SAMPLE SOLUTIONS TO MANDATORY ASSIGNMENT, MAT4530 SPRING 2024

JOHN ROGNES

(1) The n-simplex $\left[v_{0}, \ldots, v_{n}\right] \subset \mathbb{R}^{n}$ consists of the convex linear combinations $\sum_{i=0}^{n} t_{i} v_{i}$ with $t_{i} \geq 0$ and $\sum_{i=0}^{n} t_{i}=1$, which equals the subspace of points $\left(x_{1}, \ldots, x_{n}\right)$ with $1 \geq x_{1} \geq \cdots \geq x_{n} \geq 0$. Here $x_{j}=\sum_{i=j}^{n} t_{i}$ for each $1 \leq j \leq n$, so $t_{0}=1-x_{1}, t_{j}=x_{j}-x_{j+1}$ and $t_{n}=x_{n}$. The composite

$$
\left[v_{0}, \ldots, v_{n}\right] \subset[0,1]^{n} \longrightarrow \operatorname{SP}_{n}([0,1])
$$

is thus a continuous bijection of compact Hausdorff spaces, and is therefore a homeomorphism.
(2) The surjection $[0,1] \rightarrow S^{1}$ induces the surjection $\mathrm{SP}_{n}([0,1]) \rightarrow$ $\mathrm{SP}_{n}\left(S^{1}\right)$ that identifies the image of

$$
1=\cdots=1>x_{a+1} \geq \cdots \geq x_{b}>0=\cdots=0
$$

in $\left[v_{0}, \ldots, v_{n}\right]$ (with a ones and $n-b$ zeros) with the image of

$$
x_{a+1} \geq \cdots \geq x_{b}>0=\cdots=0=0=\cdots=0
$$

in $\left[v_{0}, \ldots, v_{n}\right]$ (with 0 ones and $n-b+a$ zeros). This means that the face $\left[v_{a}, \ldots, v_{b}\right]$ is identified with $\left[v_{0}, \ldots, v_{b-a}\right]$, preserving the barycentric coordinates, so that $\mathrm{SP}_{n}\left(S^{1}\right)$ is the quotient Δ-complex obtained from $\left[v_{0}, \ldots, v_{n}\right] \cong \Delta^{n}$ by making these identifications.

Such identifications also imply identifications of the lower-dimensional faces, so that for $a=i_{0}<i_{1}<\cdots<i_{k}=b$ the k-face $\left[v_{i_{0}}, v_{i_{1}}, \ldots, v_{i_{k}}\right]$ is identified with the k-face $\left[v_{0}, v_{i_{1}-i_{0}}, \ldots, v_{i_{k}-i_{0}}\right]$ corresponding to $0=$ $i_{0}-a<i_{1}-a<\cdots<i_{k}-a=b-a$.

Date: March 5th, 2024.
(3) In the triangle $\left[w_{0}, w_{1}, w_{2}\right]$, with the edges $\left[w_{0}, w_{1}\right]$ and $\left[w_{1}, w_{2}\right]$ identified to a,

we cut along c, flip one triangle over and glue along a, to obtain

which is a model for the Möbius band.
(4) Let $[012]=\left[w_{0}, w_{1}, w_{2}\right]$, etc. The chain complex is

$$
0 \rightarrow \mathbb{Z}\{[012]\} \xrightarrow{\partial_{2}} \mathbb{Z}\{[01]=[12],[02]\} \xrightarrow{\partial_{1}} \mathbb{Z}\{[0]=[1]=[2]\} \rightarrow 0
$$

with

$$
\begin{aligned}
\partial_{2}([012]) & =[12]-[02]+[01]=2 \cdot[01]-[02] \\
\partial_{1}([01]) & =[1]-[0]=0 \\
\partial_{1}([02]) & =[2]-[0]=0 .
\end{aligned}
$$

Here $\operatorname{im}\left(\partial_{1}\right)=0, \operatorname{ker}\left(\partial_{1}\right)=\Delta_{1}\left(Y^{2}\right), \operatorname{im}\left(\partial_{2}\right)=\mathbb{Z}\{2 \cdot[01]-[02]\}$ and $\operatorname{ker}\left(\partial_{2}\right)=0$. Hence $H_{0}^{\Delta}\left(Y_{2}\right)=\Delta_{0}\left(Y^{2}\right) \cong \mathbb{Z}$ generated by [0], $H_{1}^{\Delta}\left(Y_{2}\right)=$ $\Delta_{1}\left(Y^{2}\right) / \mathbb{Z}\{2 \cdot[01]-[02]\} \cong \mathbb{Z}$ generated by [01], and $H_{2}^{\Delta}\left(Y_{2}\right)=0$.
(5) The chain complex is
$0 \rightarrow \mathbb{Z}\{[0123]\} \xrightarrow{\partial_{3}} \mathbb{Z}\{[012],[013],[023]\} \xrightarrow{\partial_{2}} \mathbb{Z}\{[01],[02],[03]\} \xrightarrow{\partial_{1}} \mathbb{Z}\{[0]\} \rightarrow 0$
with

$$
\begin{aligned}
\partial_{3}([0123]) & =[123]-[023]+[013]-[012]=[013]-[023] \\
\partial_{2}([012]) & =[12]-[02]+[01]=2 \cdot[01]-[02] \\
\partial_{2}([013]) & =[13]-[03]+[01]=[01]+[02]-[03] \\
\partial_{2}([023]) & =[23]-[03]+[02]=[01]+[02]-[03] \\
\partial_{1}([01]) & =[1]-[0]=0 \\
\partial_{1}([02]) & =[2]-[0]=0 \\
\partial_{1}([03]) & =[3]-[0]=0 .
\end{aligned}
$$

Here $H_{0}^{\Delta}\left(Y_{3}\right) \cong \mathbb{Z}$ generated by [0], $H_{1}^{\Delta}\left(Y_{3}\right) \cong \mathbb{Z}$ generated by [01], $H_{2}^{\Delta}\left(Y_{3}\right)=0$ and $H_{3}^{\Delta}\left(Y_{3}\right)=0$.
(6) Let $p \in\left[v_{0}, v_{n}\right]$ and $q \in\left[v_{1}, \ldots, v_{n-1}\right]$ be interior points, e.g. the barycenters, of the indicated 1 -face and $(n-1)$-face, respectively. Then $\left[v_{0}, \ldots, v_{n}\right]$ is the union of the two n-simplices $\left[v_{0}, p, v_{1}, \ldots, v_{n-1}\right]$ and [$p, v_{n}, v_{1}, \ldots, v_{n-1}$], which meet along $\left[p, v_{1}, \ldots, v_{n-1}\right]$. We define a retraction

$$
r:\left[v_{0}, \ldots, v_{n}\right] \longrightarrow L_{n-1}
$$

to be affine linear on each of these n-simplices, sending p to q in both cases, and taking each vertex v_{i} to itself (as is required of a retraction to a subspace containing all of these vertices).

Since $\left[v_{0}, \ldots, v_{n}\right]$ is convex, this is a deformation retraction. More explicitly, the convex linear expression

$$
H(x, t)=(1-t) x+\operatorname{tir}(x)
$$

defines a homotopy $H:\left[v_{0}, \ldots, v_{n}\right] \times[0,1] \rightarrow\left[v_{0}, \ldots, v_{n}\right]$ from the identity to the composite ir $:\left[v_{0}, \ldots, v_{n}\right] \rightarrow L_{n-1} \rightarrow\left[v_{0}, \ldots, v_{n}\right]$.
(7) By passage to quotient spaces along $\left[v_{0}, \ldots, v_{n}\right] \rightarrow Y_{n}$, the retraction r induces a retraction $r^{\prime}: Y_{n} \rightarrow Y_{n-1}$, and the homotopy H induces a homotopy

$$
H^{\prime}: Y_{n} \times[0,1] \longrightarrow Y_{n}
$$

from the identity to the composite $i^{\prime} r^{\prime}: Y_{n} \rightarrow Y_{n-1} \rightarrow Y_{n}$. Hence Y_{n-1} is a deformation retract of Y_{n}, and i^{\prime} is a homotopy equivalence.
(8) By (7) and homotopy invariance of homology, $i_{*}^{\prime}: H_{m}^{\Delta}\left(Y_{n-1}\right) \rightarrow$ $H_{m}^{\Delta}\left(Y_{n}\right)$ is an isomorphism for each $m \geq 0$ and $n \geq 2$. Hence $\mathbb{Z}\{[0]\}=$ $H_{0}^{\Delta}\left(Y_{1}\right) \cong H_{0}^{\Delta}\left(Y_{n}\right), \mathbb{Z}\{[01]\}=H_{1}^{\Delta}\left(Y_{1}\right) \cong H_{1}^{\Delta}\left(Y_{n}\right)$, and $0=H_{m}^{\Delta}\left(Y_{1}\right) \cong$ $H_{m}^{\Delta}\left(Y_{n}\right)$ for all $m \geq 2$.

We prove by induction on $n \geq 1$ that the 1 -cycle $\left[w_{0}, w_{n}\right]$ in $\Delta_{*}\left(Y_{n}\right)$ is homologous to n times the 1-cycle $\left[w_{0}, w_{1}\right]$ generating $H_{1}^{\Delta}\left(Y_{n}\right)$. This is clear for $n=1$. Suppose it holds for $(n-1)$, so that $\left[w_{0}, w_{n-1}\right]$ is homologous to $(n-1)\left[w_{0}, w_{1}\right]$ in $\Delta_{*}\left(Y_{n-1}\right)$. The same relation then holds in $\Delta_{*}\left(Y_{n}\right)$, since i^{\prime} induces a chain map. Moreover,

$$
\partial_{2}\left(\left[w_{0}, w_{n-1}, w_{n}\right]\right)=\left[w_{n-1}, w_{n}\right]-\left[w_{0}, w_{n}\right]+\left[w_{0}, w_{n-1}\right]
$$

in $\Delta_{1}\left(Y_{n}\right)$, so $\left[w_{0}, w_{n}\right]$ is homologous to $\left[w_{0}, w_{n-1}\right]+\left[w_{n-1}, w_{n}\right]$. Here $\left[w_{n-1}, w_{n}\right]=\left[w_{0}, w_{1}\right]$ in Y_{n}, so this is homologous to $(n-1)\left[w_{0}, w_{1}\right]+$ $\left[w_{0}, w_{1}\right]=n\left[w_{0}, w_{1}\right]$. This completes the inductive step.

