MANDATORY ASSIGNMENT FOR MAT4540 FALL 2016

JOHN ROGNES

Return to John Rognes by Friday October 28th. Each of the nine questions carry equal weight. A score over 50% is sufficient to pass. A near-pass may qualify for a second attempt. You may cooperate with other students, but your answers should reflect your own understanding.

Problem 1

Consider an analog clock with an hour hand and a minute hand, pointing at points h and m on the perimeter, which we identify with the circle S^{1}. The pair of hands thus specifies a point $(h, m) \in$ $S^{1} \times S^{1}=T^{2}$ 。

Let $a \in H_{1}\left(T^{2}\right)$ be the homology class of the cycle representing a closed loop by the hour hand, in the clockwise direction, keeping the minute hand fixed. Similarly, let $b \in H_{1}\left(T^{2}\right)$ be the class representing a closed loop by the minute hand, keeping the hour hand fixed. Let α and $\beta \in H^{1}\left(T^{2}\right)$ be dual to a and b. Take as known that $H^{*}\left(T^{2}\right)=\Lambda_{\mathbb{Z}}(\alpha, \beta)$, with $\alpha \cup \beta=\gamma$ generating $H^{2}\left(T^{2}\right)$.
(a) Let $\Delta \subset T^{2}$ be the closed loop described by letting the hour and minute hands move once around the clock face, always overlapping. Let $E \subset T^{2}$ be the closed loop described by regular motion of the hour and minute hands, showing time from 6 a.m. to 6 p.m. Express the homology classes $[\Delta]$ and $[E]$ of these cycles as linear combinations of a and b.
(b) Poincaré duality for T^{2} gives an isomorphism $D: H^{1}\left(T^{2}\right) \rightarrow H_{1}\left(T^{2}\right)$, mapping α and β to $D(\alpha)=b$ and $D(\beta)=-a$, respectively. Find the cohomology classes δ and $\epsilon \in H^{1}\left(T^{2}\right)$ that are Poincaré dual to [Δ] and $[E]$, respectively, and calculate the cup product $\delta \cup \epsilon$.
(c) Poincaré duality also gives an isomorphism $D: H^{2}\left(T^{2}\right) \rightarrow H_{0}\left(T^{2}\right)$, mapping γ to the homology class of a point. Calculate the Poincaré dual of $\delta \cup \epsilon$. This class in $H_{0}\left(T^{2}\right)$ is known to be the class of the intersection $\Delta \cap E$, interpreted as a 0 -chain in T^{2}. What does your answer for $D(\delta \cup \epsilon)$ say about the motion of the clock hands in the time from 6 a.m. to 6 p.m.?

Problem 2

Let $T^{2}=S^{1} \times S^{1} \cong \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the torus surface. Take as known that $H^{*}\left(T^{2}\right)=\Lambda_{\mathbb{Z}}(\alpha, \beta)$, as in Problem 1.
(a) Show that it is impossible to cover T^{2} with only two coordinate charts U_{1} and U_{2}. Here we assume that the U_{i} are open subsets of T^{2}, each homeomorphic to \mathbb{R}^{2}, with $U_{1} \cup U_{2}=T^{2}$.
(b) Find three coordinate charts U_{1}, U_{2} and U_{3} that cover T^{2}. Hint: Let U_{1} be the homeomorphic image of $(0,1)^{2} \subset \mathbb{R}^{2}$, and give similar descriptions of U_{2} and U_{3}.
(c) Let M_{g} be a closed, connected, orientable surface of genus $g \geq 2$. What is the minimal number of coordinate charts needed to cover M_{g} ?

Problem 3

For abelian groups A and B let $\operatorname{Ext}(A, B)=\operatorname{Ext}_{\mathbb{Z}}^{1}(A, B)$.
(a) If A is free, show that $\operatorname{Ext}(A, B)=0$ for any B.
(b) If A is finitely generated, and $\operatorname{Ext}(A, \mathbb{Z})=0$, show that A is free.
(c) For a general abelian group A, show that if $\operatorname{Ext}(A, B)=0$ for each B then A is free. Hint: Consider a free resolution of A, and use this to choose a suitable B.

