The proof of the Schröder-Bernstein theorem

Since there was some confusion in the presentation of the proof of this theorem on February 5, I offer some details here.

Theorem 1 If \(f : A \to B \) and \(g : B \to A \) are two injective functions, there is a bijection \(h \) from \(A \) to \(B \).

Proof

Let \(A_0 = A \) and \(B_0 = B \).

By recursion, let \(B_{n+1} = f[A_n] \) and \(A_{n+1} = A \setminus g[B \setminus B_{n+1}] \)

(Here \(f[A_n] \) etc. denotes the range of \(A_n \) under \(f \)).

This definition is slightly different from the one given at the lecture, but will serve the same purpose.

By induction, we see that \(B_{n+1} \subseteq B_n \) and that \(A_{n+1} \subseteq A_n \).

Let \(A_\omega = \bigcap_{n \in \omega} A_n \) and \(B_\omega = \bigcap_{n \in \omega} B_n \).

We will prove

1. \(f \) restricted to \(A_\omega \) is a bijection to \(B_\omega \)
2. \(g \) restricted to \(B \setminus B_\omega \) is a bijection to \(A \setminus A_\omega \).

Then we may define

\[
h(a) = \begin{cases}
 f(a) & \text{if } a \in A_\omega \\
 g^{-1}(a) & \text{if } a \notin A_\omega,
\end{cases}
\]

and \(h \) will be a bijection.

If \(a \in A_\omega \), then \(a \in A_n \) for all \(n \), so \(f(a) \in B_{n+1} \) for all \(n \) and \(f(a) \in B_\omega \).

Conversely, if \(b \in B_\omega \), then \(b \in B_{n+1} \) for all \(n \), so for all \(n \) there is an \(a_n \in A_n \) such that \(b = f(a_n) \). Since \(f \) is injective, all the \(a_n \)'s are equal, call the value \(a \). Then \(a \in A_\omega \) and \(b = f(a) \). This proves that \(f \) is a bijection from \(A_\omega \) to \(B_\omega \).

Now, let \(b \notin B_\omega \). Then there is an \(n \in \omega \) such that \(b \notin B_{n+1} \). By the definition of \(A_{n+1} \) we have that \(g(b) \notin A_{n+1} \) so \(g(b) \notin A_\omega \).

Conversely, if \(a \notin A_\omega \) there is some \(n \) such that \(a \notin A_{n+1} \), and the reason must be that there is some \(b \notin B_{n+1} \) such that \(g(b) = a \). This \(b \) will be unique, and will not be in \(B_\omega \).

This proves that \(g \) is a bijection from the complement of \(B_\omega \) to the complement of \(A_\omega \), so the second claim is proved.