The proof of the Schröder-Bernstein theorem

Since there was some confusion in the presentation of the proof of this theorem on February 5, I offer some details here.

Theorem 1 If $f : A \to B$ and $g : B \to A$ are two injective functions, there is a bijection h from A to B.

Proof

Let $A_0 = A$ and $B_0 = B$.

By recursion, let $B_{n+1} = f[A_n]$ and $A_{n+1} = A \setminus g[B \setminus B_{n+1}]$ (Here $f[A_n]$ etc. denotes the range of A_n under f).

This definition is slightly different from the one given at the lecture, but will serve the same purpose.

By induction, we see that $B_{n+1} \subseteq B_n$ and that $A_{n+1} \subseteq A_n$.

Let $A_{\omega} = \bigcap_{n \in \omega} A_n$ and $B_{\omega} = \bigcap_{n \in \omega} B_n$. We will prove

- 1. f restricted to A_{ω} is a bijection to B_{ω}
- 2. g restricted to $B \setminus B_{\omega}$ is a bijection to $A \setminus A_{\omega}$.

Then we may define

$$h(a) = \begin{cases} f(a) & \text{if } a \in A_{\omega} \\ g^{-1}(a) & \text{if } a \notin A_{\omega}, \end{cases}$$

and h will be a bijection.

If $a \in A_{\omega}$, then $a \in A_n$ for all n, so $f(a) \in B_{n+1}$ for all n and $f(a) \in B_{\omega}$. Conversely, if $b \in B_{\omega}$, then $b \in B_{n+1}$ for all n, so for all n there is an $a_n \in A_n$ such that $b = f(a_n)$. Since f is injective, all the a_n 's are equal, call the value a. Then $a \in A_{\omega}$ and b = f(a). This proves that f is a bijection from A_{ω} to B_{ω} .

Now, let $b \notin B_{\omega}$. Then there is an $n \in \omega$ such that $b \notin B_{n+1}$. By the definition of A_{n+1} we have that $g(b) \notin A_{n+1}$ so $g(b) \notin A_{\omega}$.

Conversely, if $a \notin A_{\omega}$ there is some n such that $a \notin A_{n+1}$, and the reason must be that there is some $b \notin B_{n+1}$ such that g(b) = a. This b will be unique, and will not be in B_{ω} .

This proves that g is a bijection from the complement of B_{ω} to the complement of A_{ω} , so the second claim is proved.