ ix : Y −→ Z

is the composite of two maps, hence is itself a map. Thus, g : X → Func(Y,Z) in fact takes
values in Cont(Y, Z), and we get an injective function

Cont(X × Y,Z) −→ Func(X,Cont(Y, Z))

f 7−→ (g : x 7→ g(x) = f ◦ ix)

However, this function is not surjective. In other words, a function f : (x, y) 7→ f(x, y) may
be continuous in the second variable (y) for each value of the first variable (x), without being
continuous.

This is perhaps not so surprising. A little less obvious is that f can be continuous in each
variable separately, and still not be continuous. A standard example is f : R×R→ R given by

f(x, y) =


2xy

x2 + y2
for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

Here y 7→ f(x, y) is continuous as a function R → R for each y, and x 7→ f(x, y) is continuous
for each x, but f is not continuous at (0, 0) as a function R × R → R. This is clear from the
formula f(x, y) = sin(2θ) where (x, y) = (r cos θ, r sin θ) 6= (0, 0).

To recognize the maps f : X × Y → Z in terms of the maps g(x) : Y → Z for x ∈ X, we
might impose further conditions on the function

g : X −→ Cont(Y, Z)

x 7−→ g(x)
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In particular, we might ask that the function g is itself continuous. However, we can only
make sense of this if the set Cont(Y,Z) is turned into a topological space. In other words,
we have to specify a topology on the set of maps Y → Z. In §46 (Pointwise and Compact
Convergence) we shall introduce a topology on Cont(Y, Z), called the compact–open topology
(e.g. in the 1942 textbook on algebraic topology by Solomon Lefschetz (1844–1972)). The
functions g : X → Cont(Y,Z) that arise from maps f : X × Y → Z will then be continuous,
with respect to the given topology on X and the compact–open topology on Cont(Y,Z). Hence
we get an injective function

Cont(X × Y,Z) −→ Cont(X,Cont(Y,Z))

f 7−→ g

and for locally compact Hausdorff spaces Y , this function is also surjective, hence bijective
(stated by Ralph H. Fox (1913–1973) in 1945 to have “been known for a long time”). View-
ing Cont(X × Y, Z) and Cont(X,Cont(Y,Z)) as topological spaces, with the compact–open
topologies, it also follows that this bijection is in fact a homeomorphism (published in 1952 by
James R. Jackson (1924–2011).

In general there are many possible topologies that can be imposed on sets of functions, such
as Func(Y, Z) and Cont(Y,Z), and the resulting spaces are called function spaces. In the first
case, Func(Y,Z) can also be viewed as a product of one copy of Z for each element of Y :

Func(Y, Z)
∼=−→
∏
y∈Y

Z

h 7−→ (h(y))y∈Y

In the case when Y = {y1, y2} has only two elements, we have already discussed the product
topology on

∏
y∈Y Z = Z × Z in §15. We now extend this to the case of arbitrary indexing

sets Y . We can also relax that condition that all factors Z in the product are the same. This
leads us to general products, which is the subject of the next section.

2.7 (§19) The Product Topology

Definition 2.7.1. Let {Xα}α∈J be an indexed collection of sets. The cartesian product∏
α∈J

Xα

is the set of J-indexed sequences (xα)α∈J with xα ∈ Xα, for each α ∈ J .

Definition 2.7.2. For each β ∈ J there is a projection function

πβ :
∏
α∈J

Xα → Xβ

taking (xα)α∈J to xβ.

Now suppose that each Xα is a topological space. We wish to equip
∏
α∈J Xα with the

coarsest possible topology T such that each projection πβ is continuous. In other words, for
each open subset Uβ ⊂ Xβ, the preimage π−1

β (Uβ) must be open in
∏
α∈J Xα. Here

π−1
β (Uβ) =

∏
α∈J

Aα
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where

Aα =

{
Uα for α = β,

Xα otherwise.

The collection
S = {π−1

β (Uβ) | β ∈ J , Uβ ⊂ Xβ open}

must therefore be contained in the topology T .
Furthermore, each finite intersection

B = π−1
β1

(Uβ1) ∩ · · · ∩ π−1
βn

(Uβn)

of such preimages must be open in
∏
α∈J Xα, since any finite intersection of open sets is open.

Here βi ∈ J and Uβi is an open subset of Xβi , for each 1 ≤ i ≤ n. We may assume that βi 6= βj
for i 6= j, and in this case the intersection can be written as

B =
n⋂
i=1

π−1
βi

(Uβi) =
∏
α∈J

Aα

where

Aα =

{
Uα for α = βi, 1 ≤ i ≤ n,

Xα otherwise.

The collection

B = {S1 ∩ · · · ∩ Sn | Si ∈ S , 1 ≤ i ≤ n}
= {π−1

β1
(Uβ1) ∩ · · · ∩ π−1

βn
(Uβn) | βi ∈ J , Uβi open in Xβi , 1 ≤ i ≤ n}

of finite intersections of the elements in S is evidently a basis. For
∏
α∈J Xα is an element in

the collection, and given any two elements B1 and B2 in B the intersection B1 ∩B2 is again an
element in B.

Definition 2.7.3. The product topology on
∏
α∈J Xα is the topology T generated by the basis

B = {π−1
β1

(Uβ1) ∩ · · · ∩ π−1
βn

(Uβn) | βi ∈ J , Uβi open in Xβi , 1 ≤ i ≤ n}

consisting of all finite intersections of preimages

π−1
β (Uβ) ,

where β ranges over the indexing set J and Uβ ranges over the open subsets of Xβ.

In this situation, the collection S is a subbasis generating the basis B for the topology T .
See §13 (Basis for a Topology) for more details.

Lemma 2.7.4. The elements of the subbasis S generating the product topology on
∏
α∈J Xα

are precisely the products

S =
∏
α∈J

Uα

where each Uα ⊂ Xα is open, and Uα 6= Xα for at most one α ∈ J .
The elements of the associated basis B for the product topology on

∏
α∈J Xα are precisely

the products

B =
∏
α∈J

Uα

where each Uα ⊂ Xα is open, and Uα 6= Xα for only finitely many α ∈ J .
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Proof. For each β ∈ J and Uβ ⊂ Xβ open we have

π−1
β (Uβ) =

∏
α∈J

Uα

where Uα = Xα for all α 6= β.
The intersection of two subbasis elements π−1

β (U) and π−1
β (V ), with U, V ⊂ Xβ for the same

β ∈ J , is equal to the subbasis element π−1
β (U ∩V ). Hence the basis elements all have the form

π−1
β1

(Uβ1) ∩ · · · ∩ π−1
βn

(Uβn)

for some finite subset {β1, . . . , βn} ⊂ J and open subsets Uβi ⊂ Xβi for 1 ≤ i ≤ n, where all of
the βi are distinct. This finite intersection equals∏

α∈J
Uα

where Uα = Xα for all α /∈ {β1, . . . , βn}.

As always, each open subset of
∏
α∈J Xα is the union of a collection of basis elements, and

each such union is open.

2.7.1 Pointwise convergence

In the special case of a J-indexed sequence {Xα}α∈J where all the spaces Xα are equal (to one
space X), the product ∏

α∈J
X = XJ = Func(J,X)

is the set of functions f : J → X, with f corresponding to (f(α))α∈J . Note that πβ(f) = f(β),
for each β ∈ J . For each choice of β ∈ J and U ⊂ X open, the subset

π−1
β (U) ⊂ Func(J,X)

consists of the g : J → X satisfying g(β) ∈ U , with no condition on g(α) for α 6= β. The
collection S of these subsets is the standard subbasis for the product topology on Func(J,X).
For each n-tuple β1, . . . , βn of elements in J and each n-tuple U1, . . . , Un of open subsets of X,
the subset

π−1
β1

(U1) ∩ · · · ∩ π−1
βn

(Un) ⊂ Func(J,X)

consists of the g : J → X satifying g(β1) ∈ U1, . . . , g(βn) ∈ Un, with no condition on g(α)
for α /∈ {β1, . . . , βn}. The collection B of these subsets is the standard basis for the product
topology on Func(J,X). For any element f ∈ Func(J,X) and neighborhood V of f in the
product topology on Func(J,X), there exists a basis element of the form above, with

f ∈ π−1
β1

(U1) ∩ · · · ∩ π−1
βn

(Un) ⊂ V .

Here f(βi) ∈ Ui for each 1 ≤ i ≤ n, and any function g : J → X with g(βi) ∈ Ui lies in this
basis element, hence also in the neighborhood V of f .

The product topology on XJ = Func(J,X) is often called the topology of pointwise conver-
gence, due to the following property:
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Proposition 2.7.5. Let (fn)n∈N be a sequence of functions fn : J → X, and let f : J → X be
another such function. Then

fn → f as n→∞

in Func(J,X) if and only if the functions fn converge pointwise to f , i.e., if and only if for
each β ∈ J we have

fn(β)→ f(β) as n→∞

in X.

Proof. Suppose that fn → f as n→∞ in the product topology on
∏
J X = XJ = Func(J,X).

Consider any β ∈ J . To show that fn(β) → f(β) as n → ∞ we must show that for any
neighborhood U of f(β) in X there is an N such that fn(β) ∈ U for all n ≥ N . Note that
π−1
β (U) is a neighborhood of f in Func(J,X). Hence there is an N such that fn ∈ π−1

β (U) for
all n ≥ N . This is equivalent to the required property, that fn(β) ∈ U for all n ≥ N .

Conversely, suppose that fn(β)→ f(β) for each β ∈ J . To show that fn → f as n→∞ we
must show that for any neighborhood V of f in Func(J,X) there is an N such that fn ∈ V for
all n ≥ N . Given f and V there exists a basis element

B = π−1
β1

(Uβ1) ∩ · · · ∩ π−1
βm

(Uβm)

for the product topology, with f ∈ B ⊂ V . Here β1, . . . , βm ∈ J and Uβ1 , . . . , Uβm are open in X.
Since f ∈ B ⊂ π−1

β1
(Uβ1) we have f(β1) ∈ Uβ1 , and similarly f(β2) ∈ Uβ2 , . . . , f(βm) ∈ Uβm .

Since fn(β1) → f(β1) as n → ∞, there exists an N1 such that fn(β1) ∈ Uβ1 for all n ≥ N1.
Similarly, there exists N2 such that fn(β2) ∈ Uβ2 for all n ≥ N2, . . . , and Nm such that
fn(βm) ∈ Uβm for all n ≥ Nm. Let N = max{N1, N2, . . . , Nm}. Then f(βi) ∈ Uβi for all
1 ≤ i ≤ m and n ≥ N . Hence f ∈ B ⊂ V for all n ≥ N . Since the neighborhood V of f was
arbitrarily chosen, this means that fn → f as n→∞.

2.7.2 Properties of general product spaces

Theorem 2.7.6. Let {Xα}α∈J be a collection of topological spaces. A function f : A →∏
α∈J Xα is continuous if and only if all of its components fβ = πβ ◦ f : A → Xα are con-

tinuous.

Corollary 2.7.7. The product topology on
∏
α∈J Xα is the coarsest topology for which all of

the projection maps πβ :
∏
α∈J Xα → Xβ are continuous.

Theorem 2.7.8. Let Aα be a subspace of Xα for each α ∈ J . The product topology on
∏
α∈J Aα

equals the subspace topology from
∏
α∈J Xα.

Theorem 2.7.9. If Xα is a Hausdorff space, for each α ∈ J , then
∏
α∈J Xα is Hausdorff.

Theorem 2.7.10. Let Aα be a subset of Xα for each α ∈ J . The closure (in the product
X =

∏
α∈J Xα) of the product A =

∏
α∈J Aα equals the product of the closures:∏
α∈J

Aα =
∏
α∈J

Āα .

Proof. Since Aα ⊂ Āα ⊂ Xα for each α ∈ J , we have

A ⊂
∏
α∈J

Āα ⊂ X .
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For each β ∈ J , πβ : X → Xβ is continuous, and Āβ is closed in Xβ, so π−1
β (Āβ) is closed in X.

Hence the J-fold intersection ⋂
β∈J

π−1
β (Āβ) =

∏
α∈J

Āα

is closed. By the minimality property of the closure, it follows that

Ā ⊂
∏
α∈J

Āα .

Conversely, we claim that each p = (pα)α∈J ∈
∏
α∈J Āα lies in the closure of A. Any neigh-

borhood V of p in X contains a basis element B =
∏
α∈J Uα with each Uα open in Xα and

Uα 6= Xα for only finitely many α ∈ J . Then Uα is a neighborhood of pα, for each α ∈ J , so
since pα ∈ Āα we must have Aα ∩ Uα 6= ∅. In each case, choose a point qα ∈ Aα ∩ Uα. Then
q = (qα)α∈J ∈ A ∩B, so this intersection is nonempty. Hence p lies in the closure of A.

2.8 (§20) The Metric Topology

2.8.1 Bounded metrics

Let (X, d) be a metric space. Recall the associated metric topology Td on X.

Definition 2.8.1. A topological space (X,T ) is metrizable if there exists a metric d on X so
that T is the topology associated to d.

Definition 2.8.2. A metric space (X, d) is bounded if there exists a number M such that
d(x, y) ≤M for all x, y ∈ X. If (X, d) is bounded the diameter of X is the least upper bound

diam(X) = sup{d(x, y) | x, y ∈ X} .

Being bounded is a metric, not a topological, property:

Theorem 2.8.3. Let (X, d) be a metric space. Define the standard bounded metric d̄ : X×X →
R by

d̄(x, y) = min{d(x, y), 1} .

Then d̄ is a bounded metric on X that defines the same topology as d.

Proof. Checking that d̄(x, y) = 0 if and only if x = y, and d̄(y, x) = d̄(x, y), is trivial. To prove
the triangle inequality

d̄(x, z) ≤ d̄(x, y) + d̄(y, z)

we divide into two cases. If d(x, y) ≥ 1 or d(y, z) ≥ 1, then d̄(x, y) = 1 or d̄(y, z) = 1, so

d̄(x, z) ≤ 1 ≤ d̄(x, y) + d̄(y, z) .

Otherwise, d̄(x, y) = d(x, y) and d̄(y, z) = d(y, z), so

d̄(x, z) ≤ d(x, z) ≤ d(x, y) + d(y, z) = d̄(x, y) + d̄(y, z) .

It is clear that d̄(x, y) ≤ 1 for all x, y ∈ X, so (X, d̄) is bounded.
In any metric space, the collection of ε-balls with ε < 1 is a basis for the associated topology.

These collections are the same for d and d̄.
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2.8.2 Euclidean n-space

Definition 2.8.4. Let X = Rn be the set of real n-tuples x = (x1, . . . , xn). The Euclidean
norm on Rn is given by

‖x‖ =
√
x2

1 + · · ·+ x2
n

and the Euclidean metric is defined by

d(x, y) = ‖y − x‖ .

The sup norm = max norm on Rn is given by

‖x‖∞ = max{|x1|, . . . , |xn|}

and the square metric is defined by

ρ(x, y) = ‖y − x‖∞ .

Here ρ is the Greek letter “rho”.

Theorem 2.8.5. The Euclidean metric d, the square metric ρ, and the cartesian product of n
copies of R, all define the same topology on Rn.

Proof. For each x ∈ Rn, any neighborhood of x in one of these topologies contains neighborhoods
of x in the two other topologies.

2.8.3 Infinite dimensional Euclidean space

For any indexing set J , consider the set RJ of real J-tuples x = (xα)α∈J , or equivalently, of
functions

x : J → R .

For example, when J = {1, 2, . . . , n} we can identify R{1,2,...,n} with Rn.
When J = {1, 2, . . . } = N we write Rω for the set of real sequences x = (xn)n∈N. (Recall

that ω denotes the first infinite ordinal, represented by N with the usual linear ordering. The
ordering plays no role in the definition of the topology on Rω.)

The formulas

‖x‖ =
√
x2

1 + x2
2 + . . .

and
‖x‖∞ = sup{|x1|, |x2|, . . . }

are not well-defined for all x ∈ Rω.
However, ‖x‖∞ does make sense for all bounded sequences in R. Replacing the usual metric

on R with the standard bounded metric will therefore allow us to generalize the square metric
to infinite dimensions.

Definition 2.8.6. Let (X, d) be any metric space, with associated standard bounded metric d̄.
Let J be any set, and let XJ be the set of J-tuples x : J → X in X. The function

ρ̄(x, y) = sup{d̄(xα, yα) | α ∈ J}

defines a metric on XJ , called the uniform metric. The associated topology is called the uniform
topology.
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Remark 2.8.7. Consider the sets

B̃(x, ε) = {y ∈ XJ | d(xα, yα) < ε for each α ∈ J }

with x ∈ X and 0 < ε < 1. We have inclusions

B̃(x, ε/2) ⊂ Bρ̄(x, ε) ⊂ B̃(x, ε) .

By definition, a set U ⊂ XJ is open in the uniform topology if and only if for each x ∈ U there
exists an ε ∈ (0, 1) with Bρ̄(x, ε) ⊂ U . This is equivalent to asking that for each x ∈ U there
exists an ε ∈ (0, 1) with B̃(x, ε) ⊂ U , so the sets B̃(x, ε) can be used to characterize the uniform
topology. Nonetheless, these sets are not in general open, so with our terminology they do not
form a basis.

Theorem 2.8.8. The uniform topology on RJ is finer than the product topology.

Proof. Consider a point x = (xα)α∈J in RJ and a product topology basis neighborhood

B =
∏
α∈J

Uα

of x, where each Uα is open and Uα 6= R only for α ∈ {α1, . . . , αn} ⊂ J . For each i choose an
εi > 0 so that Bd̄(xαi , εi) ⊂ Ui. Let ε = min{ε1, . . . , εn}. Then Bρ̄(x, ε) ⊂ B, since if y ∈ Bρ̄(x, ε)
then

ρ̄(x, y) = sup{d̄(xα, yα) | α ∈ J} < ε

so that d̄(xα, yα) < ε for all α ∈ J . In particular, yα ∈ Uα for all α ∈ J .

[[Exercise: The uniform topology is strictly finer than the product topology for J infinite.]]
When J is countable, the product topology on RJ , or on

∏
α∈J Xα for any collection

{(Xα, dα) | α ∈ J} of metric spaces, is metrizable. It suffices to consider the case J = N.

Theorem 2.8.9. Let (Xn, dn) for n ∈ N be a sequence of metric spaces. Then the product
topology on

X =
∏
n∈N

Xn

is induced by the metric

D(p, q) = sup
{ d̄n(pn, qn)

n
| n ∈ N

}
,

where p = (pn)n∈N and q = (qn)n∈N, and d̄n is the standard bounded metric associated to dn.

Proof. For each n ∈ N, the metrics dn, d̄n and d̄n/n all induce the same topology on Xn, so
the product topology on X is the same as the cartesian product over n ≥ 1 of the topologies
associated to the metrics d̄n/n : Xn×Xn → [0, 1/n] ⊂ R. The function D : X ×X → [0, 1] ⊂ R
is the supremum metric on this product, defining a metric topology on X.

We first show that the product topology on X is finer than the metric topology. Let V ⊂ X
be open in the metric topology, and let p ∈ V be any point. Then p ∈ BD(p, ε) ⊂ V for some
ε > 0. Let

Un = Bd̄n/n(pn, ε/2) = {qn ∈ Xn | d̄n(pn, qn)/n < ε/2}

be the open ε/2-ball in (Xn, d̄n/n) around pn. When n is so large that 1/n < ε/2 we have
Un = Xn, since d̄n/n takes values in [0, 1/n]. Hence only finitely many of the factors in

U =
∏
n∈N

Un
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are proper subsets of the respective Xn, so U is in the standard basis for the product topology
on X. Clearly p ∈ U . If q ∈ U then d̄n(pn, qn)/n < ε/2 for each n ≥ 1, which implies that the
supremum of these values satisfies D(p, q) ≤ ε/2 < ε. Hence U ⊂ BD(p, ε). This proves that V
contains a neighborhood of p in the product topology. Since p ∈ V was arbitrarily chosen, it
follows that V is open in the product topology.

Next we show that the metric topology on X is finer than the product topology. Let W ⊂ X
be open in the product topology, and let p ∈W be any point. Then there is a basis element B
for the product topology with p ∈ B ⊂ W . We seek an ε > 0 such that BD(p, ε) ⊂ B. The
basis element has the form

B =
∏
n∈N

Un

where Un is open in Xn for each n ≥ 1, and Un 6= Xn only for finitely many n. If Un = Xn

choose εn = 1. Otherwise, choose εn > 0 to that Bd̄n/n(pn, εn) ⊂ Un. Let

ε = min{εn | n ≥ 1} .

This minimum is well-defined, and positive, since only finitely many of the numbers εn are
different from 1. If q ∈ BD(p, ε) we have

d̄n/n(pn, qn) ≤ D(p, q) < ε ≤ εn

for all n. It follows that qn ∈ Un for each n, since there is only something to check if Un 6= Xn,
and in these cases qn ∈ Bd̄n/n(pn, εn) ⊂ Un. Hence q ∈ B, so that BD(p, ε) ⊂ B. This proves
that W contains a neighborhood of p in the metric topology. Since p ∈ W was arbitrarily
chosen, it follows that W is open in the metric topology.

Example 2.8.10. For each n ∈ N consider [0, 1/n] ⊂ R as a subspace of R. The product
topology on the Hilbert cube

H =
∏
n∈N

[0, 1/n]

(named after David Hilbert (1862–1943)) is induced by the uniform metric

ρ(p, q) = sup{|qn − pn| | n ≥ 1}

for p = (pn)n∈N, q = (qn)n∈N ∈ H. This is the case Xn = [0, 1] for all n ≥ 1 of the previous
theorem, keeping in mind the homeomorphism∏

n∈N
[0, 1] ∼=

∏
n∈N

[0, 1/n]

given by the product of the linear homeomorphisms [0, 1] ∼= [0, 1/n].

2.9 (§21) The Metric Topology (continued)

Definition 2.9.1. A topological space X has a countable basis at a point x ∈ X if there is a
countable collection {Bn}n∈N of neighborhoods of x in X, such that each neighborhood U of x
contains (at least) one of the Bn. A space with a countable basis at each of its points is said to
satisfy the first countability axiom, or to be first-countable. Replacing each Bn by B1 ∩ · · · ∩Bn
we may assume that the neighborhoods are nested:

B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ . . . .
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Lemma 2.9.2. Each metric space (X, d) satisfies the first countability axiom.

Proof. A countable basis at x ∈ X is given by the neighborhoods Bd(x, 1/n) for n ∈ N.

Lemma 2.9.3 (The sequence lemma). Let A ⊂ X.
(a) If there is a sequence (xn)n∈N of points in A that converges to x, then x ∈ Ā.
(b) If X is metrizable, and x ∈ Ā, then there is a sequence (xn)n∈N of points in A that

converges to x.

Proof. (a) Suppose xn → x as n → ∞. For any neighborhood U of x then there is an N ∈ N
such that xn ∈ U for all n ≥ N . In particular, A ∩ U 6= ∅. Since U was arbitrary, x ∈ Ā.

(b) Let x ∈ Ā. For each n ∈ N the neighborhood Bd(x, 1/n) of x meets A, so we can choose
an xn ∈ A ∩ Bd(x, 1/n). Then xn → x as n→∞, as each neighborhood U of x contains some
Bd(x, 1/N), hence also each Bd(x, 1/n) for n ≥ N , so xn ∈ U for all n ≥ N .

Theorem 2.9.4. Let f : X → Y be a function.
(a) If f is continuous, then for every convergent sequence xn → x in X the image sequence

f(xn) converges to f(x) in Y .
(b) If X is metrizable, and for every convergent sequence xn → x in X the image sequence

f(xn) converges to f(x) in Y , then f is continuous.

Proof. (a) Consider any neighborhood V of f(x) in Y . Since f is continuous, the preimage
f−1(V ) is a neighborhood of x in X. If xn → x as n → ∞ then there is an N ∈ N such that
xn ∈ f−1(V ) for all n ≥ N . Then f(xn) ∈ V for all n ≥ N . Since V was arbitrarily chosen,
f(xn)→ f(x) as n→∞.

(b) Let A ⊂ X be any subset. We prove that f(Ā) ⊂ f(A), which implies that f is
continuous. Any point in f(Ā) has the form f(x) with x ∈ Ā. By the lemma above, there exists
a sequence (xn)n∈N in A with xn → x as n → ∞. By hypothesis, f(xn) → f(x) as n → ∞,
where (f(xn))n∈N is a sequence of points in f(A) ⊂ Y . Hence f(x) is in the closure of f(A).

Lemma 2.9.5. An uncountable product RJ of copies of R is not metrizable.

Proof. Let J be uncountable. We show that X = RJ does not satisfy the converse claim in the
sequence lemma. Let

A = {(xα)α∈J | xα 6= 0 for only finitely many α ∈ J}

and x = (1)α∈J . We shall prove (a) that x ∈ Ā, but (b) there is no sequence (xn)n∈N of points
in A that converges to x. Here each xn is a J-tuple (xn,α)α∈J .

Claim (a): Consider any basis element B =
∏
α∈J Uα containing x = (1)α∈J . Here Uα ⊂ R

is open, 1 ∈ Uα, and Uα 6= R only for finitely many α ∈ J . Let

yα =

{
0 if Uα = R,

1 if Uα 6= R.

Then y = (yα)α∈J is in A and in B, hence A ∩B 6= ∅. So x ∈ Ā.
Claim (b): Let (xn)n∈N be any sequence of points in A. For each n ∈ N, let Jn be the finite

set of α ∈ J such that xn,α 6= 0. Then
⋃
n∈N Jn is a countable union of finite sets, hence is

countable. Since J is uncountable there exists a β ∈ J −
⋃
n∈N Jn. Then xn,β = 0 for all n, and

U = π−1
β (1/2, 3/2)

is a neighborhood of x = (1)α∈J that does not contain any xn. Hence (xn)n∈N cannot converge
to x.
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2.10 (§22) The Quotient Topology

Each injective function f : X → Y factors as a bijection g : X → B followed by an inclusion
i : B ⊂ Y , where B = f(X) is the image of f . When Y is a topological space, we defined the
subspace topology on B to be the coarsest topology making i : B → Y continuous. We may
also give X the unique topology making g : X → B a homeomorphism, and then f : X → Y is
an embedding.

In this section we consider the more-or-less dual situation of a surjective function f : X → Y .
When X is a topological space we shall explain how to give Y the finest topology making f
continuous, called the quotient topology.

2.10.1 Equivalence relations

Definition 2.10.1. A relation ∼ (read: “tilde”) on a set X is a subset R ⊂ X ×X, where we
write x ∼ y if and only of (x, y) ∈ R. An equivalence relation on X is a relation ∼ satisfying
the three properties:

(1) x ∼ x for each x ∈ X.

(2) x ∼ y implies y ∼ x for x, y ∈ X.

(3) x ∼ y and y ∼ z implies x ∼ z for x, y, z ∈ X.

Definition 2.10.2. If ∼ is an equivalence relation on X, let

[x] = {y ∈ X | x ∼ y}

be the equivalence class of x ∈ X. (This is a subset of X.) Note that x ∈ [x] for each x ∈ X,
and [x] = [y] if and only if x ∼ y. Hence the equivalence classes are nonempty subsets of X
that cover X, and which are mutually disjoint. Let

X/∼ = {[x] | x ∈ X}

(read: “X mod tilde”) be the set of equivalence classes. (This is a set of subsets of X.) The
canonical surjection

π : X → X/∼

is given by π(x) = [x].

Lemma 2.10.3. Let f : X → Y be a surjective function. Define an equivalence relation ∼ on
X by x ∼ y if and only if f(x) = f(y). There is an induced bijection

h : X/∼ → Y

given by h([x]) = f(x). Its inverse h−1 takes y ∈ Y to the preimage f−1(y), which equals [x]
for any choice of x ∈ f−1(y). The surjection f : X → Y thus factors as the composite of the
canonical surjection π : X → X/∼ and the bijection h : X/∼ → Y .

Proof. The function h is well-defined since [x] = [y] only if x ∼ y, in which case f(x) = f(y) by
assumption. It is surjective since each element of Y has the form f(x) = h([x]) for some x ∈ X.
It is injective since h([x]) = h([y]) implies f(x) = f(y) so x ∼ y and [x] = [y].

In this way we can go back and forth between equivalence relations on X and surjective
functions X → Y , at least up to a bijection.
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2.10.2 Quotient maps

Definition 2.10.4. Let f : X → Y be a surjective function, where X is a topological space.
The quotient topology on Y (induced from X) is the collection of subsets V ⊂ Y such that
f−1(V ) is open in X.

Lemma 2.10.5. The quotient topology is a topology on Y .

Proof. (1): f−1(∅) = ∅ and f−1(Y ) = X are both open in X, so ∅ and Y are open in the
quotient topology on Y .

(2): If {Vα}α∈J is a collection of open subsets of Y then each f−1(Vα) is open in X, so

f−1(
⋃
α∈J

Vα) =
⋃
α∈J

f−1(Vα)

is a union of open sets in X hence is open in X, so
⋃
α∈J Vα is open in the quotient topology

on Y .
(3): If {V1, . . . , Vn} is a finite collection of open subsets of Y then each f−1(Vi) is open in

X, so
f−1(V1 ∩ · · · ∩ Vn) = f−1(V1) ∩ · · · ∩ f−1(Vn)

is a finite intersection of open sets in X hence is open in X, so V1 ∩ · · · ∩ Vn is open in the
quotient topology on Y .

Example 2.10.6. Let X = R and Y = {n, z, p}. Define f : X → Y by

f(x) =


n if x < 0,

z if x = 0,

p if x > 0.

The quotient topology on Y from R is the collection

{∅, {n}, {p}, {n, p}, Y } .

It is a non-Hausdorff topology, where z is the only closed point. Hence the image of a Hausdorff
space under a quotient map needs not be a Hausdorff space.

Definition 2.10.7. A surjective function f : X → Y between topological spaces is called a
quotient map if Y has the quotient topology from X, i.e., if V ⊂ Y is open if and only if f−1(V )
is open in X.

Lemma 2.10.8. A quotient map f : X → Y is continuous.

Proof. When Y has the quotient topology from X, V ⊂ Y is open (if and) only if f−1(V ) is
open in X. In particular f is continuous.

Lemma 2.10.9. Let f : X → Y be a surjective function, where X is a topological space. The
quotient topology is the finest topology on Y such that f : X → Y is continuous.

Proof. Let T be a topology on Y such that f : X → Y is continuous. Then for each V ∈ T we
have that f−1(V ) is open in X, so V is in the quotient topology. Hence T is coarser than the
quotient topology.

Lemma 2.10.10. A surjective function f : X → Y is a quotient map if and only if the following
condition holds: a subset L ⊂ Y is closed if and only if f−1(L) is closed in X.
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Proof. Let V = Y − L. Then L is closed if and only if V is open, and f−1(L) is closed if and
only if

X − f−1(L) = f−1(Y − L) = f−1(V )

is open.

Lemma 2.10.11. A bijective quotient map f : X → Y is a homeomorphism, and conversely.

2.10.3 Open and closed maps

Definition 2.10.12. Let f : X → Y be a function.
We say that f is an open function if for each open U ⊂ X the image f(U) is open in Y . If

f is also continuous, we say that f is an open map.
We say that f is a closed function if for each closed K ⊂ X the image f(K) is closed in Y .

If f is also continuous, we say that f is a closed map.

Lemma 2.10.13. Let B be a basis for a topology on X. A map f : X → Y is open if and only
if f(B) is open in Y for each basis element B ∈ B.

Proof. Each basis element is open in X, so if f is an open map then f(B) will be open in Y .
Conversely, any open subset U ⊂ X is a union of basis elements U =

⋃
α∈J Bα, so if each

f(Bα) is open in Y then

f(U) = f(
⋃
α∈J

Bα) =
⋃
α∈J

f(Bα)

is open.

Lemma 2.10.14. Each projection map π1 : X × Y → X or πβ :
∏
α∈J Xα → Xβ is open.

Proof. In the first case, it suffices to note that π1(U × V ) = U is open in X for each element
B = U ×V of the standard basis for the product topology on X ×Y , where U ⊂ X and V ⊂ Y
are open.

In the second case, the same applies for πβ(B) = Uβ with B =
∏
α∈J Uα, where each

Uα ⊂ Xα is open, and Uα 6= Xα for only finitely many α ∈ J .

Lemma 2.10.15. (1) Each surjective, open map f : X → Y is a quotient map.

(2) Each surjective, closed map f : X → Y is a quotient map.

Proof. (1): Let V ⊂ Y . If V is open then f−1(V ) is open since f is continuous. Conversely, if
f−1(V ) is open in X then

V = f(f−1(V ))

because f is surjective, and this is an open subset of Y since f is an open map.
(2): Let L ⊂ Y . If L is closed then f−1(L) is closed since f is continuous. Conversely, if

f−1(L) is closed in X then
L = f(f−1(L))

because f is surjective, and this is a closed subset of Y since f is a closed map.

Example 2.10.16. Let X = [0, 2] and Y = [0, 1] be subspaces of R, and let

f(x) =

{
x for x ∈ [0, 1],

1 for x ∈ [1, 2].
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Then f is continuous and surjective. Each closed subset K ⊂ X is the union of the closed
subsets [0, 1]∩K and [1, 2]∩K. Hence f(K) is the union of [0, 1]∩K, where [0, 1]∩K is closed
in Y , and f([1, 2] ∩K) is either ∅ or {1}, hence is also closed in Y . Thus f(K) is a union of
two closed sets, hence is closed, and f is a closed map. It is not an open map, since U = (1, 2)
is open in X, but f(U) = {1} is not open in Y .

Example 2.10.17. Let X = R × R and Y = R. Let π1 : R × R → R be the projection
π1(x, y) = x. Then π1 is continuous and surjective. It is an open map by Lemma 2.10.14. It is
not a closed map, since the hyperbola

C = {(x, y) ∈ R× R | xy = 1}

is a closed subset of R × R, but π1(C) = R − {0} is not closed in R. To see that C is closed,
use the continuous function m : R × R → R taking (x, y) to xy, and note that C = m−1(1) is
the preimage of the closed point {1}.

Example 2.10.18. Let A = C ∪ {(0, 0)} be a subspace of X = R2, and consider the restricted
map f = π1|A : A→ R. It is continuous and surjective (even bijective), but not a quotient map.
For {0} is not open in R, but its preimage f−1(0) = {(0, 0)} is open in the subspace topology
on A.

Example 2.10.19. Let X = [0, 1] in the subspace topology from R, and let Y = S1 be the
circle in the subspace topology from R2. Let

f : [0, 1]→ S1

be given by f(t) = (cos(2πt), sin(2πt)). It is clearly continuous and surjective. It can also be
shown to be closed (most easily using compactness, later), hence is a quotient map. It is not
open, since U = [0, 1/2) is open in [0, 1], but the image f(U) is not open in S1.

Define an equivalence relation ∼ on [0, 1] by s ∼ t if and only if f(s) = f(t). The equivalence
classes for this relation are [0] = [1] = {0, 1} and [t] = {t} for 0 < t < 1. We get an induced
bijection

h : [0, 1]/∼ → S1

and f = h ◦ π. (We might also write 0 ∼ 1 for this equivalence relation.) Then h is a
homeomorphism from [0, 1]/∼ with the quotient topology from [0, 1] to S1 with the quotient
topology from [0, 1], which equals the subspace topology from R2.

Example 2.10.20. Let X = [0, 1]× [0, 1] be a square in the subspace topology from R× R =
R2, and let Y = S1 × S1 in the product topology, which equals the subspace topology from
R2 × R2 = R4. We call Y a torus. Let

g : [0, 1]× [0, 1]→ S1 × S1

be given by g(s, t) = (cos(2πs), sin(2πs), cos(2πt), sin(2πt)). This is the product f × f of two
copies of the quotient map f : [0, 1]→ S1 discussed above.

The function g is continuous and surjective. It is also closed, hence a quotient map, and
induces a homeomorphism

h : ([0, 1]× [0, 1])/∼ → S1 × S1

where ∼ is the equivalence relation given by (s, t) ∼ (s′, t′) precisely if g(s, t) = g(s′, t′). The
equivalence classes of this relation are the 4-element set

{(0, 0), (0, 1), (1, 0), (1, 1)} ,
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the 2-element sets
{(s, 0), (s, 1)} and {(0, t), (1, t)} ,

and the singleton sets (s, t), for 0 < s, t < 1
In this way the torus S1 × S1 is realized, up to homeomorphism, as a quotient space of

the square [0, 1] × [0, 1], with respect to the equivalence relation ∼ generated by the relations
(s, 0) ∼ (s, 1) and (0, t) ∼ (1, t) for all s, t ∈ [0, 1].

Example 2.10.21. Let
Dn = {x ∈ Rn | ‖x‖ ≤ 1}

the unit disc in Rn. Its boundary ∂Dn = Cl(Dn) − Int(Dn) = Sn−1 is the unit sphere. The
stereographic projection f : Sn − {N} → Rn restricts to a homeomorphism

f− : Dn
−
∼=−→ Dn

where
Dn
− = {x = (x1, . . . , xn, y) ∈ Sn | y ≤ 0}

is the lower hemisphere of Sn. Similarly,

Dn
+ = {x = (x1, . . . , xn, y) ∈ Sn | y ≥ 0}

is the upper hemisphere. We can map

q : Dn
− −→ Sn

by
q(x1, . . . , xn, y) = (sx1, . . . , sxn, 2y + 1) ,

with s ≥ 0 characterized by s2(x2
1 + · · ·+ x2

n) + (2y + 1)2 = 1. Then q is continuous, identifies
Sn−1 ⊂ Dn

− to N ∈ Sn, and is otherwise bijective. Using compactness we can show that q is
closed, hence a quotient map. We obtain homeomorphisms

Dn/Sn−1 ∼=←− Dn
−/S

n−1 ∼=−→ Sn .

Theorem 2.10.22. Let f : X → Y be a quotient map, let B ⊂ Y and A = f−1(B) ⊂ X be
subspaces, and let g : A→ B be the restricted map.

(1) If A is open (or closed) in X, then g is a quotient map.

(2) If f is an open map (or a closed map), then g is a quotient map.

Proof. Consider the diagram

g−1(V ) // // A // //

g

��

X

f

��

Uoooo

V // // B // // Y f(U)oooo

(1) Note that
g−1(V ) = f−1(V )

for V ⊂ B. It is clear that g−1(V ) ⊂ f−1(V ). Conversely, if x ∈ f−1(V ) then f(x) ∈ V ⊂ B,
so x ∈ f−1(B) = A, hence x ∈ g−1(V ).
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Suppose that A is open. Given V ⊂ B with g−1(V ) open in A we want to prove that V is
open in B. Since A is assumed to be open in X we know that g−1(V ) = f−1(V ) is open in X.
Since f is a quotient map, V is open in Y . Hence V = B ∩ V is open in B. (Same argument
for A closed, replacing “open” by “closed” everywhere.)

(2) Next, note that
g(A ∩ U) = B ∩ f(U)

for U ⊂ X. It is clear that g(A∩U) = f(A∩U) ⊂ B ∩ f(U). Conversely, if y ∈ B ∩ f(U) then
there is an x ∈ U with f(x) = y. Since f(x) = y ∈ B we get x ∈ f−1(B) = A, so x ∈ A ∩ U .
Hence y ∈ f(A ∩ U).

Suppose that f is an open map. Given V ⊂ B with g−1(V ) open in A we want to prove
that V is open in B. There is an open subset U ⊂ X with g−1(V ) = A ∩ U . Then

g(g−1(V )) = g(A ∩ U) = B ∩ f(U) .

Here V = g(g−1(V )) since g is surjective, and f(U) is open in Y since f is assumed to be an
open map. Hence V = B ∩ f(U) is open in B. (Same argument for f a closed map.)

Remark 2.10.23. The composite of two quotient maps f : X → Y and g : Y → Z is a quotient
map gf : X → Z.

The product of two quotient maps is in general not a quotient map. Some condition like
local compactness is usually needed.

The quotient topology has a universal mapping property, somewhat dual to that of the
subspace and product topologies.

Theorem 2.10.24. Let f : X → Y be a quotient map, and Z any topological space. Let
h : X → Z be a function such that h(x) = h(y) whenever f(x) = f(y). Then h induces a unique
function g : Y → Z with h = g ◦ f .

X

f
��

h

  

Y g
// Z

The induced function g is continuous if and only if h is continuous. Furthermore, g is a quotient
map if and only if h is a quotient map.

Proof. Each element y ∈ Y has the form y = f(x) for x ∈ X, since f is surjective, so we can
(and must) define g(y) = h(x).

If g is continuous, then so is the composite h = g◦f . Conversely, suppose that h is continuous.
To prove that g is continuous, let V ⊂ Z be open. To prove that g−1(V ) is open in Y it suffices
to show that f−1(g−1(V )) is open in X, since f is a quotient map. But f−1(g−1(V )) = h−1(V ),
and h−1(V ) is open in X by the assumption that h is continuous.

If g is a quotient map, then so is the composite h = g ◦ f . Conversely, suppose that h is a
quotient map. Then g is surjective, since any z ∈ Z has the form z = h(x) = g(f(x)) for some
x ∈ X. Lastly, let V ⊂ Z and suppose that g−1(V ) is open. We must show that V is open.
Now f−1(g−1(V )) = h−1(V ) is open, since f is continuous. Hence V is open, by the assumption
that h is a quotient map.

Corollary 2.10.25. Let h : X → Z be a surjective, continuous map. Let ∼ be the equivalence
relation on X given by x ∼ y if and only if h(x) = h(y), and let X/∼ be the set of equivalence
classes:

X/∼ = {h−1(z) | z ∈ Z}
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Give X/∼ the quotient topology from the canonical surjection π : X → X/∼.

X

π
��

h

!!
X/∼ g

// Z

(1) The map h induces a bijective, continuous map g : X/∼ → Z.

(2) The map g : X/∼ → Z is a homeomorphism if and only if h is a quotient map.

(3) If Z is Hausdorff, then so is X/∼.

2.11 Adjunction spaces

2.11.1 Sums of spaces

Definition 2.11.1. Let X and Y be topological spaces. If X ∩ Y = ∅ we write X t Y for
X ∪ Y and call this the disjoint union of X and Y .

If X ∩ Y 6= ∅, we can replace X by X × {1} and replace Y by Y × {2}, as subsets of
(X ∪ Y )×{1, 2}, in which case X ×{1} and Y ×{2} are disjoint, so that we can realize X t Y
as (X × {1}) ∪ (Y × {2}).

Definition 2.11.2. The open subsets of X tY in the disjoint union topology (= sum topology
= coproduct topology) are the sets U t V , where U is open in X and V is open in Y .

Lemma 2.11.3. The disjoint union topology is a topology. The subsets X ⊂ X t Y and
Y ⊂ X t Y are both open and closed.

Proof. X = X t∅ and Y = ∅ t Y , with X, ∅ open in X and ∅, Y open in Y .

2.11.2 Adjunction spaces

Let X and Y be topological spaces, A ⊂ X a subspace, and ϕ : A → Y a map. Let ∼ be the
equivalence relation on X t Y generated by a ∼ ϕ(a) for a ∈ A and ϕ(a) ∈ Y . (This is the
minimal equivalence relation that contains (a, ϕ(a)) for all a ∈ A.) Let

Y ∪ϕ X = (X t Y )/∼

have the quotient topology of the disjoint union topology.

Y // //
##

##

X t Y
π
����

Xoooo

Φ
{{

Y ∪ϕ X

The composite Y → Y ∪ϕ X is an embedding. We say that Y ∪ϕ X is obtained from Y by
attaching X along ϕ : A→ Y . We call ϕ the attaching map, and the composite Φ: X → Y ∪ϕX
the characteristic map.

(Imagine a picture with Y a disc, X = [0, 1], A = {0, 1} and ϕ sending 0 and 1 to two points
in the disc. Then Y ∪ϕ X is the disc with a thin handle attached.)
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Definition 2.11.4. In the case

X = Dn = {p ∈ Rn | ‖p‖ ≤ 1}
A = Sn−1 = {p ∈ Rn | ‖p‖ = 1}

we say that Y ∪ϕ Dn is obtained by attaching an n-cell to Y along ϕ : Sn−1 → Y . (Another
common notation is Y ∪ϕ en.)

(Imagine a picture with Y a shape, X = D2, A = S1 and ϕ sending S1 to the shape. Then
Y ∪ϕ X is the shape with a 2-cell attached. along its boundary)

Example 2.11.5. When n = 0, D0 = {0} and S−1 = ∅, so Y ∪ϕ = {0} t Y is Y with an
additional disjoint (open and closed) point. Attaching a 0-cell is thus the same as adding a
disjoint point.

Definition 2.11.6. A cell complex is a space Y that can be built from ∅ by attaching n-cells,
for n ≥ 0, arbitrarily often. (If infinitly many cells are needed, some further discussion of the
topology on the infinite union is needed, but we omit this here.)

A cell structure on X is a recipe for building a cell complex Y , together with a homeomor-
phism Y ∼= X.

Example 2.11.7. A discrete space is a cell complex with only 0-cells.

Example 2.11.8. A (directed) graph G is a cell complex with only 0-cells and 1-cells. More
precisely, the set V of 0-cells (= vertices) is a discrete subspace of G, and each 1-cell e is attached
along a map ϕe : S0 → V . Letting E be the set of 1-cells (= edges), the attaching maps ϕe
correspond to a function (s, t) : E → V × V , where s(e) = ϕe(−1) and t(e) = ϕe(1) are the two
vertices to which the edge e ∈ E is attached. Here {±1} = S0 ⊂ D1.

Example 2.11.9. Index the coordinates of Rn+1 from 0 to n, so that p = (p0, . . . , pn) ∈ Rn+1.
Recall that Sn = {p ∈ Rn+1 | ‖p‖ = 1}. Let

Dn
+ = {p ∈ Sn | pn ≥ 0}

Dn
− = {p ∈ Sn | pn ≤ 0}

with Sn = Dn
+ ∪ Dn

− and Dn
+ ∩ Dn

− = Sn−1. (Visualize the cases n = 1 and n = 2.) Then
we get Dn

+, up to homeomorphism, by attaching an n-cell to Sn−1 along the identity map
ϕn : Sn−1 → Sn−1.

Sn−1 // //
((

((

Dn t Sn−1

π
����

Dnoooo

Φn
ww

Sn−1 ∪ϕn Dn ∼= Dn
+

Moreover, we get Sn, up to homeomorphism, by attaching another n-cell to Dn
+ along the

inclusion ψn : Sn−1 → Dn
+.

Sn−1 // //
''

''

Dn tDn
+

π
����

Dnoooo

Ψn
xx

Dn
+ ∪ψn Dn ∼= Sn

Hence Sn ∼= Sn−1 ∪ϕn Dn ∪ψn Dn is obtained from Sn−1 by attaching two n-cells.
By induction,

Sn ∼= D0 ∪ψ0 D
0 ∪ϕ1 · · · ∪ϕn Dn ∪ψn Dn

is obtained from ∅ by (2n+ 2) cell attachments, two in each dimension 0 ≤ k ≤ n.
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This is not a minimal cell structure on Sn. Indeed

Sn ∼= D0 ∪ϕ Dn ,

where ϕ : Sn−1 → D0 is the (unique) constant map, so Sn admits a cell structure with one 0-cell
and one n-cell. However, the cell structure discussed above is convenient for describing a cell
structure on the real projective spaces RPn.

Example 2.11.10. The n-dimensional real projective space RPn is the set of 1-dimensional
real sub-vectorspaces L of Rn+1, also called lines through the origin in Rn+1:

RPn = {lines L ⊂ Rn+1 | 0 ∈ L}

Each line L meets the unit sphere Sn in two antipodal points L ∩ Sn = {±p}, so the surjective
function

πn : Sn −→ RPn

p 7−→ Rp

induces the equivalence relation ∼ on Sn generated by +p ∼ −p, and gives a bijection Sn/∼ ∼=
RPn taking [p] = {±p} to the line Rp. We give RPn the quotient topology from Sn, making

πn : Sn −→ Sn/∼ ∼= RPn

a quotient map. Hence V ⊂ RPn is open if and only if π−1
n (V ) ⊂ Sn is open.

The composite πn−1 = πn−1ϕn : Sn−1 → RPn−1 can be used to attach an n-cell to RPn−1,
and we get a commutative diagram

Sn−1 // //

πn−1

��

Sn−1 ∪id Dn ∼= Dn
+

πn−1∪id
��

// // Sn

πn

��

RPn−1 // // RPn−1 ∪πn−1 D
n−∼= // RPn .

The continuous bijection RPn−1∪πn−1D
n → RPn is in fact a homeomorphism (since the source

is compact and the target is Hausdorff), so RPn ∼= RPn−1 ∪πn−1 D
n is obtained from RPn−1

by attaching one n-cell.
By induction

RPn ∼= D0 ∪π0 · · · ∪πn−1 D
n

is obtained from ∅ by (n+ 1) cell attachments, one in each dimension 0 ≤ k ≤ n.
For instance, RP 0 ∼= D0 is a point, RP 1 ∼= D0 ∪ψ1 D

1 is homeomorphic to S1 (but not via
π1), and RP 2 ∼= S1 ∪ψ1 D

2 is obtained from S1 by attaching a 2-cell along the double covering
map ψ1 : S1 → RP 1 ∼= S1. In other words, it is the quotient space D2/∼ of D2 where ∼ is the
equivalence relation generated by +p ∼ −p for p ∈ S1 ⊂ D2.
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Chapter 3

Connectedness and Compactness

3.1 (§23) Connected Spaces

3.1.1 Sums of spaces

Definition 3.1.1. Let C and D be topological spaces. Assume that C ∩D = ∅. We then write
C tD for the disjoint union C ∪D. There are canonical inclusions

iC : C → C tD and iD : D → C tD .

The disjoint union topology on C tD is the collection of subsets W ⊂ C tD such that C ∩W
is open in C and D ∩W is open in D. It is the finest topology on C tD for which both iC and
iD are continuous.

Remark 3.1.2. The disjoint union C tD is also known as the coproduct of the two spaces C
and D. It has a universal property dual to that of the product C ×D.

Each space X is homeomorphic to a disjoint union C tD in some trivial ways, if C = ∅ or
D = ∅. If X ∼= C tD in a non-trivial way, with both C and D nonempty, then we say that X
is disconnected. Otherwise, X is a connected space.

3.1.2 Separations

Definition 3.1.3. Let X be a topological space. A separation of X is a pair U , V of disjoint,
nonempty open subsets of X whose union is X. The space X is said to be connected (norsk:
sammenhengende) if there does not exist a separation of X. Otherwise it is disconnected.

Remark 3.1.4. Being connected is a topological property. The empty space X = ∅ may
require special care. Some authors make an exception, and say that it is not connected. The
situation is similar to that of prime factorization, where the unit 1 has no proper factors in
natural numbers, but is still not counted as a prime.

Lemma 3.1.5. A space X is connected if and only if the only subsets of X that are both open
and closed are ∅ and X itself.

Proof. In a separation U , V of X, since U ∩ V = ∅ and U ∪ V = X we must have V = X −U .
Asking that U and V are open is equivalent to asking that U is both open and closed. Asking
that both U and V are nonempty is equivalent to asking that U is different from ∅ and X.

Lemma 3.1.6. If U , V is a separation of X, then X ∼= U t V is homeomorphic to the disjoint
union of the subspaces U and V .
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Proof. If W ⊂ X is open then U ∩W and V ∩W are open in the subspace topologies on U and
V , respectively, so W is open in U t V . Conversely, if W is open in U t V , then U ∩W and
V ∩W are open in U and V , respectively, hence are open in X, since U and V are open in X.
Thus

W = (U ∩W ) ∪ (V ∩W )

is a union of open sets, hence is open in X.

Lemma 3.1.7. If X = C tD with C and D nonempty, then C, D is a separation of X.

Proof. It is clear that C and D are disjoint, nonempty subsets of X whose union equals X.
To see that C is open in the disjoint union topology, note that C ∩ C = C is open in C and
D ∩ C = ∅ is open in D. Similarly, D is open in the disjoint union topology.

Lemma 3.1.8. A separation of a topological space X is a pair of disjoint, nonempty subsets A
and B whose union is X, neither of which contains any limit points of the other. (In symbols,
A ∩B′ = ∅ and A′ ∩B = ∅.)

Proof. If A and B form a separation of X, then A is closed, so A′ ⊂ Ā = A does not meet B.
Similarly, B′ does not meet A.

Conversely, suppose that A and B are disjoint, nonempty sets with union X, A′ ∩ B = ∅
and A ∩ B′ = ∅. Then Ā ∩ B = ∅, since Ā = A ∪ A′, so Ā ⊂ X − B = A, hence A = Ā is
closed and B is open. Likewise, B is closed and A is open. Hence A and B form a separation
of X.

Example 3.1.9. Each 1-point space X = {a} is connected, since there are no proper, nonempty
subsets.

Example 3.1.10. Let X = {a, b} with the Sierpinski topology Ta = {∅, {a}, X}. The proper,
nonempty subsets of X are {a} and {b}, where the first is open and the second is closed, but
neither is both open and closed. Hence X is connected.

Example 3.1.11. Let X = [−1, 0)∪ (0, 1] be a subspace of R. Then U = [−1, 0) and V = (0, 1]
is a separation of X, so X is disconnected.

Remark 3.1.12. We shall prove in the next section that R is connected, as is each interval
[a, b], [a, b), (a, b] and (a, b) for −∞ ≤ a ≤ b ≤ ∞.

Example 3.1.13. Each subspace X ⊂ Q with at least 2 elements is disconnected: If p < q ∈ X
choose an irrational a ∈ (p, q). Then U = X ∩ (−∞, a) and V = X ∩ (a,∞) is a separation
of X. We say that Q is totally disconnected.

3.1.3 Constructions with connected spaces

Lemma 3.1.14. If U and V form a separation of X, and A is a connected subspace, then
A ⊂ U or A ⊂ V .

Proof. The intersection A ∩ U is open and closed in A. Since A is connected, A ∩ U is empty
or all of A. In the first case, A ⊂ V . In the second case, A ⊂ U .

Theorem 3.1.15. The union of a collection of connected subspaces of X, that all have a point
in common, is connected.

61



Proof. Let {Aα}α∈J be a collection of connected subspaces of X, let p ∈
⋂
α∈J Aα, and let

Y =
⋃
α∈J Aα. To show that Y is connected, suppose that Y = U ∪ V is a separation of Y .

Then p ∈ U or p ∈ V . Suppose, without loss of generality, that p ∈ U . For each α ∈ J the
connected space Aα is contained in U or in V . Since p ∈ Aα and p /∈ V we must have Aα ⊂ U .
This holds for each α, hence Y ⊂ U . This contradicts the assumption that V is nonempty.

Theorem 3.1.16. The product of two connected spaces is connected.

Proof. Let X and Y be connected. By hypothesis X×{y} ∼= X and {x}×Y ∼= Y are connected,
for all x ∈ X and y ∈ Y . Choose a ∈ X and b ∈ Y . For each y ∈ Y the space

Cy = X × {y} ∪ {a} × Y

is a union of two connected spaces with a common point, namely (a, y), hence is connected. It
follows that

X × Y =
⋃
y

Cy

is also a union of connected spaces with a common point, namely (a, b), hence is connected.

Corollary 3.1.17. Any finite product X1 × · · · ×Xn of connected spaces is connected.

Proof. This is clear for n = 1, and we have just proved it for n = 2. The general case follows
by induction on n, using the homeomorphism

X1 × · · · ×Xn
∼= (X1 × · · · ×Xn−1)×Xn .

Theorem 3.1.18. Let A ⊂ B ⊂ Ā be subspaces of X. If A is connected then B is connected.

Proof. Suppose that B = U∪V is a separation. Since A is connected, we have A ⊂ U or A ⊂ V .
Without loss of generality assume that A ⊂ U . Then B ⊂ Ā ⊂ Ū . Since U is closed in B, it
equals its closure B ∩ Ū in B. Combining B ⊂ Ū and U = B ∩ Ū we deduce that B ⊂ U . This
contradicts the assumption that V is nonempty.

Theorem 3.1.19. The continuous image of a connected space is connected.

Proof. Let f : X → Y be continuous, with X connected. We prove that the image space
Z = f(X) is connected. Suppose that Z = U ∪V is a separation. Then f−1(U) and f−1(V ) are
disjoint, nonempty open subsets of X whose union equals X. This contradicts the assumption
that X is connected.

Definition 3.1.20. A space Y is totally disconnected if the only connected subspaces of Y are
the singleton subspaces (and the empty subspace).

Lemma 3.1.21. Any map f : X → Y from a connected space X to a totally disconnected space
Y (for example, a discrete space) is constant.

Proof. Since X is connected and f is continuous, its image f(X) is a connected subspace of Y ,
hence consists of at most one point. This means that f is constant.

Example 3.1.22. Suppose that X is a connected space, and that the subset U = {x ∈ X |
P (x)} where some property P (x) is satisfied is both open and closed. Then U = ∅ or U = X,
so to prove that P (x) holds for all x ∈ X it suffices to prove that it holds for one x ∈ X.
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Example 3.1.23. Consider the covering map

p : R −→ S1

t 7−→ (cos(2πt), sin(2πt)) .

If X is connected and f, g : X → R are two maps such that p ◦ f, p ◦ g : X → S1 are equal, then
either f(x) = g(x) for all x ∈ X, or f(x) 6= g(x) for all x ∈ X.

R

p

��

X

f
>>

g

>>

pf

  pg
  

S1

To see this, note that h(x) = g(x) − f(x) defines a map h : X → Z, where Z ⊂ R is discrete.
Hence h is constant. If f(x) = g(x) for some x ∈ X, then h = 0 everywhere and f(x) = g(x)
for all x ∈ X. Otherwise f(x) 6= g(x) for all x ∈ X. We will return to covering spaces/maps in
§53.

3.2 (§24) Connected Subspaces of the Real Line

We now use the existence of least upper bounds for nonempty, bounded subsets of R to prove
that R is connected.

Definition 3.2.1. A subset C ⊂ R is convex if for any two points a < b in C the closed interval
[a, b] is a subset of C.

Example 3.2.2. The convex subsets of R are ∅, the intervals (a, b), [a, b), (a, b] and [a, b], the
rays (−∞, b), (−∞, b], (a,∞) and [a,∞), and R itself.

Theorem 3.2.3. Each convex subset C ⊂ R is connected.

Proof. Suppose that U , V is a separation of C. Choose p ∈ U and q ∈ V . By symmetry we
may assume that p < q. Let A = [p, q] ∩ U and B = [p, q] ∩ V . Then A, B is a separation of
[p, q], with p ∈ A and q ∈ B. Let r = supA be the least upper bound of the elements in A.
Clearly p ≤ r ≤ q, since p ∈ A and q is an upper bound for A.

If r = p then A = {p}, contradicting the assumption that A is open in [p, q].
If r = q then there are points x ∈ A arbitrarily close to b. Since A is closed we must have

q ∈ A, contradicting the assertion that A ∩B = ∅.
Otherwise p < r < q. Then (r, q] ⊂ B, since r is an upper bound for A. Hence there are

points y ∈ (r, q] ⊂ B arbitrarily close to r. Since B is closed, we must have r ∈ B. Since B is
open, there is an ε > 0 with (r − ε, r + ε) ⊂ B. Then any x ∈ (r − ε, r) is also an upper bound
for A, contradicting the definition of r as the least upper bound.

Each of the three cases leads to a contradiction. Hence no separation of C exists, and C is
connected.

Theorem 3.2.4 (Intermediate value theorem). Let f : X → R be a continuous map, where X
is a connected space. If a, b ∈ X are points, and r ∈ R lies between f(a) and f(b), then there
exists a point c ∈ X with f(c) = r.

Proof. Suppose that f(X) ⊂ R− {r} = (−∞, r) ∪ (r,∞). Then X is the union of the disjoint,
nonempty subsets U = f−1((−∞, r)) and V = f−1((r,∞)), each of which is open in X. This
contradicts the assumption that X is connected.
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3.2.1 Path connected spaces

Definition 3.2.5. Given points x, y ∈ X a path in X from x to y is a map f : [a, b]→ X with
f(a) = x and f(b) = y, where [a, b] ⊂ R.

A space X is path connected (norsk: veisammenhengende) if for any two points x and y of
X there exists a path in X from x to y.

Lemma 3.2.6. A path connected space is connected.

Proof. Let X be path connected, and suppose that U and V separate X. Choose points x ∈ U
and y ∈ V , and a path f : [a, b] → X in X from x to y. Then f−1(U) and f−1(V ) form a
separation of the connected space [a, b], which is impossible.

Lemma 3.2.7. The continuous image of a path connected space is path connected.

Proof. If g : X → Y is a map, any two points in g(X) can be written as g(x) and g(y) for
x, y ∈ X. Since X is path connected, there is a path f : [a, b] → X in X from x to y. Then
g ◦ f : [a, b]→ Y is a path in f(X) from f(x) to f(y). Hence f(X) is path connected.

Definition 3.2.8. A subset C of a real vector space V is convex if for each pair of points
x, y ∈ C the straight-line path f : [0, 1]→ V defined by

f(t) = (1− t)x+ ty

takes all of its values in C.

Example 3.2.9. Any convex subset of Rn is path connected, since the path f is continuous.
For example, the n-dimensional unit ball

Bn = {x ∈ Rn | ‖x‖ ≤ 1}

is convex for n ≥ 0, hence path connected.

Example 3.2.10. The punctured Euclidean space Rn − {0} is path connected for n ≥ 2. For
n = 1, the space R1 − {0} is not (path) connected. For n = 0 the space R0 − {0} is empty,
hence is path connected by convention.

Example 3.2.11. The (n− 1)-dimensional unit sphere

Sn−1 = {x ∈ Rn | ‖x‖ = 1}

is the continuous image of g : Rn−{0} → Sn−1 given by g(x) = x/‖x‖, hence is path connected
for n ≥ 2. For n = 1, the 0-sphere S0 = {+1,−1} is not path connected. For n = 0, the
(−1)-sphere S−1 is empty, hence is also path connected, by convention.

Example 3.2.12. Let
S = {(x, sin(1/x)) | 0 < x ≤ 1}

be a subset of R2. It is the image of the connected space (0, 1] under the continuous map
g(t) = (t, sin(1/t)), hence is connected. Therefore its closure S̄ in R2 is connected. This closure

S̄ = S ∪ V

is the union of S with the vertical interval V = {0}×[−1, 1]. The space S̄ is called the topologist’s
sine curve.
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We show that S̄ is not path connected. Suppose that f : [a, b]→ S̄ is a map with f(a) ∈ V
and f(b) ∈ S. The set of t ∈ [a, b] with f(t) ∈ V is closed, since V is closed in S̄, hence has
a greatest element c. The restricted function f |[c, b] : [c, b] → S̄ is then a path in S̄ starting in
V and ending in S. By reparametrizing, we may replace [c, b] by [0, 1]. We then have a map
f : [0, 1]→ S̄ with f(0) ∈ V and f(t) ∈ S for all t ∈ (0, 1].

Write f(t) = (x(t), y(t)). Then x(0) = 0 and x(t) > 0 for all t ∈ (0, 1]. We show that there is
a sequence of points tn ∈ (0, 1] with 0 < tn < 1/n and y(tn) = (−1)n. Then tn → 0 as n→∞,
but the sequence (y(tn))n∈N = ((−1)n)n∈N does not converge. This contradicts the continuity
of y. For each n we choose a

vn >
1

x(1/n)

such that sin(vn) = (−1)n, and let un = 1/vn; then 0 = x(0) < un < x(1/n) and sin(1/un) =
(−1)n. By the intermediate value theorem for x, there is a tn ∈ (0, 1/n) with x(tn) = un. Then
y(tn) = (−1)n, as desired.

3.3 (§25) Components and Local Connectedness

Definition 3.3.1. Define an equivalence relation ∼ for points in a topological space X by x ∼ y
if there is a connected subset C ⊂ X with x, y ∈ C. The equivalence classes for ∼ are called
the (connected) components of X.

Lemma 3.3.2. ∼ is an equivalence relation on X.

Theorem 3.3.3. The components of X are disjoint, connected and closed subspaces whose
union is X. Each nonempty, connected subset of X is contained in precisely one component.

Proof. It is clear that the components are disjoint, nonempty subspaces whose union is X, since
the components are the equivalence classes for an equivalence relation. If A ⊂ X is connected
and meets two components C1 and C2, in points x1 and x2, say, then x1 ∼ x2, so C1 = C2.

To show that each component C is connected, let x0 ∈ C. For each x ∈ C we have x0 ∼ x,
so there exists a connected subset Ax with x0, x ∈ Ax. Then Ax ⊂ C, so

⋃
x∈C Ax = C.

Since all Ax are connected, and all contain x0, it follows from Theorem 3.1.15 that the union is
connected.

The closure C̄ of any component C is connected by Theorem 3.1.18, hence is contained in a
component D. Since C ∩D 6= ∅, we must have C = D, so that C = C̄ is closed.

Example 3.3.4. The components of the rational numbers Q, with the subspace topology
from R, are the singleton sets {p}, since any A ⊂ Q containing two elements p < q is separated
by A ∩ (−∞, r) and A ∩ (r,∞), where r is any irrational number between p and q. Hence each
component is closed, but not open, in Q.

Using the notion of connected components we can simplify the proof of the following theorem
(which we already proved as Theorem 3.1.16).

Theorem 3.3.5. A finite product of connected spaces is connected.

Proof. Let X and Y be connected spaces. We show that any two points (x, y) and (x′, y′) in
X × Y are in the same component. First, X × {y} is homeomorphic to X, hence is connected.
So (x, y) and (x′, y) are in the same component. Next, {x′}×Y is homeomorphic to Y , hence is
connected. So (x′, y) and (x′, y′) are in the same component. The claim follows by associativity
of ∼.
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Given n connected spaces X1, . . . , Xn, the homeomorphism

X1 × · · · ×Xn
∼= (X1 × · · · ×Xn−1)×Xn

and induction on n shows that X1 × · · · ×Xn is connected.

Remark 3.3.6. In fact, an arbitrary product of connected spaces is connected, in the product
topology.

3.3.1 Path components

Definition 3.3.7. Define another equivalence relation ' for points in a topological space X
by x ' y if there is a path in X from x to y. The equivalence classes for ' are called the path
components of X.

Lemma 3.3.8. ' is an equivalence relation on X.

Theorem 3.3.9. The path components of X are path connected, disjoint subspaces whose union
is X. Each nonempty, path connected subset of X is contained in precisely one path component.

Example 3.3.10. The topologist’s sine curve S̄ = S∪V is connected, hence consist of only one
component. It has two path components, S and V . Note that S is open in S̄, but not closed,
and V is closed in S̄, but not open.

3.3.2 Locally connected spaces

Definition 3.3.11. A space X is locally connected at a point x ∈ X if for each neighborhood
U of x there is a connected neighborhood V of x contained in U :

x ∈ V ⊂ U ⊂ X

We say that X is locally connected if it is locally connected at each of its points.

Definition 3.3.12. A space X is locally path connected at a point x ∈ X if for each neighbor-
hood U of x there is a path connected neighborhood V of x contained in U :

x ∈ V ⊂ U ⊂ X

We say that X is locally path connected if it is locally path connected at each of its points.

If X is locally path connected (at x) then X is locally connected (at x), by Lemma 3.2.6.

Example 3.3.13. The real line is locally (path) connected, since each neighborhood U of any
point x contains a (path) connected basis neighborhood (x− ε, x+ ε) for some ε > 0.

Example 3.3.14. Any open subset Ω ⊂ Rn is locally (path) connected, since each neighborhood
U of any point x ∈ Ω contains a (path) connected basis neighborhood Bd(x, ε) for some ε > 0.

Example 3.3.15. Any n-dimensional manifold M (see Definition 4.8.1) is locally (path) con-
nected, since for each neighborhood U of any point x ∈ M there is also a neighborhood V of
x with a homeomorphism h : V ∼= Rn, which means that U ∩ V is a neighborhood of x that
is homeomorphic to a neighborhood W = h(U ∩ V ) of y = h(x) in Rn. The latter contains
an ε-ball B(y, ε), which is (path) connected. Hence U (and U ∩ V ) contains a neighborhood
h−1(B(y, ε)) of x that is homeomorphic to B(y, ε), and which is therefore (path) connected.
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Example 3.3.16. The topologist’s sine curve S̄ = S ∪ V is not locally (path) connected, since
small neighborhoods of points in V are not connected.

Theorem 3.3.17. If X is locally connected, then each component C of X is open in X.

Proof. Let x ∈ C. Then U = X is a neighborhood of x, so by local connectivity there is a
connected neighborhood V of x with V ⊂ U = X. Since V is connected, V ⊂ C. Hence C
contains a neighborhood around each of its points, and must be open.

Theorem 3.3.18. If X is locally path connected, then each path component P of X is open
in X.

Theorem 3.3.19. If X is a topological space, each path component of X lies in a unique
component of X. If X is locally path connected, then the components and the path components
of X are the same.

Proof. Each path component P is nonempty and connected, hence lies in a unique component
C. If X is locally path connected we show that P = C.

Let U be the union of the path components Q of X that are different from P and meet C.
Since each such path component Q is connected, it lies in C, so that

C = P ∪ U

is a disjoint union. Because X is locally path connected, each path component P or Q is open
in X, hence so is the union U . Hence P is a nonempty, open and closed subset of C. Since C
is connected, it follows that P = C.

3.3.3 The Jordan curve theorem

The line segment
[0, 1]× {0} ⊂ R2

can be parametrized as an arc = simple curve. The complement R2 − [0, 1]× {0} is connected.
The circle

S1 ⊂ R2

can be parametrized as a simple closed curve. The complement R2 − S1 has two connected
components. The following two theorems are proved in §63 of Munkres’ book, and generalized
to higher dimensions in MAT4540 Algebraic Topology II.

Theorem 3.3.20 (Arc theorem). Let A ⊂ R2 be an arc, i.e., a subspace homeomorphic to
[0, 1]. Then R2 −A is (path) connected.

Here A is closed in R2 (this will follow from compactness), so R2 −A is open, hence locally
path connected. Thus the components and path components of R2 −A are the same.

Note that it is not sufficient that A admits a simple (injective) parametrization by a half-
open interval. The “closed topologist’s sine curve” C ⊂ R2 is obtained from S̄ by connecting
(1, sin(1)) ∈ S to (0,−1) ∈ V . There is a continuous bijection [0, 1) → C. However, R2 − C is
not (path) connected.

Theorem 3.3.21 (Jordan curve theorem). Let C ⊂ R2 be a simple closed curve, i.e., a subspace
homeomorphic to S1. Then R2 − C has exactly two connected (path) components.

Here C will also be closed in R2, so R2−C is open, hence locally path connected. Thus the
components and path components of R2 − C are the same, and the theorem asserts that there
are precisely two components: one bounded and one unbounded (containing a “neighborhood
of infinity”).
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3.3.4 Gaussian elimination

Let
Mn(R) = {A = (ai,j)

n
i,j=1 | ai,j ∈ R}

be the space of n× n real matrices. Viewing a matrix A = (α1, . . . , αn) as an order n-tuple of
column vectors in Rn, we can identify Mn(R) with the Euclidean space

(Rn)n = Rn × · · · × Rn ∼= Rn
2

with the standard topology. The determinant function det : Mn(R)→ R is given by a (degree n)
polynomial in the entries (ai,j)

n
i,j=1 of a matrix A ∈Mn(R), hence is continuous.

Let
GLn(R) = {A ∈Mn(R) | det(A) 6= 0}

denote the space of n × n invertible real matrices. It is the preimage of the open subset
R− {0} of R for the map det, hence is an open subspace of Mn(R) ∼= Rn2

. Since the image of
det : GLn(R)→ R is R− {0} (for n ≥ 1), which is disconnected, it follows that GLn(R) is not
connected.

Let GL+
n (R) ⊂ GLn(R) and SLn(R) ⊂ GLn(R) be the subspaces of matrices A with

det(A) > 0 and det(A) = 1, respectively.

Proposition 3.3.22. GL+
n (R) and SLn(R) are (path) connected.

Proof. We use the method of row reduction to connect any given matrix A with det(A) > 0 to
the identity matrix In. For 1 ≤ i 6= j ≤ n and r ∈ R let

Ei,j(r) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . 1 . . . r . . . 0
...

...
. . .

...
...

0 . . . 0 . . . 1 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1


be the n× n elementary matrix, which differs from In only in the (i, j)-th entry, which is equal
to r. Note that left multiplication by Ei,j(r), sends A to the matrix Ei,j(r)A obtained by adding
r times the j-th row of A to the i-th row of A. This is one of the three standard row operations
used in Gaussian elimination. Note that

t 7→ Ei,j(tr)A

for t ∈ [0, 1] defines a path in GLn(R) from A to Ei,j(r)A. Hence A and Ei,j(r)A lie in the
same path component of GLn(R).

Another standard row operation is given by interchanging two rows. Instead, we will use
the operation given by interchanging two rows, and reversing the sign of one of the rows. In
the case n = 2, this amounts to left multiplication by the matrix(

0 1
−1 0

)
.

However, in view of the factorization(
0 1
−1 0

)
=

(
1 0
1 1

)(
1 −1
0 1

)(
1 0
1 1

)
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this left multiplication can be achieved by a series of three row operations of the previous kind.
A similar argument, acting only on two of n rows, shows that if B is obtained from A by
interchanging two rows are reversing the sign of one of them, then A and B lie in the same path
component of GLn(R).

Using these operations we can create a path that connects any invertible matrix A to a
diagonal matrix of the form

D = diag(d1, d2, . . . , dn) =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


where d1, . . . , dn are all nonzero. Furthermore, if di and dj are negative, for i 6= j, we can
interchange the i-th and j-th rows twice, changing the signs each time, so as to replace di by
−di and dj by −dj . We may therefore arrange that at most one of the diagonal entries is
negative. Here

det(D) = d1d2 · · · dn
so if det(D) > 0 we have arranged that all of the diagonal entries are positive. In fact
det(A) = det(D), since the row operations considered so far do not alter the determinant.
So the assumption that det(A) > 0 precisely ensures that det(D) > 0, and we can conclude
that d1, . . . , dn > 0.

The final standard row operation is given by multiplying one row by a nonzero scalar r ∈
R − {0}. Since R − {0} is not connected, we instead only allow the operation of multiplying
one row by a positive scalar, r ∈ (0,∞). When acting on the i-th row, this operation is given
by left multiplication by the diagonal matrix

diag(1, . . . , 1, r, 1, . . . , 1)

that only differs from In in the (i, i)-th entry, which is equal to r. For r > 0 the path

t 7→ diag(1, . . . , 1, (1− t) + tr, 1, . . . , 1)A

for t ∈ [0, 1] connects A, within GLn(R), to the result of this row operation. Applying this
to the i-th row with r = 1/di, for each 1 ≤ i ≤ n, we have finally found a path in GLn(R)
connecting A with det(A) > 0 to the identity matrix.

This proves that GL+
n (R) is connected. Finally, there is a retraction

g : GL+
n (R) −→ SLn(R)

A 7−→ 1
n
√

det(A)
A

from GL+
n (R) onto the subspace SLn(R), hence the latter is the continuous image of a path

connected space, and is itself therefore path connected.

It follows that any map from GL+
n (R) or SLn(R) to a totally disconnected space (e.g. a

discrete space) is constant.
The proof of the complex case is easier, since C−{0} is path connected, and will be omitted.

Proposition 3.3.23. GLn(C) and SLn(C) are (path) connected.
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3.4 (§26) Compact Spaces

The Bolzano–Weierstrass theorem (credited to Bernard Bolzano (1781–1848) and Karl Weier-
strass (1815–1897)) shows that any sequence (xn)n∈N in the closed interval [a, b] admits a con-
vergent subsequence (xnk)k∈N. Topological spaces with the corresponding property will be said
to be “sequentially compact”. The Heine–Borel theorem (credited to Eduard Heine (1821–1881)
and Émile Borel (1871–1956), with the modern statement being proved by Cousin, Lebesgue
and Schoenflies) shows that for each open cover C = {Uα}α of [a, b] there exists a finite subcover
F = {Uα1 , . . . , Uαn}. Topological spaces with the corresponding property will be said to be
“compact”.

For general spaces, compactness turns out to be more important than sequential compact-
ness. For metrizable spaces the two notions coincide, but in general neither one implies the
other.

For subspaces of Rn (sequential) compactness is equivalent to being closed and bounded. The
continuous image of a compact space is compact, so for any compact space X and continuous
function f : X → R the set f(X) is closed and bounded. Hence f achieves both its minimum
and its maximum; this generalizes the extreme value theorem.

3.4.1 Open covers and finite subcovers

Definition 3.4.1. A collection C = {Uα}α∈J of subsets of X is said to cover X, or to be a
covering of X, if the union of its elements is equal to X, so X =

⋃
α∈J Uα. If each element in

the collection is an open subset of X, then we say that C is an open cover.
A subcollection D ⊂ C that also covers X is called a subcover of C . If F ⊂ C is a subcover

with finitely many elements, then we call F a finite subcover of C . In other words, this means
that there is a finite subset {α1, . . . , αn} ⊂ J with F = {Uα1 , . . . , Uαn} and X = Uα1∪· · ·∪Uαn .

Definition 3.4.2. A space X is said to be compact if for each open cover C of X there exists
a finite subcollection F ⊂ C that also covers X. In other words, X is compact if each open
cover C = {Uα}α∈J of X contains a finite subcover F = {Uα1 , . . . , Uαn}, where n is finite and
α1, . . . , αn ∈ J .

Remark 3.4.3. Note that the assertion that D is a subcollection of C means that each element
of D is an element of C , not that each element of D is a subset of some element of C . The
word “finite” in “finite subcover” refers to the collection F being finite, not that its elements
are finite. On the other hand, the word “open” in “open cover” does refer to the elements in
C being open, not that C itself is open in some topology. To prove that a space X is compact
it is not enough to find some finite cover of it, such as F = {X}; one must prove that for any
choice of open cover C there exists a finite subcollection F of C that also covers X. If a finite
subcover exists, there is usually nothing unique about it.

Example 3.4.4. A finite topological space X is compact, since there are only finitely many
different open subsets U ⊂ X, so any collection covering X is finite.

Example 3.4.5. The real line R is not compact, since the open cover C = {(n−1, n+1) | n ∈ N}
does not admit a finite subcover.

Remark 3.4.6. From S. G. Krantz’ “Mathematical Apocrypha”.

There is a story about Sir Michael Atiyah (1929– 1) and Graeme Segal (1941– )
giving an oral exam to a student at Cambridge. Evidently the poor student was a

1(1929–2019)
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nervous wreck, and it got to a point where he could hardly answer any questions at
all.

At one point, Atiyah (endeavoring to be kind) asked the student to give an example
of a compact set. The student said: “The real line.” Trying to play along, Segal
said: “In what topology?”

Example 3.4.7. The real line R in the trivial topology is compact, since the only open covers
are the collections {R} and {∅,R}, which are finite.

Example 3.4.8. The subspace

X = {0} ∪ {1/n | n ∈ N}

of R is compact. Given an open covering C of X, choose U ∈ C with 0 ∈ U . Since U is open in
the subspace topology, there is an N ∈ N such that 1/n ∈ U for all n > N . For each 1 ≤ n ≤ N
choose Un ∈ C with 1/n ∈ Un. Then F = {U,U1, . . . , UN} is a finite subcover of C .

Example 3.4.9. Any space X in the cofinite topology is compact. If X is finite, this is trivially
true. Otherwise, if C = {Uα}α∈J is an open cover, not all Uα can be empty. Choose a β ∈ J
so that Uβ ⊂ X is nonempty. Then X − Uβ = {x1, . . . , xn} is a finite set. For each i choose an
αi ∈ J so that xi ∈ Uαi . Then {Uβ, Uα1 , . . . , Uαn} is a finite subcover of C . Since C was an
arbitrary open cover of X, it follows that X is compact.

Definition 3.4.10. If A is a subspace of X, a collection D of subsets of X covers A if the
union of the elements of D contains A.

Lemma 3.4.11. Let A be a subspace of X. Then A is compact if and only if each covering
of A by open subsets of X contains a finite subcollection covering A.

Proof. Suppose that A is compact, and that D = {Uα}α∈J is a covering of A by open subsets
of X. Then C = {A ∩ Uα}α∈J is an open cover of A, hence contains a finite subcover F =
{A ∩ Uα1 , . . . , A ∩ Uαn}. Then G = {Uα1 , . . . , Uαn} is a finite subcollection of D that covers A.

Conversely, suppose that each covering of A by open subsets of X contains a finite sub-
collection covering A, and let C = {Vα}α∈J be an open covering of A. For each α ∈ J we
can write Vα = A ∩ Uα for some open subset Uα ⊂ X. Then the collection D = {Uα}α∈J is
a covering of A by open subsets of X, which we have assumed contains a finite subcollection
G = {Uα1 , . . . , Uαn} covering A. Then F = {Vα1 , . . . , Vαn} is a finite subcollection of C that
covers A. Since C was an arbitrary open cover, it follows that A is compact.

3.4.2 Compact subspaces of Hausdorff spaces

Theorem 3.4.12. Every closed subspace of a compact space is compact.

Proof. Let A ⊂ X with A closed and X compact. Let D = {Uα}α∈J be any covering of A by
open subsets in X. The complement X −A is also open in X, so

C = D ∪ {X −A}

is an open cover of X. There exists a finite subcover F ⊂ C of X, which we may assume
contains X −A, hence is of the form

F = {Uα1 , . . . , Uαn , X −A}

for some finite set of indices α1, . . . , αn ∈ J . Then

G = {Uα1 , . . . , Uαn}

is a finite subcollection of D , and it covers A. Hence A is compact.
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Recall that finite subsets of Hausdorff spaces are closed. Compact subspaces generalize finite
sets in this respect.

Theorem 3.4.13. Every compact subspace of a Hausdorff space is closed.

Proof. Let X be a Hausdorff space and let K ⊂ X be a compact subspace. Let p ∈ X −K be
any point. We prove that p /∈ K̄, so that K = K̄ is closed.

For each point q ∈ K we have p 6= q, so there exist neighborhoods Uq and Vq of p and q,
respectively, with Uq ∩Vq = ∅. The collection C = {Vq | q ∈ K} of open subsets in X covers K,
since

K ⊂
⋃
q∈K

Vq .

By compactness of K, there is a finite subcollection F = {Vq1 , . . . , Vqn} that also covers K:

K ⊂ V = Vq1 ∪ · · · ∪ Vqn .

Let U = Uq1 ∩ · · · ∩ Uqn . Then U is neighborhood of p. We claim that U ∩K = ∅, so p is not
in K̄. In fact U ∩ V = ∅, for if x ∈ V then x ∈ Vqi for some i, but then x /∈ Uqi so x /∈ U .

The following lemma was established in the course of the previous an It serves as inspiration
for the notions of “regular” and “normal” spaces, to be considered in §31 (The Separation
Axioms).

Lemma 3.4.14. If X is a Hausdorff space, K ⊂ X a compact subspace, and p ∈ X −K, then
there exist disjoint open subsets U and V of X with p ∈ U and K ⊂ V .

Example 3.4.15. The intervals (a, b], [a, b) and (a, b) are not closed in R, hence cannot be
compact. We shall prove in the next section that each closed interval [a, b] in R is compact.

Example 3.4.16. If X is an infinite set with the cofinite topology, then any subspace has the
cofinite topology, hence is compact, but not every subspace is closed.

Theorem 3.4.17. The continuous image of a compact space is compact.

Proof. Let f : X → Y be continuous, and assume that X is compact. We prove that f(X)
is a compact subspace of Y . Let C = {Uα}α∈J be a covering of f(X) by open subsets of
Y . Then {f−1(Uα)}α∈J is an open cover of X. By compactness there exists a finite subcover
{f−1(Uα1), . . . , f−1(Uαn)}. Then the sets F = {Uα1 , . . . , Uαn} cover f(X).

Theorem 3.4.18. Let f : X → Y be a map from a compact space X to a Hausdorff space Y .

(1) f is a closed map.

(2) If f is surjective, then f is a quotient map.

(3) If f is bijective, then f is a homeomorphism.

(4) If f is injective, then f is an embedding.

Proof. (1): Let A ⊂ X be a closed subset. Since X is compact, A is compact. Since f is
continuous, f(A) is compact. Since Y is Hausdorff, f(A) ⊂ Y is closed.

(2): Any closed, surjective map is a quotient map.
(3): If f is bijective, the inverse function h = f−1 : Y → X is continuous, since for each

closed subset A ⊂ X the preimage h−1(A) = f(A) is closed in Y .
(4): If f is injective, the corestriction g : X → f(X) is bijective, and f(X) is Hausdorff, so

g is a homeomorphism.
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Example 3.4.19. The map R→ {0} shows that the continuous preimage of a compact space
needs not be compact.

Definition 3.4.20. A map f : X → Y is said to be proper if for each compact subspace L ⊂ Y
the preimage f−1(L) is compact.

3.4.3 Finite products of compact spaces

Theorem 3.4.21. Let X and Y be compact spaces. Then X × Y is compact.

Corollary 3.4.22. Any finite product of compact spaces is compact.

Lemma 3.4.23 (The tube lemma). Consider the product X×Y , let p ∈ X, and assume that Y
is compact. If N ⊂ X × Y is open, with {p} × Y ⊂ N , then there exists a neighborhood U ⊂ X
of p with U × Y ⊂ N .

Proof. For each q ∈ Y we have (p, q) ∈ {p} × Y ⊂ N . Since N is open there is a basis element
Uq × Vq ⊂ N for the product topology on X × Y , with p ∈ Uq open in X and q ∈ Vq open in
Y . The collection {Vq}q∈Y is an open cover of Y . By compactness of Y , there exists a finite
subcover {Vq1 , . . . , Vqn}. Let U = Uq1 ∩ · · · ∩ Uqn . Then p ∈ U is open in X. We claim that
U × Y ⊂ N . For any (x, y) ∈ U × Y there is an 1 ≤ i ≤ n with y ∈ Vqi . Then x ∈ U ⊂ Uqi , so
(x, y) ∈ Uqi × Vqi ⊂ N .

Example 3.4.24. The tube lemma fails if Y is not compact. Consider the neighborhood

N = {(x, y) ∈ R× R | |xy| < 1}

of {0} × R.

Proof of theorem. Let C = {Wα}α∈J be an open cover of X × Y . For each point p ∈ X,
the subspace {p} × Y is compact, and is therefore covered by a finite subcollection Fp =
{Wα1 , . . . ,Wαn} of C . Let N = Wα1 ∪ · · · ∪ Wαn . Then N ⊂ X × Y is an open subset
containing {p}×Y . By the tube lemma, there is a neighborhood Up ⊂ X of p with Up×Y ⊂ N .
Note that Up × Y is covered by the finite subcollection Fp of C .

Now let p ∈ X vary. The collection {Up}p∈X is an open cover of X, hence admits a finite
subcover {Up1 , . . . , Upm}. For each 1 ≤ j ≤ m the subspace Upj × Y is covered by the finite
subcollection Fpj of C . Hence the union

X × Y =

m⋃
j=1

Upj × Y

is covered by the subcollection
Fp1 ∪ · · · ∪Fpm

of C . This is a finite union of finite collections, hence is a finite subcollection of C . Since C
was an arbitrary open cover, it follows that X × Y is compact.

Example 3.4.25. In the next section we show that X = [0, 1] is compact in the subspace
topology from R. Hence for each n ≥ 0 the n-fold product

[0, 1]n = [0, 1]× · · · × [0, 1]

is compact. Note that we can embed [0, n] as a subspace of [0, 1]n

fn : [0, n] −→ [0, 1]n
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by sending [i, i+1] to the edge from (1, . . . , 1, 0, 0, . . . , 0) (with i copies of 1) to (1, . . . , 1, 1, 0, . . . , 0)
(with i+ 1 copies of 1), for each 0 ≤ i < n. In §37 we discuss the Tychonoff theorem, implying
that also the infinite product

[0, 1]ω =
∏
n∈N

[0, 1]

is compact in the product topology. Including [0, 1]n in [0, 1]ω, the paths above combine to an
injective map

f∞ : [0,∞) −→ [0, 1]ω

with closed, hence compact, image K = f∞([0,∞)). However, [0,∞) is not compact, so f∞ is
a continuous bijection from a non-compact space to a compact Hausdorff space. The resolution
to this apparent paradox is that the product topology on [0, 1]ω restricts to a coarser topology
on the subspace A than the topology that would make f∞ a homeomorphism.

3.4.4 The finite intersection property

Let C be a collection of open subsets of a space X. Let E = {X −U | U ∈ C } be the collection
of closed complements. To say that C is a cover of X is equivalent to saying that E has empty
intersection: ⋂

C∈E

C =
⋂
U∈C

(X − U) = X −
⋃
U∈C

U

is empty if and only if X =
⋃
U∈C U .

Definition 3.4.26. A collection E of subsets of X has the finite intersection property if for
each finite subcollection {C1, . . . , Cn} ⊂ E the intersection

C1 ∩ · · · ∩ Cn

is nonempty.

Theorem 3.4.27. A topological space X is compact if and only if for each collection E of closed
subsets of X, having the finite intersection property, the intersection

⋂
C∈E C is nonempty.

Proof. “X is compact” is equivalent to the assertion:

For any collection C of open subsets of X, if C covers X then some finite subcol-
lection of C covers X.

This is logically equivalent to the contrapositive statement:

For any collection C of open subsets of X, if no finite subcollection of C covers X,
then C does not cover X.

Translated to a statement about the complementary collection of closed subsets E , this is
equivalent to:

For any collection E of closed subsets of X, if no finite subcollection of E has empty
intersection, then E does not have empty intersection.

In other words:

For any collection E of closed subsets of X, if each finite subcollection of E has
nonempty intersection, then E has nonempty intersection.
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3.5 (§27) Compact Subspaces of the Real Line

Theorem 3.5.1. Each closed interval [a, b] ⊂ R of the real line is compact.

(Here a, b ∈ R; we are not considering infinite intervals.)

Proof. Let C = {Uα}α∈J be a covering of [a, b] by open subsets of R. Consider the set S of all
x ∈ [a, b] such that [a, x] can be covered by a finite subcollection of C . Then a ∈ S, since a ∈ Uα
for some α ∈ J , and then {Uα} is a finite subcollection of C that covers [a, a] = {a}. Hence S is
nonempty and bounded above. Let c = supS be the least upper bound of S. Clearly c ∈ [a, b].

We claim that c ∈ S. Choose β ∈ J with c ∈ Uβ. Since Uβ is open there exists an ε > 0
with (c − ε, c + ε) ⊂ Uβ. Since the supremum c is in the closure of S, there is some point
x ∈ S ∩ (c − ε, c + ε). Since c is an upper bound for S, x ≤ c. Then [a, x] can be covered
by a finite subcollection {Uα1 , . . . , Uαn} of C , and [x, c] is contained in Uβ. This implies that
[a, c] = [a, x]∪ [x, c] is covered by the finite subcollection {Uα1 , . . . , Uαn , Uβ} of C , so that x ∈ S.

We also claim that c = b. Suppose that c < b, to achieve a contradiction. Then there is a
y ∈ [a, b] ∩ (c − ε, c + ε) with c < y such that [a, y] is covered by the same finite subcollection
{Uα1 , . . . , Uαn , Uβ}. Hence y ∈ S, contradicting the assumption that c is an upper bound.

Example 3.5.2. The surjective map f : [0, 1] → S1 given by f(t) = (cos(2πt), sin(2πt)) is a
quotient map, since [0, 1] is compact and S1 ⊂ R is Hausdorff. Similarly for f×f : [0, 1]×[0, 1]→
S1 × S1.

Theorem 3.5.3 (Heine-Borel theorem). A subspace A of Rn is compact if and only if it is
closed and bounded (in any of the equivalent metrics coming from a norm).

Proof. Since [a, b] ⊂ R is compact, any finite product

[a1, b1]× · · · × [an, bn] ⊂ Rn

is compact, as is any closed subset A of such a finite product. (These are the bounded subsets
in the square metric.)

Conversely, the collection of open subsets

UM = (−M,M)× · · · × (−M,M) ⊂ Rn

for M ∈ N has union Rn, so if A is compact then there is a finite subcollection {UM1 , . . . , UMk
}

of these that covers A. Let M = max{M1, . . . ,Mk}. Then A ⊂ UM is bounded. Since Rn is
Hausdorff we must also have that A is closed.

Theorem 3.5.4 (Extreme value theorem). Let f : X → R be continuous, with X compact.
Then there exist points c, d ∈ X with

f(c) ≤ f(x) ≤ f(d)

for all x ∈ X.

Proof. The continuous image f(X) ⊂ R is compact, hence closed and bounded, so contains both
its infimum and its supremum. Writing these values as f(c) and f(d), we get the conclusion.
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3.5.1 The Lebesgue number

Given an open cover of a metric space, each sufficiently small subset is contained in at least one
of the elements of the cover. The Lebesgue number, named after Henri Lebesgue (1875–1941),
specifies what “sufficiently small” means.

Definition 3.5.5. Let (X, d) be a metric space and let A ⊂ X be a nonempty subset. For each
x ∈ X the distance from x to A is

d(x,A) = inf{d(x, a) | a ∈ A} .

The diameter of A is
diam(A) = sup{d(a, b) | a, b ∈ A} .

Lemma 3.5.6. The function x 7→ d(x,A) is continuous.

Proof. Let x, y ∈ X. By the triangle inequality,

d(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a)

for all a ∈ A, so
d(x,A)− d(x, y) ≤ inf{d(y, a) | a ∈ A} = d(y,A)

and
|d(x,A)− d(y,A)| ≤ d(x, y)

by symmetry in x and y. Hence x 7→ d(x,A) is continuous.

Lemma 3.5.7. Let C be an open cover of a compact metric space (X, d). There exists a δ > 0
such that for each subset B ⊂ X of diameter < δ there exists an element U ∈ C with B ⊂ U .
The number δ is called a Lebesgue number of C .

Proof. If X ∈ C then any positive number is a Lebesgue number for C . Otherwise, by com-
pactness there is a finite subcollection {U1, . . . , Un} of C that covers X. Let Ci = X − Ui
be the closed complement; each Ci is nonempty. To say that x ∈ Ui is equivalent to saying
d(x,Ci) > 0, since d(x,Ci) = 0 if and only if x ∈ Ci.

Define f : X → R as the average

f(x) =
1

n

n∑
i=1

d(x,Ci) .

Claim: f(x) > 0 for all x ∈ X. Proof: For any given x ∈ X there is an i with x ∈ Ui. Since Ui
is open, there exists an ε > 0 with Bd(x, ε) ⊂ Ui. Then d(x,Ci) ≥ ε. Hence f(x) ≥ ε/n > 0.

Since f is continuous, it has a positive minimum value δ. Claim: δ is a Lebesgue number
for {U1, . . . , Un}, hence for C . Proof: Let B ⊂ X have diameter < δ. There is only something
to prove for B nonempty; choose a point p ∈ B. Then B ⊂ Bd(p, δ). Consider the numbers
d(p, Ci) for 1 ≤ i ≤ n. Choose m so that d(p, Cm) is the largest of these numbers. Then

δ ≤ f(p) ≤ d(p, Cm)

so Bd(p, δ) ∩ Cm = ∅. Hence B ⊂ Bd(p, δ) ⊂ Um.
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3.5.2 Uniform continuity

Definition 3.5.8. Let f : (X, d) → (Y, d) be a function between metric spaces. We say that
f is uniformly continuous if given ε > 0 there exists a δ > 0 such that for any two points
x, x′ ∈ X with d(x, x′) < δ we have d(f(x), f(x′)) < ε, or equivalently, if for any x ∈ X we have
f(Bd(x, δ)) ⊂ Bd(f(x), ε).

Theorem 3.5.9. Let f : (X, d) → (Y, d) be a continuous map between metric spaces. If X is
compact then f is uniformly continuous.

Proof. Given ε > 0 cover Y by the balls Bd(y, ε/2) and let

C = {f−1(Bd(y, ε/2))}y∈Y

be the open covering of X by the preimages of these balls. Choose a Lebesgue number δ > 0
for this open covering. If x, x′ ∈ X with d(x, x′) < δ then {x, x′} ⊂ f−1(Bd(y, ε/2)) for some
y ∈ Y , hence {f(x), f(x′)} ⊂ Bd(y, ε/2). Thus d(f(x), f(x′)) ≤ d(f(x), y) + d(y, f(x′)) < ε.

3.5.3 The Gram–Schmidt process

Let AT = (aj,i)
n
i,j=1 denote the transpose of a matrix A = (ai,j)

n
i,j=1, and let

On = {A ∈Mn(R) | ATA = I}

be the space of n × n orthogonal matrices. (The notation O(n) is also commonly used.) Here
(ATA)i,j = αi ·αj is the dot product of the i-th and the j-th column vectors of A = (α1, . . . , αn),
so the condition ATA = I asserts that the αi are pairwise orthogonal, each of unit length. Note
that ATA = I implies det(A)2 = 1, so each orthogonal matrix is invertible and On ⊂ GLn(R).
Let

SOn = {A ∈ On | det(A) = 1}

(also denoted SO(n)) be the space of special orthogonal matrices. For example, SO2 is the space
of rotations of the plane, and SO3 is the space of rotations of R3. The determinant restricts to
a map det : On → {±1}, where {±1} is discrete, so SOn is the preimage of the open and closed
point 1 ∈ {±1}. Hence SOn is open and closed in On. For n ≥ 1 the image of det on On is
disconnected, hence On is not connected.

The rule A 7→ ATA defines a continuous function Mn(R) → Mn(R), since each component
αi · αj is a (2nd order) polynomial in the entries of A. Hence On ⊂ Mn(R) is the preimage of
the closed point I ∈ Mn(R). It follows that On is a closed subspace of Mn(R), as well as of
GLn(R). Hence SOn is also closed in GLn(R) and Mn(R).

Let Sn−1 ⊂ Rn be the subspace of unit vectors. It is clearly closed and bounded, hence
compact. Since each column vector of A has unit length, we have an inclusion

On ⊂ Sn−1 × · · · × Sn−1

A 7→ (α1, . . . , αn)

Here Sn−1× · · · × Sn−1 is a product of n compact spaces, hence is compact. It follows that the
space On of orthogonal matrices is a closed subspace of a compact space and is therefore itself
compact. Furthermore, SOn is a closed subspace of On, and is therefore also compact.

The Gram–Schmidt orthogonalization process defines a retraction

gs : GLn(R) −→ On .
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Here A = (α1, . . . , αn) ∈ GLn(R) is sent to gs(A) = B = (β1, . . . , βn) ∈ On, where β1 =
α1/‖α1‖, is the normalization of α1, β2 is the normalization of α2 − (α2 · β1)β1, etc. The
matrix B depends continuously on A, and if A was orthogonal to start with, then B = A. This
process does not change the sign of the determinant, so gs restricts to a retraction

gs : SLn(R) −→ SOn .

We showed earlier that SLn(R) is (path) connected. From this it follows that SOn is (path)
connected.

The spaces SOn are fundamental examples of connected compact Lie groups. As spaces, we
can identify SO2 with the circle S1, while SO3 is homeomorphic to the projective space RP 3

of lines through the origin in R4.
A similar discussion applies for matrices with complex entries, leading to the spaces Un ⊂

GLn(C) of unitary matrices, and their subspaces SUn ⊂ Un of special unitary matrices, all of
which are examples of connected compact Lie groups. Here U1

∼= S1, while SU2
∼= S3.

3.6 (§28) Limit Point Compactness

Definition 3.6.1. Let (xn)n∈N be a sequence of points in X. If

n1 < n2 < · · · < nk < . . .

is a strictly increasing sequence of natural numbers, the sequence

xn1 , xn2 , . . . , xnk , . . .

is called a subsequence of (xn)n∈N. It is a convergent subsequence if xnk → p as k → ∞, for
some p ∈ X.

Definition 3.6.2. A space X is sequentially compact if every sequence (xn)n∈N in X has some
convergent subsequence (xnk)k∈N.

If a convergent subsequence exists, there is usually nothing unique about it.

Theorem 3.6.3. Let X be a metrizable space. Then X is compact if and only if X is sequentially
compact.

Proof. (Munkres first proves that compact spaces are “limit point compact”, and then proves
that metrizable limit point compact spaces are sequentially compact. We give a direct proof of
the composite implication, compact =⇒ sequentially compact for metrizable spaces.) Consider
any sequence (xn)n∈N in X. For each n ≥ 1, let

An = {xm | m ≥ n}

be the set of points in the subsequence obtained by omitting x1, . . . , xn−1 from the sequence,
and let

Cn = Ān

be the closure (in X) of this set. Here

C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ . . .
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and each Cn 6= ∅, so no finite intersection of the collection E = {Cn}n∈N is empty. By the finite
intersection property of the compact space X we can choose a point

p ∈
⋂
n∈N

Cn ,

since this intersection is nonempty. For each k we have p ∈ Ck = Āk, so Bd(p, 1/k) ∩ Ak 6= ∅
and we can choose an index nk ≥ k with xnk ∈ Bd(p, 1/k). We then have

xnk → p as k →∞ .

As chosen, the sequence
n1, n2, . . . , nk, . . .

may not be strictly increasing, but since nk ≥ k for each k we can omit some terms and renumber
the infinitely many remaining terms, so as to obtain a genuine convergent subsequence (xnk)k∈N
of (xn)n∈N.

The proof of the implication sequentially compact =⇒ compact remains. First we show
that if X is sequentially compact then the Lebesgue number lemma holds for X:

Lemma 3.6.4. Let C be an open cover of a sequentially compact metric space (X, d). Then
there exists a δ > 0 such that for each subset B ⊂ X of diameter < δ there is an element U ∈ C
with B ⊂ U .

Proof. We assume that no such δ exists, and achieve a contradiction. For each n ∈ N there is a
set Bn of diameter < 1/n that is not contained in any element of C . Choose xn ∈ Bn. By the
assumed sequential compactness, the sequence (xn)n∈N has a convergent subsequence (xnk)k∈N,
with (nk)k∈N a strictly increasing sequence. Let p ∈ X be its limit: xnk → p as k →∞. There
is an U ∈ C with p ∈ U . Since U is open, there is an ε > 0 with Bd(p, ε) ⊂ U . For k sufficiently
large we have 1/nk < ε/2 and d(xnk , p) < ε/2. Then Bnk lies in the ε/2-neighborhood of xnk ,
hence in the ε-neighborhood of p:

Bnk ⊂ Bd(xnk , ε/2) ⊂ Bd(p, ε) ⊂ U

This contradicts the choice of Bnk , not being contained in any element of C .

Next we show that if X is sequentially compact then it is totally bounded :

Lemma 3.6.5. Let (X, d) be sequentially compact. For each ε > 0 there exists a finite covering
of X by ε-balls.

Proof. Assume that for some ε > 0 there is no finite covering of X by ε-balls, to reach a
contradiction. Construct a sequence (xn)n∈N as follows. Choose any point x1 ∈ X. Having
chosen x1, . . . , xn, note that the finite union

Bd(x1, ε) ∪ · · · ∪Bd(xn, ε)

is not all of X, so we can choose xn+1 in its complement, and continue. By construction,
d(xm, xn) ≥ ε for all m 6= n, so (xn)n∈N does not contain any convergent subsequence. This
contradicts sequential compactness of X.

We can now finish the proof of the theorem. Let (X, d) be sequentially compact. To prove
that X is compact, consider any open cover C of X. By Lemma 3.6.4 it has a Lebesgue number
δ > 0. Let ε = δ/3. By Lemma 3.6.5 we can choose a finite covering of X by ε-balls. Each
ε-ball has diameter ≤ 2ε < δ, hence is contained in an element of C . Hence X is covered by
finitely many of the elements of C , so C has a finite subcover.
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3.7 (§29) Local Compactness

We have seen that the closed subspaces of a compact Hausdorff space are the same as the
compact subspaces. We shall now consider a condition satisfied by the open subspaces of
compact Hausdorff spaces.

Definition 3.7.1. A space X is locally compact at x if there is a compact subspace C of X
that contains a neighborhood V of x:

x ∈ V ⊂ C ⊂ X

It is locally compact if it is locally compact at each of its points.

Example 3.7.2. Any compact space is locally compact. (Take V = C = X.)

Example 3.7.3. The real line R is locally compact. Each point x ∈ R is contained in the
compact subspace C = [x− 1, x+ 1], which contains the neighborhood V = (x− 1, x+ 1).

Example 3.7.4. The set of rational numbers Q, in the subspace topology from R, is not
locally compact. Any subset C ⊂ Q containing a basis neighborhood Q ∩ (x− ε, x+ ε) cannot
be compact. For instance, choosing an irrational number a ∈ (x − ε, x + ε) the real function
f(t) = (t− a)2 is continuous on C and takes arbitrarily small positive values, but is never zero.
By the extreme value theorem, C cannot be compact.

Example 3.7.5. Euclidean n-space Rn is locally compact. Each point (x1, . . . , xn) ∈ Rn is
contained in the compact subspace

C = [x1 − 1, x1 + 1]× · · · × [xn − 1, xn + 1] ,

which contains the neighborhood

V = (x1 − 1, x1 + 1)× · · · × (xn − 1, xn + 1) .

Example 3.7.6. The countably infinite product Rω is not locally compact. Any neighborhood
V of 0 = (0)n∈N contains a basis neighborhood

(−ε, ε)× · · · × (−ε, ε)× R× · · · × R× . . .

for some ε > 0. If V were contained in a compact subspace C, then the closure

[−ε, ε]× · · · × [−ε, ε]× R× · · · × R× . . .

of the basis neighborhood would be compact, which it is not.

3.7.1 One-point compactification

Example 3.7.7. Let S1 ⊂ R2 be the (unit) circle, and let N = (0, 1) ∈ S1 be the uppermost
point. There is a homeomorphism

f : S1 − {N}
∼=−→ R

called stereographic projection, mapping a point (x, y) ∈ S1 − {N} to t ∈ R where (t, 0) is the
intersection of the line through N and (x, y) with the x-axis. Hence

f(x, y) = t =
x

1− y
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for all (x, y) ∈ S1−{N}. This is the restriction to the subspace S1−{N} of a continuous function
from R× (R−{1}) ⊂ R2 to R, hence f is continuous. The inverse function f−1 : R→ S1−{N}
maps t to f−1(t) = (x, y) with t = x/(1− y) and x2 + y2 = 1, which we can solve for y 6= 1 and
then x to obtain

f−1(t) = (x, y) =
( 2t

t2 + 1
,
t2 − 1

t2 + 1

)
.

Clearly f and f−1 are continuous, hence define mutually inverse homeomorphisms. In particular,
f−1 : R→ S1 is an embedding.

Note that when (x, y) approaches N from the right (x > 0), the value of t approaches +∞,
while when (x, y) approaches N from the left (x < 0), the value of t approaches −∞. If we were
to extend f to a homeomorphism from S1 to a space containing R, the latter space would have
to contain exactly one point corresponding to N , which would have to be the limit of sequences
(tn)n∈N both for tn → +∞ as n → ∞, and for tn → −∞ as n → ∞. Hence the additional
point, which we might call ∞, should be the limit of all sequences (tn)n∈N with |tn| → ∞ as
n→∞. There is indeed a topology on the set

R ∪ {∞}

with this propery, called the one-point compactification of R.

Example 3.7.8. Let Sn ⊂ Rn+1 be the (unit) n-sphere, and let N = (0, . . . , 0, 1) ∈ Sn be the
“north pole”. There is a homeomorphism

f : Sn − {N}
∼=−→ Rn

mapping x = (x1, . . . , xn, y) ∈ Sn − {N} ⊂ Rn+1 to t = (t1, . . . , tn) ∈ Rn where (t1, . . . , tn, 0) is
the intersection of the line through N and x with the linear subspace Rn × {0} ⊂ Rn+1. Hence

f(x) = t =
( x1

1− y
, . . . ,

xn
1− y

)
.

The inverse function f−1 : Rn → Sn − {N} maps t = (t1, . . . , tn) ∈ Rn to

f−1(t) = x =
( 2t1
|t|2 + 1

, . . . ,
2tn
|t|2 + 1

,
|t|2 − 1

|t|2 + 1

)
where |t|2 = t21 + · · · + t2n. Clearly f and f−1 are continuous, hence define mutually inverse
homeomorphisms. In particular, f−1 : Rn → Sn is an embedding.

The one-point compactification of Rn is a space Rn ∪ {∞}, such that the stereographic
projection f extends to a homeomorphism

Sn ∼= Rn ∪ {∞} .

In the case n = 2, replacing R2 with C, the Gauss sphere is this model S2 for C ∪ {∞}.

We now discuss how to generalize these construction from X = Rn to arbitrary locally
compact Hausdorff spaces.

Definition 3.7.9. Let X be a locally compact Hausdorff space. Let Y = X ∪ {∞} where
∞ /∈ X. Give Y the topology T∞ consisting of

(1) the open subsets U ⊂ X, and

(2) the complements Y − C of compact subsets C ⊂ X.
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We call Y the one-point compactification of X.

Theorem 3.7.10. Let X be a locally compact Hausdorff space. The one-point compactification
Y = X ∪ {∞} is a compact Hausdorff space, X ⊂ Y is an open subspace, and Y −X consists
of a single point.

Proof. We first prove that the given collection T∞ is a topology on Y . The empty set is of
type (1) and Y is of type (2). To check that the intersection of two open sets is open, there are
three cases:

U1 ∩ U2 ⊂ X
(Y − C1) ∩ (Y − C2) = Y − (C1 ∪ C2)

U1 ∩ (Y − C2) = U1 ∩ (X − C2)

These are of type (1), (2) and (1), respectively, since C1∪C2 is compact (Exercise!) and X−C2

is open, since X is assumed to be Hausdorff.
To check that the union of a (nonempty) collection of open sets is open, there are three

cases: ⋃
α∈J

Uα = U ⊂ X⋃
β∈K

(Y − Cβ) = Y −
⋂
β∈K

Cβ = Y − C

U ∪ (Y − C) = Y − (C − U)

These are of type (1), (2) and (2), respectively, since C =
⋂
β∈K Cβ ⊂ X is a closed subspace

of some compact space Cβ, hence is compact, and C − U is a closed subspace of C, hence is
compact.

Next we show that X ⊂ Y is a subspace: The open sets in the subspace topology are of the
form X ∩ V where V is open in Y . If V = U ⊂ X is of type (1), then X ∩ V = U is open in X.
If V = Y −C is of type (2), then X ∩ V = X −C is open in X since C ⊂ X is compact, hence
closed, in the Hausdorff space X. Conversely, if U ⊂ X is open, then U is open of type (1) in
Y .

To show that Y is compact, let C be an open cover of Y . Some element V ∈ C must
contain ∞ /∈ X, hence be of the form V = Y −C. The collection C of open subsets of Y covers
the compact space C, so there is a finite subcollection {U1, . . . , Un} ⊂ C that covers C. Then
F = {V,U1, . . . , Un} is a finite subcover of C .

To show that Y is Hausdorff, let x, y ∈ Y . If both lie in X, then there are open subsets
U, V ⊂ X with x ∈ U , y ∈ V , U ∩ V = ∅. Then U and V are also open and disjoint in Y .
Otherwise, we may assume that x ∈ X and y =∞. Since X is locally compact at x there exists
a compact C ⊂ X containing a neighborhood U of x. Let V = Y − C. Then x ∈ U , ∞ ∈ V , U
and V are open in Y and U ∩ V = ∅.

Here is a converse.

Proposition 3.7.11. Let X ⊂ Y be a subspace of a compact Hausdorff space, such that Y −X
consists of a single point. Then X is locally compact and Hausdorff.

Proof. As a subspace of a Hausdorff space, it is clear that X is Hausdorff. We prove that it is
locally compact. Let x ∈ X and let y be the single point of Y −X. Since Y is Hausdorff, there
are open sets U, V ⊂ Y with x ∈ U , y ∈ V , U ∩ V = ∅. Let C = Y − V . It is a closed subset
of a compact space, hence compact. Thus x ∈ U ⊂ C ⊂ X, as required for local compactness
at x.
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There is also the following uniqueness statement, which justifies why we say “the one-point
compactification”, not just “a one-point compactification”.

Proposition 3.7.12. Let X be locally compact Hausdorff, with one-point compactification Y =
X ∪ {∞}, and suppose that Y ′ is a compact Hausdorff space such that X ⊂ Y ′ is a subspace
and Y ′ −X is a single point. Then the unique bijection Y ′ → Y that is the identity on X is a
homeomorphism.

Proof. It suffices to prove that the bijection f : Y ′ → Y is continuous, since Y ′ is compact
and Y is Hausdorff. An open subset of Y is of the form U or Y − C, with U ⊂ X open and
C ⊂ X compact. The preimage f−1(U) = U is then open in X, hence also in Y ′, since X
must be open in the Hausdorff space Y ′ because its complement is a single point. The preimage
f−1(Y − C) = Y ′ − C will also be open in Y ′, because C is compact and Y ′ is Hausdorff, so
C ⊂ Y ′ is closed.

Example 3.7.13. The one-point compactification of the open interval (0, 1) is homeomorphic
to the circle S1. This follows from the uniqueness statement above, and the homeomorphism

e : (0, 1)→ S1 − {(1, 0)}

given by e(t) = (cos(2πt), sin(2πt)). This can also be seen using a homeomorphism (0, 1) ∼= R.
The closed interval [0, 1] is a different compactification of (0, 1), with [0, 1] − (0, 1) = {0, 1}
consisting of two points.

Example 3.7.14. The one-point compactification of the open unit n-ball

B(0, 1) = {x ∈ Rn | ‖x‖ < 1}

is homeomorphic to the n-sphere Sn. This can be seen using a homeomorphism B(0, 1) ∼= Rn.
The closed n-ball

Dn = B̄(0, 1) = {x ∈ Rn | ‖x‖ ≤ 1}

is a different compactification, with B̄(0, 1) − B(0, 1) = Sn−1 consisting of the (n − 1)-sphere.
Real projective n-space RPn = Sn/(x ∼ −x) provides a third compactification of RPn −
RPn−1 ∼= B(0, 1) ∼= Rn, with RPn − Rn = RPn−1.

3.7.2 The local nature of local compactness

For Hausdorff spaces, the property of being locally compact is a local property in the following
sense.

Theorem 3.7.15. Let X be a Hausdorff space. Then X is locally compact if and only if for
each point x ∈ X and each neighborhood U of x there is a neighborhood V of x with compact
closure V̄ contained in U :

x ∈ V ⊂ V̄ ⊂ U

Proof. The stated property implies local compactness at x, by taking U = X and C = V̄ .
For the converse, suppose that X is locally compact (and Hausdorff), and let x ∈ U ⊂ X

be a neighborhood. Let Y = X ∪ {∞} be the one-point compactification, and let K = Y − U .
Then K ⊂ Y is closed, hence compact. Since Y is Hausdorff and x /∈ K we can find open
subsets V,W ⊂ Y with x ∈ V , K ⊂W and V ∩W = ∅. Then ∞ ∈ K ⊂W , so W = Y −C for
some compact C ⊂ X. Hence x ∈ V ⊂ C ⊂ U with V open and C compact. Hence V̄ is also
compact.
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Corollary 3.7.16. Let X be locally compact Hausdorff. If A ⊂ X is an open or closed subspace,
then A is locally compact.

Proof. Suppose that A is open in X. Let x ∈ A. By the previous theorem there is a neighbor-
hood V of x with V̄ compact and V̄ ⊂ A. This shows that A is locally compact at x.

Suppose instead that A is closed in X. Let x ∈ A. Since X is locally compact there is a
compact subspace C ⊂ X that contains a neighborhood V of x. Then A ∩ C is closed in C,
hence compact, and contains the neighborhood A ∩ V of x in the subspace topology on A.

Corollary 3.7.17. A space X is homeomorphic to an open subspace of a compact Hausdorff
space if and only if X is locally compact and Hausdorff.

Proof. If X is an open subspace of a compact Hausdorff space, then X is locally compact by
the corollary above, and obviously Hausdorff. The same applies if X is homeomorphic to such
an open subspace.

Conversely, if X is locally compact and Hausdorff then X is an open subspace of its one-point
compactification Y = X ∪ {∞}, which is compact Hausdorff.
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Chapter 4

Countability and Separation Axioms

We have seen the first countability axiom (each point has a countable neighborhood basis)
and the Hausdorff separation axiom (two points can be separated by disjoint neighborhoods).
Here we shall also consider a second countability axiom, and some more restrictivve separation
axioms.

One application of these ideas is the Urysohn metrization theorem, saying that if a topo-
logical space X satisfies a countability axiom (it is second countable) and a separation axiom
(is it regular), then we can construct enough continuous functions X → R to embed X into a
metric space, namely the countable product Rω, so that X is metrizable.

A second application is the Whitney embedding theorem, showing that each compact m-
dimensional manifold (generalizing curves and surfaces) can be embedded in RN , for some
finite N .

The Hausdorff property, the first and second countability axioms, and the term “metric
space” were introduced in “Grundzüge der Mengenlehre” by Felix Hausdorff (1868–1942), pub-
lished in 1914.

Paul Urysohn (1898–1924) proved his lemma and metrization theorem in 1923 or 1924.
Hassler Whitney (1907–1989) also proved stronger versions of his embedding theorem, first

with N = 2m + 1, and then with N = 2m for m ≥ 1. Like James Alexander (1881–1971),
Georges de Rham (1903–1990) and John Milnor (1931–), Whitney was both a topologist and a
mountain climber.

4.1 (§30) The Countability Axioms

It may be a good idea to look through §7 on Countable and Uncountable Sets, if this material
is unfamiliar.

Definition 4.1.1. A set A is countably infinite if there exists a bijection f : A → N. It is
countable if it is finite or countably infinite. If A is not countable, that we say that it is
uncountable.

Theorem 4.1.2.
(a) A set A is countable if and only if there exists an injective function f : A→ N.
(b) Any subset of a countable set is countable.
(c) Any quotient set of a countable set is countable.
(d) Any finite or countable union of countable sets is countable.
(e) Any finite product of countable sets is countable.
(f) The set Q of rational numbers is countable.
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Theorem 4.1.3 (Cantor’s diagonal argument). (a) A countable product of sets with 2 or more
elements each is uncountable.

(b) The set R of real numbers is uncountable.

Proof. (a) Let 2 = {0, 1}. We show that the infinite set X = 2ω = {0, 1}ω is uncountable. Write
an element of X as a sequence

x = (x1, x2, . . . , xn, . . . )

with each xn ∈ {0, 1}. Consider any function g : N→ X. For each m ∈ N we have

g(m) = (g(m)1, g(m)2, . . . , g(m)n, . . . )

with g(m)n ∈ {0, 1}. Let y ∈ {0, 1}ω be the sequence given by

yn = 1− g(n)n =

{
0 if g(n)n = 1,

1 if g(n)n = 0.

Then y is not in the image of g, because if y = g(m) then ym = g(m)m and we chose y so that
ym 6= g(m)m. This shows that g is not surjective, and therefore not bijective.

(b) This follows from (a), e.g. by consideration of binary expansions of real numbers.

4.1.1 First-countable spaces

Definition 4.1.4. A space X has a countable basis at x if there is a countable collection
Bx = {Bn | n ∈ N} of neighborhoods of x such that each neighborhood U of x contains at least
one of the elements of Bx:

x ∈ Bn ⊂ U .

A space having a countable basis at each of its points is said to satisfy the first countability
axiom, or to be first-countable.

Every metric space (X, d) is first-countable, since the collection {Bd(x, 1/n) | n ∈ N} is a
countable basis at x, for each x ∈ X. The fact that Bd(x, 1/n) ⊃ Bd(x, 1/n + 1) is typical of
the general case.

Lemma 4.1.5. If X has a countable basis at x then it has a nested countable basis at x, i.e.,
a descending sequence

B′1 ⊃ B′2 ⊃ · · · ⊃ B′n ⊃ . . .

of neighborhoods, such that each neighborhood U of x contains B′n for all sufficiently large n.

Proof. Given a countable basis {Bn}n at x, let

B′n = B1 ∩B2 ∩ · · · ∩Bn

for each n ≥ 1.

The following results, which we proved in §21 for metric spaces, also hold for all first-
countable spaces. The proofs are essentially the same as in the metric case.

Theorem 4.1.6. Let X be a first-countable space.
(a) Let A ⊂ X. If x ∈ Ā then there is a sequence (xn)n∈N of points in A converging to x.
(b) Let f : X → Y . If for each sequence (xn)n∈N in X converging to x the sequence

(f(xn))n∈N in Y converges to f(x), then f is continuous.
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Theorem 4.1.7. (a) Any subspace A of a first-countable space X is first-countable.
(b) Any countable product

∏
k∈NXk of first-countable spaces Xk is first-countable.

Proof. (a) If x ∈ A and B = {Bn | n ∈ N} is a countable basis at x in X, then {A∩Bn | n ∈ N}
is a countable basis at x in A.

(b) If x = (xk)k∈N ∈ X =
∏
k∈NXk and Bk is a countable basis at xk in Xk, then the

collection of products ∏
k∈N

Uk ,

where Uk ∈ Bk for finitely many values of k and Uk = Xk for the remaining values of k, is a
countable basis at x in X. (Exercise: Check that this collection is countable. It is a countable
union of finite products of countable sets.)

4.1.2 Second-countable spaces

Definition 4.1.8. A space X has a countable basis (for its topology) if there is a countable
collection B of subsets of X that is a basis for the topology on X. In this case X is said to
satisfy the second countability axiom, or to be second-countable.

Lemma 4.1.9. Second-countability implies first-countability.

Proof. Let B = {Un}n∈N be a countable basis for the topology of a space X. For each point
x ∈ X the subcollection Bx = {U ∈ B | x ∈ U} is a countable neighborhood basis at x.

Example 4.1.10. The real line is second-countable. A countable basis for the topology is given
by the open intervals (a, b) with a < b ∈ Q both rational.

Euclidean n-space Rn is second-countable. A countable basis is given by the products

(a1, b1)× · · · × (an, bn)

where all ak, bk ∈ Q are rational.
Even the infinite product Rω is second-countable. A countable basis is given by the products∏

k∈N
Uk ⊂

∏
k∈N

R = Rω

where Uk = (ak, bk) with rational endpoints, for finitely many k, and Uk = R for all other k.

Not every metric space is second-countable. A counterexample is Rω in the uniform topology.
Another counterexample is R with the discrete topology, corresponding to the metric d with
d(x, y) = 1 for all x 6= y in R.

Theorem 4.1.11. (a) Any subspace A of a second-countable space X is second-countable.
(b) Any countable product

∏
k∈NXk of second-countable spaces Xk is second-countable.

Proof. (a) If B = {Bn}n∈N is a countable basis for X, and A ⊂ X, then {A ∩ Bn}n∈N is a
countable basis for the subspace topology on A.

(b) If Bk is a countable basis for Xk, for k ∈ N, then the collection of products∏
k∈N

Uk

where Uk ∈ Bk for finitely many k, and Uk = Xk for the remaining k, is a countable basis for
the product topology on

∏
k∈NXk.
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4.1.3 Countable dense subsets

Recall that A ⊂ X is dense if Ā = X, i.e., if each nonempty open subset of X meets A.

Example 4.1.12. The rational numbers Q ⊂ R are dense in the real line.

Theorem 4.1.13. Suppose that X is second-countable. Then there exists a countable dense
subset of X.

A space with a countable dense subset is sometimes called a separable space.

Proof. Let {Bn}n∈N be a countable basis for the topology on X. We may assume that each Bn
is nonempty. Choose a point xn ∈ Bn for each n ≥ 1, and let D = {xn | n ≥ 1}. We claim
that D is dense in X. Choose any point y ∈ X and consider any neighborhood U of y in X.
Then there is a basis neighborhood Bn with y ∈ Bn ⊂ U . Hence xn ∈ D ∩ Bn ⊂ D ∩ U , so D
meets U . This implies that y ∈ D̄. Since y ∈ X was arbitrary, D̄ = X.

first-countable ⇐= second-countable =⇒ separable

4.2 (§31) The Separation Axioms

We can strengthen the Hausdorff property (T2) by demanding to be able to separate not only
pairs of points, but pairs of points and closed sets, or pairs of closed sets. This leads to regular
(T3) and normal (T4) spaces.

normal =⇒ regular =⇒ Hausdorff

Here “regular” comes from the Latin “regula”, originally meaning a straight piece of wood, as
in a ruler. Similarly, “normal” comes from “norma”, a carpenter’s square with four right angles.
Its edges are normal, or perpendicular, to one another. The pendulum (of “perpendicular”) is
another tool for the recognition of vertical lines.

Definition 4.2.1. A topological space X is regular if

1. the singleton set {x} is closed in X for each x ∈ X, and

2. for each point x ∈ X and each closed subset B ⊂ X, with x /∈ B, there exist disjoint open
subsets U, V ⊂ X with x ∈ U and B ⊂ V .

We then say that U and V separate x and B.

Lemma 4.2.2. Regular spaces are Hausdorff.

Proof. Given x and y consider B = {y}.

We could therefore replace condition (1) by asking that X is Hausdorff. We cannot, however,
omit condition (1), since a two-point space with the trivial (indiscrete) topology satisfies (2)
but not (1).

Lemma 4.2.3. Let X be a space with closed points. Then X is regular if and only if for each
point x ∈ X and neighborhood W of x there is a neighborhood U of x with Ū ⊂W .

x ∈ U ⊂ Ū ⊂W ⊂ X
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Proof. If X is regular and x ∈ W ⊂ X, consider B = X −W . Let x ∈ U and B ⊂ V with U
and V open and disjoint. Then X − V is closed and contains U , so Ū ⊂ X − V ⊂ X −B = W .

Conversely, if x ∈ X and B closed in X are given, with x /∈ B, consider W = X −B. Then
W is a neighborhood of x. If U is a neighborhood of x with Ū ⊂ W then U and V = X − Ū
separate x and B, as required for X to be regular.

Theorem 4.2.4. (a) Any subspace of a Hausdorff space is Hausdorff.
(b) Any product of Hausdorff spaces is Hausdorff.

We have discussed this in exercises. Here is the analogous result for regular spaces.

Theorem 4.2.5. (a) Any subspace of a regular space is regular.
(b) Any product of regular spaces is regular.

Proof. (a) Let X be regular and A ⊂ X a subspace. We already know that A is Hausdorff, so
we must show how to separate points and closed subspaces in A. Consider x ∈ A and B ⊂ A
closed, with x /∈ B. Since B is closed in A, there is a closed subspace K ⊂ X with B = A ∩K.
Then x /∈ K (Exercise: Why?), so there exist open and disjoint U, V ⊂ X with x ∈ U , K ⊂ V .
Then A ∩ U and A ∩ V are open and disjoint subsets of A with x ∈ A ∩ U and B ⊂ A ∩ V .

(b) Let (Xα)α∈J be any collection of regular spaces. We already know that
∏
αXα is

Hausdorff. We use the previous lemma to show that X =
∏
αXα is regular. Let x = (xα)α∈J ∈

X and consider any neighborhood W of x. Then there is a basis neighborhood
∏
αWα of x

contained in W , where Wα is a neighborhood of xα for each α ∈ J , with Wα = Xα for all
but finitely many indices α. By regularity of Xα we can choose a neighborhood Uα of xα with
Ūα ⊂Wα, for each α ∈ J . When Wα = Xα we can and will choose Uα = Xα. Then U =

∏
α Uα

is a (basis) neighborhood of x, with

Ū
!

=
∏
α

Ūα ⊂
∏
α

Wα ⊂W.

Here the first equality uses the theorem below. Hence x ∈ U ⊂ Ū ⊂ W . This shows that X is
regular.

The previous proof used the following theorem from §19, which we omitted at the time.

Theorem 4.2.6. Consider subspaces Aα ⊂ Xα for each α ∈ J . The closure of their product
equals the product of their closures: ∏

α∈J
Aα =

∏
α∈J

Āα .

Proof. (⊂): Let A =
∏
αAα and X =

∏
αXα. Let x = (xα)α be a point in Ā. We show that

x ∈
∏
α Āα, by showing that xβ ∈ Āβ, for each β ∈ J . Let V be a neighborhood of xβ in Xβ.

Then U = π−1
β (V ) is a neighborhood of x in X, hence meets A. Choose y = (yα)α ∈ A ∩ U .

Then yβ ∈ Aβ ∩ V . Since V was arbitrary, xβ ∈ Āβ, as required.
For the opposite inclusion, see Munkres (page 114/116).

Definition 4.2.7. A topological space X is normal if

1. the singleton set {x} is closed in X for each x ∈ X, and

2. for each pair of disjoint closed subsets A,B ⊂ X there exist disjoint open subsets U, V ⊂ X
with A ⊂ U and B ⊂ V .
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We then say that U and V separate A and B.

Lemma 4.2.8. Normal spaces are regular.

Proof. Given x and B consider A = {x}.

We could replace condition (1) by asking that X is Hausdorff (or regular). We cannot,
however, omit condition (1), since a space with the trivial (indiscrete) topology satisfies (2).

Lemma 4.2.9. Let X be a space with closed points. Then X is normal if and only if for each
closed subset A ⊂ X and open set W containing A there is an open set U containing A with
Ū ⊂W .

A ⊂ U ⊂ Ū ⊂W ⊂ X

Proof. If X is normal and A ⊂ W ⊂ X, consider B = X −W . Let A ⊂ U and B ⊂ V with U
and V open and disjoint. Then X − V is closed and contains U , so Ū ⊂ X − V ⊂ X −B = W .

Conversely, if disjoint and closed A and B in X are given, consider W = X −B. Then W is
an open set containing A. If U is an open set containing A with Ū ⊂W then U and V = X− Ū
separate A and B, as required for X to be normal.

Remark 4.2.10. Counterexamples exist to show that a subspace of a normal space needs not
be normal, and a product of (two or more) normal spaces needs not be normal. Hence there is
no analogue of Theorem 4.2.5 for normal spaces.

4.3 (§32) (More About) Normal Spaces

We show that for second-countable spaces, regularity and normality are equivalent, while for
compact spaces, the Hausdorff property, regularity and normality are all equivalent. Metric
spaces satisfy all three of these separation axioms.

Theorem 4.3.1 (Tychonoff (1926)). Every second-countable regular space is normal.

Proof. Let X be a regular space with a countable basis B for its topology, and let A and B
be disjoint closed subsets of X. We seek disjoint open subsets U and V of X with A ⊂ U and
B ⊂ V .

For each point x ∈ A, regularity for x and B gives us a neighborhood U(x) of x with closure
disjoint from B:

x ∈ U(x) ⊂ U(x) ⊂ X −B .

Any smaller neighborhood of x still has closure disjoint from B, so we may assume that U(x)
is chosen from the basis B for the topology. Then the covering {U(x) | x ∈ A} of A is a
subcollection of B, hence is countable. Choosing an enumeration n 7→ Un of this countable
collection, we have

{U(x) | x ∈ A} = {Un | n ∈ N} ⊂ B .

We now have a countable covering {Un | n ∈ N} of A, such that each Un is chosen from B and
Un is disjoint from B.

Similarly, we can find a countable covering {Vn | n ∈ N} of B, such that each Vn is chosen
from B and Vn is disjoint from A.

The union
⋃
n Un is now an open set containing A and disjoint from B. Similarly, the union⋃

n Vn is an open set containing B and disjoint from A. However,
⋃
n Un will typically not be
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disjoint from
⋃
n Vn. To achieve this, we replace Un and Vn with the following open subsets:

U ′n = Un −
n⋃
i=1

Vi

V ′n = Vn −
n⋃
i=1

Ui .

Since each V̄i is closed, and disjoint from A, the set U ′n is open and covers the same part of A
as Un did (A ∩ Un = A ∩ U ′n). Hence

U =
⋃
n

U ′n

is an open set containing A. Similarly,

V =
⋃
n

V ′n

is an open set containing B. To show that U ∩ V = ∅, suppose that x ∈ U ∩ V . Then x ∈ U ′j
and x ∈ V ′k for some j, k ≥ 1. By symmetry, we may assume that j ≤ k. Then x ∈ U ′j ⊂ Uj ,

but x ∈ V ′k ⊂ Vk − Uj implies x /∈ Uj . This contradiction shows that U cannot meet V .

Theorem 4.3.2. Every metrizable space is normal.

Proof. Let (X, d) be a metric space. Any metric space has closed points, so condition (1) in the
definition of a normal space is satisfied. To establish condition (2), let A,B ⊂ X be disjoint,
closed subsets. If A is empty the condition is trivially satisfied (with U = ∅ and V = X), and
similarly if B is empty, so we may assume that A and B are nonempty.

Recall the definition
d(x,B) = inf{d(x, b) | b ∈ B}

of the distance from x to B. It is continuous as a function of x, and d(x,B) = 0 if and only if
x ∈ B, since B is closed. Let

U = {x ∈ X | d(x,A) < d(x,B)}
V = {x ∈ X | d(x,A) > d(x,B)} .

Then U and V are disjoint open subsets of X, with A ⊂ U and B ⊂ V .

Theorem 4.3.3. Every compact Hausdorff space is normal.

Proof. Let X be compact Hausdorff. Points in X are closed, so we must show that disjoint
closed subsets A,B ⊂ X can be separated by disjoint open subsets. Being closed subsets of a
compact space, A and B are themselves compact.

We have already considered the case A = {x}. Let us review the argument: For each y ∈ B
we can separate x from y, i.e., find open sets Uy 3 x and Vy 3 y with Uy ∩ Vy = ∅. The
collection {Vy | y ∈ B} covers B, which is compact, so there is a finite subcollection

{Vy1 , . . . , Vyn}

that also covers B. Then U = Uy1 ∩ · · · ∩ Uyn and V = Vy1 ∪ · · · ∪ Vyn are disjoint open sets
with x ∈ U and B ⊂ V .

Now consider the case of a general, compact A. For each x ∈ A we can choose disjoint, open
sets Ux 3 x and Vx ⊃ B. The collection {Ux | x ∈ A} covers A, which is compact, so there is a
finite subcollection

{Ux1 , . . . , Uxm}
that also covers A. Then U = Ux1 ∪ · · · ∪ Uxm and V = Vx1 ∩ · · · ∩ Vxm are disjoint open sets
with A ⊂ U and B ⊂ V , as required.
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4.4 (§33) The Urysohn Lemma

For normal spaces we can separate disjoint closed subsets by real-valued functions, in the fol-
lowing sense:

Theorem 4.4.1 (Urysohn’s lemma). Let A and B be disjoint, closed subsets of a normal space
X. There exists a map

f : X → [0, 1]

such that f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B.

Proof. A dyadic number is a rational number of the form r = a/2n, where a and n integers with
n ≥ 0. The dyadic numbers D = Z[1

2 ] are dense in R.
For each dyadic number 0 ≤ r ≤ 1 we shall construct an open subset Ur ⊂ X, with

A ⊂ Ur ⊂ X −B, so that for each pair of dyadic numbers 0 ≤ p < q ≤ 1 we have Ūp ⊂ Uq.
Let U1 = X − B. Then A ⊂ U1, so by normality there exists an open U0 with A ⊂ U0 ⊂

Ū0 ⊂ U1. By normality again, there exists an open U1/2 with Ū0 ⊂ U1/2 ⊂ Ū1/2 ⊂ U1.
Let n ≥ 2 and assume inductively that we have constructed the Ur for all 0 ≤ r ≤ 1 of the

form b/2n−1 = 2b/2n. We must construct the Ur for r of the form a/2n with a = 2b+1 odd. By
induction we have constructed U2b/2n and U(2b+2)/2n with Ū2b/2n ⊂ U(2b+2)/2n . Using normality
we can choose an open U(2b+1)/2n with

Ū2b/2n ⊂ U(2b+1)/2n ⊂ Ū(2b+1)/2n ⊂ U(2b+2)/2n .

Continuing for all natural numbers n, we are done.
Extend the definition of the Ur to all dyadic numbers r, by letting Ur = ∅ for r < 0, and

Ur = X for r > 1. We still have the key property that Ūp ⊂ Uq for all dyadic numbers p < q.
Let x ∈ X and consider the set

D(x) = {r dyadic | x ∈ Ur} .

Since x /∈ Ur for r < 0, the displayed set is bounded below by 0. Since x ∈ Ur for all r > 1, the
displayed set contains all dyadic r > 1, and is nonempty. Hence the greatest lower bound

f(x) = inf D(x)

exists as a real number, and lies in the interval [0, 1].
Claim (1): f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B.
For x ∈ A ⊂ U0 the set D(x) contains all dyadic r with r ≥ 0, but no r < 0, so f(x) = 0.

For x ∈ B = X − U1 the set D(x) contains no dyadic r with r ≤ 1, but all r > 1, so f(x) = 1.
Claim (2): If x ∈ Ūr then f(x) ≤ r.
If x ∈ Ūr then x ∈ Uq for all r < q, so D(x) contains all dyadic numbers greater than r.

The dyadic numbers are dense in the reals, so f(x) ≤ r.
Claim (3): If x /∈ Ur then r ≤ f(x).
If x /∈ Ur then x /∈ Up for all p < r, so D(x) contains no dyadic numbers less than r. Hence

r is a lower bound for D(x), and r ≤ f(x).
Claim (4): f is continuous.
Let x ∈ X and consider any neighborhood (c, d) in R of f(x). We shall find a neighborhood

U of x with f(U) ⊂ (c, d).
Choose dyadic numbers p and q with c < p < f(x) < q < d. Then x /∈ Ūp by (1), and x ∈ Uq

by (2), so U = Uq − Ūp is a neighborhood of x.
If y ∈ U then y /∈ Up ⊂ Ūp, so c < p ≤ f(y). Also y ∈ Uq ⊂ Ūq, so f(y) ≤ q < d. Hence

f(U) ⊂ (c, d).
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4.5 The Hilbert Cube

We review material covered in Exercise 8 of §20.

Definition 4.5.1. The Hilbert cube is the product

H =
∏
n∈N

[0,
1

n
]

in the product topology.

A point x ∈ H can be viewed as a sequence (xn)n∈N with

0 ≤ xn ≤
1

n

for each n ≥ 1. We consider two different metrics on H. The uniform metric ρ = d∞ is given
by

ρ(x, y) = sup
n∈N
|yn − xn| .

The `2-metric d2 is given by

d2(x, y) =

√∑
n∈N

(yn − xn)2 .

Here the infinite series is bounded by∑
n∈N

1

n2
=
π2

6
<∞ ,

hence converges. (This ζ-series is easily seen to be bounded by 1+
∫∞

1 1/x2 dx = 1+[−1/x]∞1 = 2.
The exact value ζ(2) = π2/6 is due to Euler (1734). Here ζ is the Greek letter “zeta”, and
ζ(s) =

∑
n 1/ns defines Riemann’s zeta-function.) The `2-metric on H is restricted from the

inner product

x · y =
∑
n∈N

xnyn

on the complete vector space `2 of square-summable sequences. Such complete inner-product
spaces are known as Hilbert spaces.

Proposition 4.5.2. The uniform metric ρ, and the `2-metric d2 define the same topology on
the Hilbert cube H as the product topology. In particular, H is metrizable.

Proof. Consider any point x ∈ H. Any neighborhood of x in the product topology contains a
basis neighborhood of the form

k∏
n=1

[0, 1/n] ∩ (xn − ε, xn + ε)×
∞∏

n=k+1

[0, 1/n]

for some ε > 0 and finite k. (Exercise: Why?) This, in turn, contains the uniform metric
neighborhood

Bρ(x, ε) = {y ∈ H | sup
n
|yn − xn| < ε} .

Hence the uniform metric topology is equal to or finer than the product topology.
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Furthermore,
ρ(x, y) ≤ d2(x, y)

since
sup
n

(yn − xn)2 ≤
∑
n

(yn − xn)2 .

Hence Bd2(x, ε) ⊂ Bρ(x, ε), so any uniform metric neighborhood of x contains an `2-metric
neighborhood. Thus the `2-metric topology is equal to or finer than the uniform metric topology.

It remains to prove that any `2-neighborhood Bd2(x, ε) of x contains a neighborhood in the
product topology. Here ε > 0 is given. Since the series

∑
n 1/n2 converges, there is a finite

k ≥ 1 such that
∞∑

n=k+1

1/n2 < ε2/2 .

Let δ = ε/
√

2k > 0. We claim that the basis neighborhood

B =
k∏

n=1

[0, 1/n] ∩ (xn − δ, xn + δ)×
∞∏

n=k+1

[0, 1/n]

of x, for the product topology, is contained in Bd2(x, ε). To check this, consider y ∈ B. Then
|yn − xn| < δ for 1 ≤ n ≤ k, and 0 ≤ yn ≤ 1/n for n ≥ k + 1. Hence (yn − xn)2 < δ2 = ε2/2k
for 1 ≤ n ≤ k and (yn − xn)2 ≤ 1/n2 for n ≥ k + 1. Thus

d2(x, y)2 =
k∑

n=1

(yn − xn)2 +
∞∑

n=k+1

(yn − xn)2 ≤
k∑

n=1

ε2/2k +
∞∑

n=k+1

1/n2 < ε2/2 + ε2/2 = ε2 .

This implies d2(x, y) < ε, so B ⊂ Bd2(x, ε). Hence the product topology on H is equal to or
finer than the `2-metric topology.

Corollary 4.5.3. The countably infinite product

[0, 1]ω =
∏
n∈N

[0, 1]

is metrizable.

Proof. We have evident homeomorphisms [0, 1] ∼= [0, 1/n], taking x to x/n. Their product
defines a homeomorphism

[0, 1]ω =
∏
n

[0, 1] ∼=
∏
n

[0, 1/n] = H .

The product topology on the right hand side comes from various metrics, including the uniform
metric and the `2-metric. Hence the product topology on the left hand side is also metrizable.

For example, the uniform metric ρ on H corresponds to the metric

D(x, y) = sup
n

|yn − xn|
n

on [0, 1]ω considered in §20.
We will use this corollary to show that certain spaces are metrizable by embedding them in

[0, 1]ω.
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4.6 (§34) The Urysohn Metrization Theorem

Theorem 4.6.1 (Urysohn’s metrization theorem). Every second-countable regular space is
metrizable.

Proof. Let X be a second-countable regular space. By Theorem 4.3.1 this is the same as a
second-countable normal space. Hence X is a normal space with a countable basis B = {Bk}k∈N
for its topology. We shall prove that X is metrizable by embedding it into the metrizable space
[0, 1]ω =

∏
n∈N[0, 1], with the product topology.

Claim 1: There is a countable collection {fn}n∈N of maps fn : X → [0, 1], such that for any

p ∈ U ⊂ X

with U open there is an fn in the collection with fn(p) = 1 and fn(X − U) ⊂ {0}.
Consider B = {Bk}k∈N. For each pair (i, j) of indices with B̄i ⊂ Bj use Urysohn’s lemma to

choose a map gi,j : X → [0, 1] with gi,j(B̄i) ⊂ {1} and gi,j(X − Bj) ⊂ {0}. Then the collection
{gi,j} satisfies the claim. To see this, consider p ∈ U open in X. Since B is a basis, there is a
basis element Bj with p ∈ Bj ⊂ U . By regularity, there is an open V with p ∈ V ⊂ V̄ ⊂ Bj ,
and by the basis property there is a basis element Bi with p ∈ Bi ⊂ V . Then B̄i ⊂ V̄ ⊂ Bj ,
so p ∈ B̄i ⊂ Bj ⊂ U . Then gi,j is defined, and satisfies gi,j(p) = 1 and gi,j(X − U) ⊂ {0}. We
reindex the countable collection {gi,j}i,j as {fn}n∈N.

Define a map

F : X →
∏
n∈N

[0, 1] = [0, 1]ω

by the rule
F (x) = (f1(x), f2(x), . . . ) .

In other words, πn ◦ F = fn : X → [0, 1] for each n ≥ 1.
Claim 2: F is an embedding of X into [0, 1]ω.
It is clear that F is continuous, since each component fn is continuous and [0, 1]ω has

the product topology. It is also clear that F is injective, since for x 6= y in X the complement
U = X−{y} is a neighborhood of x, so there is an index n with fn(x) = 1 and fn(X−U) ⊂ {0},
so fn(y) = 0. Hence the n-th coordinates of F (x) and F (y) are different, so F (x) 6= F (y).

Let F (X) ⊂ [0, 1]ω be the image of F in the subspace topology. We have proved that
F : X → [0, 1]∞ is continuous and injective. In order to show that it is an embedding, it
remains to show that its corestriction X → F (X) is an open map. Let U ⊂ X be open. We
must show that F (U) is open in F (X).

U ⊂

��

X

��

F

$$

fn

��

F (U) ⊂ F (X) ⊂ [0, 1]ω πn
// [0, 1]

W ⊂

∪

V //

∪

(1/2, 1]

∪

Let q ∈ F (U) be any point. We shall find an open W ⊂ F (X) with q ∈ W ⊂ F (U). This will
prove that F (U) is open in F (X).

Let p ∈ U be the (unique) point with F (p) = q. Choose an index n such that fn(p) = 1 and
fn(X − U) ⊂ {0}. Let

V = π−1
n ((1/2, 1])
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be the open set of sequences (x1, x2, . . . , ) in [0, 1] with xn > 1/2, and let W = F (X)∩V . Then
W is open in the subspace topology on F (X).

Claim 3: q ∈W and W ⊂ F (U).
We have πn(q) = πn(F (p)) = fn(p) = 1, so q ∈ V . Since q ∈ F (X) we get q ∈ F (X) ∩ V =

W . Let y ∈W be any point. Then y = F (x) for some (unique) x ∈ X, and πn(y) = πn(F (x)) =
fn(x) ∈ (1/2, 1], which implies x ∈ U , since fn(X − U) ⊂ {0}. Hence y = F (x) ∈ F (U), so
W ⊂ F (U).

4.7 (§35) The Tietze Extension Theorem

Theorem 4.7.1. Let A be a closed subspace of a normal space X. Any map f : A → [0, 1]
(resp. f : A→ R) may be extended to a map g : X → [0, 1] (resp. g : X → R) with g|A = f .

This is an application of Urysohn’s lemma. One may of course replace [0, 1] by [a, b], and
replace R by (0, 1) or (a, b), for any a < b.

4.8 (§36) Embeddings of Manifolds

Definition 4.8.1. An m-dimensional manifold is a second-countable Hausdorff space X such
that each point p ∈ X has a neighborhood U that is homeomorphic to an open subset V of Rm.

The composite of such a homeomorphism U
∼=−→ V and the inclusion V ⊂ Rm defines an

embedding
g : U −→ Rm

We call g a coordinate map and U a coordinate domain. The main assumption on X is that it
is covered by coordinate domains.

Any neighborhood V of a point q in Rm contains a neighborhood that is homeomorphic
to Rm. Hence we may just as well ask that each point p ∈ X has a neighborhood that is
homeomorphic to Rm. We say that X is locally homeomorphic to Rm. The assumptions that
X is Hausdorff and second-countable are made to avoid pathological examples.

A 1-dimensional manifold is called a curve. A 2-dimensional manifold is called a surface.

Lemma 4.8.2. (a) An open subspace of an m-manifold is an m-manifold.
(b) The product of an m-manifold and an n-manifold is an (m+ n)-manifold.

Proof. Clear.

Example 4.8.3. (a) Euclidean m-space Rm,
(b) The m-sphere

Sm = {x ∈ Rm+1 | ‖x‖ = 1}

(c) Any hypersurface

X = f−1(r) = {x ∈ Rm+1 | f(x) = r}

where f : Rm+1 → R is a continuously differentiable (C1) function and r is a regular value of f .
This follows from the implicit function theorem.

Example 4.8.4. Real projective m-space is the quotient space

RPm = Sm/∼ ,
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where ∼ is the equivalence relation with equivalence classes [x] = {x,−x}, for x ∈ Sm. Here x
and −x are antipodal points. There is a quotient map

f : Sm −→ RPm

taking x to its equivalence class f(x) = [x], and defining the topology on RPm. There is a
bijection

RPm
∼=−→ {lines L through 0 in Rm+1}

taking [x] to the line L = {rx ∈ Rm+1 | r ∈ R}. We can give the right hand side the topology
making this a homeomorphism. This makes RPm a compact m-manifold. For m = 2 we obtain
the projective plane RP 2. This admits an incidence geometry of “points” and “lines”, and is
“better” than the Euclidean plane R2 in that any two distinct lines in RP 2 meet in a unique
point. (This fails for parallel lines in R2.)

Example 4.8.5. Let 0 ≤ k ≤ n. The Grassmann manifold of k-planes in Rn is the set

Grk(Rn) = {V ⊂ Rn | dim(V ) = k}

of k-dimensional vector subspaces of Rn. For example, RPm = Gr1(Rm+1), and Gr2(R4) is the
space of 2-dimensional planes through 0 in R4. There is a surjection

f : GLn(R) −→ Grk(Rn)

sending an invertible n × n matrix A = [v1| . . . |vn] to the subspace of Rn spanned by the first
k column vectors:

f(A) = span{v1, . . . , vk} ⊂ Rn .
We can give Grk(Rn) the quotient topology from GLn(R) (which has the subspace topology from
Rn2

), and this makes Grk(Rn) a manifold. Its dimension is m = k(n − k). Replacing GLn(R)
with the compact space On of orthogonal matrices, one can see that Grk(Rn) is compact.

Example 4.8.6. Let X ⊂ Rn be a k-manifold differentiably embedded in Rn. For each point
p ∈ X the tangent space TpX is then a k-dimensional subspace of Rn. We can think of TpX as
a point g(x) ∈ Grk(Rn). This defines the Gauss map

g : X −→ Grk(Rn)

p 7−→ TpX

of the embedded manifold X, which is an important tool in differential geometry.

Combining these examples with the lemma above gives rise to a number of examples of
manifolds. For example, any open subspace

X ⊂ RPm1 × · · · × RPmk

is an (m1 + · · ·+mk)-manifold.

Example 4.8.7. The real projective plane RP 2 cannot be embedded in R3, but does admit an
embedding in R4. An explicit embedding e : RP 2 → R4 is obtained by factoring g : S2 → R4

given by g(x, y, z) = (yz, xz, xy, x2 − y2) over the quotient map f : S2 → RP 2:

S2

g

""

f

��

RP 2
e
// R4

Note that g(x, y, z) = g(x′, y′, z′) if and only if (x′, y′, z′) = ±(x, y, z), so e is a well-defined
injective map from a compact space to a Hausdorff space, hence is an embedding.
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It is a difficult problem, much studied in the 1950s and 60s, for a given m to determine
the minimal N such that RPm embeds in RN . I believe it is not known whether RP 6 can be
embedded in R10.

Theorem 4.8.8 (Embedding theorem for compact manifolds). If X is a compact m-dimensional
manifold, then X can be embedded in RN for some N ∈ N.

For the proof, we will use the existence of partitions of unity for normal spaces. This applies
to manifolds, by the following lemma.

Lemma 4.8.9. Manifolds are normal.

Proof. Let X be an m-dimensional manifold. Points in X are closed, since X is assumed to be
Hausdorff. To show that X is normal, it suffices to show that X is regular, since X is assumed
to be second-countable. (This uses Theorem 4.3.1.)

Let p ∈ W ⊂ X with W open. There exists a coordinate domain p ∈ U ⊂ X and a
homeomorphism h : U ∼= Rm. Then h(U ∩W ) is a neighborhood of h(p) in Rm, so there exists
an ε-ball B = B(h(p), ε) with h(p) ∈ B ⊂ B̄ ⊂ h(U ∩ W ) ⊂ Rm. Then V = h−1(B) is a
neighborhood of p. Moreover, V̄ = h−1(B̄), so p ∈ V ⊂ V̄ ⊂ U ∩W ⊂W .

Definition 4.8.10. The support of a function φ : X → R is

supp(φ) = {x ∈ X | φ(x) 6= 0} .

Hence φ = 0 on the open set X − supp(φ).

Here φ is the Greek letter “phi”, sometimes written ϕ. The capital letter is Φ.

Definition 4.8.11. Let C = {Ui}ni=1 be a finite, indexed, open covering of X. A partition of
unity dominated by (or subordinate to) C is an indexed family Φ = {φi}ni=1 of maps

φi : X −→ [0, 1]

such that supp(φi) ⊂ Ui for each 1 ≤ i ≤ n, and
∑n

i=1 φi(x) = 1 for each x ∈ X.

At each x ∈ X, the number 1 is written as a sum of non-negative numbers φ1(x), . . . , φn(x),
where φi(x) > 0 only for x in (a set with closure in) Ui.

Theorem 4.8.12 (Existence of finite partitions of unity). Let X be a normal space, and let
C = {Ui}ni=1 be a finite open covering of X. Then there exists a partition of unity Φ = {φi}ni=1

dominated by C .

The first step of the proof gives the following lemma.

Lemma 4.8.13 (Shrinking lemma). Let X be a normal space, and let C = {Ui}ni=1 be a finite
open covering of X. Then there exists a finite open covering D = {Vi}ni=1 of X such that

V̄i ⊂ Ui
for each i.

Proof. We define Vk by induction. Let 1 ≤ k ≤ n, and suppose that V1, . . . , Vk−1 have been
defined so that V̄i ⊂ Ui for 1 ≤ i < k, and

{V1, . . . , Vk−1, Uk, . . . , Un}

covers X. This is trivially satisfied for k = 1. Consider

A = X − (V1 ∪ · · · ∪ Vk−1 ∪ Uk+1 ∪ · · · ∪ Un) .

Then A ⊂ Uk with A closed and Uk open in X. By normality, we can choose Vk open with
A ⊂ Vk ⊂ V̄k ⊂ Uk. This completes the inductive step.
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Proof of existence of partitions of unity. Given the finite open covering C = {Ui}ni=1 apply the
shrinking lemma to obtain a finite open covering D = {Vi}ni=1 with V̄i ⊂ Ui. Apply the shrinking
lemma again, to obtain another finite open covering E = {Wi}ni=1 with W̄i ⊂ Vi.

For each 1 ≤ i ≤ n, use Urysohn’s lemma for W̄i and X −Vi to choose a map ψi : X → [0, 1]
with ψi|W̄i = 1 and ψi|X − Vi = 0. Then {x ∈ X | ψi(x) 6= 0} ⊂ Vi, so

supp(ψi) = {x ∈ X | ψi(x) 6= 0} ⊂ V̄i ⊂ Ui

for each i. The sum Ψ(x) =
∑n

i=1 ψi(x) is everywhere greater than or equal to 1, since any
x ∈ X lies in some Wi, and then ψi(x) = 1.

To obtain a partition of unity we use Ψ to normalize the functions ψi:

φi(x) =
ψi(x)

Ψ(x)

for 1 ≤ i ≤ n. Then each φi is continuous,

supp(φi) = supp(ψi) ⊂ Ui

and
∑n

i=1 φi(x) = 1 for each x ∈ X.

Here ψ is the Greek letter “psi”, and Ψ is the upper-case form.

Proof of embedding theorem. Let X be a compact m-manifold. Each point p ∈ X has a neigh-
borhood Up that is homeomorphic to an open subset Vp ⊂ Rm. The collection {Up | p ∈ X} is
an open cover of X, so by compactness there exists a finite subcover {Up1 , . . . , Upn}. Choose
embeddings

gi : Upi −→ Rm

with image Vpi , for each 1 ≤ i ≤ n.
Let {φ1, . . . , φn} be a partition of unity dominated by {Up1 , . . . , Upn}. Recall that supp(φi) ⊂

Upi . The function

Upi −→ Rm

x 7−→ φi(x) · gi(x)

is continuous, and equal to 0 outside supp(φi). We can extend this to a map

hi : X −→ Rm

by setting hi(x) = 0 if x /∈ supp(φi). Then hi is well-defined, and continuous on the open sets
Upi and X − supp(φi) that cover X, hence is continuous on all of X.

An embedding of X is now given by

F : X −→ (R× Rm)n ∼= RN

with
F (x) = (φ1(x), h1(x), . . . , φn(x), hn(x))

and N = n(m + 1). Since each component of F is continuous, so is F . By assumption X is
compact, and RN is Hausdorff, so in order to show that F is an embedding it suffices to prove
that it is injective.

Consider x, y ∈ X with F (x) = F (y). Then
∑

i φi(x) = 1 so φi(x) > 0 for some i. Then
φi(y) = φi(x) > 0, and x, y ∈ supp(φi) ⊂ Upi . From

φi(x) · gi(x) = hi(x) = hi(y) = φi(y) · gi(y)

we deduce gi(x) = gi(y). Here gi is injective, so x = y.
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This proof does not give the optimal (minimal) N , but given an embedding F : X → RN one
can look for projections π : RN → RN−1 and ask if π ◦ F : X → RN−1 remains an embedding.
For differentiable manifolds X this works to bring N down to 2m+ 1. Hassler Whitney (1944)
proved that N = 2m is possible (for each m ≥ 1), but to get lower than that, (much) more care
is needed.
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Chapter 5

The Tychonoff Theorem

5.1 (§37) The Tychonoff Theorem

Theorem 5.1.1 (Tychonoff theorem). Any product of compact spaces is compact.

In other words, for any set J and any collection {Xα}α∈J of compact topological spaces Xα,
the product space ∏

α∈J
Xα

is compact in the product topology.
We proved this for finite J , but the result is also true for infinite J . Proofs typically involve

well-ordering, nets or transfinite induction.

5.1.1 The Hilbert cube is compact

A special case of Tychonoff’s theorem is that the Hilbert cube

H =
∏
m∈N

[0, 1/m]

is compact. Here J = N and Xm = [0, 1/m] for m ≥ 1.
This can be given an elementary proof (Morris, 1984) using the Cantor set. It suffices to

prove that the homeomorphic space

[0, 1]ω =
∏
m∈N

[0, 1]

is compact in the product topology. The Cantor set C =
⋂
n∈NCn is the closed subspace of

[0, 1] obtained by iteratively removing middle thirds:

C1 = [0, 1/3] ∪ [2/3, 1]

C2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1]

. . .

We know that C is compact, because it is a closed subset of [0, 1].
The countably infinite product

{0, 1}ω =
∏
n∈N
{0, 1}
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of the discrete two-point space {0, 1} maps (continuously) onto the unit interval [0, 1] by

f : (an)n∈N 7−→
∑
n∈N

an
2n

.

This corresponds to the presentation of real numbers 0 ≤ x ≤ 1 by binary expansions

x = 0.b1b2b3 . . .

where bn = an. It also maps onto the Cantor set C by

h : (an)n∈N 7−→
∑
n∈N

2an
3n

.

This corresponds to the (unique) presentation of elements y ∈ C by ternary (= base 3) expan-
sions

y = 0.t1t2t3 . . .

where tn = 2an. In fact h : {0, 1}ω → C is a homeomorphism. The n-th component of the
inverse h−1 takes a number y ∈ C ⊂ [0, 1] to an = tn/2 where tn ∈ {0, 2} is the n-th term in
the ternary expansion of y, which is locally constant on C.

Choosing a bijection N× N ∼= N taking (m,n) to k, we obtain a homeomorphism∏
k∈N
{0, 1} ∼=

∏
m∈N

∏
n∈N
{0, 1} .

The left hand side is homeomorphism to C, hence compact. For each m we have a surjective
map f :

∏
n∈N{0, 1} → [0, 1]. Taking their product we obtain a surjecitve map∏

m∈N
f :

∏
m∈N

∏
n∈N
{0, 1} −→

∏
m∈N

[0, 1] .

Hence
∏
m∈N[0, 1] is the continuous image of a compact space, and is therefore compact.

5.1.2 The profinite integers

Let n ∈ N be a natural number. We say that two integers a and b are congruent modulo n, and
write a ≡ b mod n, if b − a is a multiple of n, i.e., if n | b − a. Congruence modulo n is an
equivalence relation on Z, and the equivalence class of an integer a is

[a]n = a+ nZ = {a+ kn | k ∈ Z} .

The n integers
{0, 1, 2, . . . , n− 1}

are commonly chosen representatives for the n different equivalence classes for this equivalence
relation. The set of equivalence classes for congruence modulo n is denoted Z/nZ, Z/(n) or
Z/n. It is a commutative ring, called the ring of integers modulo n, with sum

[a]n + [b]n = [a+ b]n

and product
[a]n · [b]n = [ab]n

defined by choosing representatives. There is a surjective ring homomorphism

φn : Z→ Z/n

taking a to [a]n.

102



Lemma 5.1.2. View Z and Z/n as discrete topological spaces. The product space∏
n∈N

Z/n = Z/1× Z/2× Z/3× . . .

is a compact Hausdorff space. The function

Φ: Z→
∏
n∈N

Z/n

with components (φ1, φ2, φ3, . . . ), taking a to ([a]1, [a]2, [a]3, . . . ), is an injective, continuous
function

Proof. Each Z/n has only finitely many open subsets, hence any open cover is finite, so Z/n is
compact. By Tychonoff’s theorem, the product space

∏
n∈N Z/n is also compact. (This is not

too hard to prove directly)
Each Z/n is discrete, hence Hausdorff, so also the product space

∏
n∈N Z/n is Hausdorff.

The function Φ is injective, since if Φ(a) = Φ(b) then φn(a) = φn(b) for all n ∈ N, so b− a
is divisible by each natural number n. Taking n > |b− a| it follows that b− a = 0, so a = b.

Each function φn is continuous, since Z has the discrete topology. Hence Φ is continuous,
since each of its components is continuous and

∏
n∈N Z/n has the product topology.

Let m, d ∈ N be natural numbers, and suppose that m is a multiple of d, so that d | m. The
function

ρm,d : Z/m→ Z/d

taking [a]m to [a]n is then a well-defined ring homomorphism. We call ρm,d(x) the reduction
modulo d of x ∈ Z/m. Notice that ρm,d ◦ φm = φd

Z φm //

φd   

Z/m
ρm,d

��

Z/d

as functions Z → Z/d. Hence the image Φ(a) ∈
∏
n∈N Z/n of an integer a ∈ Z is a sequence

(xn)n∈N with the property that
ρm,d(xm) = xd

for all d | m. Let

Ẑ = {(xn)n∈N ∈
∏
n∈N

Z/n | ρm,d(xm) = xd for all d | m}

be the subspace defined by this property. In other words, an element of Ẑ is a sequence (xn)n∈N
with xn an integer modulo n, such that xd is the reduction modulo d of xm, for each d | m.

The set Ẑ is a commutative ring, called the ring of profinite integers, with sum

(xn)n∈N + (yn)n∈N = (xn + yn)n∈N

and product
(xn)n∈N · (yn)n∈N = (xn · yn)n∈N

defined termwise. It is a topological ring, in the sense that the ring operations are continuous.
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Lemma 5.1.3. The ring of profinite integers Ẑ is a closed subspace of the product space∏
n∈N Z/n, hence is a compact Hausdorff space.

Proof. For each d | m consider the continuous function

fm,d :
∏
n∈N

Z/n→ Z/d

taking (xn)n∈N to ρm,d(xm)− xd. The preimage

Cm,d = f−1
m,d([0]d)

of [0]d is closed, since Z/d is discrete. Hence the intersection

Ẑ =
⋂
d|m

Cm,d

is also closed in
∏
n∈N Z/n.

Lemma 5.1.4. The function Φ corestricts to an injective, continuous ring homomorphism

Ψ: Z→ Ẑ

taking a to ([a]n)n∈N, from the discrete space Z to the compact Hausdorff space Ẑ. The image
of Ψ is dense in Ẑ.

Proof. Let p = (xn)n∈N be any point in Ẑ. Any neighborhood V of p contains a basis element
Ẑ ∩ U for the subspace topology, where

U =
∏
n∈N

Un ⊂
∏
n∈N

Z/n

is a basis element for the product topology. Here xn ∈ Un for all n, and Un = Z/n for all but
finitely many n. Let N ∈ N be a common multiple of all the n with Un 6= Z/n. Choose any
integer a with [a]N = xN . Claim:

Ψ(a) ∈ Ψ(Z) ∩ U ,

so that Ψ(Z) ∩ V 6= ∅, and Ψ(Z) is dense in Ẑ.
To prove the claim, it is enough to prove that Φ(a) ∈ U , or equivalently, that [a]n ∈ Un for

all n. This is clear when Un = Z/n. When Un 6= Z/n we have n | N , and then

[a]n = ρN,n([a]N ) = ρN,n(xN ) = xn ∈ Un .

The map Ψ: Z → Ẑ is not an embedding of the discrete space Z in the topological sense.
The topology on Z that makes Ψ an embedding, i.e., the subspace topology from Ẑ, may be
called the Fürstenberg topology.

Theorem 5.1.5 (Euclid, ca. 300 BC). There are infinitely many prime numbers.

Proof. Here is Fürstenberg’s proof from 1955. The open sets of the Fürstenberg topology on Z
are of the form Ψ−1(V ) with V open in Ẑ, or equivalently, of the form Φ−1(U) with U open in∏
n∈N Z/n. It follows that each open set in the Fürstenberg topology on Z is either empty or

infinite.
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For each prime number p, the subset

pZ = {kp | k ∈ Z}

of Z is closed in the Fürstenberg topology. Consider the subset

A =
⋃

p prime

pZ

of Z. Its complement is
X −A = {±1} ,

since the only integers not divisible by any primes as the units 1 and −1.
If there is only a finite set of primes, then A is a finite union of closed subsets, hence is

closed in Z, so that X − A = {±1} is open. This contradicts the fact that the open subsets of
Z are either empty or infinite.
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Chapter 6

Complete Metric Spaces and
Function Spaces

6.1 (§43) Complete Metric Spaces

Definition 6.1.1. Let (X, d) be a metric space. A sequence (xn)n∈N of points in X is a Cauchy
sequence if for each ε > 0 there is an N ∈ N such that

d(xm, xn) < ε

for all m,n ≥ N .

This is one of many concepts named after Augustin–Louis Cauchy (1789–1857). Each con-
vergent sequence is a Cauchy sequence.

Definition 6.1.2. A metric space (X, d) is complete if each Cauchy sequence in X is convergent.

Lemma 6.1.3. Any closed subspace of a complete metric space is complete.

Proof. Let (X, d) be complete and A ⊂ X closed. If (xn)n∈N is Cauchy in A with the restricted
metric then it is Cauchy in (X, d), hence has a limit in X, which must also be a limit in A,
since A is closed.

Lemma 6.1.4. Any complete subspace of a metric space is closed.

Proof. Let (X, d) be a metric space and A ⊂ X a complete metric subspace. Any point p ∈ Ā
is the limit in X of a sequence (xn)n∈N of elements in A, which must be Cauchy as a sequence
in X, hence also as a sequence in A. Since A complete, the sequence has a limit in A, which
must be equal to p, since limits are unique in metric spaces. Hence p ∈ A, so that A = Ā and
A is closed.

Lemma 6.1.5. A metric space (X, d) is complete if every Cauchy sequence in X has a conver-
gent subsequence.

Proof. If (xn)n∈N is Cauchy and xnk → y as k →∞ then xn → y as n→∞.

Proposition 6.1.6. Every compact metric space is complete.

Proof. Every Cauchy sequence in a compact metric space contains a convergent subsequence,
by (sequential) compactness, so by the lemma above it is convergent.
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Theorem 6.1.7. Euclidean space Rn (in any of the equivalent metrics coming from a norm)
is complete.

Proof. Each Cauchy sequence in (Rn, d) is bounded, hence lies in a closed and bounded subspace
of Rn, which is compact. It therefore has a convergent subsequence, and is itself convergent.

Remark 6.1.8. A vector space V equipped with a norm ‖ − ‖ can be viewed as a metric
space, with metric d(x, y) = ‖y − x‖. The normed vector spaces (V, ‖ − ‖) such that (V, d)
is complete are called Banach spaces and play a key role in linear analysis (MAT3400/4400),
which also serves a foundation for the existence and uniqueness theory for differential equations.
A starting point for the theory is the fact that each closed subspace of a Banach space is again
complete. In the special case that the complete norm comes from an inner product 〈−,−〉, with
‖x‖ =

√
〈x, x〉, we refer to (V, 〈−,−〉) as a Hilbert space.

Given a metric space (X, d), there exists a universal complete metric space (X̂, d̂) containing
(X, d) as a dense metric subspace.

Theorem 6.1.9. Let (X, d) be a metric space. Let Cauchy(X) be the set of Cauchy sequences
(xn)n∈N in (X, d), and let

X̂ = Cauchy(X)/∼

be the set of equivalence classes of Cauchy sequences, where (xn)n∈N ∼ (yn)n∈N if d(xn, yn)→ 0
as n→∞. Define d̂ : X̂ × X̂ → R by

d̂(x̂, ŷ) = lim
n→∞

d(xn, yn) .

where x̂ = [(xn)n∈N] and ŷ = [(yn)n∈N]. Then (X̂, d̂) is a complete metric space. The map

e : X −→ X̂

x 7−→ [(x, x, x, . . . )]

sending x ∈ X to the class of the constant sequence at x is an isometric embedding (meaning
that d(x, y) = d̂(e(x), e(y)) for all x, y ∈ X) with dense image e(X) ⊂ X̂.

Proof. We outline the proof. See Exercise 43.9 in Munkres’ book.
(a) ∼ is an equivalence relation and d̂ is well-defined, by the axioms for the metric d,

including the triangle inequality.
(b) e : X → X̂ is an isometry, hence identifies (X, d) with the metric subspace (e(X), d̂) of

(X̂, d̂) obtained by restricting the metric d̂ to e(X) ⊂ X̂.
(c) e(X) is dense in X̂, since for any x̂ = [(xn)n∈N] in X̂ the sequence (e(xn))n∈N in e(X)

converges to x̂.
(d) Every Cauchy sequence in the dense subset e(X) of X̂ converges in X̂.
(e) This implies that X̂ is complete.

Definition 6.1.10. The complete metric space (X̂, d̂) is called the completion of (X, d).

The completion is well-defined up to unique isometry.

Theorem 6.1.11. Let g : (X, d) → (Y, dY ) be any isometric embedding from a metric space
(X, d) to a complete metric space (Y, dY ). There is a unique factorization of g as a composite

g = f ◦ e : (X, d)
e−→ (X̂, d̂)

f−→ (Y, dY )

where e is the canonical isometric embedding of (X, d) in (X̂, d̂), and f is also an isometric
embedding.
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Proof. We outline the proof. See Exercise 43.10 in Munkres’ book.
For x̂ = [(xn)n∈N] in X̂, note that (g(xn))n∈N is a Cauchy sequence in the complete metric

space (Y, dY ). Let f(x̂) = limn→∞ g(xn).

Example 6.1.12. We have used the real numbers in our definition of a metric, and hence of
completeness, so the following example may appear a bit circular.

Let X = Q be the set of rational numbers, with metric

d∞(x, y) = |y − x|

given by the absolute value. The usual inclusion g : (Q, d∞) → (R, d), where Y = R has the
usual metric, factors as

(Q, d∞)
e−→ (Q̂, d̂∞)

f−→ (R, d) .

Since Q is dense in (R, d), it follows that the isometric embedding f is surjective, hence an
isometric homeomorphism. We can therefore recover the real numbers R, with the usual metric,
as the completion Q̂ of the rational numbers with respect to the metric d∞.

Example 6.1.13. Let p be any prime number. A rational number x = A/B can be written
in the form apn/b by collecting any factors p in A or B in the power pn, where n may be any
integer. The p-adic norm

| − |p : Q −→ R

is defined by ∣∣∣apn
b

∣∣∣
p

=
1

pn

for a and b integers not divisible by p, and n any integer. We also set |0|p = 0. Then |x|p ≥ 0
for all x ∈ Q, | − x|p = |x|p, and the triangle inequality

|x+ y|p ≤ |x|p + |y|p

can be proved to hold. (In fact, the stronger ultrametric inequality |x + y|p ≤ max{|x|p, |y|p}
holds.) We can therefore define a metric

dp : Q×Q −→ R

on Q, called the p-adic metric, by dp(x, y) = |y − x|p.
The metric space (Q, dp) has a very different topology than the metric subspace (Q, d∞)

of R. For example, the sequence
1, p, p2, p3, . . .

converges to 0 in (Q, dp), while it is unbounded and diverges in (Q, d∞) ⊂ (R, d).

Definition 6.1.14. The completion (Q̂, d̂p) of the rational numbers with respect to the p-
adic metric is denoted Qp, and is called the p-adic numbers. It is a complete metric space,
containing (Q, dp) as a dense metric subspace. A concrete model for Qp is given by the formal
p-adic expansions ∑

n

anp
n

where n ∈ Z, an ∈ {0, 1, . . . , p − 1}, and an = 0 for all sufficiently negative n. The subset of
such formal sums where an = 0 for n < 0 is called the set of p-adic integers, denoted Zp.

One can prove that Qp is a field of characteristic zero, containing Q as a subfield, and Zp is
a subring of Qp, contaning Z as a subring. We therefore call Qp the field of p-adic numbers, and
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Zp the ring of p-adic integers. The closure of Z in Qp is equal to Zp. There is also a description
of Zp as the inverse limit

Zp = lim
n

Z/(pn)

of the rings of integers modulo pn, where the limit is formed in the algebraic/categorical sense.

Remark 6.1.15. An important aspect of modern number theory is to treat the completions
R and Qp of Q, with respect to the metrics d∞ and dp for all primes p, on an equal footing.
In other words, anything arithmetic that can be done with real coefficients should also be done
with p-adic coefficients. This leads to important “reciprocity” results, the first glimpse of which
is the formula

|x|∞ ·
∏
p

|x|p = 1

for any x ∈ Q− {0}. Moreover, the product

Q −→ R×
∏
p

Qp

of all the competion maps has discrete image. The Langlands program takes the point of
view that Galois groups should not be studied only through their real representations (actions
on finite-dimensional real vector spaces), but also through their p-adic representations for all
primes p.

6.2 (§45) Compactness in Metric Spaces

Definition 6.2.1. A metric space (X, d) is totally bounded if for every ε > 0 there is a finite
covering of X by ε-balls.

Proposition 6.2.2. Every compact metric space is totally bounded.

Proof. Let (X, d) be a compact metric space and consider any ε > 0. The collection of all
ε-balls is an open covering of X. By compactness there exists a finite subcover, which is a finite
covering of X by ε-balls.

Theorem 6.2.3. A metric space (X, d) is compact if and only if it is complete and totally
bounded.

Proof. We have proved that a compact metric space is complete and totally bounded. Con-
versely, we will prove that a complete and totally bounded is sequentially compact. This implies
that it is compact, as we proved in §28 (Theorem 3.6.3).

Let (xn)n∈N be any sequence of points in X. We shall construct a Cauchy subsequence
(xnk)k∈N. By the assumed completeness of X, this will be a convergent subsequence.

First cover X by finitely many balls of radius 1. At least one of these, call it B1, will contain
xn for infinitely many n. Let

J1 = {n ∈ N | xn ∈ B1}

be this infinite set of indices.
Inductively suppose, for some k ≥ 1, that we have chosen a ball Bk of radius 1/k that

contains xn for all n in an infinite set Jk ⊂ N. Cover X by finitely many balls of radius
1/(k + 1). At least one of these, call it Bk+1, will contain xn for infinitely many n ∈ Jk. Let

Jk+1 = {n ∈ Jk | xn ∈ Bk+1}
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be this infinite set. Continue for all k, to get an infinite descending sequence of infinite sets:

J1 ⊃ · · · ⊃ Jk ⊃ Jk+1 ⊃ . . . .

Choose n1 ∈ J1. Inductively suppose, for some k ≥ 1, that we have chosen nk ∈ Jk. Since
Jk+1 is infinite, we can choose an nk+1 ∈ Jk+1 with nk+1 > nk. Continue for all k. The sequence

n1 < · · · < nk < nk+1 < . . .

is strictly increasing, so (xnk)k∈N is a subsequence of (xn)n∈N.
We claim that it is a Cauchy sequence. Let ε > 0 and choose k with 1/k < ε/2. For all

i, j ≥ k we have ni ∈ Ji ⊂ Jk and nj ∈ Jj ⊂ Jk, so xni , xnj ∈ Bk. Since Bk has diameter
≤ 2/k < ε, we get that d(xni , xnj ) < ε. Hence (xnk)k∈N is Cauchy.

6.3 (§46) Pointwise and Compact Convergence

6.3.1 Pointwise and uniform convergence

Let Y and Z be topological spaces, and consider the set

Func(Y, Z) = ZY ∼=
∏
Y

Z

of functions from Y to Z. Here h : Y → Z corresponds to the Y -indexed sequence (h(y))y∈Y of
points in Z. Evaluation of a function at y corresponds to projection to the y-th factor, for each
y ∈ Y .

Definition 6.3.1. For y ∈ Y and U ⊂ Z open let

S(y, U) = {h : Y → Z | h(y) ∈ U} .

This corresponds to π−1
y (U), where πy :

∏
Y Z → Z projects to the y-th factor. The collection

of these sets S(y, U) is a subbasis for the topology of pointwise convergence on Func(Y, Z),
corresponding to the product topology on

∏
Y Z. The associated basis consists of the finite

intersections
S(y1, U1) ∩ · · · ∩ S(yn, Un)

for y1, . . . , yn ∈ Y and U1, . . . , Un ⊂ Z open.

Lemma 6.3.2. A sequence (hn)n∈N of functions hn : Y → Z converges to h : Y → Z in the
topology of pointwise convergence if and only if hn(y)→ h(y) as n→∞ for each y ∈ Y .

Now suppose that (Z, d) is a metric space.

Definition 6.3.3. For h : Y → Z and ε > 0 let

B(h, ε) = {k : Y → Z | sup
y∈Y

d(h(y), k(y)) < ε}

be the set of functions k : Y → Z such that the distances d(h(y), k(y)) for y ∈ Y are bounded
above by a number less than ε. For ε ≤ 1 this is the same set as the ε-ball

Bρ̄(h, ε) = {k : Y → Z | ρ̄(h, k) < ε}

for the uniform metric
ρ̄(h, k) = sup

y∈Y
d̄(h(y), k(y)) ,

where d̄(z1, z2) = min{d(z1, z2), 1} is the standard bounded metric on Z associated to d. The
collection of subsets B(h, ε) ⊂ Func(Y,Z) is a basis for the topology of uniform convergence,
which equals the topology associated to the uniform metric ρ̄.
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Whenever we discuss the uniform topology on Func(Y,Z) we assume that Z is equipped
with a metric.

Lemma 6.3.4. A sequence (hn)n∈N of functions hn : Y → Z converges to k : Y → Z in the
topology of uniform convergence if and only if the sequence hn converges uniformly to k as
n→∞.

To say that hn → k pointwise as n→∞ is equivalent to

for each ε > 0 and y ∈ Y there is an N ∈ N such that for each n ≥ N we have
d(hn(y), k(y)) < ε ,

while to say that hn → k uniformly as n→∞ is equivalent to

for each ε > 0 there is an N ∈ N such that for each y ∈ Y and n ≥ N we have
d(hn(y), k(y)) < ε .

The latter condition is (strictly) stronger, since N can only depend on ε, while in the former
condition N may also depend on y.

Example 6.3.5. Let Y = [0, 1] and Z = R. The sequence hn(y) = yn for n ∈ N converges
pointwise, but not uniformly, to the function k given by k(y) = 0 for y ∈ [0, 1) and k(1) = 1.

Theorem 6.3.6 (Uniform limit theorem). The uniform limit of a sequence of continuous func-
tions is continuous. In other words, if the sequence (hn)n∈N of functions hn : Y → Z converges
to k : Y → Z in the topology of uniform convergence, and each hn is continuous, then k is
continuous.

Proof. We show that k is continuous at each point p ∈ Y . Let ε > 0. By the assumption of
uniform convergence, there is an N ∈ N such that supy∈Y d(k(y), hn(y)) < ε/3 for all n ≥ N . In
particular this holds for n = N . The function hN is continuous at p, so there is a neighborhood
U of p such that hN (U) ⊂ Bd(hN (p), ε/3). Then for all q ∈ U ,

d(k(p), k(q)) ≤ d(k(p), hN (p)) + d(hN (p), hN (q)) + d(hN (q), k(q)) < ε/3 + ε/3 + ε/3 = ε .

Hence k is continuous at p.

Definition 6.3.7. Let C (Y,Z) = Map(Y, Z) be the set of maps (= continuous functions)
f : Y → Z.

Corollary 6.3.8. The subset Map(Y,Z) is closed in Func(Y, Z) with the uniform topology, but
not (in general) with the pointwise topology.

The topology of uniform convergence is finer than the topology of pointwise convergence.
There is an intermediate topology of compact convergence, or uniform convergence on compact
sets, defined so that hn → k uniformly on compact sets as n→∞ if any only if for each compact
C ⊂ Y we have hn|C → k|C uniformly as n→∞.

(pointwise convergence) ⊂ (compact convergence) ⊂ (uniform convergence)

Example 6.3.9. Consider functions R→ R. The Taylor polynomials

hn(y) =

n∑
m=0

ym

m!

for n ∈ N converge pointwise, and uniformly on compact subsets, but not uniformly, to the
exponential function k(y) = ey.
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If Y is compact, then the topology of compact convergence equals the topology of uniform
convergence, while if Y is discrete then the topology of compact convergence equals the topology
of pointwise convergence. For a large class of topological spaces Y , called compactly generated
spaces, the subset Map(Y,Z) is closed in Func(Y,Z) with the compact convergence topology.
Hence for compactly generated Y and metric Z, if hn → k uniformly on compact sets and
each hn is continuous then k is continuous. The class of compactly generated spaces plays a
significant role in modern algebraic topology.

The pointwise, compact convergence and uniform topologies restrict to give topologies on
the subspace

C (Y,Z) = Map(Y, Z) ⊂ Func(Y, Z) = ZY

of maps h : Y → Z. It turns out that the topology of compact convergence on C (Y,Z) will not
depend on the choice of metric on Z, and can be extended to the case of arbitrary topological
spaces Z. This construction, called the compact-open topology, is due to Ralph Fox (1945).
(Fox is known for his work in knot theory, and was the PhD advisor of John Milnor.)

6.3.2 The compact-open topology

Let Y and Z be (arbitrary) topological spaces.

Definition 6.3.10. For C ⊂ Y compact and U ⊂ Z open, let

S(C,U) = {h ∈ C (Y, Z) | h(C) ⊂ U} .

The collection of these subsets S(C,U) ⊂ C (Y,Z) is a subbasis for the compact-open topology.
The associated basis consists of the finite intersections

S(C1, U1) ∩ · · · ∩ S(Cn, Un)

where C1, . . . , Cn ⊂ Y are compact and U1, . . . , Un ⊂ Z are open.

The compact-open topology on C (Y,Z) is finer than the topology of pointwise convergence,
since one-point sets are compact.

Theorem 6.3.11. Let Y be a topological space and (Z, d) a metric space. On C (Y,Z) the
compact-open topology equals the topology of compact convergence.

We omit the proof.

Corollary 6.3.12. Let Z be a metric space. The compact convergence topology on C (Y, Z) only
depends on the underlying topology on Z. If Y is compact, the uniform topology on C (Y,Z)
only depends on the underlying topology on Z.

6.3.3 Joint continuity

A function
f : X × Y → Z

corresponds to a function
g : X → Func(Y, Z)

defined for p ∈ X and q ∈ Y by the equation g(p)(q) = f(p, q), and conversely. In this situation,
we may call f the left adjoint and g the right adjoint
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Example 6.3.13. Let X = Y = Z = R, with

f(x, y) =


2xy

x2 + y2
if (x, y) 6= 0,

0 if (x, y) = 0.

If (x, y) = (r cos θ, r sin θ) with r > 0 then f(x, y) = sin(2θ) is independent of r, so if (x, y) →
(0, 0) along a line of slope θ, then f(x, y) → sin(2θ). Thus f is not continuous at 0. However,
the adjoint function g sends x 6= 0 to

g(x) : y 7−→ 2xy

x2 + y2

and x = 0 to
g(0) : 0 7−→ 0 ,

so that g(x) is continuous for each x ∈ R.

If f is continuous, each function g(p) : Y → Z is continuous, so that g is a function

g : X → C (Y,Z) .

We shall show that g itself is continuous if we give C (Y,Z) the compact-open topology, and
that the converse holds e.g. if X is locally compact Hausdorff.

Theorem 6.3.14. Let X, Y and Z be spaces, and give C (Y,Z) the compact-open topology. If
f : X × Y → Z is continuous, then so is the right adjoint function g : X → C (Y,Z).

Proof. Consider a point p ∈ X and a subbasis element S(C,U) ⊂ C (Y,Z) that contains g(p),
so that g(p)(C) ⊂ U , or equivalently, f({p} × C) ⊂ U . We wish to find a neighborhood V of p
such that g(V ) ⊂ S(C,U).

By continuity of f , the preimage f−1(U) is an open subset of X × Y that contains {p}×C.
Then (X × C) ∩ f−1(U) is an open subset in X × C that contains {p} × C. By compactness
of C, using the “tube lemma” of §26 (Lemma 3.4.23), there is a neighborhood V of {p} such
that V × C ⊂ (X × C) ∩ f−1(U). Then for p′ ∈ V we have f({p′} × C) ⊂ U , so g(p′)(C) ⊂ U
and g(p′) ∈ S(C,U). Hence g(V ) ⊂ S(C,U).

Corollary 6.3.15. The inclusion map

η : X → C (Y,X × Y )

given by η(p)(q) = (p, q) is continuous.

Proposition 6.3.16. Let Y be a locally compact Hausdorff space, and give C (Y,Z) the compact-
open topology. The evaluation map

ε : C (Y, Z)× Y → Z

given by ε(h, q) = h(q) is continuous.

Proof. Let (h, q) ∈ C (Y,Z) × Y and consider any neighborhood U of ε(h, q) = h(q) ∈ Z. We
wish to find a neighborhood W of (h, q) such that ε(W ) ⊂ U .

By the continuity of h, the preimage h−1(U) is a neighborhood of q ∈ Y . By the assumption
that Y locally compact and Hausdorff (recall the local nature of local compactness, see §29,
Theorem 3.7.15), there is a neighborhood V of q with compact closure V̄ ⊂ h−1(U). Then

W = S(V̄ , U)× V ⊂ C (Y, Z)× Y

is an open subset containing (h, q), since h(V̄ ) ⊂ U and q ∈ V . Furthermore, if (h, q′) ∈
S(V̄ , U)× V then ε(h, q′) = h(q′) ∈ U , so ε(W ) ⊂ U .
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Theorem 6.3.17. Let X, Y and Z be spaces, with Y locally compact and Hausdorff, and give
C (Y,Z) the compact-open topology. If g : X → C (Y,Z) is continuous, then so is the left adjoint
function f : X × Y → Z.

Proof. This follows from the proposition, since f is the composite

X × Y g×id−→ C (Y,Z)× Y ε−→ Z

sending (p, q) via (g(p), q) to ε(g(p), q) = g(p)(q) = f(p, q).

Corollary 6.3.18. Let Y be locally compact, and give C (Y,Z) the compact-open topology.
There are bijective correspondences

C (X × Y,Z) ∼= C (X,C (Y,Z)) ∼= C (Y ×X,Z) (6.1)

f ↔ g ↔ f ′ (6.2)

between the maps

f : X × Y −→ Z

g : X −→ C (Y,Z)

f ′ : Y ×X −→ Z

specified by
f(p, q) = g(p)(q) = f ′(q, p)

in Z for p ∈ X and q ∈ Y . If also X is locally compact Hausdorff, then there is also a bijective
correspondence

C (Y ×X,Z) ∼= C (Y,C (X,Z))

f ′ ↔ g′

where C (X,Z) has the compact-open topology and the map

g′ : Y −→ C (X,Z)

is specified by g′(q)(p) = f ′(q, p).

The unit interval I = [0, 1] in the subspace topology from R is compact and Hausdorff, and
in particular is locally compact Hausdorff.

Definition 6.3.19. Let α, β : X → Z be maps. A homotopy from α to β is a map f : X×I → Z
such that f(p, 0) = α(p) and f(p, 1) = β(p) for all p ∈ X. We then write f : α ' β. We say
that α and β are homotopic if there exists a homotopy from α to β. This defines an equivalence
relation on maps X → Z.

Equivalently, a homotopy from α to β is a map g : X → C (I, Z) such that g(p)(0) = α(p)
and g(p)(1) = β(p) for all p ∈ X, or a map f ′ : I × X → Z such that f ′(0, p) = α(p) and
f ′(1, p) = β(p) for all p ∈ X. If X is locally compact Hausdorff, a homotopy from α to β is
equivalent to a map g′ : I → C (X,Z) with g′(0) = α and g′(1) = β, i.e., a path from α to β in
the space C (X,Z).

Homotopy theory is the part of (algebraic) topology that views homotopic maps α and β as
being identical, i.e., only considers homotopy classes [α] = {β : α ' β} of maps. This leads to
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a weaker notion of isomorphism than homeomorphism (topological equivalence), namely homo-
topy equivalence: Two spaces X and Y are homotopy equivalent if there exist maps φ : X → Y
and ψ : Y → X such that the composite ψφ : X → X is homotopic to the identity id : X → X,
and the composite φψ : Y → Y is homotopic to the identity id : Y → Y .

For general topological spaces, homotopy equivalence is a much weaker condition than home-
omorphism. However, for some classes of spaces, such as manifolds, the relationship is surpris-
ingly much closer. For instance, the Poincaré conjecture asserts that any 3-manifold that is
homotopy equivalent to S3 is in fact homeomorphic to S3. This was famously proved by Grigori
Perelman in 2003. The generalized Poincaré conjecture, that any m-manifold that is homotopy
equivalent to Sm is homeomorphic to Sm is easy for m = 1, classical for m = 2, was proved
by Stephen Smale (1961) for m ≥ 5, and by Michael Freedman (1982) for m = 4. For differen-
tiable m-manfolds, replacing “homeomorphic” by “diffeomorphic”, the statement remains true
for m ∈ {1, 2, 3, 5, 6}, but becomes false for most m ≥ 7, with the first counterexamples (=
exotic spheres) being due to Milnor (1956). The 4-dimensional case remains an open problem.

diffeomorphic =⇒ homeomorphic =⇒ homotopy equivalent
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Chapter 7

The Fundamental Group

7.1 (§51) Homotopy of Paths

7.1.1 Line integrals

Let X ⊂ R2 be an open region in the plane, and consider a continuous vector field v defined
on X. Here v : X → R2 is a map giving a vector v(x) ∈ R2 at each point x ∈ X. Consider also
a continuously differentiable path f : [0, 1]→ X, parametrizing a curve C in X from f(0) = x0

to f(1) = x1. The line integral of v along C is then defined to be∫
C
v =

∫ 1

0
v(f(s)) · f ′(s) ds

If we write v(x) = (v1(x), v2(x)) and f(s) = (f1(s), f2(s)), then v(f(s)) ·f ′(s) = v1(f(s))f ′1(s)+
v2(f(s))f ′2(s).

If v = ∇p is the gradient field of a potential, i.e., a continuously differentiable function
p : X → R with ∂p/∂x1 = v1 and ∂p/∂x2 = v2, then v(f(s)) · f ′(s) = (p ◦ f)′(s) by the chain
rule, and ∫ 1

0
v(f(s)) · f ′(s) ds =

∫ 1

0
(p ◦ f)′(s) ds =

[
p ◦ f

]1
0

= p(x1)− p(x0)

only depends on p and the end-points x0 and x1 of C. In particular, it does not depend on the
choice of curve leading from x0 to x1 (other than that such a curve exists). In this case we say
that v is exact, following Poincaré (1899).

If v is itself continuously differentiable, it may happen that ∂v1/∂x2 = ∂v2/∂x1, even if v
is not actually the gradient of a potential defined over all of X. We call such a vector field
closed. Exact vector fields are closed, since ∂v1/∂x2 = ∂2p/∂x1∂x2 = ∂v2/∂x1. The Poincaré
lemma states that any closed vector field is locally the gradient of a two times continuously
differentiable function, but these local potentials may not fit together to a global potential.

Example 7.1.1. For the vector field

v(x1, x2) =
(−x2, x1)

x2
1 + x2

2

on X = R2 − {(0, 0)} we have

∂v1

∂x2
=

x2
2 − x2

1

(x2
1 + x2

2)2
=
∂v2

∂x1
,
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so v is closed. However, for the loop f(s) = (cos(2πs), sin(2πs)) parametrizing the unit circle
C, ∫

C
v =

∫ 1

0
v(f(s)) · f ′(s) ds =

∫ 1

0
2π ds = 2π 6= 0

cannot be p(x1)−p(x0) for any potential p, since x0 = f(0) = (1, 0) is equal to x1 = f(1) = (1, 0).
Hence v is not exact.

However, for closed vector fields v the line integral
∫
C v is still somewhat independent of

the curve C leading from x0 to x1. More precisely, the line integral is invariant under suitable
deformations of C. If C0 and C1 are curves from x0 to x1 that together form a simple closed
curve bounding a region D in the plane, with D ⊂ X, then Green’s theorem tells us that∫

C0

v −
∫
C1

v =

∫∫
D

(∂v2

∂x1
− ∂v1

∂x2

)
dx1dx2 .

If v is closed, then the integrand over D is zero, so
∫
C0
v =

∫
C1
v. The key role of the geometric

hypothesis on C0, C1 and the region D can be expressed in terms of parametrizations f0 : [0, 1]→
X of C0 and f1 : [0, 1]→ X of C1. We can deform C0 through D, keeping the endpoints fixed,
to end up at C1. In terms of the parametrizations, there is a continuous family of functions

ft : [0, 1] −→ X

for 0 ≤ t ≤ 1, starting at f0 and ending at f1, such that ft(0) = x0 and ft(1) = x1 for all t. The
continuity of the family (ft)t∈[0,1] is more conveniently expressed in terms of the adjoint map

F : [0, 1]× [0, 1] −→ X

F (s, t) = ft(s) ,

subject to F (s, 0) = f0(s), F (s, 1) = f1(s) for all s ∈ [0, 1] and F (0, t) = x0, F (1, t) = x1 for all
t ∈ [0, 1]. We call F a path homotopy from f0 to f1. If F is continuously differentiable, we can
pull the vector field v on X back to a vector field w = (w1, w2) on [0, 1]× [0, 1], given by

(w1(s, t), w2(s, t)) = (v1(F (s, t)), v2(F (s, t))

(
∂F1/∂s ∂F1/∂t
∂F2/∂s ∂F2/∂t

)
.

If v is closed, then w is closed and by Green’s theorem applied to the parametrizing region
[0, 1]2, ∫

∂[0,1]2
w =

∫
C0

v + 0−
∫
C1

v − 0

is equal to ∫∫
[0,1]2

(∂w2

∂s
− ∂w1

∂t

)
ds dt = 0 .

Hence the existence of the path homotopy F from f0 to f1 as paths from x0 to x1 in X is
sufficient to ensure that ∫

C0

v =

∫
C1

v

for closed vector fields v, more so than the hypothesis that C0 (going forward) and C1 (in
reverse) form a simple closed curve bounding a region contained in X.
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7.1.2 Homotopy

Let Y and Z be topological spaces.

Definition 7.1.2. Two maps f0, f1 : Y → Z are homotopic if there exists a map

F : Y × [0, 1]→ Z

with F (y, 0) = f0(y) and F (y, 1) = f1(y) for all y ∈ Y . In this case we write f0 ' f1, and call
F a homotopy from f0 to f1.

Remark 7.1.3. We often use t ∈ [0, 1] to indicate the homotopy parameter. For each t ∈ [0, 1]
let ft : Y → Z be given by ft(y) = F (y, t). Then each ft is continuous, and the rule t 7→ ft
defines a path [0, 1] → C (Y,Z) connecting f0 to f1, in the space of maps Y → Z with the
compact-open topology. If Y is locally compact and Hausdorff we can conversely recover the
homotopy F from this path in the mapping space.

Lemma 7.1.4. The homotopy relation ' is an equivalence relation on the set of maps Y → Z.

Proof. For each f : Y → Z there is a constant homotopy F : Y × [0, 1] → Z from f to f given
by F (y, t) = f(y).

If F : Y × [0, 1]→ Z is a homotopy from f0 : Y → Z to f1 : Y → Z then F̄ : Y × [0, 1]→ Z
given by F̄ (y, t) = F (y, 1− t) is a homotopy from f1 to f0.

If F : Y × [0, 1] → Z is a homotopy from f0 : Y → Z to f1 : Y → Z and G : Y × [0, 1] → Z
is a homotopy from f1 to f2 : Y → Z, then there is a homotopy F ? G : Y × [0, 1]→ Z from f0

to f2 given by

(F ? G)(y, t) =

{
F (y, 2t) for 0 ≤ t ≤ 1/2,

G(y, 2t− 1) for 1/2 ≤ t ≤ 1.

This defines a continuous map by the pasting lemma (Theorem 2.6.28) from §18, since Y×[0, 1/2]
and Y ×[1/2, 1] are closed subsets that cover Y ×[0, 1], and the functions F (y, 2t) and G(y, 2t−1)
agree on the overlap Y × {1/2}.

Definition 7.1.5. The equivalence class of f : Y → Z under ' is denoted

[f ] = {f ′ : Y → Z | f ' f ′}

and is called the homotopy class of f . It is common to write

[Y,Z] = C (Y,Z)/'

for the set of homotopy classes of maps Y → Z.

Example 7.1.6. Let f, f ′ : Y → R2 be any two maps to the plane. Then f ' f ′ via the
straight-line homotopy

F (y, t) = (1− t)f(y) + tf ′(y) .

For each y, the rule t 7→ F (y, t) parametrizes the straight line segment in R2 from F (y, 0) = f(y)
to F (y, 1) = f ′(y).

More generally, if Z ⊂ Rn is any convex subspace of Rn, so that (1 − t)z + tz′ ∈ Z for all
z, z′ ∈ Z and t ∈ [0, 1], then any two maps f, f ′ : Y → Z are homotopic.

Example 7.1.7. If Y = {y0} is a single point, then the maps f : Y → Z correspond to the
points z = f(y0) ∈ Z. Two maps f, f ′ : Y → Z are homotopic if and only if there is a path
from z = f(y0) to z′ = f ′(y0). Hence the homotopy classes of maps Y → Z correspond to the
path components of Z, and the set of homotopy classes [Y,Z] corresponds to the set of path
components of Z, often denoted π0(Z).
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7.1.3 Path homotopy

Let X be any topological space.
We are particularly interested in the case when Y = [0, 1] and Z = X, so that f0, f1 : [0, 1]→

X are paths in X. We often use s ∈ [0, 1] as the path parameter. (In differential geometry,
s is often used more specifically to indicate parametrization by path length, but we will not
conform to this usage here.)

Definition 7.1.8. Let x0, x1 ∈ X. A path in X from x0 to x1 is a map f : [0, 1] → X with
f(0) = x0 and f(1) = x1.

Given x0 and x1, a path in X from x0 to x1 is restricted in that the end points are already
prescribed. The corresponding notion of path homotopy is similarly restricted.

Definition 7.1.9. Two paths f0, f1 : [0, 1]→ X in X from x0 to x1, are path homotopic if there
is a map

F : [0, 1]× [0, 1]→ X

with F (s, 0) = f0(s) and F (s, 1) = f1(s) for all s ∈ [0, 1], and F (0, t) = x0 and F (1, t) = x1 for
all t ∈ [0, 1]. In this case we write f 'p g, and call F a path homotopy from f to g.

For a path homotopy F : f0 'p f1 the corresponding paths ft : [0, 1] → X, with ft(s) =
F (s, t), are all paths from x0 to x1.

Lemma 7.1.10. The path homotopy relation 'p is an equivalence relation.

Proof. The following three claims are easy to check by inspection of the definitions.
The constant homotopy from f to f is a path homotopy.
If F : f0 ' f1 is a path homotopy, then F̄ : f1 ' f0 is a path homotopy.
If F : f0 ' f1 and G : f1 ' f2 are path homotopies, then F ?G : f0 ' f2 is a path homotopy.

Definition 7.1.11. If f : [0, 1]→ X is a path in X from x0 to x1 we let

[f ] = {f ′ | f 'p f ′}

denote its path homotopy class. We then write

π1(X,x0, x1) = {[f ] | f is a path in X from x0 to x1}

for the set of such path homotopy classes.

Example 7.1.12. If x0, x1 ∈ X = R2 is the plane, and f, f ′ : [0, 1]→ R2 are paths from x0 to
x1, then the straight-line homotopy

F (s, t) = (1− t)f(s) + tf ′(s)

is a path homotopy, since F (0, t) = (1− t)x0 + tx0 = x0 and F (1, t) = (1− t)x1 + tx1 = x1 for
all t ∈ [0, 1].

More generally, if x0, x1 ∈ X ⊂ Rn is any convex subspace of Rn, so that (1− t)x+ tx′ ∈ X
for all x, x′ ∈ X and t ∈ [0, 1], then any two paths f, f ′ : [0, 1] → X from x0 to x1 are path
homotopic.
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Example 7.1.13. Let X = R2 − {(0, 0)} be the punctured plane. The paths

f(s) = (cos(πs), sin(πs))

g(s) = (cos(πs), 2 sin(πs))

from (1, 0) to (−1, 0) are path homotopic: the straight-line homotopy in R2 factors through X.
However, the straight-line homotopy in R2 from f to the path

h(s) = (cos(πs),− sin(πs))

from (1, 0) to (−1, 0) passes through the origin at s = t = 1/2, hence does not give a (path)
homotopy from f to h as paths in X. We shall prove later that f and h are not path homotopic
in X. (They are homotopic as maps, ignoring the endpoint conditions, which is one reason why
it is path homotopy that is the interesting relation.)

7.1.4 Sums of line integrals

If A is a curve in X from x0 to x1, parametrized by f : [0, 1]→ X, and B is a curve in X from
x1 to x2, parametrized by g : [0, 1] → X, then C = A ∪ B is a curve from x0 to x2, which can
be parametrized by

f ∗ g : [0, 1] −→ X

given by

(f ∗ g)(s) =

{
f(2s) for 0 ≤ s ≤ 1/2,

g(2s− 1) for 1/2 ≤ s ≤ 1.

If f and g are continuously differentiable, then f ∗ g will at least be piecewise continuously
differentiable, which is good enough to make sense of line integrals over C. In this case∫

C
v =

∫
A
v +

∫
B
v .

Hence the deformation-invariant values taking by the integrals
∫
C v for closed vector fields v

also have an algebraic structure, with addition of integrals corresponding to a composition of
curves.

7.1.5 Composition of paths

Consider points x0, x1, x2, . . . in X.

Definition 7.1.14. If f : [0, 1]→ X is a path from x0 to x1, and g : [0, 1]→ X is a path from
x1 to x2, the composition f ∗ g : [0, 1]→ X is defined to be the path

(f ∗ g)(s) =

{
f(2s) for 0 ≤ s ≤ 1/2,

g(2s− 1) for 1/2 ≤ s ≤ 1

from x0 to x2. Note that f(1) = x1 = g(0), so f ∗ g is continuous by the pasting lemma.

Lemma 7.1.15. If f0 'p f1 are path homotopic paths from x0 to x1, and g0 'p g1 are path
homotopic paths from x1 to x2, then the compositions f0 ∗g0 'p f1 ∗g1 are path homotopic paths
from x0 to x2. Hence there is a well-defined pairing of path homotopy classes

π1(X,x0, x1)× π1(X,x1, x2) 7−→ π1(X,x0, x2)

([f ], [g]) 7−→ [f ] ∗ [g] = [f ∗ g]

where f is a path from x0 to x1 and g is a path from x1 to x2.

120



Proof. Let F : [0, 1]× [0, 1]→ X be a path homotopy from f0 to f1, and let G : [0, 1]× [0, 1]→ X
be a path homotopy from g0 to g1. Then F ∗G : [0, 1]× [0, 1]→ X defined by

(F ∗G)(s, t) =

{
F (2s, t) for 0 ≤ s ≤ 1/2,

G(2s− 1, t) for 1/2 ≤ s ≤ 1

is a path homotopy from f0 ∗ g0 to f1 ∗ g1.

Theorem 7.1.16. The operation ∗ on path homotopy classes in a space X has the following
properties:

1. (Associativity) If f is a path from x0 to x1, g a path from x1 to x2, and h a path from x2

to x3, then
([f ] ∗ [g]) ∗ [h] = [f ] ∗ ([g] ∗ [h]) .

2. (Left and right units) For x ∈ X let cx : [0, 1] → X denote the constant path at x, with
cx(s) = x for all s ∈ [0, 1]. If f is a path from x0 to x1 then

[cx0 ] ∗ [f ] = [f ] = [f ] ∗ [cx1 ] .

3. (Inverse) For f : [0, 1]→ X a path from x0 to x1 let f̄ be the reverse path from x1 to x0,
with f̄(s) = f(1− s) for all s ∈ [0, 1]. Then

[f ] ∗ [f̄ ] = [cx0 ] and [f̄ ] ∗ [f ] = [cx1 ] .

Proof. (1) The composition ([f ] ∗ [g]) ∗ [h] is the path homotopy class of the path (f ∗ g) ∗ h
given by

((f ∗ g) ∗ h)(s) =


f(4s) for 0 ≤ s ≤ 1/4,

g(4s− 1) for 1/4 ≤ s ≤ 1/2,

h(2s− 1) for 1/2 ≤ s ≤ 1

while [f ] ∗ ([g] ∗ [h]) is the path homotopy class of the path f ∗ (g ∗ h) given by

(f ∗ (g ∗ h))(s) =


f(2s) for 0 ≤ s ≤ 1/2,

g(4s− 2) for 1/2 ≤ s ≤ 3/4,

h(4s− 3) for 3/4 ≤ s ≤ 1.

These are not equal, but they are path homotopic. One choice of path homotopy F : (f ∗g)∗h 'p
f ∗ (g ∗ h) is given by the family of paths from x0 to x3 that at time t ∈ [0, 1] traverses f for
path parameter values

0 ≤ s ≤ (1− t)(1/4) + t(1/2) = (1 + t)/4 ,

then traverses g for

(1 + t)/4 ≤ s ≤ (1− t)(1/2) + t(3/4) = (2 + t)/4 ,

and finally traverses h for (2 + t)/4 ≤ s ≤ 1. This leads to the following explicit formula:

F (s, t) =


f(4s/(1 + t)) for 0 ≤ s ≤ (1 + t)/4,

g(4s− 1− t) for (1 + t)/4 ≤ s ≤ (2 + t)/4,

h((4s− 2− t)/(2− t)) for (2 + t)/4 ≤ s ≤ 1 .
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It is continuous as a function of (s, t) ∈ [0, 1]2, by the pasting lemma.
(2) The composition [cx0 ] ∗ [f ] is the path homotopy class of the path cx0 ∗ f given by

(cx0 ∗ f)(s) =

{
x0 for 0 ≤ s ≤ 1/2,

f(2s− 1) for 1/2 ≤ s ≤ 1.

This is not equal to f , but they are path homotopic. One path homotopy F : cx0 ∗ f 'p f is
given by the family of paths that at time t ∈ [0, 1] remains at x0 for parameter values

0 ≤ s ≤ (1− t)(1/2) + t(0) = (1− t)/2

and then traverses f for
(1− t)/2 ≤ s ≤ 1 .

This corresponds to the formula

F (s, t) =

{
x0 for 0 ≤ s ≤ (1− t)/2,

f((2s− 1 + t)/(1 + t)) for (1− t)/2 ≤ s ≤ 1.

Similarly, [f ] ∗ [cx1 ] is the path homotopy class of

(f ∗ cx1)(s) =

{
f(2s) for 0 ≤ s ≤ 1/2,

x1 for 1/2 ≤ s ≤ 1.

A path homotopy F : f 'p f ∗ cx1 is given by the family of paths that at time t traverses f for

0 ≤ s ≤ (1− t)(1) + t(1/2) = 1− t/2

and then remains at x1 for
1− t/2 ≤ s ≤ 1 .

This corresponds to the formula

F (s, t) =

{
f(2s/(2− t)) for 0 ≤ s ≤ 1− t/2,

x1 for 1− t/2 ≤ s ≤ 1.

(3) The composition [f ] ∗ [f̄ ] is the path homotopy class of

f ∗ f̄ =

{
f(2s) for 0 ≤ s ≤ 1/2,

f(2− 2s) for 1/2 ≤ s ≤ 1,

since f̄(2s−1) = f(1−(2s−1)) = f(2−2s). A path homotopy cx0 'p f ∗f̄ is given by the family
of paths that at time t follows s 7→ f(2s) for 0 ≤ s ≤ t/2, remains at f(t) for t/2 ≤ s ≤ 1− t/2,
and then returns with s 7→ f(2− 2s) for 1− t/2 ≤ s ≤ 1.

F (s, t) =


f(2s) for 0 ≤ s ≤ t/2,

f(t) for t/2 ≤ s ≤ 1− t/2,

f(2− 2s) for 1− t/2 ≤ s ≤ 1.

Again, this is continuous in (s, t) by the pasting lemma.
A path homotopy cx1 'p f̄ ∗ f is obtained by replacing f with f̄ in the path homotopy

f ∗ f̄ 'p cx0 .

122



Remark 7.1.17. The sets of path homotopy classes

π1(X,x0, x1)

for all pairs of points x0, x1 ∈ X, together with the pairings

π1(X,x0, x1)× π1(X,x1, x2) −→ π1(X,x0, x2) ,

subject to the properties of the theorem, form a categorical structure called a groupoid. For
many purposes, little is lost by selecting a single point x0 ∈ X, and focusing on the part of this
structure where x0 = x1 = x2. The resulting structure is a group, which is a far more classical
mathematical notion.

7.2 (§52) The Fundamental Group

7.2.1 The fundamental group

Let x0 ∈ X be a fixed base point. We refer to the pair (X,x0) as a based space.

Definition 7.2.1. A path in X from x0 to x0 is called a loop in X based at x0, or a loop in
(X,x0). Let

π1(X,x0) = {[f ] | f is a loop in (X,x0)}

be the set of path homotopy classes of loops in X based at x0.

π1(X,x0) is the same set as π1(X,x0, x0). Note that the composition f ∗ g of two loops in
(X,x0) is again a loop in (X,x0).

Lemma 7.2.2. The composition of path homotopy classes specializes to a pairing

π1(X,x0)× π1(X,x0) −→ π1(X,x0)

([f ], [g]) 7−→ [f ] ∗ [g] = [f ∗ g]

where f and g are loops in X based at x0.

Theorem 7.2.3. The set π1(X,x0) with the composition operation ∗ is a group, with neutral
element e = [cx0 ] and group inverse [f ]−1 = [f̄ ] for each loop f in (X,x0).

Proof. The composition operation defines a group structure if it is (1) associative, (2) has a left
and right unit, and (3) each element has a left and right inverse. All three conditions follow by
specializing the previous theorem to the case where all paths are loops in X based at x0.

Definition 7.2.4. π1(X,x0), with this group structure, is called the fundamental group of X
based at x0.

Example 7.2.5. If X ⊂ Rn is convex, and x0 ∈ X, then π1(X,x0) = {e} is the trivial group.

Theorem 7.2.6. If X is path connected and x0, x1 ∈ X then π1(X,x0) ∼= π1(X,x1).

Definition 7.2.7. Given a path α : [0, 1]→ X from x0 to x1, let

α̂ : π1(X,x0) −→ π1(X,x1)

[f ] 7−→ [ᾱ ∗ f ∗ α] .

Lemma 7.2.8. α̂ is a group homomorphism.
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Proof. Let f and g be loops at x0. Then

α̂([f ] ∗ [g]) = α̂([f ∗ g]) = [ᾱ ∗ f ∗ g ∗ α]

is equal to
α̂([f ]) ∗ α̂([g]) = [ᾱ ∗ f ∗ α] ∗ [ᾱ ∗ g ∗ α] = [ᾱ ∗ f ∗ α ∗ ᾱ ∗ g ∗ α]

because there is a path homotopy α ∗ ᾱ 'p cx0 , so that

ᾱ ∗ f ∗ α ∗ ᾱ ∗ g ∗ α 'p ᾱ ∗ f ∗ cx0 ∗ g ∗ α 'p ᾱ ∗ f ∗ g ∗ α .

Proof of Theorem 7.2.6. Since X is path connected, we can choose a path α from x0 to x1.
Then α and the reversed path β = ᾱ from x1 to x0 induce group homomorphisms

α̂ : π1(X,x0) −→ π1(X,x1)

β̂ : π1(X,x1) −→ π1(X,x0) .

These are mutually inverse, since

β̂(α̂([f ])) = [α ∗ ᾱ ∗ f ∗ α ∗ ᾱ] = [cx0 ∗ f ∗ cx0 ] = [f ] ,

and vice versa.

Definition 7.2.9. A path connected space X is said to be simply connected if π1(X,x0) is the
trivial group for some, hence any, base point x0 ∈ X.

Lemma 7.2.10. A path connected space X is simply connected if and only if any two paths f
and g in X from x0 to x1 are path homotopic.

Proof. If any loop f at x0 is path homotopic to the constant loop cx0 , then π1(X,x0) = {e} is
trivial and X is simply connected.

Conversely, if π1(X,x0) is trivial and f and g are paths in X from x0 to x1, then f ∗ ḡ is a
loop at x0, and is therefore path homotopic to cx0 . Hence

f 'p f ∗ cx1 'p f ∗ ḡ ∗ g 'p cx0 ∗ g 'p g .

Remark 7.2.11. For the fundamental group to be useful, we must of course have examples of
spaces with non-trivial fundamental group. We shall see that for X = S1 the circle, based at
s0 = (1, 0) (or any other point), the fundamental group π1(S1, s0) is an infinite cyclic group,
isomorphic to the additive group Z of the integers. In fact, any (discrete) group G can be
realized as the fundamental group of some based space.

7.2.2 Periods

If v is a closed vector field on X ⊂ R2, the rule

[f ] 7−→
∫
C
v

where f is a ((piecewise continuously differentiable)) loop in X based at x0, and C = f([0, 1]),
defines a group homomorphism ∫

?
v : π1(X,x0) −→ R .
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Up to some issues about whether continuous loops and path homotopies can be replaced with
continuously differentiable loops and path homotopies, the example of the closed vector field

v(x1, x2) =
(−x2, x1)

x2
1 + x2

2

on X = R2 − {(0, 0)} with
∫
C v = 2π, where C = f([0, 1]) is parametrized as a loop based at

(1, 0), going “once around” the origin, shows that
∫

? v is nonzero. In particular, this shows that
π1(X,x0) is an infinite group when X = R2 − {(0, 0)}, except for the above-mentioned issues
about replacing continuous functions with differentiable ones.

7.2.3 Functoriality

Definition 7.2.12. Let (X,x0) and (Y, y0) be based spaces. A based map h : (X,x0)→ (Y, y0)
is a map h : X → Y such that h(x0) = y0. If f is a loop in X based at x0, then h ◦ f is a loop
in Y based at y0. Let

h∗ : π1(X,x0)→ π1(Y, y0)

be defined by h∗([f ]) = [h ◦ f ].

Lemma 7.2.13. h∗ is a group homomorphism.

We call h∗ the homomorphism induced by the based map h.

Proof. This means that for closed loops f and g in (X,x0), the identity

h∗([f ] ∗ [g]) = h∗([f ]) ∗ h∗([g])

holds in π1(Y, y0). The two sides are the path homotopy classes of the loops h ◦ (f ∗ g) and
(h ◦ f) ∗ (h ◦ g), respectively. These are in fact the same loop, given by

(h ◦ (f ∗ g))(s) = ((h ◦ f) ∗ (h ◦ g))(s) =

{
h(f(2s)) for 0 ≤ s ≤ 1/2,

h(g(2s− 1)) for 1/2 ≤ s ≤ 1.

Theorem 7.2.14 (Functoriality). If h : (X,x0)→ (Y, y0) and k : (Y, y0)→ (Z, z0), then

(k ◦ h)∗ = k∗ ◦ h∗ : π1(X,x0) −→ π1(Z, z0) .

If idX : (X,x0)→ (X,x0) is the identity map, then

(idX)∗ : π1(X,x0) −→ π1(X,x0)

is the identity homomorphism.

Proof. If [f ] is a loop in (X,x0) then

(k ◦ h)∗([f ]) = [(k ◦ h) ◦ f ]

and
k∗(h∗([f ])) = [k ◦ (h ◦ f)]

in π1(Z, z0), and these are equal by the associativity of composition of maps:

[0, 1]
f−→ X

h−→ Y
k−→ Z .

Similarly, (idX)∗([f ]) = [idX ◦ f ] is equal to [f ].
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Remark 7.2.15. We say that the combined rule sending each based space (X,x0) to its fun-
damental group π1(X,x0) and sending each based map h : (X,x0) → (Y, y0) to its induced
homomorphism h∗ is a functor from the category of based spaces and based maps to the cat-
egory of groups and homomorphisms. For now this is mostly fancy language to express the
identity (k ◦ h)∗ = k∗ ◦ h∗.

Corollary 7.2.16. If h : (X,x0)→ (Y, y0) is a homeomorphism then

h∗ : π1(X,x0)→ π1(Y, y0)

is a group isomorphism.

Proof. If k = h−1 : (Y, y0) → (X,x0) is the inverse homeomorphism to h, then k∗ = (h−1)∗ is
an inverse isomorphism to h∗, because k∗ ◦ h∗ = (k ◦ h)∗ = (idX)∗ is the identity on π1(X,x0),
and h∗ ◦ k∗ = (h ◦ k)∗ = (idY )∗ is the identity on π1(Y, y0).

Hence homeomorphic based spaces have isomorphic fundamental groups. In this sense the
fundamental group is a topological invariant of based spaces.

Once we show that π1(S1, s0) is a nontrivial group, we can deduce the following 2-dimensional
analogue of the intermediate value theorem. In fact, we will see that the inclusion j : S1 →
R2 − {(0, 0)} induces an isomorphism

j∗ : π1(S1, s0)
∼=−→ π1(R2 − {(0, 0)}, s0) ,

so determining the fundamental group of the circle is equivalent to determining the fundamental
group of the punctured plane.

Theorem 7.2.17 (Brouwer’s fixed point theorem). Let D2 = {x ∈ R2 : ‖x‖ ≤ 1} be the unit
disc in the plane. Each map f : D2 → D2 has a fixed point, i.e., a point p ∈ D2 such that
f(p) = p.

Proof. Suppose that f : D2 → D2 is a map with no fixed point, so that f(x) 6= x for each
x ∈ D2. Define a map r : D2 → S1, where S1 = {x ∈ R2 : ‖x‖ = 1} is the unit circle, as follows:
Draw the ray

s 7→ (1− s)f(x) + sx

in the plane, starting at f(x) for s = 0, passing through x for s = 1, and leaving D2 at a point
r(x) when s ≥ 1 is such that ‖(1− s)f(x) + sx‖ = 1. Here s and r(x) depend continuously on
x, so we get a map

r : D2 −→ S1 .

This would be a retraction of D2 on S1, in the sense that r|S1 is the identity. To check this,
note that for x ∈ S1 the ray from f(x) through x reaches S1 at the point x, for s = 1, so
r(x) = x. This is the assertion that r|S1 = idS1 .

The functoriality of the fundamental group and the non-triviality of the fundamental group
of the circle now leads to a contradiction. Let i : S1 ⊂ D2 denote the inclusion map. The
composite map

S1 i−→ D2 r−→ S1

is the identity on S1. Hence the composite r∗ ◦ i∗ of the induced homomorphisms

π1(S1, s0)
i∗−→ π1(D2, s0)

r∗−→ π1(S1, s0)

is the identity homomorphism. However, D2 ⊂ R2 is convex, so π1(D2, s0) ∼= {e} is the trivial
group and the image of r∗ ◦ i∗ consists only of the unit element. Thus π1(S1, s0) would have to
be a trivial group (if f had no fixed point).
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7.3 (§53) Covering Spaces

Let S1 = {(x, y) ∈ R2 | x2 +y2 = 1} be the unit circle, based at s0 = (1, 0). In order to calculate
the fundamental group

π1(S1, s0)

of path homotopy classes of loops in S1 at s0, we will use the map

p : R −→ S1

p(x) = (cos(2πx), sin(2πx)) .

This map is particularly well-behaved, exhibiting R as a “covering space” of S1. This will allow
us to relate loops in S1 to paths in R, in a way that is compatible with path homotopy. From
the fact that R is simply connected, we will then obtain a bijection

φ : π1(S1, s0)
∼=−→ p−1(s0) = Z

between the elements of π1(S1, s0) and the points in the preimage p−1(s0) ⊂ R. That preimage
is the set of integers, and a further analysis shows that the bijection φ is a group isomorphism:
the pairing in the fundamental group corresponds to the addition of integers.

Definition 7.3.1. A map p : E → B is called a covering map if each point in B has a neigh-
borhood U ⊂ B that is evenly covered. This means that

p−1(U) =
∐
α∈J

Vα

is the disjoint union of open subsets Vα ⊂ E such that the restriction

p|Vα : Vα
∼=−→ U

is a homeomorphism, for each α ∈ J .
We call p the projection, E the total space and B the base space of the covering map. For

each b ∈ B the preimage p−1(b) = {e ∈ E | p(e) = b} is called the fiber over b.

Example 7.3.2. The map p : R→ S1 given by p(x) = (cos(2πx), sin(2πx)) is a covering map.
The open subsets U = S1 − {(−1, 0)} and U ′ = S1 − {(1, 0)} are evenly covered. To verify this
for U , note that

p−1(U) =
∐
α∈Z

(α− 1/2, α+ 1/2)

is the disjoint union of open subsets Vα = (α− 1/2, α+ 1/2) ⊂ R, and the restricted map

p|Vα : Vα
∼=−→ U

is a homeomorphism for each integer α ∈ Z. Similarly, for U ′ note that

p−1(U ′) =
∐
α∈Z

(α, α+ 1)

is the disjoint union of open subsets V ′α = (α, α+ 1) ⊂ R, and the restricted map

p|V ′α : V ′α
∼=−→ U ′

is a homeomorphism for each integer α ∈ Z.
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Example 7.3.3. Let n ∈ N. The n-th power map

p : S1 −→ S1

p(cos(θ), sin(θ)) = (cos(nθ), sin(nθ))

is a covering map. Again the open subsets U = S1 − {(−1, 0)} and U ′ = S1 − {(1, 0)} in the
base are evenly covered. For example,

p−1(U) = {(cos(θ), sin(θ) | nθ 6= π mod 2π}

is the disjoint union of n open arcs in the total space.

Example 7.3.4. The complex exponential map p : C → C− {0} given by p(z) = exp(2πiz) is
a covering map. The open subsets U = C − (−∞, 0) and U ′ = C − (0,∞) are evenly covered.
Here (−∞, 0), (0,∞) ⊂ R ⊂ C. We have p−1(U) =

∐
α∈Z(α− 1/2, α + 1/2)× R ⊂ R× R ∼= C,

with p mapping Vα = (α− 1/2, α+ 1/2)× R homeomorphically to C− (−∞, 0), and similarly
for p−1(U ′).

Example 7.3.5. Let n ∈ N. The complex power map p : C−{0} → C−{0} given by p(z) = zn

is a covering map. Once more the open subsets U = C − (−∞, 0) and U ′ = C − (0,∞) are
evenly covered.

Remark 7.3.6. Note the difference between a cover, or covering, C = {Uα}α∈J of a space
X =

⋃
α∈J Uα and a covering map p : E → B. The cover also gives rise to a map

∐
α∈J Uα → X,

but the notions are different. They are, however, both special cases of a more general notion. In
the context of algebraic geometry, the common notion is that of a Grothendieck (pre-)topology,
with the covers corresponding to the Zariski topology and the covering maps corresponding to
the étale topology.

7.4 (§54) The Fundamental Group of the Circle

Let p : E → B be a covering space. We now relate paths in E to paths in B.

Definition 7.4.1. Let f : X → B be any map. A lifting of f is a map f̃ : X → E such that
p ◦ f̃ = f :

E

p

��

X

f̃
>>

f
// B

Hence, for each x ∈ X the point f̃(x) lies in the fiber of E above f(x). If X = [0, 1], so that f
is a path in B, a lifting of f is a path in E.

Proposition 7.4.2 (Unique path lifting property). Let p : E → B be a covering map, let e0 ∈ E
and b0 = p(e0), and let f be a path in B from b0. Then there exists a unique path f̃ in E from
e0 that lifts f .

e0
f̃

e1 E

p

��

b0
f

b1 [0, 1]

f̃
==

f
// B
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Proof. Cover B by evenly covered open subsets U . The preimages f−1(U) form an open cover
of [0, 1]. By compactness, there is a Lebesgue number ε > 0 for this open cover. Choose n ∈ N
such that 1/n < ε, and let sk = k/n for each 0 ≤ k ≤ n.

0 = s0 < s1 < · · · < sk < sk+1 < · · · < sn = 1 .

Then for each 0 ≤ k < n the interval [sk, sk+1] lies in one of the preimages f−1(U), so

f([sk, sk+1]) ⊂ U

lies in an evenly covered subset of B.
We first show the existence of a lift f̃ of f . Let fk = f |[0,sk] denote the restriction of f to

the first k of these intervals of length 1/n. By (finite) induction on k, assume that fk admits a
lift f̃k : [0, sk]→ E, subject to the initial condition f̃k(0) = e0. This is clear for k = 0. We will
show that f̃k can be extended to a lift f̃k+1 : [0, sk+1]→ E of fk+1.

e0 f̃k(sk) f̃k+1(sk+1)
∐
α Vα

//

��

E

p

��

b0 f(sk) f(sk+1) [sk, sk+1] //

99

U // B

As already noted, f([sk, sk+1]) lies in an evenly covered U ⊂ B. Let p−1(U) =
∐
α∈J Vα. The

end point f̃k(sk) of the lift f̃k lies in the fiber over fk(sk) = f(sk) ∈ U , hence lies in Vβ for a
unique β ∈ J . Since

p|Vβ : Vβ
∼=−→ U

is a homeomorphism, we can use its inverse to define the extended lift:

f̃k+1(x) =

{
f̃k(x) for 0 ≤ x ≤ sk,
p|−1
Vβ
◦ fk+1(x) for sk ≤ x ≤ sk+1.

This is well-defined at x = sk by the choice of β, hence is continuous by the pasting lemma.
Clearly, p ◦ f̃k+1 = fk+1, so f̃k+1 lifts fk+1 over [0, sk+1]. After finitely many steps we obtain a
lift f̃ = f̃n of f , starting at e0.

Next we show that f̃ : [0, 1]→ E is uniquely determined by p◦ f̃ = f and f̃(0) = e0. Suppose
that f̂ : [0, 1]→ E is a second such lift. We show that f̃ |[0,sk] = f̂ |[0,sk] for 0 ≤ k ≤ n by induction

on k. The case k = 0 asserts that f̃(0) = f̂(0), which is clear since both lifts start at e0. For
0 ≤ k < n we can assume that f̃(sk) = f̂(sk), and want to prove that f̃ |[sk,sk+1] = f̂ |[sk,sk+1].

Since f maps [sk, sk+1] into an evenly covered U ⊂ B, with p−1(U) =
∐
α∈J Vα a disjoint union

of open subsets of E, both f̃ and f̂ map [sk, sk+1] into
∐
α∈J Vα. Let β ∈ J be the index such

that f̃(sk) = f̂(sk) lies in Vβ. Since [sk, sk+1] is connected and the Vα are open, f̃ |[sk,sk+1] must

be contained in only one of the sets Vα, and since f̃(sk) ∈ Vβ, that set must in fact be Vβ.

Likewise, f̂ |[sk,sk+1] must be contained in Vβ. Now p|Vβ : Vβ → U is a homeomorphism, and in
particular it is injective. Hence

p|Vβ ◦ f̃ |[sk,sk+1] = f |[sk,sk+1] = p|Vβ ◦ f̂ |[sk,sk+1]

implies that f̃ |[sk,sk+1] = f̂ |[sk,sk+1], as required.
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Proposition 7.4.3 (Homotopy lifting property). Let p : E → B be a covering map, let e0 ∈ E
and b0 = p(e0), and let F : [0, 1] × [0, 1] → B be a map with F (0, 0) = b0. Then there exists a
unique lifting F̃ : [0, 1]× [0, 1]→ E with F̃ (0, 0) = e0.

E

p

��

[0, 1]× [0, 1]

F̃

99

F
// B

If F is a path homotopy from f0 to f1, then F̃ is a path homotopy from a lift f̃0 to a lift f̃1.

Proof. The proof (see Munkres’ Theorem 54.2) is similar to that of the path lifting property,
breaking [0, 1]× [0, 1] into smaller squares [sk, sk+1]× [t`, t`+1] that are mapped by F into evenly
covered subsets of B, and using p|−1

Vβ
to inductively extend a lift of F from (0, 0) in a unique

way to all of [0, 1]× [0, 1]
If F is a path homotopy from f0 to f1, where these are paths from b0 to b1, then t 7→ F (0, t)

is the constant path at b0. Hence t 7→ F̃ (0, t) is a lift of this path, starting at F̃ (0, 0) = e0.
The constant path at e0 is also such a lift, so by the uniqueness of path lifting we must have
F̃ (0, t) = e0 for all t ∈ [0, 1]. Similarly, t 7→ F (1, t) is the constant path at b1. Let e1 = F̃ (1, 0),
with p(e1) = b1. The lift t 7→ F̃ (1, t) must then be the constant path at e1, by the same
uniqueness argument as before. This shows that F̃ is a path homotopy, connecting two paths
in E from e0 to e1.

We now come to the construction of the lifting correspondence

φ : π1(B, b0) −→ p−1(b0)

that we will prove is a bijection in certain cases.

Definition 7.4.4. Let p : E → B be a covering map, choose e0 ∈ E and let b0 = p(e0). Given
an element [f ] ∈ π1(B, b0), equal to the path homotopy class of a loop f : [0, 1]→ B in B at b0,
let f̃ : [0, 1]→ E be the unique lift of f to a path in E starting at e0. Let

φ([f ]) = f̃(1)

be the end-point of that lifted path. Then p(φ([f ])) = f(1) = b0, so φ([f ]) ∈ p−1(b0) lies in the
fiber of p over b0.

If f0 'p f1 are path homotopic loops at b0, and f̃0 and f̃1 are lifts in E starting at e0, then
the homotopy lifting property tells us that f̃0 'p f̃1. In particular, f̃0(1) = f̃1(1). This means
that φ is well-defined.

Theorem 7.4.5. Let p : E → B be a covering map, choose e0 ∈ E and let b0 = p(e0). If E is
path connected then the lifting correspondence

φ : π1(B, b0) −→ p−1(b0)

is surjective. If E is simply-connected, then φ is a bijection.

Proof. To prove that φ is surjective, when E is path connected, consider any point e ∈ p−1(b0).
By hypothesis there exists a path h : [0, 1]→ E in E from e0 to e. Let f = p ◦ h : [0, 1]→ B be
its projection to B. Then f(0) = p(e0) = b0 and f(1) = p(e) = b0, so f is a loop in B at b0, and
h = f̃ is the unique lift of f to a path in E starting at e0. Hence φ maps the path homotopy
class [f ] in π1(B, b0) to φ([f ]) = f̃(1) = h(1) = e. Thus φ is surjective.
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To prove that φ is injective, consider two loops f, g : [0, 1]→ B in B at b0 such that φ maps
both [f ] and [g] to the same point e ∈ E. Let f̃ and g̃ be the unique lifts of f and g to paths
in E starting at e0, respectively. By assumption, f̃(1) = e = g̃(1), so we can form the loop
f̃ ∗ g̃ in E at e0. This is the composition of f̃ with the reverse of g̃. By the hypothesis of
simple-connectivity, there is a path homotopy

H : f̃ ∗ g̃ 'p ce0

from that loop to the constant loop at e0. Composing with p we obtain a path homotopy

pH : f ∗ g 'p cb0

from f ∗ g to the constant loop at b0. This means that [f ] ∗ [g]−1 = e in π1(B, b0), so [f ] = [g].
Hence φ is injective.

Theorem 7.4.6. There is a group isomorphism π1(S1, s0) ∼= Z.

Proof. The covering map p : R→ S1 given by p(x) = (cos(2πx), sin(2πx)) maps e0 = 0 to b0 =
s0 = (1, 0), and E = R is path connected and simply-connected, so the lifting correspondence

φ : π1(S1, s0)
∼=−→ p−1(s0)

is a bijection. Here p−1(s0) = Z ⊂ R. It remains to prove that this bijection respects the group
structures, sending the composition ∗ in π1(S1, s0) to the addition in Z.

Let f, g : [0, 1] → S1 be loops in S1 at s0, with unique lifts f̃ , g̃ : [0, 1] → R to paths in R
starting at 0. Let f̃(1) = φ([f ]) = m and g̃(1) = φ([g]) = n. The composition [f ] ∗ [g] is the
path homotopy class of f ∗ g. We must show that φ([f ∗ g]) = m + n. To evaluate φ([f ∗ g])
we need to lift f ∗ g. The first half of such a lift is given by f̃ , traversed at double speed, and
ending at f̃(1) = m. To continue the lift we may therefore not use g̃, which starts at 0 (unless
m = 0). Instead we use ĝ = m+ g̃, given by

ĝ(s) = m+ g̃(s)

for s ∈ [0, 1]. Then ĝ is a lift of g starting at m, so the composition f̃ ∗ ĝ is well-defined. This
is a lift of p(f̃ ∗ ĝ) = f ∗ g starting at 0, i.e.,

f̃ ∗ g = f̃ ∗ ĝ .

Thus
φ([f ∗ g]) = f̃ ∗ g(1) = ĝ(1) = m+ g̃(1) = m+ n .

This proves that φ([f ] ∗ [g]) = m + n = φ([m]) + φ([n]), so that φ is a group homomorphism.
Since it is bijective, it is a group isomorphism.

Remark 7.4.7. This proof used the existence of maps τm : x 7→ m+x : R→ R with p◦ τm = p,
for each m ∈ Z. These maps τm are called the deck transformations of the covering map
p : R→ S1.

R τm //

p
  

R

p
~~

S1
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7.5 (§55) Retractions and Fixed Points

Definition 7.5.1. Let i : A ⊂ X. A retraction of X onto A is a map r : X → A such that
r ◦ i = idA.

A //
i //

idA   

X

r

��

A

If such a map r exists, we say that A is a retract of X.

Lemma 7.5.2. If x0 ∈ A ⊂ X and A is a retract of X, then i∗ : π1(A, x0)→ π1(X,x0) is (split)
injective.

Proof.

π1(A, x0)
i∗ //

id &&

π1(X,x0)

r∗
��

π1(A, x0)

Theorem 7.5.3. There is no retraction of D2 onto S1.

Proof. π1(S1, s0)→ π1(D2, s0) is not injective.

Theorem 7.5.4 (Brouwer’s fixed point theorem for the disc). If f : D2 → D2 is continuous,
then there is a p ∈ D2 with f(p) = p.

We already proved this in Theorem 7.2.17: if f(x) 6= x for all x ∈ D2 then there is a
retraction r : D2 → S1, specified by asking that f(x), x and r(x) lie on a line, in that order.

Corollary 7.5.5. If A ∈ M3(R) is a 3 × 3 matrix with positive entries, then A has a positive
eigenvalue λ > 0.

Proof. Let D = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1;x, y, z ≥ 0}. There is a homeomorphism
h : D ∼= D2. Define f : D → D by f(v) = Av/‖Av‖. Then hfh−1 : D2 → D2 is continuous,
hence has a fixed point p. Let v = h−1(p). Then f(v) = v, so Av = λv with λ = ‖Av‖ > 0.

7.6 (§56) The Fundamental Theorem of Algebra

Theorem 7.6.1. Let n ≥ 1 and an−1, . . . , a0 ∈ C. The polynomial

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

has at least one root z ∈ C.

Proof. Choose R ≥ 1 so that

|an−1|+ · · ·+ |a1|+ |a0| < R .

For w ∈ C with |w| = R we have

|an−1w
n−1 + · · ·+ a1w + a0| ≤ |an−1|Rn−1 + · · ·+ |a1|R+ a0

≤ (|an−1|+ · · ·+ |a1|+ |a0|)Rn−1

< Rn = |w|n
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so the straight-line homotopy

F (w, t) = (1− t)wn + t(wn + an−1w
n−1 + · · ·+ a1w + a0)

= wn + t(an−1w
n−1 + · · ·+ a1w + a0)

from F (w, 0) = wn to F (w, 1) = P (w) is never zero for |w| = R and t ∈ [0, 1].
Assume, in order to derive a contradiction, that P (z) 6= 0 for all z ∈ C. Consider S1 ⊂ D2

as subspaces of C, based at s0 = 1. Let

X = S1 × [0, 1] ∪D2 × {1}

be based at x0 = (1, 0), and define a map G : X → S1 by

G(z, t) = F (Rz, t)/|F (Rz, t)| .

This is well-defined, because for z ∈ D2 we have F (Rz, 1) = P (Rz) 6= 0, by our assumption,
and for z ∈ S1 we have |Rz| = R, so F (Rz, t) 6= 0 for t ∈ [0, 1]. In particular,

G(z, 0) = F (Rz, 0)/|F (Rz, 0)| = (Rz)n/|(Rz)n| = zn

for z ∈ S1. Hence we have a commutative diagram of based spaces and based maps

(S1, s0)
i //

g
%%

(X,x0)

G
��

(S1, s0)

where i(z) = (z, 0) and g(z) = zn. Note that there is a homeomorphism h : (X,x0) ∼= (D2, s0),
given by h(z, t) = (1− t/2)z for (z, t) ∈ S1 × [0, 1] and h(z, 1) = z/2 for (z, 1) ∈ D2 × {1}.

Applying the fundamental group, we obtain a commutative diagram of groups and homo-
morphisms

π1(S1, s0)
i∗ //

g∗
''

π1(X,x0)

G∗
��

π1(S1, s0) .

On one hand, g∗ : π1(S1, s0) → π1(S1, s0) maps the generator of π1(S1, s0) ∼= Z, given by the
path homotopy class [f ] of the loop f(s) = e2πi·s ↔ (cos(2πs), sin(2πs)) to the path homotopy
class of the loop

gf(s) = (e2πi·s)n = e2πi·ns ↔ (cos(2πns), sin(2πns)) .

Under the lifting correspondence φ : π1(S1, s0) ∼= Z, we have φ([f ]) = 1, since f̃(s) = s lifts

f and f̃(1) = 1. Similarly, φ([gf ]) = n, since g̃f(s) = ns lifts gf and g̃f(1) = n. Hence
g∗ : π1(S1, s0)→ π1(S1, s0) maps the generator [f ] of π1(S1, s0) to

g∗([f ]) = [f ] ∗ · · · ∗ [f ]

(with n copies of [f ]), corresponding to multiplication by n in Z. Since n ≥ 1, this is not the
trivial homomorphism.

On the other hand, h∗ : π1(X,x0) ∼= π1(D2, s0) = {e} is the trivial group, so the composite
G∗ ◦ i∗ is the trivial homomorphism. This contradicts the identity g∗ = G∗ ◦ i∗.
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7.7 3-manifolds

Any compact 3-manifold is the disjoint union of a finite set of compact, connected 3-manifolds.
A compact, connected 3-manifolds is said to be irreducible if each embedded sphere (S2) bounds
an embedded ball (B3). Otherwise the 3-manifold is reducible and can be simplified by cutting
it open along the embedded 2-sphere and gluing in a ball on each side. This process stops after
finitely many steps.

Here is a post on irreducible 3-manifolds and their fundamental groups, by Bruno Martelli
on mathoverflow.net:

Perelman has proved Thurston’s geometrization conjecture, which says that every
irreducible 3-manifold decomposes along its canonical decomposition along tori into
pieces, each admitting a geometric structure. A “geometric structure” is a nice
Riemannian metric, which is in particular complete and of finite volume.

There are eight geometric structures for 3 manifolds: three structures are the con-
stant curvature ones (spherical, flat, hyperbolic), while the other 5 structures are
some kind of mixing of low-dimensional structures (for instance, a surface Σ of genus
2 has a hyperbolic metric, and the three-manifold Σ × S1 has a mixed hyperbolic
×S1 structure).

The funny thing is that geometrization conjecture was already proved by Thurston
when the canonical decomposition is non-trivial, i.e., when there is at least one torus
in it. In that case the manifold is a Haken manifold because it contains a surface
whose fundamental group injects in the 3-manifold. Haken manifolds have been
studied by Haken himself (of course) and by Waldhausen, who proved in 1968 that
two Haken manifolds with isomorphic fundamental groups are in fact homeomorphic.

If the canonical decomposition of our irreducible manifold M is empty, now we
can state by Perelman’s work that M admits one of these 8 nice geometries. The
manifolds belonging to 7 of these geometries are well-known and have been classified
some decades ago (six of these geometries actually coincide with the well-known
Seifert manifolds, classified by Seifert already in 1933). From the classification one
can see that the only distinct manifolds with isomorphic fundamental groups are
lens spaces (which belong to the elliptic geometry, since they have finite fundamental
group).

The only un-classified geometry is the hyperbolic one. However, Mostow rigidity
theorem says that two hyperbolic manifolds with isomorphic fundamental group
are isometric, hence we are done. Some simple considerations also show that two
manifolds belonging to distinct geometries have non-isomorphic fundamental groups.

Therefore now we know that the fundamental group is a complete invariant for
irreducible 3-manifolds, except lens spaces.

— — — END OF NOTES — — —
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