### MANDATORY ASSIGNMENT FOR MAT9540 FALL 2016

#### JOHN ROGNES

Give a 45 minute presentation on Friday October 28th of either

- Problem 1(a-c) and Problem 2(a-d), or
- Problem 1(a-c) and Problem 3(a-d).

Plan to spend 15 minutes on Problem 1, and 30 minutes on Problem 2 or 3. Consult with John Rognes and the other students for the division of labor.

#### Problem 1

Consider an analog clock with an hour hand and a minute hand, pointing at points h and m on the perimeter, which we identify with the circle  $S^1$ . The pair of hands thus specifies a point  $(h, m) \in S^1 \times S^1 = T^2$ .

- Let  $a \in H_1(T^2)$  be the homology class of the cycle representing a closed loop by the hour hand, in the clockwise direction, keeping the minute hand fixed. Similarly, let  $b \in H_1(T^2)$  be the class representing a closed loop by the minute hand, keeping the hour hand fixed. Let  $\alpha$  and  $\beta \in H^1(T^2)$  be dual to a and b. Take as known that  $H^*(T^2) = \Lambda_{\mathbb{Z}}(\alpha, \beta)$ , with  $\alpha \cup \beta = \gamma$  generating  $H^2(T^2)$ .
- (a) Let  $\Delta \subset T^2$  be the closed loop described by letting the hour and minute hands move once around the clock face, always overlapping. Let  $E \subset T^2$  be the closed loop described by regular motion of the hour and minute hands, showing time from 6 a.m. to 6 p.m. Express the homology classes  $[\Delta]$  and [E] of these cycles as linear combinations of a and b.
- (b) Poincaré duality for  $T^2$  gives an isomorphism  $D \colon H^1(T^2) \to H_1(T^2)$ , mapping  $\alpha$  and  $\beta$  to  $D(\alpha) = b$  and  $D(\beta) = -a$ , respectively. Find the cohomology classes  $\delta$  and  $\epsilon \in H^1(T^2)$  that are Poincaré dual to  $[\Delta]$  and [E], respectively, and calculate the cup product  $\delta \cup \epsilon$ .
- (c) Poincaré duality also gives an isomorphism  $D: H^2(T^2) \to H_0(T^2)$ , mapping  $\gamma$  to the homology class of a point. Calculate the Poincaré dual of  $\delta \cup \epsilon$ . This class in  $H_0(T^2)$  is known to be the class of the intersection  $\Delta \cap E$ , interpreted as a 0-chain in  $T^2$ . What does your answer for  $D(\delta \cup \epsilon)$  say about the motion of the clock hands in the time from 6 a.m. to 6 p.m.?

## Problem 2

Let  $T^2 = S^1 \times S^1 \cong \mathbb{R}^2/\mathbb{Z}^2$  be the torus surface. Take as known that  $H^*(T^2) = \Lambda_{\mathbb{Z}}(\alpha, \beta)$ , as in Problem 1.

- (a) Show that it is impossible to cover  $T^2$  with only two coordinate charts  $U_1$  and  $U_2$ . Here we assume that the  $U_i$  are open subsets of  $T^2$ , each homeomorphic to  $\mathbb{R}^2$ , with  $U_1 \cup U_2 = T^2$ .
- (b) Find three coordinate charts  $U_1$ ,  $U_2$  and  $U_3$  that cover  $T^2$ . Hint: Let  $U_1$  be the homeomorphic image of  $(0,1)^2 \subset \mathbb{R}^2$ , and give similar descriptions of  $U_2$  and  $U_3$ .
- (c) Let  $M_g$  be a closed, connected, orientable surface of genus  $g \ge 2$ . What is the minimal number of coordinate charts needed to cover  $M_g$ ?
- (d) The Lusternik-Schnirelmann category  $\operatorname{cat}(X)$  of a space X is the minimal integer k for which X can be covered by k open subsets  $U_1, \ldots, U_k$  such that each inclusion  $U_i \to X$  is null-homotopic. The Ganea conjecture states that  $\operatorname{cat}(X \times S^n) = \operatorname{cat}(X) + 1$  for each space X and any  $n \ge 1$ . Find information about the status of this problem, including references to the literature.

# Problem 3

For abelian groups A and B let  $\operatorname{Ext}(A, B) = \operatorname{Ext}_{\mathbb{Z}}^{1}(A, B)$ .

- (a) If A is free, show that Ext(A, B) = 0 for any B.
- (b) If A is finitely generated, and  $\operatorname{Ext}(A,\mathbb{Z})=0$ , show that A is free.
- (c) For a general abelian group A, show that if  $\operatorname{Ext}(A,B)=0$  for each B then A is free. Hint: Consider a free resolution of A, and use this to choose a suitable B.
- (d) The Whitehead problem asks: "Is every abelian group A with  $\operatorname{Ext}(A, \mathbb{Z}) = 0$  a free abelian group?" Find information about the status of this problem, including references to the literature.