Manifolds, V2018

Problem sheet 1, to be discussed on Monday the 22nd January 2018.

Problem 1. Tu, Problem 6.1.
Problem 2. Show that $\mathbb{R}^{n} \backslash\{0\}$ is diffeomorphic to $S^{n-1} \times \mathbb{R}$ for every positive integer n.

Problem 3. Let m, n be integers such that $m \geq 0, n>0$, and let $V \subset \mathbb{R}^{m+n}$ be an m-dimensional linear subspace. Show that $\mathbb{R}^{m+n} \backslash V$ is diffeomorphic to $S^{n-1} \times \mathbb{R}^{m+1}$.

Problem 4. Let $A:=\mathbb{R} \times\{0,1\}$, where \mathbb{R} has the usual topology and $\{0,1\}$ has the discrete topology. Let L be the quotient of A obtained by identifying $(x, 0)$ with $(x, 1)$ for $x \neq 0$.
(i) Show that every point in L has a neighbourhood homeomorphic to an open subset of \mathbb{R}.
(ii) Show that L is not Hausdorff.

