
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: MAT4510 — Goeometric Structures

Day of examination: Monday Dec 17. 2018.

Examination hours: 14.30 – 18.30

This problem set consists of 5 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All problems count for 10 points each. You have to explain all answers, and
show enough details so that it is easy to follow your arguments. At the end
of this document you will find some information that might be handy. You
may answer the exam in either English or Norwegian.

Problem 1
Let f ∈ Möb+(H) be the map

f(z) =
z − 1

z + 1
.

Determine whether f is hyperbolic, parabolic or elliptic.

Solution:
To determine the type of f(z) we have to decide whether f has a

single fixed point in H (elliptic), a single fixed point on ∂H (parabolic),
or two distinct fixed point on ∂H (hyperbolic). So we consider the equation
f(z) = z, which is the same as

z − 1 = z(z + 1) = z2 + z,

which is the same as
z2 = −1,

so f has the unique fixed point i in H. Hence f is elliptic.

Problem 2
Let S ⊂ R3 be a smooth regular surface. Explain what the Gauss map

N : S → S2 is, and use this to define Gaussian curvature.

Solution: Check the book.

Problem 3
Let S ⊂ R3 be a smooth regular surface, and let γ : [0, 1] → S be a

smooth curve. Explain geometrically what the covariant second derivative
of γ is, and explain what it would mean for γ to be a geodesic.

Solution: Check the book.

(Continued on page 2.)
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Problem 4
Let g(u) = u, h(u) = e−u, and let

x(u, v) = (g(u) cos(v), g(u) sin(v), h(u)),

for (u, v) ∈ (0,∞)× [0, 2π], parametrize the surface of revolution around the
z-axis in R3 with coordinates (x, y, z).

(a) Compute the first fundamental form.

(b) Compute the Gaussian curvature.

(c) Prove that for a fixed v0, the curves x(u, v0) are geodesics.

(d) Prove that for a fixed u0, the curves x(u0, v) are not geodesics.

(e) Use the Gauss-Bonnet Theorem to prove that for any 0 < r < R <∞,
the Euler characteristic of the "annulus" x([r,R]× [0, 2π]) is zero.

Solution:
(a) We have that

xu = (cos(v), sin(v),−e−u),

and that
xv = (−u sin(v), u cos(v), 0).

So we get that

E = xu · xu = cos2(v) + sin2(v) + e−2u = 1 + e−2u,

F = xu · xv = cos(v) · (−u sin(v)) + sin(v) · u cos(v) + 0 = 0,

and
G = xv · xv = u2 sinv +u2 cos2 v = u2.

So the first fundamental form is

ds2 = (1 + e−2u)du2 + u2dv2.

(b) Here, the quickest is to remember the general formula for a surface
of revolution

K(x(u, v)) =
h′(u)(g′(u)h′′(u)− h′(u)g′′(u))

g(u)(g′(u)2 + h′(u)2)2
.

We have that h′(u) = −e−u, g(u) = u, g′(u) = 1, g′′(u) = 0, h′′(u) = e−u,
and so

K(x(u, v)) =
−e−u(1 · e−u − 0)

u(1 + e−2u)2
=

−e−2u

u(1 + e−2u)2
.

Alternatively, one can calculate the coefficients of the second fundamental
form e, f and g, and use the formula

K =
ef − g2

EF −G2
.

(Continued on page 3.)
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(c) First we calculate the Christoffel symbols with respect to the
parametrisation, using the fact at the end of the problem sheet. Here
E = 1 + e−2u, F = 0 and G = u2, so we see that[

1 + e−2u 0
0 u2

] [
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
−e−2u 0 −u

0 u 0

]
So we get that for a curve α(t) = (u(t), v(t)) we have that

Dα′′(t) = (u′′(t) + u′(t)2Γ1
11 + v′(t)2Γ1

22)xu

+ (v′′(t) + u′(t)v′(t)Γ2
12)xv.

For the curve α(t) = (t, v0) we see that v′′(t) = v′(t) = 0, so Dα′′(t) is indeed
always a multiple of α′(t) = xu.

(d) If we consider the curve α(t) = (u1, t) (which is even a constant
speed curve), we see from (c) that the xu-component of Dα′′(t) is Γ1

22 · xu
which is never zero, so Dα′′(t) is never a multiple of α′(t) = xv.

(e) If we let αr denote the curve u = r and if we let αR denote the curve
u = R, the annular region A ⊂ S is bounded by the smooth curves x(αr)
and x(αR). We start by calculating the integral∫

∂A
kgds,

and so first we parametrise αr and αR by arc length. We get αr(t) = (r, t/r)
and αR(t) = (R, t/R). We get that

Dα′′r (t) = v′(t)2Γ1
22xu = (1/r)2(−r)(1 + e−2r)−1xu =

−1

r(1 + e−2r)
xu,

and similarly

Dα′′R(t) =
−1

R(1 + e−2R)
xu.

Now along αr the inward pointing unit normal is xu√
1+e−2r

and so krg becomes
−1

r(1+e−2r)1/2
, and if we consider αR the normal points the other way and kRg

becomes 1
R(1+e−2R)1/2

. It follows that∫
∂A
kgds = 2π(

1

(1 + e−2R)1/2
− 1

(1 + e−2r)1/2
).

Next we consider the integral∫ ∫
A
KdA.

This is calculated in local coordinates∫ ∫
A
KdA =

∫ 2π

0

∫ R

r

−e−2u

u(1 + e−2u)2

√
u2(1 + e−2u)dudv

=

∫ 2π

0

∫ R

r

−e−2u

(1 + e−2u)3/2
dudv

= 2π[−(1 + e−2u)−1/2]Rr

= −
∫
∂A
kgds.

(Continued on page 4.)



Examination in MAT4510, Monday Dec 17. 2018. Page 4

The Gauss-Bonnet theorem states that∫ ∫
A
KdA+

∫
∂A
kgds+

∑
k

εk = 2πχ(A),

where the εk’s are the turning angles, and χ(A) is the Euler characteristic.
In this case ∂A is smooth, and so there are no turning angles, and it follows
that χ(A) = 0.

Problem 5

(a) State the classification theorem for compact connected surfaces.

(b) You may now take for granted that any compact connected surface
admits a smooth structure, and a Riemannian metric with curvature
constantly equal to -1, 0, or 1. For each of the surfaces in the
classification in (a), determine the corresponding constant curvature.

Solution.
(a) Any compact connected surface is M homeomorphic to a surface

S(m,n) = T 2# · · ·#T 2︸ ︷︷ ︸
m

#P 2# · · ·#P 2︸ ︷︷ ︸
n

Furthermore, we have the relation P 2#P 2#P 2 ≈ T 2#P 2, which can be used
to show that either

M ≈ S(m, 0) (1)

or
M ≈ S(0, n). (2)

If M is orientable then M is of type (1) and m is uniquely determined by
M (in fact χ(M)), and if M is not orientable, then M is of type (2) and n
is uniquely determined by M (in fact χ(M)). (Here it is understood that
S(0, 0) ≈ S2). We have that S(m, 0) is never homeomorphic to S(0, n) unless
m = n = 0.

Alternatively, one has that M ≈ S(m,n) where n = 0, 1 or 2, and the
pair (m,n) is uniquely determined by the orientability of M and χ(M).

(b) For a compact connected surface M = S(m,n) we have that the
Euler characteristic is given by

χ(S(m,n)) = 2− 2m− n.

In this case, the Gauss-Bonnet Theorem tells us that∫ ∫
M
KdA = 2πχ(M),

where K denotes the Gaussian curvature. If n = 0 it follows that K = 1 if
and only if m = 0, i.e., if M is a sphere, it follows that K = 0 if and only if
m = 1, i.e., if M is a torus, and it follows that K = −1 if and only if m ≥ 2.
If m = 0 it follows that K = 1 if and only if n = 0 or n = 1, it follows that
K = 0 if and only if n = 2, and it follows that K = −1 if and only if n ≥ 3.

(Continued on page 5.)
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The End

Some facts:
Christoffel symbols for a metric Edu2 + 2Fdudv +Gdv2:

[
E F
F G

] [
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
Eu/2 Ev/2 Fv −Gu/2

Fu − Ev/2 Gu/2 Gv/2

]
The covariant second derivative in local coordinates:

Dα′′(t) = (u′′(t) + u′(t)2Γ1
11 + 2u′(t)v′(t))Γ1

12 + v′(t)2Γ1
22)xu

+ (v′′(t) + u′(t)2Γ2
11 + 2u′(t)v′(t))Γ2

12 + v′(t)2Γ2
22)xv


