Manifolds, V2018

Problem sheet 1, to be discussed on Monday the 22nd January 2018.

Problem 1. Tu, Problem 6.1.

Problem 2. Show that $\mathbb{R}^n \setminus \{0\}$ is diffeomorphic to $S^{n-1} \times \mathbb{R}$ for every positive integer n.

Problem 3. Let m, n be integers such that $m \ge 0, n > 0$, and let $V \subset \mathbb{R}^{m+n}$ be an *m*-dimensional linear subspace. Show that $\mathbb{R}^{m+n} \setminus V$ is diffeomorphic to $S^{n-1} \times \mathbb{R}^{m+1}$.

Problem 4. Let $A := \mathbb{R} \times \{0, 1\}$, where \mathbb{R} has the usual topology and $\{0, 1\}$ has the discrete topology. Let L be the quotient of A obtained by identifying (x, 0) with (x, 1) for $x \neq 0$.

- (i) Show that every point in L has a neighbourhood homeomorphic to an open subset of \mathbb{R} .
- (ii) Show that L is not Hausdorff.