MAT4530 (2023 SPRING) CHECKLIST

MAKOTO YAMASHITA

Framework for spaces

- Explain formal definitions of
 - cell complexes (CW complexes)
 - $-\Delta$ -complexes
- Explain basic ideas behind these frameworks.
- How are they different?
- Give realization of
 - spheres
 - surfaces
 - projective spaces
- What is a pointed space?
- What is a pair of spaces / cell complexes?

Operations

- In the setting of topological spaces, explain the formal definitions of
 - wedge sum
 - smash product
 - suspension
- Give examples for these operations.
- Describe these operations in the framework of cell / Δ -complexes.

Intermediate concepts

How do you model the following concepts?

- paths in spaces
- loops in spaces
- simplexes in spaces

Homotopy

- Explain the formal definitions of
 - homotopy equivalence of maps
 - homotopy equivalence of paths
 - homotopy equivalence of spaces
- Give concrete examples of above concepts.

Invariants

- Explain the ideas behind the following invariants:
 - $-\,$ fundamental group
 - singular homology
 - relative (singular) homology
 - simplicial homology
 - cellular homology
 - local homology
- How are they related?
- How are they different? When do you see the difference?
- How do you see homotopy invariance for each of these?

Date: 21.05.2023.

Computations

- Explain the ideas behind:
 - Van Kampen's theorem
 - homology long exact sequence for pairs
 - degree of maps $S^n \to S^n$
 - excision for singular homology
 - Mayer–Vietoris exact sequence
- Use these to compute the above invariants for:
 - bouquet spaces $S^1 \lor \cdots \lor S^1$
 - spheres
 - surfaces
 - real projective spaces