The proof of the Schröder-Bernstein theorem

Since there was some confusion in the presentation of the proof of this theorem on February 5, I offer some details here.

Theorem 1 If $f: A \rightarrow B$ and $g: B \rightarrow A$ are two injective functions, there is a bijection h from A to B.

Proof
Let $A_{0}=A$ and $B_{0}=B$.
By recursion, let $B_{n+1}=f\left[A_{n}\right]$ and $A_{n+1}=A \backslash g\left[B \backslash B_{n+1}\right]$ (Here $f\left[A_{n}\right]$ etc. denotes the range of A_{n} under f).
This definition is slightly different from the one given at the lecture, but will serve the same purpose.
By induction, we see that $B_{n+1} \subseteq B_{n}$ and that $A_{n+1} \subseteq A_{n}$.
Let $A_{\omega}=\bigcap_{n \in \omega} A_{n}$ and $B_{\omega}=\bigcap_{n \in \omega} B_{n}$.
We will prove

1. f restricted to A_{ω} is a bijection to B_{ω}
2. g restricted to $B \backslash B_{\omega}$ is a bijection to $A \backslash A_{\omega}$.

Then we may define

$$
h(a)=\left\{\begin{array}{ccc}
f(a) & \text { if } & a \in A_{\omega} \\
g^{-1}(a) & \text { if } & a \notin A_{\omega},
\end{array}\right.
$$

and h will be a bijection.
If $a \in A_{\omega}$, then $a \in A_{n}$ for all n, so $f(a) \in B_{n+1}$ for all n and $f(a) \in B_{\omega}$.
Conversely, if $b \in B_{\omega}$, then $b \in B_{n+1}$ for all n, so for all n there is an $a_{n} \in A_{n}$ such that $b=f\left(a_{n}\right)$. Since f is injective, all the a_{n} 's are equal, call the value a. Then $a \in A_{\omega}$ and $b=f(a)$. This proves that f is a bijection from A_{ω} to B_{ω}.

Now, let $b \notin B_{\omega}$. Then there is an $n \in \omega$ such that $b \notin B_{n+1}$. By the definition of A_{n+1} we have that $g(b) \notin A_{n+1}$ so $g(b) \notin A_{\omega}$.
Conversely, if $a \notin A_{\omega}$ there is some n such that $a \notin A_{n+1}$, and the reason must be that there is some $b \notin B_{n+1}$ such that $g(b)=a$. This b will be unique, and will not be in B_{ω}.
This proves that g is a bijection from the complement of B_{ω} to the complement of A_{ω}, so the second claim is proved.

