MAT4520 - Manifolds, Spring 2018

Compulsory assignment, to be returned via Devilry by
Tuesday the 24th April at 12:30.

Problem 1. Let a_{1}, a_{2}, a_{3} be integers, each greater than one, and let V be the set of points $\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3} \backslash\{0\}$ such that

$$
\left(z_{1}\right)^{a_{1}}+\left(z_{2}\right)^{a_{2}}+\left(z_{3}\right)^{a_{3}}=0
$$

(i) Show that V is a regular submanifold of $\mathbb{C}^{3} \backslash\{0\}$.
(ii) For any $r>0$ let

$$
S_{r}^{5}:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=r^{2}\right\}
$$

be the r-sphere in \mathbb{C}^{3}. Show that V intersects S_{r}^{5} transversely and compute the dimension of $Y:=V \cap S_{r}^{5}$.
Hint: Observe that for any $z=\left(z_{1}, z_{2}, z_{3}\right) \in V$ the derivative of the function

$$
f(z):=\left(z_{1}\right)^{a_{1}}+\left(z_{2}\right)^{a_{2}}+\left(z_{3}\right)^{a_{3}}
$$

vanishes on the vector $\left(z_{1} / a_{1}, z_{2} / a_{2}, z_{3} / a_{3}\right)$. If $z \in Y$, check whether that vector is tangent to S_{r}^{5}.

Problem 2. The aim of this problem is to construct an immersion of the Klein bottle into S^{3} and an embedding into $S^{3} \times \mathbb{R}$. We will regard S^{1} as the unit circle in the complex plane and S^{3} as the unit sphere in \mathbb{C}^{2}.
(i) Show that the map

$$
F: S^{1} \times S^{1} \rightarrow \mathbb{C}^{2}, \quad(w, z) \mapsto\left(\operatorname{Re}(z) w^{2}, \operatorname{Im}(z) w\right)
$$

is an immersion which in fact takes values in S^{3}.
(ii) The Klein bottle Σ is the quotient of $S^{1} \times S^{1}$ obtained by identifying (w, z) with $(-w, \bar{z})$ for every $(w, z) \in S^{1} \times S^{1}$. Because the map $(w, z) \mapsto(-w, \bar{z})$ is a fix-point free involution of $S^{1} \times S^{1}$, the space Σ is a topological $2-$ manifold with a unique smooth structure such that the projection $\pi: S^{1} \times S^{1} \rightarrow \Sigma$ is a local diffeomorphism. Show that there exists an immersion

$$
G: \Sigma \rightarrow S^{3}
$$

such that $G \circ \pi=F$.
(iii) Show that there are disjoint embedded circles C_{1} and C_{2} in Σ, each of which is mapped diffeomorphically by G onto the same circle in S^{3}, such that G is injective on $\Sigma \backslash\left(C_{1} \cup C_{2}\right)$.
(iv) Prove that there is an embedding $H: \Sigma \rightarrow S^{3} \times \mathbb{R}$ such that

$$
H \circ \pi(w, z)=\left(\operatorname{Re}(z) w^{2}, \operatorname{Im}(z) w, \operatorname{Re}(z)\right) .
$$

Problem 3. Fix a natural number n and set

$$
G:=\operatorname{GL}(n+1, \mathbb{C}), \quad \mathfrak{g}:=\operatorname{gl}(n+1, \mathbb{C}),
$$

so that \mathfrak{g} is the Lie algebra of the Lie group G. Recall that the projection map $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$ is a submersion.
(i) Show that the map

$$
G \times \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C}^{n+1} \backslash\{0\}, \quad(A, v) \mapsto A v
$$

descends to a smooth map $\psi: G \times \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$. To simplify notation we write $A \cdot p:=\psi(A, p)$. In this notation, the requirement on ψ is that

$$
A \cdot \pi(v)=\pi(A v) .
$$

(ii) For any $C \in \mathfrak{g}$ let X_{C} be the vector field on $\mathbb{C P}^{n}$ given by

$$
\left(X_{C}\right)(p):=\left.\frac{d}{d t}\right|_{0}(I+t C) \cdot p,
$$

where $I \in G$ denotes the identity matrix. Show that X_{C} is smooth.
(iii) Show that the zeros of X_{C} are precisely the points of the form $\pi(v)$ where $v \in \mathbb{C}^{n+1}$ is an eigenvector of C.
(iv) For $A \in G, p \in \mathbb{C P}^{n}$ set

$$
p \cdot A:=\psi\left(A^{-1}, p\right),
$$

so that $(p \cdot A) \cdot B=p \cdot(A B)$. For any $C \in \mathfrak{g}$ let Y_{C} be the vector field on $\mathbb{C P}^{n}$ given by

$$
\left(Y_{C}\right)(p):=\left.\frac{d}{d t}\right|_{0} p \cdot(I+t C) .
$$

Show that $Y_{p}=-X_{p}$.
(v) Show that for $C, D \in \mathfrak{g}$ the Lie bracket of the vector fields Y_{C}, Y_{D} is given by

$$
\left[Y_{C}, Y_{D}\right]=Y_{[C, D]} .
$$

