Semesterside for MAT4551 - Vår 2019

Tue May 7:

Sections 3.2-3.4  in Geiges "Contact Geometry".

Thu May 9:

Open books and Lefschetz fibrations, following Geiges "Contact Geometry" Section 3.5.1 and Sections 2.2-2.3 in https://www.mathematik.hu-berlin.de/~wendl/SFT8/Courte_precourse.pdf by Sylvain Courte.

Tue May 14:

More on Lefschetz fibrations, following Sections 3-5 of Exotic symplectic manifolds from Lefschetz fibrations by Maksim Maydanskiy.

Thu May 16:

TIght and overtwisted, Section 3.6 and 3.7 in Geiges "Contact Geometry".

Tue May 21:
Cancelled due to ...

6. mai 2019 15:23

Tue April 23:

Moved to Friday

 

Thu April 25:

More on handle attachment: smoothing corners and framings (Geiges book Sections 6.1, 6.2, 3.5)

 

Fri April 26 (14:15-16:00 in 1120):

Problem solving session 4

 

Tue April 30:

h-principles (Section 6.3 in the book by Geiges)

 

Thu May 2:

Sections 3.1-3.2  in Geiges "Contact Geometry"

 

11. apr. 2019 15:26

Tue April 2:

Sections 2.2-2.4.2 in Geiges 

 

Thu April 4:

Sections 2.4.3- 2.4.5 in Geiges

 

Tue April 9:

Sections 2.4.4 and 2.6 in Geiges

 

Thu April 11:

Weinstein manifolds and Weinstein handle attachment, following https://projecteuclid.org/euclid.hokmj/1381413841

1. apr. 2019 15:00

Tue March 19:

No lecture due to the The Abel Prize announcement 

 

Thu March 21:

Sections 28-30 of Cannas da Silva (Symplectic toric manifolds)

 

Tue March 26:

Problem solving session

 

Thu March 28:

Contact manifolds: We begin to study Section 2 of Geiges' notes https://arxiv.org/abs/math/0307242

15. mars 2019 13:01

Tue March 5:

Sections 18,24 of Cannas da Silva (Integrable systems and reduction) 

 

Thu March 7:

Section 25 of Cannas da Silva (Moment map in gauge theory)

 

Tue March 12:

Section 26 of Cannas da Silva (Existence and uniqueness of moment maps)

 

Thu March 14:

Section 27 of Cannas da Silva (Convexity). We will meet in room 819.

 

1. mars 2019 11:24

Tue Feb 19:

Sections 14-15 of Cannas da Silva (Dolbeault theory and Complex manifolds)

 

Thu Feb 21:

Sections 16-17 of Cannas da Silva (Kähler forms and Compact Kähler manifolds)

 

Tue Feb 26:

Problem solving session, Problem sheet 2

 

Thu Feb 28:

Hamiltonian actions, da Silva Section 21-23

14. feb. 2019 14:36