
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: MAT4510 — Geometric Structures

Day of examination: Monday Dec 02. 2019.

Examination hours: 09:00 – 13:00

This problem set consists of 2 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
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At the end of this document you will find some information that might be
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Problem 1
In this problem we consider the surface of revolution S parametrised by

the map x : (0,∞)× (−∞,∞)→ R3 given by

x(u, v) = (u cos(v), u sin(v), ln(u)).

(a) Compute the first fundamental form.

(b) Compute the Gauss map on S with respect to the parametrisation x.

(c) Define the Gaussian curvature in terms of the Gauss map.

(d) Compute the Gaussian curvature.

(e) Letting γ(t) = (t, v0) for a fixed v0, prove that x(γ) is a geodesic. Is
x(γ) a constant speed geodesic?

Problem 2

(a) Explain how a torus is constructed as a quotient of a square. Explain
how a general closed compact surface is constructed as a quotient of
an n-gon.

(b) State the topological classification of all closed compact surfaces. With
respect to this classification, which surface is the following

X = D2 \ bc−1ab−1c−1a?

Is X orientable?

Problem 3

(Continued on page 2.)
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(a) Elements of Mob+(H) are classified in three distinct categories. Define
each of these categories.

(b) Classify the element f(z) = 2z
− 3

2
z+ 1

2

.

(c) Prove that g is hyperbolic if and only if g may we written

g(z) =
(λad− bc

λ )z + (λbd− bd
λ )

(−λac+ ac
λ )z + (−λbc+ ad

λ )

where a, b, c, d ∈ R, ad− bc = 1 and λ > 0, λ 6= 1.

The End

Some facts:

(1) Christoffel symbols for a metric Edu2 + 2Fdudv +Gdv2:

[
E F
F G

] [
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
Eu/2 Ev/2 Fv −Gu/2

Fu − Ev/2 Gu/2 Gv/2

]
The covariant second derivative in local coordinates:

Dα′′(t) = (u′′(t) + u′(t)2Γ1
11 + 2u′(t)v′(t))Γ1

12 + v′(t)2Γ1
22)xu

+ (v′′(t) + u′(t)2Γ2
11 + 2u′(t)v′(t))Γ2

12 + v′(t)2Γ2
22)xv

(2) The function g : (0,∞) → R defined by g(t) = t + 1/t, satisfies
g(t) > 2 for all t ∈ (0,∞) \ {1}.


