MAT4640-2014

Mandatory assignment
Deadline: March 20-14:30
The solution may be submitted through the standard procedure or in written or electronic form to Dag Normann, dnormann@math.uio.no.
Scanned copies of handwritten solutions will not be accepted if they are hard to read.

Problem 1

Express the formula

$$
x=y \cup\{y\}
$$

using x, y, \in and $=$, standard logical connectives and quantifiers, but no defined functions or predicates.

Problem 2

Let ω_{1} be the first uncountable ordinal, and let $f: \omega_{1} \rightarrow \omega_{1}$ be such that

- If $\alpha<\beta<\omega_{1}$ then $f(\alpha)<f(\beta)$.
- If α is a limit ordinal, then

$$
f(\alpha)=\bigcup_{\beta<\alpha} f(\beta) .
$$

a) Prove that $\alpha \leq f(\alpha)$ for all $\alpha<\omega_{1}$.
b) Prove that $f(\alpha)=\alpha$ for uncountably many $\alpha<\omega_{1}$.

Problem 3

Let X be the set of functions

$$
f: \omega \rightarrow \omega_{1}
$$

where ω_{1} is the first uncountable cardinal.
Show that

$$
X \approx 2^{\omega}
$$

i.e., they have the same cardinality.

Discuss where you use the axiom of choice.

Problem 4

Show that there is one, and only one, function $f: R(\omega) \rightarrow \omega$ satisfying

$$
f(x)=\sum_{y \in x} 2^{f(y)}
$$

for each $x \in R(\omega)$. Here $R(\omega)$ is the first infinite level in the cumulative hierarchy.
Show that this function is a bijection.
Find a function $g: \omega \rightarrow \omega$ such that for all n and m in ω and for x and y in $R(\omega)$ with $n=f(x)$ and $m=f(y)$ we have that

$$
f(\langle x, y\rangle)=g(n, m) .
$$

Problem 5

Let α and β be two limit ordinals. Show that $1 . \Rightarrow 2$. where

1. $c f(\alpha)<c f(\beta)$
2. Every increasing $h: \alpha \rightarrow \beta$ has a range that is bounded in β.

Note that we do not restrict 2. to strictly increasinng functions.
Does the implication hold if we do not even demand h to be increasing?
END OF ASSIGNMENT

